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Abstract

Commonly used coreference resolution
evaluation metrics can only be applied to
key mentions, i.e. already annotated men-
tions. We here propose two variants of the
B3 andCEAF coreference resolution eval-
uation algorithms which can be applied
to coreference resolution systems dealing
with system mentions, i.e. automatically
determined mentions. Our experiments
show that our variants lead to intuitive and
reliable results.

1 Introduction

The coreference resolution problem can be di-
vided into two steps: (1) determiningmentions,
i.e., whether an expression is referential and
can take part in a coreferential relationship, and
(2) deciding whether mentions are coreferent or
not. Most recent research on coreference res-
olution simplifies the resolution task by provid-
ing the system withkey mentions, i.e. already an-
notated mentions (Luo et al. (2004), Denis &
Baldridge (2007), Culotta et al. (2007), Haghighi
& Klein (2007), inter alia; see also the task de-
scription of the recent SemEval task on coref-
erence resolution athttp://stel.ub.edu/
semeval2010-coref), or ignores an impor-
tant part of the problem by evaluating on key men-
tions only (Ponzetto & Strube, 2006; Bengtson &
Roth, 2008, inter alia). We follow here Stoyanov
et al. (2009, p.657) in arguing that such evalua-
tions are “an unrealistic surrogate for the original
problem” and ask researchers to evaluate end-to-
end coreference resolution systems.

However, the evaluation of end-to-end coref-
erence resolution systems has been inconsistent
making it impossible to compare the results. Nico-
lae & Nicolae (2006) evaluate using theMUC
score (Vilain et al., 1995) and theCEAF algorithm

(Luo, 2005) without modifications. Yang et al.
(2008) use only theMUC score. Bengtson & Roth
(2008) and Stoyanov et al. (2009) derive variants
from theB3 algorithm (Bagga & Baldwin, 1998).
Rahman & Ng (2009) propose their own variants
of B3 andCEAF. Unfortunately, some of the met-
rics’ descriptions are so concise that they leave too
much room for interpretation. Also, some of the
metrics proposed are too lenient or are more sen-
sitive to mention detection than to coreference res-
olution. Hence, though standard corpora are used,
the results are not comparable.

This paper attempts to fill that desideratum by
analysing several variants of theB3 andCEAF al-
gorithms. We propose two new variants, namely
B3

sys and CEAFsys, and provide algorithmic de-
tails in Section 2. We describe two experiments in
Section 3 showing thatB3

sys andCEAFsys lead to
intuitive and reliable results. Implementations of
B3

sys andCEAFsys are available open source along
with extended examples1.

2 Coreference Evaluation Metrics

We discuss the problems which arise when apply-
ing the most prevalent coreference resolution eval-
uation metrics to end-to-end systems and propose
our variants which overcome those problems. We
provide detailed analyses of illustrative examples.

2.1 MUC

The MUC score (Vilain et al., 1995) counts
the minimum number of links between mentions
to be inserted or deleted when mapping a sys-
tem response to a gold standard key set. Al-
though pairwise links capture the information
in a set, they cannot represent singleton en-
tities, i.e. entities, which are mentioned only
once. Therefore, the MUC score is not suitable
for the ACE data (http://www.itl.nist.

1http://www.h-its.org/nlp/download
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gov/iad/mig/tests/ace/), which includes
singleton entities in the keys. Moreover, the MUC
score does not give credit for separating singleton
entities from other chains. This becomes problem-
atic in a realistic system setup, when mentions are
extracted automatically.

2.2 B3

TheB3 algorithm (Bagga & Baldwin, 1998) over-
comes the shortcomings of the MUC score. In-
stead of looking at the links,B3 computes preci-
sion and recall for all mentions in the document,
which are then combined to produce the final pre-
cision and recall numbers for the entire output.

For each mention, theB3 algorithm computes a
precision and recall score using equations 1 and 2:

Precision(mi) =
|Rmi

∩ Kmi
|

|Rmi
|

(1)

Recall(mi) =
|Rmi

∩ Kmi
|

|Kmi
|

(2)

whereRmi
is the response chain (i.e. the system

output) which includes the mentionmi, andKmi

is the key chain (manually annotated gold stan-
dard) withmi. The overall precision and recall are
computed by averaging them over all mentions.

SinceB3’s calculations are based on mentions,
singletons are taken into account. However, a
problematic issue arises when system mentions
have to be dealt with:B3 assumes the mentions in
the key and in the response to be identical. Hence,
B3 has to be extended to deal with system men-
tions which are not in the key and key mentions
not extracted by the system, so calledtwinless
mentions (Stoyanov et al., 2009).

2.2.1 ExistingB3 variants

A few variants of theB3 algorithm for dealing with
system mentions have been introduced recently.
Stoyanov et al. (2009) suggest two variants of the
B3 algorithm to deal with system mentions,B3

0 and
B3

all
2. For example, a key and a response are pro-

vided as below:
Key : {a b c}
Response:{a b d}

B3
0 discards all twinless system mentions (i.e.

mention d) and penalizes recall by setting
recallmi

= 0 for all twinless key mentions (i.e.
mention c). TheB3

0 precision, recall and F-score

2Our discussion ofB3
0 andB3

all is based on the analysis
of the source code available athttp://www.cs.utah.
edu/nlp/reconcile/.

Set 1

System 1
key {a b c}
response {a b d}

P R F
B3

0 1.0 0.444 0.615
B3

all 0.556 0.556 0.556
B3

r&n 0.556 0.556 0.556
B3

sys 0.667 0.556 0.606
CEAFsys 0.5 0.667 0.572

System 2
key {a b c}
response {a b d e}

P R F
B3

0 1.0 0.444 0.615
B3

all 0.375 0.556 0.448
B3

r&n 0.375 0.556 0.448
B3

sys 0.5 0.556 0.527
CEAFsys 0.4 0.667 0.500

Table 1: Problems ofB3
0

(i.e. F = 2 · Precision·Recall
Precision+Recall

) for the example are
calculated as:

PrB3

0

= 1

2
( 2

2
+ 2

2
) = 1.0

RecB3

0

= 1

3
( 2

3
+ 2

3
+ 0)

.
= 0.444

FB3

0

= 2 × 1.0×0.444
1.0+0.444

.
= 0.615

B3
all retains twinless system mentions. It assigns

1/|Rmi
| to a twinless system mention as its preci-

sion and similarly1/|Kmi
| to a twinless key men-

tion as its recall. For the same example above, the
B3

all precision, recall and F-score are given by:

PrB3

all
= 1

3
( 2

3
+ 2

3
+ 1

3
)

.
= 0.556

RecB3

all
= 1

3
( 2

3
+ 2

3
+ 1

3
)

.
= 0.556

FB3

all
= 2 × 0.556×0.556

0.556+0.444

.
= 0.556

Tables 1, 2 and 3 illustrate the problems withB3
0

andB3
all. The rows labeledSystem give the origi-

nal keys and system responses while the rows la-
beledB3

0, B3
all andB3

sys show the performance gen-
erated by Stoyanov et al.’s variants and the one
we introduce in this paper,B3

sys (the row labeled
CEAFsys is discussed in Subsection 2.3).

In Table 1, there are two system outputs (i.e.
System 1 and System 2). Mentionsd and e are
the twinless system mentions erroneously resolved
and c a twinless key mention.System 1 is sup-
posed to be slightly better with respect to preci-
sion, becauseSystem 2 produces one more spu-
rious resolution (i.e. for mentione ). However,
B3

0 computes exactly the same numbers for both
systems. Hence, there is no penalty for erroneous
coreference relations inB3

0, if the mentions do not
appear in the key, e.g. putting mentionsd or e in
Set 1 does not count as precision errors. —B3

0

is too lenient by only evaluating the correctly ex-
tacted mentions.
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Set 1 Singletons

System 1
key {a b c}
response {a b d}

P R F
B3

all 0.556 0.556 0.556
B3

r&n 0.556 0.556 0.556
B3

sys 0.667 0.556 0.606
CEAFsys 0.5 0.667 0.572

System 2
key {a b c}
response {a b d} {c}

P R F
B3

all 0.667 0.556 0.606
B3

r&n 0.667 0.556 0.606
B3

sys 0.667 0.556 0.606
CEAFsys 0.5 0.667 0.572

Table 2: Problems ofB3
all (1)

Set 1 Singletons

System 1
key {a b}
response {a b d}

P R F
B3

all 0.556 1.0 0.715
B3

r&n 0.556 1.0 0.715
B3

sys 0.556 1.0 0.715
CEAFsys 0.667 1.0 0.800

System 2
key {a b}
response {a b d} {i} {j} {k}

P R F
B3

all 0.778 1.0 0.875
B3

r&n 0.556 1.0 0.715
B3

sys 0.556 1.0 0.715
CEAFsys 0.667 1.0 0.800

Table 3: Problems ofB3
all (2)

B3
all deals well with the problem illustrated in

Table 1, the figures reported correspond to in-
tuition. However,B3

all can output different re-
sults for identical coreference resolutions when
exposed to different mention taggers as shown in
Tables 2 and 3.B3

all manages to penalize erro-
neous resolutions for twinless system mentions,
however, it ignores twinless key mentions when
measuring precision. In Table 2,System 1 andSys-
tem 2 generate the same outputs, except that the
mention tagger inSystem 2 also extracts mention
c. Intuitively, the same numbers are expected for
both systems. However,B3

all gives a higher preci-
sion toSystem 2, which results in a higher F-score.

B3
all retains all twinless system mentions, as can

be seen in Table 3.System 2’s mention tagger tags
more mentions (i.e. the mentionsi, j andk), while
both System 1 andSystem 2 have identical coref-
erence resolution performance. Still,B3

all outputs
quite different results for precision and thus for F-
score. This is due to the creditB3

all takes from un-
resolved singleton twinless system mentions (i.e.
mentioni, j, k in System 2). Since the metric is ex-
pected to evaluate the end-to-end coreference sys-
tem performance rather than the mention tagging
quality, it is not satisfying to observe thatB3

all’s
numbers actually fluctuate when the system is ex-
posed to different mention taggers.

Rahman & Ng (2009) apply another variant, de-
noted here asB3

r&n. They remove only those twin-
less system mentions that are singletons before ap-
plying theB3 algorithm. So, a system would not
be rewarded by the the spurious mentions which
are correctly identified as singletons during reso-
lution (as has been the case withB3

all’s higher pre-
cision forSystem 2 as can be seen in Table 3).

We assume that Rahman & Ng apply a strategy
similar to B3

all after the removing step (this is not
clear in Rahman & Ng (2009)). While it avoids the
problem with singleton twinless system mentions,
B3

r&n still suffers from the problem dealing with
twinless key mentions, as illustrated in Table 2.

2.2.2 B3
sys

We here propose a coreference resolution evalua-
tion metric,B3

sys, which deals with system men-
tions more adequately (see the rows labeledB3

sys

in Tables 1, 2, 3, 4 and 5). We put all twinless key
mentions into the response as singletons which en-
ablesB3

sys to penalize non-resolved coreferent key
mentions without penalizing non-resolved single-
ton key mentions, and also avoids the problemB3

all

andB3
r&n have as shown in Table 2. All twinless

system mentions which were deemed not coref-
erent (hence being singletons) are discarded. To
calculateB3

sys precision, all twinless system men-
tions which were mistakenly resolved are put into
the key since they are spurious resolutions (equiv-
alent to the assignment operations inB3

all), which
should be penalized by precision. UnlikeB3

all,
B3

sys does not benefit from unresolved twinless
system mentions (i.e. the twinless singleton sys-
tem mentions). For recall, the algorithm only goes
through the original key sets, similar toB3

all and
B3

r&n. Details are given in Algorithm 1.
For example, a coreference resolution system

has the following key and response:
Key : {a b c}
Response:{a b d} {i j}

To calculate the precision ofB3
sys, the key and re-

sponse are altered to:
Keyp : {a b c} {d} {i} {j}
Responsep: {a b d} {i j} {c}
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Algorithm 1 B3
sys

Input: key setskey, response setsresponse
Output: precisionP , recallR and F-scoreF
1: Discard all the singleton twinless system mentions in

response;
2: Put all the twinless annotated mentions intoresponse;
3: if calculating precisionthen
4: Merge all the remaining twinless system mentions

with key to formkeyp;
5: Useresponse to formresponsep

6: Throughkeyp andresponsep;
7: CalculateB3 precisionP .
8: end if
9: if calculating recallthen

10: Discard all the remaining twinless system mentions in
response to fromresponser;

11: Usekey to formkeyr

12: Throughkeyr andresponser;
13: CalculateB3 recallR
14: end if
15: Calculate F-scoreF

So, the precision ofB3
sys is given by:

PrB3
sys

= 1

6
( 2

3
+ 2

3
+ 1

3
+ 1

2
+ 1

2
+ 1)

.
= 0.611

The modified key and response for recall are:
Keyr : {a b c}
Responser: {a b} {c}

The resulting recall ofB3
sys is:

RecB3
sys

= 1

3
( 2

3
+ 2

3
+ 1

3
)

.
= 0.556

Thus the F-score number is calculated as:
FB3

sys
= 2 × 0.611×0.556

0.611+0.556

.
= 0.582

B3
sys indicates more adequately the performance of

end-to-end coreference resolution systems. It is
not easily tricked by different mention taggers3.

2.3 CEAF

Luo (2005) criticizes theB3 algorithm for using
entities more than one time, becauseB3 computes
precision and recall of mentions by comparing en-
tities containing that mention. Hence Luo pro-
poses theCEAF algorithm which aligns entities in
key and response.CEAF applies a similarity met-
ric (which could be either mention based or entity
based) for each pair of entities (i.e. a set of men-
tions) to measure the goodness of each possible
alignment. The best mapping is used for calculat-
ing CEAF precision, recall and F-measure.

Luo proposes two entity based similarity met-
rics (Equation 3 and 4) for an entity pair(Ki, Rj)
originating from key,Ki, and response,Rj .

φ3(Ki, Rj) = |Ki ∩ Rj | (3)

φ4(Ki, Rj) =
2|Ki ∩ Rj |

|Ki| + |Rj |
(4)

3Further example analyses can be found in Appendix A.

The CEAF precision and recall are derived from
the alignment which has the best total similarity
(denoted asΦ(g∗)), shown in Equations 5 and 6.

Precision =
Φ(g∗)

∑
i φ(Ri, Ri)

(5)

Recall =
Φ(g∗)

∑
i φ(Ki, Ki)

(6)

If not specified otherwise, we apply Luo’sφ3(⋆, ⋆)
in the example illustrations. We denote the origi-
nal CEAF algorithm asCEAForig.

Detailed calculations are illustrated below:
Key : {a b c}
Response:{a b d}

TheCEAForig φ3(⋆, ⋆) are given by:
φ3(K1, R1) = 2 (K1 : {abc}; R1 : {abd})
φ3(K1, K1) = 3
φ3(R1, R1) = 3

So theCEAForig evaluation numbers are:
PrCEAForig

= 2

3
= 0.667

RecCEAForig
= 2

3
= 0.667

FCEAForig
= 2 × 0.667×0.667

0.667+0.667
= 0.667

2.3.1 Problems ofCEAForig

CEAForig was intended to deal with key mentions.
Its adaptation to system mentions has not been ad-
dressed explicitly. AlthoughCEAForig theoreti-
cally does not require to have the same number of
mentions in key and response, it still cannot be di-
rectly applied to end-to-end systems, because the
entity alignments are based on mention mappings.

As can be seen from Table 4,CEAForig fails
to produce intuitive results for system mentions.
System 2 outputs one more spurious entity (con-
taining mentioni andj) thanSystem 1 does, how-
ever, achieves a sameCEAForig precision. Since
twinless system mentions do not have mappings in
key, they contribute nothing to the mapping simi-
larity. So, resolution mistakes for system mentions
are not calculated, and moreover, the precision is
easily skewed by the number of output entities.
CEAForig reports very low precision for system
mentions (see also Stoyanov et al. (2009)).

2.3.2 ExistingCEAF variants

Rahman & Ng (2009) briefly introduce their
CEAF variant, which is denoted asCEAFr&n

here. They useφ3(⋆, ⋆), which results in equal
CEAFr&n precision and recall figures when using
true mentions. Since Rahman & Ng’s experiments
using system mentions produce unequal precision
and recall figures, we assume that, after removing
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Set 1 Set 2 Singletons

System 1
key {a b c}
response {a b} {c} {i} {j}

P R F
CEAForig 0.4 0.667 0.500
B3

sys 1.0 0.556 0.715
CEAFsys 0.667 0.667 0.667

System 2
key {a b c}
response {a b} {i j} {c}

P R F
CEAForig 0.4 0.667 0.500
B3

sys 0.8 0.556 0.656
CEAFsys 0.6 0.667 0.632

Table 4: Problems ofCEAForig

Set 1 Set 2 Set 3 Singletons

System 1
key {a b c}
response {a b} {i j} {k l} {c}

P R F
CEAFr&n 0.286 0.667 0.400
B3

sys 0.714 0.556 0.625
CEAFsys 0.571 0.667 0.615

System 2
key {a b c}
response {a b} {i j k l } {c}

P R F
CEAFr&n 0.286 0.667 0.400
B3

sys 0.571 0.556 0.563
CEAFsys 0.429 0.667 0.522

Table 5: Problems of CEAFr&n

twinless singleton system mentions, they do not
put any twinless mentions into the other set. In the
example in Table 5,CEAFr&n does not penalize
adequately the incorrectly resolved entities con-
sisting of twinless sytem mentions. SoCEAFr&n

does not tell the difference betweenSystem 1 and
System 2. It can be concluded from the examples
that the same number of mentions in key and re-
sponse is needed for computing theCEAF score.

2.3.3 CEAFsys

We propose to adjustCEAF in the same way as
we did for B3

sys, resulting inCEAFsys. We put
all twinless key mentions into the response as sin-
gletons. All singleton twinless system mentions
are discarded. For calculatingCEAFsys precision,
all twinless system mentions which were mistak-
enly resolved are put into the key. For computing
CEAFsys recall, only the original key sets are con-
sidered. That wayCEAFsys deals adequately with
system mentions (see Algorithm 2 for details).

Algorithm 2 CEAFsys

Input: key setskey, response setsresponse
Output: precisionP , recallR and F-scoreF
1: Discard all the singleton twinless system mentions in

response;
2: Put all the twinless annotated mentions intoresponse;
3: if calculating precisionthen
4: Merge all the remaining twinless system mentions

with key to formkeyp;
5: Useresponse to formresponsep

6: Form Mapg⋆ betweenkeyp andresponsep

7: CalculateCEAF precisionP usingφ3(⋆, ⋆)
8: end if
9: if calculating recallthen

10: Discard all the remaining twinless system mentions in
response to formresponser;

11: Usekey to formkeyr

12: Form Mapg⋆ betweenkeyr andresponser

13: CalculateCEAF recallR usingφ3(⋆, ⋆)
14: end if
15: Calculate F-scoreF

TakingSystem 2 in Table 4 as an example, key and
response are altered for precision:

Keyp : {a b c} {i} {j}
Responsep: {a b d} {i j} {c}

So theφ3(⋆, ⋆) are as below, only listing the best
mappings:

φ3(K1, R1) = 2 (K1 : {abc}; R1 : {abd})
φ3(K2, R2) = 1 (K2 : {i}; R2 : {ij})
φ3(∅, R3) = 0 (R3 : {c})
φ3(R1, R1) = 3
φ3(R2, R2) = 2
φ3(R3, R3) = 1

The precision is thus give by:
PrCEAFsys = 2+1+0

3+2+1
= 0.6

The key and response for recall are:
Keyr : {a b c}
Responser: {a b} {c}

The resultingφ3(⋆, ⋆) are:
φ3(K1, R1) = 2(K1 : {abc}; R1 : {ab})
φ3(∅, R2) = 0(R2 : {c})
φ3(K1, K1) = 3
φ3(R1, R1) = 2
φ3(R2, R2) = 1

The recall and F-score are thus calculated as:
RecCEAFsys = 2

3
= 0.667

FCEAFsys = 2 × 0.6×0.667
0.6+0.667

= 0.632

However, one additional complication arises
with regard to the similarity metrics used by
CEAF. It turns out that onlyφ3(⋆, ⋆) is suitable
for dealing with system mentions whileφ4(⋆, ⋆)
produces uninituitive results (see Table 6).

φ4(⋆, ⋆) computes a normalized similarity for
each entity pair using the summed number of men-
tions in the key and the response.CEAF precision
then distributes that similarity evenly over the re-
sponse set. Spurious system entities, such as the
one with mentioni and j in Table 6, are not pe-
nalized.φ3(⋆, ⋆) calculates unnormalized similar-
ities. It compares the two systems in Table 6 ade-
quately. Hence we use onlyφ3(⋆, ⋆) in CEAFsys.
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Set 1 Singletons

System 1
key {a b c}
response {a b} {c} {i} {j}

P R F
φ4(⋆, ⋆) 0.4 0.8 0.533
φ3(⋆, ⋆) 0.667 0.667 0.667

System 2
key {a b c}
response {a b} {i j} {c}

P R F
φ4(⋆, ⋆) 0.489 0.8 0.607
φ3(⋆, ⋆) 0.6 0.667 0.632

Table 6: Problems ofφ4(⋆, ⋆)

When normalizing the similarities by the num-
ber of entities or mentions in the key (for recall)
and the response (for precision), theCEAF al-
gorithm considers all entities or mentions to be
equally important. HenceCEAF tends to compute
quite low precision for system mentions which
does not represent the system performance ade-
quately. Here, we do not address this issue.

2.4 BLANC

Recently, a new coreference resolution evalua-
tion algorithm,BLANC, has been introduced (Re-
casens & Hovy, 2010). This measure implements
theRand index (Rand, 1971) which has been orig-
inally developed to evaluate clustering methods.
The BLANC algorithm deals correctly with sin-
gleton entities and rewards correct entities accord-
ing to the number of mentions. However, a ba-
sic assumption behindBLANC is, that the sum of
all coreferential and non-coreferential links is con-
stant for a given set of mentions. This implies that
BLANC assumes identical mentions in key and re-
sponse. It is not clear how to adaptBLANC to sys-
tem mentions. We do not address this issue here.

3 Experiments

While Section 2 used toy examples to motivate our
metricsB3

sys andCEAFsys, we here report results
on two larger experiments using ACE2004 data.

3.1 Data and Mention Taggers

We use the ACE2004 (Mitchell et al., 2004) En-
glish training data which we split into three sets
following Bengtson & Roth (2008): Train (268
docs), Dev (76), and Test (107). We use two in-
house mention taggers. The first (SM1) imple-
ments a heuristic aiming at high recall. The second
(SM2) uses theJ48 decision tree classifier (Wit-
ten & Frank, 2005). The number of detected men-
tions, head coverage, and accuracy on testing data

SM1 SM2
training mentions 31,370 16,081

twin mentions 13,072 14,179
development mentions 8,045 –

twin mentions 3,371 –
test mentions 8,387 4,956

twin mentions 4,242 4,212
head coverage 79.3% 73.3%
accuracy 57.3% 81.2%

Table 7: Mention Taggers on ACE2004 Data

are shown in Table 7.

3.2 Artificial Setting

For the artificial setting we report results on the
development data using theSM1 tagger. To illus-
trate the stability of the evaluation metrics with
respect to different mention taggers, we reduce
the number of twinless system mentions in inter-
vals of 10%, while correct (non-twinless) ones are
kept untouched. The coreference resolution sys-
tem used is the BART (Versley et al., 2008) reim-
plementation of Soon et al. (2001). The results are
plotted in Figures 1 and 2.
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MUC
R Pr F

Soon (SM1) 51.7 53.1 52.4
Soon (SM2) 49.1 69.9 57.7

Table 8: Realistic SettingMUC

Omitting twinless system mentions from the
training data while keeping the number of cor-
rect mentions constant should improve the corefer-
ence resolution performance, because a more pre-
cise coreference resolution model is obtained. As
can be seen from Figures 1 and 2, theMUC-score,
B3

sys andCEAFsys follow this intuition.
B3

0 is almost constant. It does not take twinless
mentions into account.B3

all’s curve, also, has a
lower slope in comparison to B3sys and MUC (i.e.
B3

all computes similar numbers for worse models).
This shows that theB3

all score can be tricked by
using a high recall mention tagger, e.g. in cases
with the worse models (i.e. ones on the left side
of the figures) which have much more twinless
system mentions. The originalCEAF algorithm,
CEAForig, is too sensitive to the input system
mentions making it less reliable.CEAFsys is par-
allel to B3

sys. Thus both of our metrics exhibit the
same intuition.

3.3 Realistic Setting

3.3.1 Experiment 1

For the realistic setting we compareSM1 andSM2
as preprocessing components for the BART (Ver-
sley et al., 2008) reimplementation of Soon et al.
(2001). The coreference resolution system with
the SM2 tagger performs better, because a better
coreference model is achieved from system men-
tions with higher accuracy.

TheMUC, B3
sys andCEAFsys metrics have the

same tendency when applied to systems with dif-
ferent mention taggers (Table 8, 9 and 10 and the
bold numbers are higher with a p-value of 0.05,
by a paired-t test). Since theMUC scorer does
not evaluate singleton entities, it produces too low
numbers which are not informative any more.

As shown in Table 9,B3
all reports counter-

intuitive results when a system is fed with system
mentions generated by different mention taggers.
B3

all cannot be used to evaluate two different end-
to-end coreference resolution systems, because the
mention tagger is likely to have bigger impact than
the coreference resolution system.B3

0 fails to gen-
erate the right comparison too, because it is too

B3
sys B3

0

R Pr F R Pr F
Soon (SM2) 64.1 87.3 73.9 54.7 91.3 68.4
Bengtson 66.1 81.9 73.1 69.5 74.7 72.0

Table 11: Realistic Setting

lenient by ignoring all twinless mentions.
TheCEAForig numbers in Table 10 illustrate the

big influence the system mentions have on preci-
sion (e.g. the very low precision number forSoon
(SM1)). The big improvement forSoon (SM2) is
largely due to the system mentions it uses, rather
than to different coreference models.

BothB3
r&n andCEAFr&n show no serious prob-

lems in the experimental results. However, as dis-
cussed before, they fail to penalize the spurious
entities with twinless system mentions adequately.

3.3.2 Experiment 2

We compare results of Bengtson & Roth’s (2008)
system with ourSoon (SM2) system. Bengtson &
Roth’s embedded mention tagger aims at high pre-
cision, generating half of the mentionsSM1 gen-
erates (explicit statistics are not available to us).

Bengtson & Roth report aB3 F-score for sys-
tem mentions, which is very close to the one for
true mentions. TheirB3-variant does not impute
errors of twinless mentions and is assumed to be
quite similar to theB3

0 strategy.
We integrate both theB3

0 andB3
sys variants into

their system and show results in Table 11 (we can-
not report significance, because we do not have ac-
cess to results for single documents in Bengtson &
Roth’s system). It can be seen that, when different
variants of evaluation metrics are applied, the per-
formance of the systems vary wildly.

4 Conclusions

In this paper, we address problems of commonly
used evaluation metrics for coreference resolution
and suggest two variants forB3 andCEAF, called
B3

sys and CEAFsys. In contrast to the variants
proposed by Stoyanov et al. (2009),B3

sys and
CEAFsys are able to deal with end-to-end systems
which do not use any gold information. The num-
bers produced byB3

sys andCEAFsys are able to
indicate the resolution performance of a system
more adequately, without being tricked easily by
twisting preprocessing components. We believe
that the explicit description of evaluation metrics,
as given in this paper, is a precondition for the re-
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B3
sys B3

0 B3
all B3

r&n

R Pr F R Pr F R Pr F R Pr F
Soon (SM1) 65.7 76.8 70.8 57.0 91.1 70.1 65.1 85.8 74.0 65.1 78.7 71.2
Soon (SM2) 64.1 87.3 73.9 54.7 91.3 68.4 64.3 87.1 73.9 64.3 84.9 73.2

Table 9: Realistic SettingB3 Variants

CEAFsys CEAForig CEAFr&n

R Pr F R Pr F R Pr F
Soon (SM1) 66.4 61.2 63.7 62.0 39.9 48.5 62.1 59.8 60.9
Soon (SM2) 67.4 65.2 66.3 60.0 56.6 58.2 60.0 66.2 62.9

Table 10: Realistic SettingCEAF Variants

liabe comparison of end-to-end coreference reso-
lution systems.
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A B3
sys Example Output

Here, we provide additional examples for analyzing the behavior ofB3
sys where we systematically vary

system outputs. Since we proposedB3
sys for dealing with end-to-end systems, we consider only examples

also containing twinless mentions. The systems in Table 12 and 14 generate different twinless key
mentions while keeping the twinless system mentions untouched. In Table 13 and15, the number of
twinless system mentions changes through different responses and the number of twinless key mentions
is fixed.

In Table 12,B3
sys recall goes up when more key mentions are resolved into the correct set. And the

precision stays the same, because there is no change in the number of the erroneous resolutoins (i.e. the
spurious cluster with mentions i and j). For the examples in Tables 13 and 15,B3

sys gives worse precision
to the outputs with more spurious resolutions, and the same recall if the systems resolve key mentions in
the same way. Since the set of key mentions intersects with the set of twinless system mentions in Table
14, we do not have an intuitive explanation for the decrease in precision from response1 to response4.
However, both the F-score and the recall still show the right tendency.

Set 1 Set 2 B3
sys

key {a b c d e} P R F
response1 {a b} {i j} 0.857 0.280 0.422
response2 {a b c} {i j} 0.857 0.440 0.581
response3 {a b c d} {i j} 0.857 0.68 0.784
response4 {a b c d e} {i j} 0.857 1.0 0.923

Table 12: Analysis ofB3
sys 1

Set 1 Set 2 B3
sys

key {a b c d e} P R F
response1 {a b c} {i j} 0.857 0.440 0.581
response2 {a b c} {i j k} 0.75 0.440 0.555
response3 {a b c} {i j k l } 0.667 0.440 0.530
response4 {a b c} {i j k l m} 0.6 0.440 0.508

Table 13: Analysis ofB3
sys 2

Set 1 B3
sys

key {a b c d e} P R F
response1 {a b i j} 0.643 0.280 0.390
response2 {a b c i j} 0.6 0.440 0.508
response3 {a b c d i j} 0.571 0.68 0.621
response4 {a b c d e i j} 0.551 1.0 0.711

Table 14: Analysis ofB3
sys 3

Set 1 B3
sys

key {a b c d e} P R F
response1 {a b c i j} 0.6 0.440 0.508
response2 {a b c i j k} 0.5 0.440 0.468
response3 {a b c i j k l} 0.429 0.440 0.434
response4 {a b c i j k l m} 0.375 0.440 0.405

Table 15: Analysis ofB3
sys 4
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