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Abstract 

Temporal analysis of events is a central 
problem in computational models of dis-
course. However, correctly recognizing 
temporal aspects of events poses serious 
challenges. This paper introduces a joint 
modeling framework and feature set for 
temporal analysis of events that utilizes 
Markov Logic. The feature set includes 
novel features derived from lexical on-
tologies. An evaluation suggests that in-
troducing lexical relation features im-
proves the overall accuracy of temporal 
relation models. 

1 Introduction 

Reasoning about the temporal aspects of events 
is a critical task in discourse understanding. 
Temporal analysis techniques contribute to a 
broad range of applications including question 
answering and document summarization, but 
temporal reasoning is complex. A recent series of 
shared task evaluation challenges proposed a 
framework with standardized sets of temporal 
analysis tasks, including identifying the temporal 
entities mentioned in text, such as events and 
time expressions, as well as identifying the tem-
poral relations that hold between those temporal 
entities (Pustejovsky and Verhagen, 2009).   

Our previous work (Ha et al., 2010) addressed 
modeling temporal relations between temporal 
entities and proposed a supervised machine-
learning approach with Markov Logic (ML) 
(Richardson and Domingos, 2006). As novel fea-
tures, we introduced two types of lexical rela-
tions derived from VerbOcean (Chklovski and 
Pantel, 2004) and WordNet (Fellbaum, 1998). A 

preliminary evaluation showed the effectiveness 
of our approach. In this paper, we extend our 
previous work and conduct a more rigorous 
evaluation, focusing on the impact of joint opti-
mization of the features and the effectiveness of 
the lexical relation features for modeling tempo-
ral relations. 

2 Related Work 

Recently, data-driven approaches to modeling 
temporal relations for written text have been 
gaining momentum. Boguraev and Ando (2005) 
apply a semi-supervised learning technique to 
recognize events and to infer temporal relations 
between time expressions and their anchored 
events. Mani et al. (2006) model temporal rela-
tions between events as well as between events 
and time expressions using maximum entropy 
classifiers. The participants of TempEval-1 in-
vestigate a variety of techniques for temporal 
analysis of text (Verhagen et al., 2007).  

While most data-driven techniques model 
temporal relations as local pairwise classifiers, 
this approach has the limitation that there is no 
systematic mechanism to ensure global consis-
tencies among predicted temporal relations (e.g., 
if event A happens before event B and event B 
happens before event C, then A should happen 
before C). To avoid this drawback, a line of re-
search has explored techniques for the global 
optimization of local classifier decisions. Cham-
bers and Jurafsky (2008) add global constraints 
over local classifiers using Integer Linear Pro-
gramming. Yoshikawa et al. (2009) jointly model 
related temporal classification tasks using ML. 
These approaches are shown to improve the ac-
curacy of temporal relation models. 

Our work is most closely related to Yoshikawa 
et al. (2009) in that ML is used for joint model-
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ing of temporal relations. We extend their work 
in three primary respects. First, we introduce 
new lexical relation features. Second, our model 
addresses a new task introduced in TempEval-2. 
Third, we employ phrase-based syntactic features 
(Bethard and Martin 2007) rather than depend-
ency-based syntactic features. 

3 Data and Tasks 

We use the TempEval-2 data for English for both 
training and testing of our temporal relation 
models. The data includes 162 news articles (to-
taling about 53,000 tokens) as the training set 
and another 11 news articles as the test set. The 
corpus is labeled with events, time expressions, 
and temporal relations. Each labeled event and 
time expression is further annotated with seman-
tic and syntactic attributes. Six types of temporal 
relations are considered: before, after, overlap, 
before-or-overlap, overlap-or-after, and vague. 

Consider the following example from the 
TempEval-2 data, marked up with a time expres-
sion t1 and three events e1, e2, and e3, where e1 
and e2 are the main events of the first and the 
second sentences, respectively, and e3 is syntac-
tically dominated by e2. 

But a [minute and a half]t1 
later, a pilot from a nearby 
flight [calls]e1 in. Ah, we 
just [saw]e2 an [explosion]e3 
up ahead of us here about 
sixteen thousand feet or 
something like that. 

In the first sentence, t1 and e1 are linked by a 
temporal relation overlap. Temporal relation af-
ter holds between the two consecutive main 
events: e1 occurs after e2. The main event e2 of 
the second sentence overlaps with e3, which is 
syntactically dominated by e2. 

In this paper, we focus on three subproblems 
of the temporal relation identification task as de-
fined by TempEval-2: identifying temporal rela-
tions between (1) events and time expressions in 
the same sentence (ET); (2) two main events in 
consecutive sentences (MM); and (3) two events 
in the same sentence when one syntactically 
dominates another (MS), which is a new task in-
troduced in TempEval-2. 

4 Features 

Surface features include the word tokens and 
stems of the words. In the TempEval-2 data, an 
event always consists of a single word token, but 

time expressions often consist of multiple tokens. 
We treat the entire string of words in a given 
time expression as a single feature. 

Semantic features are the semantic attributes 
of individual events and time expressions de-
scribed in Section 3. In this work, we use the 
gold-standard values for these features that were 
manually assigned by human annotators in the 
training and the test data.  

Syntactic features include three features 
adopted from Bethard and Martin (2007): gov-
prep, any prepositions governing the event or 
time expression (e.g., ‘for’ in ‘for ten years’); 
gov-verb, the verb governing the event or time 
expression; gov-verb-pos, the part-of-speech 
(pos) tag of the governing verb. We also consider 
the pos tag of the word in the event and the time 
expression. 

Lexical relations are the semantic relations be-
tween two events derived from VerbOcean 
(Chklovski and Pantel, 2004) and WordNet 
(Fellbaum, 1998). VerbOcean contains five types 
of relations (similarity, strength, antonymy, en-
ablement, and happens-before) that commonly 
occur between pairs of verbs. To overcome data 
sparseness, we expanded the original VerbOcean 
database by calculating symmetric and transitive 
closures of key relations. With WordNet, a se-
mantic distance between the associated tokens of 
each target event pair was computed. 

5 Modeling Temporal Relations with 
Markov Logic 

ML is a statistical relational learning framework 
that provides a template language for defining 
Markov Logic Networks (MLNs). A MLN is a 
set of weighted first-order clauses constituting a 
Markov network in which each ground formula 
represents a feature (Richardson and Domingos, 
2006). 

Our MLN consists of a set of formulae com-
bining two types of predicates: hidden and ob-
served. Hidden predicates are those that are not 
directly observable during test time. A hidden 
predicate is defined for each task: relEventTimex 
(temporal relation between an event and a time 
expression), relMainEvents (temporal relation 
between two main events), and relMainSub 
(temporal relation between a main and a domi-
nated event). Observed predicates are those that 
can be fully observed during test time and repre-
sent each of the features described in Section 4.  

The following is an example formula used in 
our MLN: 
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eventTimex(d, e, t)  eventWord(d, e, w)  
          relEventTimex(d, e, t, r)       (1) 

The predicate eventTimex(d, e, t) represents the 
existence of a candidate pair of event e and time 
expression t in a document d. Given this candi-
date pair, formula (1) assigns weights to a tem-
poral relation r whenever it observes a word to-
ken w in the given event from the training data. 
This formula is local because it considers only 
one hidden predicate (relEventTimex). 

In addition to local formulae, we also define a 
set of global formulae to ensure consistency be-
tween local decisions: 

relEventTimex(d, e1, t, r1)  relEventTimex(d, 
e2, t, r2)  relMainSub(d, e1, e2, r3)           (2) 

Formula (2) is global because it jointly concerns 
more than one hidden predicate (relEventTimex 
and relMainSub) at the same time. This formula 
ensures consistency between the predicted tem-
poral relations r1, r2, and r3 given a main event 
e1, a syntactically dominated event e2, and a time 
expression t shared by both of these events. Two 
additional global formulae (3) and (4) are simi-
larly defined to ensure consistency as below.  

relMainSub(d, e1, e2, r3)  relEventTimex(d, 
e2, t, r2)    relEventTimex(d, e1, t, r1)       (3) 

relMainSub(d, e1, e2, r3)  relEventTimex(d, 
e1, t, r1)    relEventTimex(d, e2, t, r2)       (4) 

6 Evaluation 

To evaluate the proposed approach, we built and 
compared two models: one model (NoLex) used 
all of the features described in Section 4 except 
for the lexical relation features, and the other 
model (Full) included the full set of features. The 
features were generated using the Porter 
Stemmer and WordNet Lemmatizer in NLTK 
(Loper and Bird, 2002) and the Charniak Parser 
(Charniak, 2000). The semantic distance between 
two word tokens was computed using the path-
similarity metric provided by NLTK. All of the 
models were constructed using Markov TheBeast 
(Riedel, 2008) 

The feature set was optimized for each task on 
a held-out development data set consisting of 
approximately 10% of the entire training set (Ta-
ble 1). Our previous work (Ha et al., 2010) ob-
served that a local optimization approach that 
selects for each individual task (i.e., each hidden 
predicate in the given MLN) in isolation from the 
other tasks could harm the overall accuracy of a 
joint model because of resulting inconsistencies 

among individual tasks. In the new experiment 
described in this section, features were selected 
for each task to improve overall accuracy of the 
joint model combining all three tasks, similar to 
Yoshikawa et al. (2009).  

Table 2 reports the resulting performance (F1 
scores) of the models. To isolate the potential 
effects of global constraints, we first compare the 
accuracies of the Full and the NoLex model, av-
eraged from a ten-fold cross validation on the 
training data before global constraints are added. 
Full achieves relative 12% and 3% improve-
ments over NoLex for temporal relation between 
events and time expressions (ET) and between 
two main events (MM), respectively. The im-
provement for MM was statistically significant 
(p<0.05) from a two-tailed paired t-test. Note 
that the ET task itself does not use lexical rela-
tion features but still achieves an improved result 
in Full over NoLex. This is an effect of joint 
modeling. There is a slight degradation (relative 
2%) in the accuracy for temporal relations be-
tween main and syntactically dominated events 
(MS). Overall, Full achieves relative 5% im-
provement over NoLex. A similar trend of per-
formance improvement in Full over NoLex was 
observed when the global formulae were added 
to each model. The second column (Global Con-
straints) of Table 2 compares the two models 
trained on the entire training set and tested on the 
test set after the global formulae were added. 
However, no statistical significance was found 
on these improvements. Compared to the state-

Task Feature 
ET MM MS 

event-word √ √ √ 
event-stem √ √ √ 
timex-word √   

Surface 
Features 

timex-stem √   
event-polarity √ √ √ 
event-modal √ √ √ 
event-pos √ √   √* 
event-tense √ √ √ 
event-aspect √ √ √ 
event-class √ √ √ 
timex-type √   

Semantic 
Attributes 

timex-value √   
pos √ √ √ 
gov-prep √ √ √ 
gov-verb √ √ √ 

Syntactic 
Features 

gov-verb-pos √ √ √ 
verb-rel  √ √ Lexical  

Relations word-dist  √  
 

Table 1: Features used to model each task. *The 
feature is extracted only from the second event in 
the pair being compared. 
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of-the-art results achieved by the TempEval-2 
participants, Full achieves the same or better re-
sults on all three addressed tasks. 

7 Conclusions 

Temporal relations can be modeled with Markov 
Logic using a variety of features including lexi-
cal ontologies. Three tasks relating to the Tem-
pEval-2 data were addressed: predicting tempo-
ral relations between (1) events and time expres-
sions in the same sentence, (2) two main events 
in consecutive sentences, and (3) two events in 
the same sentence when one syntactically domi-
nates the other. An evaluation suggests that util-
izing lexical relation features within a joint mod-
eling framework using Markov Logic achieves 
state-of-the-art performance. 

The results suggest a promising direction for 
future work. The proposed approach assumes 
events and time expressions are already marked 
in the data. To construct a fully automatic tempo-
ral relation identification system, the approach 
needs to be extended to include models that rec-
ognize events and time expressions in text as 
well as their semantic attributes. A data-driven 
approach similar to the one described in this pa-
per may be feasible for this new modeling task. It 
will entail exploring a variety of features to fur-
ther understand the complexity underlying the 
problem of temporal analysis of events. 
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No Global Constraints Global Constraints 
Task 

NoLex Full NoLex Full 
State-of-
the-art 

Overall 0.60 0.63 (+5%) 0.59 0.61 (+3%) NA 
ET 0.52 0.58 (+12%) 0.62 0.65 (+5%) 0.63 

MM 0.65 0.67 (+3%)* 0.52 0.56 (+8%) 0.55 
MS 0.66 0.65 (- 2%) 0.66 0.66 (+0%) 0.66 

Table 2. Performance comparison between mod-
els in F1 score. *Statistical significance (p<0.05) 
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