
Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 273–276,
The University of Tokyo, September 24-25, 2010. c©2010 Association for Computational Linguistics

YouBot: A Simple Framework for Building Virtual Networking Agents

Seiji Takegata, Kumiko Tanaka-Ishii
Graduate School of Information Science and Technology, University of Tokyo

13F Akihabara Daibiru, 1-18-13 SotoKanda Chiyoda-ku, Tokyo, Japan
takegata@cl.ci.i.u-tokyo.ac.jp, kumiko@i.u-tokyo.ac.jp

Abstract

This paper proposes a simple framework
for building ’virtual networking agents’;
programs that can communicate with users
and collect information through the inter-
net. These virtual agents can also commu-
nicate with each other to share information
that one agent does not have. The frame-
work - ’YouBot’ - provides basic functions
such as protocol handling, authentication,
and data storage. The behavior of the vir-
tual agents is defined by a task proces-
sor (’TP’) which can be written in a light-
weight language such as JavaScript. It is
very easy to add new functions to a virtual
agent. The last part of this paper discusses
the micro-blog system ’twitter’ and other
web services as information sources that a
virtual agent can utilise to make its behav-
ior more suited to the user.

1 Introduction

Recently, communicating in short sentences, such
as via Instant Messenger or SMS, has become
more common; the use of ’Twitter’, especially,
is spreading very quickly and widely. These net-
working tools are not only for chatting, but also for
gathering information on and discussing a world
of topics. Short sentences are suitable for Nat-
ural Language Interface processes like question-
answering, recommendation, or reservation sys-
tems; thus, Natural Language Interfaces are be-
coming increasingly important in this area of com-
munications.

There are many dialogue systems that process
natural language as a user-input, like ’UC’ (Wilen-
sky 1987), ’tour guide’ (Prodanov et.al. 2002), but
most of them are designed for a specific individ-
ual purpose, so, have to locate different systems
for different purposes. This problem has been one

of the main barriers preventing dialogue systems
from being adopted more widely.

Our framework -’YouBots’- can accept the
user’s messages as input, and respond in natural
language. The behavior of these agents is defined
by task processors (’TPs’) which can be written
in a light-weight language, eg. JavaScript. It
is very easy to add new TPs to a virtual agent.
Web-browsers like Firefox have a similar add-on
mechanism and, through open-source collabora-
tion, now have thousands of types of extension.
We hope that, in the same way, developers will
be encouraged to write new TPs for our YouBot
framework.

Personal Digital Assistant is an example of this
kind of application. Its schedule manager, contact
manager and to-do list are easily implemented on
this framework. Q&A system is another example;
it would be realized by cooperating with webser-
vice or other external system.

The framework also has a unique networking
feature to help the bots communicate with each
other: It is called ’Inter-bot communication’, a
feature which expands the ways in which the vir-
tual agent can get preferred information for the
user.

2 Outline of the Networking Bot

Most existing dialogue systems only use their in-
ternal data. So their application is often limited
to a specific purpose, as in domain-specific expert
systems. Using a network feature enabling bots
to communicate with each other, our system can
obtain many types of information from other, ex-
ternal systems. Figure 1 shows users communi-
cating with their own bots, and bots communicat-
ing with each other to collect information for their
users. Each connection in the figure is conducted
by XMPP protocol1.

1http://www.xmpp.org/

273



Information in each bot can be linked in the
same manner as web pages, and combine to form
semantic structures in the way of the Semantic
Web (Berners-Lee 2001), this can improve the
bots behaviour.

Figure 1: Network of Users and Bots.

If TPs are designed to share information
through the network, a user need not know which
system contains the information he or she needs.
They only need to talk to their own personal bot,
then the bot will find the information for them.
Each user has their own bot, and can share infor-
mation through these bots. The modes of inter-
action with other users and modes of information
gathering depend on how the TPs are written.

3 Task Managing

Within our framework, a ’task manager’ invokes a
’task processor’ as shown in Figure 2:-

Figure 2: Task-managing

There are existing systems that process tasks
with modular components - TPs; among these, we
find two approaches, one is centralized and the
other distributed. In the centralized approach, a
user-message is analyzed by a central component

of the system, often called the ’dialogue manager’.
Then the dialogue manager decides which TP to
invoke. The ’Smart Personal Assistant’ (Nguyen
et al. 2005) uses ’BDI Theory’ (Bratman 1987) to
determine the user’s intention in the dialogue man-
ager. Then, a TP which satisfies the user’s demand
can be selected. In this approach, interpretation
can be carried out efficiently, but the task manager
needs to be revised every time a new TP is added.
This is not an easy operation unless the task man-
ager is configured to recognize the functionality of
a new TP automatically. This may be viewed as a
serious weakness of the centralized approach.

On the other hand, there is ’RIME’ (Nakano et
al. 2008) which adopts a distributed approach -
where the user-message is sent to each of the TPs,
which interpret it and return a ’score’ indicating
how well they can handle the message. Conse-
quently, the TP returning the highest score will
process the user’s message. This approach suf-
fers from the inefficiency of having to interpret the
user’s message many times in each TP. On the pos-
itive side, there is no need to revise or redesign
central components when a new TP is added.

We have decided to adopt the distributed ap-
proach because we think expandability is more im-
portant than speed. Our framework uses ’Script-
ing Engine’ in which JavaScript codes can run.
JavaScript is very easy to write, owing to which,
many people write extensions for Firefox in which
JavaScript codes can also run. How simply a TP
can be written is a very important factor in the at-
traction of developers.

4 How to Write Task Processors

There are three types of designated TP in the
YouBot system: a ’user task processor’, a ’bot
task processor’, and a ’twitter task processor’. The
’user-TP’ is for processing messages from the user
- explained in the ’Basic Task Processor’ subsec-
tion (see below); the ’bot-TP’ is for processing in-
quiries from other bots - explained in the ’Inter-bot
communication’ subsection (see below); and the
’twitter-TP’ reads the user’s tweets at the Twitter
site - explained in the ’Cooperation with External
Services’ subsection (also see below). Each TP is
saved to an individual JavaScript file in the ’task’
folder with a .js extension. The YouBot Frame-
work reads these files when the program starts and
when a ’reload’ command is issued.

274



4.1 Basic Task Processors

The JavaScript code for a basic TP needs at least
one variable and two functions. The variable
’type’ indicates the type of task - which can ei-
ther be a user-task, bot-task, or twitter-task. The
mandatory functions are ’estimate’ and ’process’,
an approach introduced in the ’Blackboard’ multi-
agent system (Corkill 1991). The ’estimate’ func-
tion receives a user-message from the task man-
ager and returns its score, which shows how likely
it is that this TP will be the best among the other
TPs to process the message. For example, when
a TP uses pattern-matching for message interpre-
tion, the score may be higher if the matched pat-
tern is more complicated, or may be zero if no
pattern matched the user message. The ’estimate’
function can use not only pattern-matching, but
also various data calculated or stored in different
ways; such as the dialogue history or information
from external systems. The YouBot Framework
gathers and compares the scores returned from the
TPs, then selects the processor which returned the
highest score to process the message. The ’pro-
cess’ function of the TP handles the user-message
and makes a response to the user. During the pro-
cessing, this function can access the internal data
store or an external system to get or save various
information.

4.2 Pattern Matching

Our framework provides a handy way to do
pattern-matching, using four types of placeholder:

An OR conditional placeholder is defined by
”{abc|def}” format.

I {will go |went }to school.

matches both ”I will go to school.” and ”I went
to school.” Optional selection can be defined with
this ”(abc|def)” format.

Yes (I do |it is).

matches ”Yes I do”, ”Yes it is” and just ”Yes”
Using ”[abc]” format, the content of the place-
holder can be retrieved. For example, the pattern:

I went to [place].

matches the sentence ”I went to school.” or ”I
went to see a doctor.” If the pattern matches the
user’s message, an object holding the contents of
the placeholder will be returned. You can get the
contents with the ”get” function, specifying the
placeholder - in this case ”[place]”

To define a placeholder which matches only one

specified pattern, ”<abc>” format is used. For ex-
ample, the placeholder ”<date>” can be defined
so that it matches a date expression such as ’yes-
terday’ or ’on Sunday’. Then the pattern:

I went to [place] <date >.

matches ”I went to school on Sunday”, but does
not match ”I went to school with my brother”.
The content of<date> placeholder can also be re-
trieved with ”get” function. Retrieved data can be
kept in the data store and used in interaction with
the user later.

4.3 The Data store

Many chatter bots don’t remember what they have
said before. ’A.L.I.C.E’ (Wallace 2008) has a
short memory - just one single interaction. Un-
usually, YouBot has a long-term data store for its
memory. It holds key=value style properties which
can be defined by the TP. To save schedule data, as
in:-

type="schedule"
date="2010/05/14"
item="Submission dead-line"

- we create a new data object, set its properties,
and use the ’save’ function. To retrieve specific
data from the data store, a ’data selector’ object is
provided. If the following condition is set up in
the data selector:-

type="schedule"
date="2010/05/09"

- then a list of matching data is retrieved from
the data store. The Youbot framework also pro-
vides a facility for responding to inquiries from
other bots, and this raises security issues. In this
framework, a default security filter is installed in
the data selector to send information only to priv-
ileged bots. Data objects saved in the data store
have security attributes for which the default is
’secret’, and only the owner of the bot can ac-
cess this information. This attribute can be set to
’private’ or ’official’ - then, the information will
only be accessible to the bots which have ’private’
or ’official’ privilege. Developers do not have to
worry about this data security setting during inter-
bot communication.

4.4 Inter-bot communication

A user-TP can send an inquiry to another bot -
about, for example, the user’s schedule or knowl-
edge and expertise. The TP generates an ’Inquiry
Sender’ object , sets the inquiry and the target
bot’s address, then uses the ’send’ function. This

275



inquiry is formatted as an inter-bot message so
that the receiving bot can distinguish it from user-
messages. The receiving bot generates an ’Inquiry
Responder’ object for each of the incoming inter-
bot messages; then the Task Manager sends the
messages to the bot-TP. Next, the bot-TPs estimate
the likelihood of processing the message and re-
turn scores - with the bot-TP which returns the
highest score being selected to respond. A re-
sponding message is sent back to the inquiring bot
in the inter-bot message format. then a function
named ’convey’ - within the inquiring TP - is in-
voked to make a response to the user. A function
named ’timeout’ is invoked when no response has
been returned.

Figure 3: Inter-Bot Communication

To respond to an inquiry from another bot, a
bot-TP for that inquiry has to be defined. Besides
which, remote bots have to be given privilege to
collect information which has a security attribute
restricting access. If a TP developer fails to spec-
ify a security attribute for the data, no access will
be allowed without the right privilege, because the
default setting is secret.

4.5 Cooperation with External Systems

A bot can read the user’s tweets at the twitter site
at specified intervals. The User’s tweets are sent
to twitter-TPs, then estimated and processed in
a same manner as user-TPs and bot-TPs. A bot
can get information about a user’s status, interests,
and favorites; these data are useful for generating
preferable responses for the user.

The Youbot framework also provides a utility
function which takes URI and retrieves HTML
code. This function can be used to access search
engines or news sites. Services such as online
shopping or recommendation engines represent
the type of business model that would be suited
to the application of the Youbot framework.

5 Interaction Example

The following are examples of interactions which
YouBot might handle:
USER: I will meet John at 9 tomorrow.
SYSTEM: Is that A.M or P.M?
USER: pm
SYSTEM: There’s a meeting with Mr. Smith at 8pm.
USER: It’s been canceled.
SYSTEM: I see.

6 Conclusion

We proposed a simple framework for virtual
agents. Its functionality can be easily extended
by adding task processing modules written in
JavaScript. The Youbot framework provides util-
ity objects which make task processing even eas-
ier. Networking ability is also provided to expand
the networked information’s reach, while data se-
curity is maintained. Future work will include
normalizing the estimation score. Another chal-
lenge is how best to share contextual information
among TPs so they can interact to generate better
responses for the user.

References

Robert Wilensky. Ther Berkley UNIX Consultant
Project. Informatik-Fachberichte, volume 155,
pages 286–296, Springer, 1987.

P. J. Prodanov, A. Drygajlo, G. Ramel, M. Meisser, and
R. Siegwart. Voice enabled interface for interactive
tour-guided robots.In Proceedings IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems, pages 1332–1337, 2002.

T. Berners-Lee and J. Hendler and O. Lassila. The Se-
mantic Web. In Scientific American, pages 34–43,
May 2001.

R.S. Wallace. The Anatomy of A.L.I.C.E.Parsing the
Turing Test, pages 181–210, Springer Netherlands,
2008.

A. Nguyen. An agent-based approach to dialogue man-
agement in personal assistants.In Proceedings of
IUI-2005, pages 137–144. ACM Press, 2005.

M. Bratman. Intentions, Plans, and Practical Reason.
Harvard University Press, 1987.

M. Nakano, K. Funakoshi, Y. Hasegawa, and H. Tsu-
jino. A Framework for Building Conversational
Agents Based on a Multi-Expert Model.In Proceed-
ings of the 9th SIGdial Workshop on Discourse and
Dialogue, pages 88–91. ACL, 2008.

Daniel D. Corkill. Blackboard systems.AI Expert, vol-
ume 6, pages 40–47, 2008.

276


