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Abstract 

This paper introduces a new dialogue man-

agement framework for goal-directed conver-

sations. A declarative specification defines the 

domain-specific elements and guides the di-
alogue manager, which communicates with the 

knowledge sources to complete the specified 

goal. The user is viewed as another knowledge 

source. The dialogue manager finds the next 

action by a mixture of rule-based reasoning 

and a simple statistical model. Implementation 

in the flight-reservation domain demonstrates 

that the framework enables the developer to 

easily build a conversational dialogue system.  

1 Introduction 

Conversational systems can be classified into 

two distinct classes: goal-directed and casual 

chatting. For goal-directed systems, the system is 

usually more “knowledgeable” than the user, and  

it attempts to satisfy user-specified goals. The 

system’s conversational strategies seek the most 

efficient path to reach closure and end the con-

versation (Smith, Hipp, & Biermann, 1995).  

    An essential commonality among different 

goal-directed applications is that, at the end of a 

successful conversation, the system presents the 

user with a “goal” entity, be it a flight itinerary, a 

route path, or a shopping order. Different con-

versations result from different properties of the 

goal entities and different constraints set by the 

knowledge sources. The properties define the 

necessary and/or relevant information, such as 
flight numbers in the flight itinerary.  Constraints 

specify the means to obtain such information. 

For examples fields “source”, “destination” and 

“date” are required to search for a flight. Once 

the properties and constraints are known, dialo-

gue rules can easily map to dialogue actions. 

    This paper introduces a dialogue management 

framework for goal-directed conversation based 

on entity and knowledge source specification. 

The user is viewed as a collaborator with the di-

alogue manager, instead of a problem-raiser. The 

dialogue manager follows a set of definitions and 

constraints, and eventually realizes the goal enti-

ty. It also incorporates a simple statistical engine 

to handle certain decisions. 

2 Related Work 

In recent years, statistical methods have gained 

popularity in dialogue system research.  Partially 

Observable Markov decision processes have 

been the focus of a number of papers (Levin, 

Pieraccini, & Eckert, 1997; Scheffler & Young, 

2001; Frampton & Lemon, 2006; Williams & 

Young, 2007). These approaches turn the dialo-

gue interaction strategy into an optimization 

problem. The dialogue manager selects actions 

prescribed by the policy that maximizes the re-

ward function (Lemon & Pietquin, 2007). This 

machine learning formulation of the problem 

automates system development, thus freeing the 

developers from hand-coded rules. 

   Other researchers have continued research on 

rule-based frameworks, in part because they are 

easier to control and maintain. One common ap-

proach is to allow developers to specify the tasks, 
either using a conditioned sequential script (Zue, 

et al., 2000; Seneff, 2002), or using a task hie-

rarchy (Hochberg, Kambhatla, & Roukos, 2002). 

In (Bohus & Rudnicky, 2003)’s work, a tree of 

dialogue agents, each of which handles different 

dialogue actions, is specified to control the di-

alogue progress. The knowledge has also been 

specified either by first order logic (Bühler & 

Minker, 2005) or ontology information (Milward 

& Beveridge, 2004). 

3 Dialogue Manager 

Figure 1 illustrates the architecture of the pro-

posed dialogue management framework. Com-
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munication with the dialogue manager (DM) is 

via “E-forms” (Electronic forms), which consist 

of language-independent key-value pairs. The 

language understanding and language generation 

components mediate between the DM and vari-

ous knowledge sources (KS), including the user, 

to interpret the output from the KS and generate 

input that the KS can understand. Each KS han-

dles one or more sub-domains. For example, a 

date/time KS can resolve a date expression such 

as “next Tuesday” to a unique date; a flight data-

base can provide flight information. The KSes 

are provided by the developer. They can be local 

(a library) or external (a separate executable).  

Within this architecture, the user is viewed as 

a special KS, who understands and speaks a nat-

ural language, so that the whole architecture is 

completely DM-centered, as shown in Figure 1. 

An external language understanding system 

parses the original input into an E-form, and an 

external language generation component con-

verts the output E-form into the desired natural 

language. Each particular communication with 

the user is analogous to other communications 

with the various KSes.  The user is always 

ranked the lowest in the priority list of the KSes, 

i.e., only when other knowledge sources cannot 
provide the desired information does the DM try 

to ask the user.  

 
Figure 1. System Framework. 

For example, in the flight reservation system, 

suppose the DM first tries to determine the 

source airport. If there exists a KS that contains 

this user’s home airport information, the DM will 

adopt it. If no other KS can provide the informa-

tion, the DM asks the user for the departure city. 

3.1 Entity-Based Specification  

Our framework uses an entity-based declarative 

domain specification. Instead of providing the 

action sequence in the domain, the developer 

provides the desired form of the goal entity, and 

the relationships among all relevant entities.  
    The specification is decomposed into two parts. 

The first part is the declaration of the knowledge 

sources. Each KS may contain one or more sub-

domains, and an associated “nation” defines the 

language processing parameters. 

    The second part is the entity type definition. 

For a particular domain, there is one goal entity 

type, and an arbitrary number of other entity 

types, e.g., two entity types are defined in the 

flight reservation system: “itinerary” and “flight.”  

The definition of an entity type consists of a set 

of members, including their names, types and 

knowledge domain. A logical expression states 

the conditions under which the entity can be re-

garded as completed; e.g., a completed itinerary 

must contain one or more flights. The entity de-

finition can also include optional elements such 

as comparative/superlative modifiers or custo-

mized command-action and task-action map-

pings, described in more detail later. 

The entity-based specification has an advan-

tage over an action-based specification in two 

aspects. First, it is easier to define all the entities 

in a dialogue domain than to list all the possible 

actions, so the specification is more compact and 

readable. Secondly, the completion condition and 

the KS’s constraints capture the underlying mo-

tivation of the dialogue actions. 

 
Figure 2. The Main Loop of the DM. 

3.2 Dialogue Execution  

Similar to the Information-State-Update (Larsson 

& Traum, 2000) idea, the DM maintains an in-

ternal state space with all up-to-date information 

about the entities. It also keeps a task list tree 

with a root task “complete goal.” In task execu-

tion, subtasks (child node) and/or subsequent 

(right sibling node) tasks are issued. Each time 

the left-most leaf task is executed, and when a 

task is completed, the DM checks all tasks and 

removes those that have been rendered obsolete.  

    Ten basic tasks are pre-defined in the DM, 

including complete_entity, inquire_ks, and some 

other tasks related to entity manipulation. A 

complete_entity task evaluates the completion 
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conditions and issues appropriate tasks if they 

are unmet. An inquire_ks task handles communi-

cation with the KSes, and issues subtasks if the 

query does not satisfy the constraints.  A default 

action associated with each task can be replaced 

by customized task-action mappings if needed. 

Figure 2 shows the main loop of the DM. The 

process loops until a “pause” is signaled, which 

indicates to await the user’s spoken response. An 

example will be given in Section 4. 

3.3 Statistical Inference  

To cope with situations that rules cannot handle 

easily, the framework incorporates a simple sta-

tistical engine using a Space Vector Model.  It is 

designed only to support inference on specific 

small problems, for example, to decide when to 

ask the user for confirmation of a task. Models 

are built for each of the inference problems. The 
output label of a new data point is computed by 

weighting the labels of all existing data by their 

inverse distances to the new data point.   

    Equations (1) to (3) show the detailed math of 

the computation, where x is the new data point 

and d
j
 is the j-th existing data point. α is a fading 

coefficient which ranges from 0 and 1. β, a cor-

rection weight, has a higher value for data points 

resulting from manual correction. δ(∙)  is 1 when 

the two inputs are equal and 0 otherwise. sim(x, 

d) defines the similarity between the new data 

point and the existing data point. Function dis(∙) 
indicates the distance for a particular dimension, 

which is specified by the developer. The weight 

for each dimension wi is proportional to the 

count of distinct values of the particular dimen-

sion c(Di) and the mutual information between 

the dimension and the output label. ���� = argmax�
 � ���������, �� � ∙ �������, ����  (1) 

�����,  � = ! "#∑ %� ∙  ��&���,  ���      � ≠     
                     )                    � =  * (2) 

+� ∝ -�.��/�.�, ��.�� (3) 

4 Implementation in Flight Domain 

The framework has been implemented in the 

flight reservation domain. A grammar was used 

to parse the user’s input, and a set of generation 

rules was used to convert the DM’s output E-

form into natural language (Seneff, 2002). Two 

local KSes are utilized: one resolves complex 

date and time expressions, and one looks up air-

port/city codes. A local simulated flight DB will 
be replaced by a real external one in the future. 

    Figure 3 illustrates the logic of the flight res-

ervation domain. The database has two alterna-

tive sets of conjunctive constraints “destination 

& source & date” and “flight# & date”. Two 

entity types are defined. The itinerary entity type 

contains a list of flights, a number of expected 

flights and a price, with completion condition 

“#flights > 0”. The flight entity type contains 

members: flight number, date, source, destination, 

etc., with completion condition “flight# & date”. 

    Table 1 illustrates dialogue planning.  In the 

execution of flight.complete_entity(), the DM 

determines that it needs a flight number accord-

ing to the entity’s completion condition. Howev-

er, a destination is required to search the flight 

DB. No other KS offers this information, so the  

system turns to the user to ask for the destination.  

    The statistical engine currently supports infe-

rence for two problems: whether the execution of 

a task requires the user’s confirmation, and 

whether the pending list is in focus.    

     Several customized task actions were defined 

for the domain. For example, after adding the 

first flight, a customized task action will auto-

matically create a return flight with appropriate 

source and destination, unless a one-way trip has 

been indicated. The implementation of the cus-
tomized task actions required only about 550 

lines of code. 

User: I want a flight to Chicago 
create itinerary 
itinerary.complete_entity() 
     itinerary.add_entity(:flights) 

    create flight 

    flight.complete_entity() 

      flight.fill_attribute(flight#) 
          inquire_ks(flight_db, flight#) 
              flight.fill_attribute(destination) 

                  inquire_ks(user, destination) 

System: What city does the flight leave from? 
Table 1. An example of the system's reasoning 

process. Shaded lines denote statistical decisions. 

5. Preliminary Evaluation 

We conducted a preliminary evaluation with a 

simulated flight database and a simulated user 

model. The statistical inference model was 

trained with 210 turns from 18 conversations. A 

personality-based user simulator creates random 

scenarios and simulates user utterances using a 

probabilistic template-based method. In 50 con-

versations between the simulated user and the 

DM, the average number of turns was 14.58, 

with a high standard deviation of 8.2, due to the 

variety of the scenario complexity and personali-

ties of the simulator users. Some simulated users 
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Figure 3. Dialogue Logic for the Flight Booking Domain. 

 
were intentionally designed to be very uncooper-

ative. The DM was able to handle these situa-

tions most of the time. 

We examined all the simulated dialogues turn 

by turn. For a total of 729 turns, the DM re-

sponded appropriately 92.2% of the time. One 

third of the failed turns were due to parse failures. 

Another third resulted from insufficient tutoring. 

These situations were not well covered in the 

tutoring phase, but can be easily fixed through a 

few more manual corrections. The rest of the 

errors came from various causes. Some were due 

to defects in the simulator.  

6 Conclusions and Future Work 

We have introduced a framework for goal-based 

dialogue planning. It treats the user as a know-

ledge source, so that the entire framework is 

DM-centered. A declarative entity-based specifi-

cation encodes the domain logic simply and 

clearly. Customized task actions handle any do-

main-dependent computations, which are kept at 

a minimum. A simple statistical engine built into 

the framework offers more flexibility.  

In the future, we will integrate the dialogue 

manager into a speech-enabled framework, and 

build spoken dialogue systems for flight reserva-

tions and other domains of interest. 
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