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Abstract (Luo, 2005) without modifications. Yang et al.
(2008) use only th&1UC score. Bengtson & Roth

Commonly used coreference resolution  (2008) and Stoyanov et al. (2009) derive variants
evaluation metrics can only be applied to  from theB? algorithm (Bagga & Baldwin, 1998).
key mentions, i.e. already annotated men-  Rahman & Ng (2009) propose their own variants
tions. We here propose two variants of the  of B3 and CEAF. Unfortunately, some of the met-
B andCEAF coreference resolution eval-  rics’ descriptions are so concise that they leave too
uation algorithms which can be applied  much room for interpretation. Also, some of the
to coreference resolution systems dealing  metrics proposed are too lenient or are more sen-
with system mentions, i.e. automatically sitive to mention detection than to coreference res-
determined mentions. Our experiments  olution. Hence, though standard corpora are used,
show that our variants lead to intuitive and the results are not Comparab|e.
reliable results. This paper attempts to fill that desideratum by
analysing several variants of tB& and CEAF al-
gorithms. We propose two new variants, namely

The coreference resolution problem can be diBiys and CEAF,,,, and provide algorithmic de-
vided into two steps: (1) determiningentions, tails in Section 2. We describe two experiments in
i.e., whether an expression is referential andSection 3 showing theB?, , andCEAF,,, lead to
can take part in a coreferential re|ati0nship, andntUitive and reliable results. Implementations of
(2) deciding whether mentions are coreferent oBys andCEAF,,; are available open source along
not. Most recent research on coreference reswith extended examplés

olution simplifies the resolution task by provid- ) .

ing the system wittkey mentions, i.e. already an- 2 Coreference Evaluation Metrics

notat_ed mentions (Luo et al. - (2004), Denl_s &_We discuss the problems which arise when apply-
Baldrl_dge (2007).’ CUIOt'.[a etal. (2007), |_|"’1gh'gh'ing the most prevalent coreference resolution eval-
& }_<Ie_|n (2007), inter alia; see also the task de'uation metrics to end-to-end systems and propose
scription of the recent SemEval task on coref-our variants which overcome those problems. We

erence resolution &t t p: //_St el . ub. e_du/ provide detailed analyses of illustrative examples.
seneval 2010- cor ef ), or ignores an impor-

tant part of the problem by evaluating on key men-2.1 MUC

tions only (Ponzetto & Strube, 2006; Bengtson &The MUC score (Vilain et al., 1995) counts

Roth, 2008, inter alia). We follow here Stoyanovthe minimum number of links between mentions

Pft al. (20“09’ p.657)_ In arguing that such e\_/a_lua—to be inserted or deleted when mapping a sys-
tions are “an unrealistic surrogate for the original

, tem response to a gold standard key set. Al-
problem” and ask researchers to evaluate end-tQ: L . . .
. hough pairwise links capture the information
end coreference resolution systems.

. in a set, they cannot represent singleton en-
However, the evaluation of end-to-end coref- y P 9

) . . tIEIeS, i.e. entities, which are mentioned only

erence resolution systems has been inconsisten . .
N . .~ _once. Therefore, the MUC score is not suitable
making it impossible to compare the results. Nico-

lae & Nicolae (2006) evaluate using thdUC for the ACE datalfttp://waw. i tl. nist.
score (Vilain et al., 1995) and tgEAF algorithm *htt p: //www. h-its. org/ nl p/ downl oad

1 Introduction
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gov/iad/ m g/t est s/ ace/ ), which includes - ?aeijlc}
singleton entities.in the kgys. Moreovgr, thg MUC  Ssteml ,egponse {abd
score does not give credit for separating singleton P R F
entities from other chains. This becomes problem-  B? 1.0 0.444 0615
atic in a realistic system setup, when mentions are B 0.556 0556 0.556
4 ’ B¢, 0.556 0.556 0.556
extracted automatically. B, 0.667 0556 0.606
s CEAF,,. 0.5 0.667 0.572
22 B Seenz @bg
TheB? algorithm (Bagga & Baldwin, 1998) over- response I{Da bdg - -
comes the shortcomings of the MUC score. In- gz 10 0444 0615
stead of looking at the linksB® computes preci- B, 0.375 0.556 0.448
sion and recall for all mentions in the document, B, 0.375 0.556 0.448
i i : B3 0.5 0.556 0.527
which are then combined to produce the final pre-  Bsus
. , CEAF,,, 0.4 0.667 0.500
cision and recall numbers for the entire output.
For each mention, thB? algorithm computes a Table 1: Problems o8}

precision and recall score using equations 1 and 2:

. N |Rm7‘, mel" : _ Precision-Recall
(B calculated as:
R, N Ko, '
Recall(m;) = # @) PTBS = %(% + %) =1.0

Recps = 3(3 + 3 +0) = 0.444

_ 1.0x0.444 -
FBS =2 X Y5044 — 0615

whereR,,, is the response chain (i.e. the system

output) which includes the mention;, and K,,,, B3, retains twinless system mentions. It assigns

is the key chain (manually annotated gold stand/|R,,| to a twinless system mention as its preci-

dard) withm;. The overall precision and recall are sion and similarlyl /| K, | to a twinless key men-

computed by averaging them over all mentions. tion as its recall. For the same example above, the
SinceB?’s calculations are based on mentions B2, precision, recall and F-score are given by:

singletons are taken into account. However, @ Prys =3(3+3 +3) = 0.556

problematic issue arises when system mentions Recps = 1(2+ 2+ 1) =0.556

have to be dealt withB> assumes the mentionsin ’“i 2 x 0:586x0:356 - () 556

ol 0.556+0.444
the key and in the response to be identical. Hence, . 3
B3 has to be extended to deal with system men- Tables 1, 2and 3illustrate the problems

3 : -
tions which are not in the key and key mentionsanCI By The rows labeledystem give the origi

not extracted by the system, so calladinless nal keygs agd systgm responses while the rows_la-

. beledBj, B;;; andB;, . show the performance gen
mentions (Stoyanov et al., 2009). a Y , .

erated by Stoyanov et al.’s variants and the one

2.2.1 ExistingB? variants we introduce in this papeB?,, (the row labeled
A few variants of thed3 algorithm for dealing with  CEAF .y is discussed in Subsection 2.3). .
system mentions have been introduced recently. In Table 1, there are two system outputs (i.e.
Stoyanov et al. (2009) suggest two variants of theédystem 1 and System 2). Mentionsd and e are
B? algorithm to deal with system mentior& and the twinless system mentions erroneously resolved

B3,2. For example, a key and a response are praandc a twinless key mention.System 1 is sup-

vided as below: posed to be slightly better with respect to preci-
Key:{abd sion, becaus&ystem 2 produces one more sSpu-
Response{a b d} rious resolution (i.e. for mentior ). However,

B} discards all twinless system mentions (i.e.Bj computes exactly the same numbers for both
mention d) and penalizes recall by settingsystems. Hence, there is no penalty for erroneous
recall,,, = 0 for all twinless key mentions (i.e. coreference relations i}, if the mentions do not
mention ¢). TheB] precision, recall and F-score appear in the key, e.g. putting mentiath®r e in
— . 5 s _ Set 1 does not count as precision errors. B

Our discussion 08; andB;;; is based on the analysis

of the source code available t t p: / / waw. cs. ut ah. 1S 100 lenient by only evaluating the correctly ex-
edu/ nl p/ reconcil e/ . tacted mentions.
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Setl Singletons Setl Singletons
ke abg ke ab
System 1 regponse %a b d}}i System 1 regponse }a b}d}
P R F P R F
B, 0.556  0.556 0.556 B, 0556 1.0 0.715
Bl 0.556  0.556 0.556 By, 0556 1.0 0.715
BZ,. 0.667  0.556 0.606 BZ,. 0556 1.0 0.715
CEAF,,, 0.5 0.667 0.572 CEAF,y 0.667 1.0 0.800
ke abg ke ab
System2 regponse %a b d}}: {c} System2 regponse }a b}d} {i} {j} {k}
P R F P R
B3, 0.667  0.556 0.606 BZ, 0778 1.0 0.875
B, 0.667  0.556 0.606 B ... 0556 1.0 0.715
BZ,. 0.667  0.556 0.606 B,s 0556 1.0 0.715
CEAF,; 0.5 0.667 0.572 CEAF,; 0.667 1.0 0.800
Table 2: Problems d83,, (1) Table 3: Problems d83,, (2)

B3, deals well with the problem illustrated in ~ We assume that Rahman & Ng apply a strategy
Table 1, the figures reported correspond to insimilar toB?,, after the removing step (this is not
tuition. However, B3, can output different re- clearin Rahman & Ng (2009)). While it avoids the
sults for identical coreference resolutions wherproblem with singleton twinless system mentions,
exposed to different mention taggers as shown iB?,,, still suffers from the problem dealing with
Tables 2 and 3.B?, manages to penalize erro- twinless key mentions, as illustrated in Table 2.
neous resolutions for twinless system mentions,
however, it ignores twinless key mentions when?-2-2 Bgys
measuring precision. In Table ystem1andSyss  We here propose a coreference resolution evalua-
tem 2 generate the same outputs, except that thion metric, B:;’ys, which deals with system men-
mention tagger irBystem 2 also extracts mention tions more adequately (see the rows Iab@éps
c. Intuitively, the same numbers are expected foin Tables 1, 2, 3, 4 and 5). We put all twinless key
both systems. HoweveB?,, gives a higher preci- mentions into the response as singletons which en-
sion toSystem 2, which results in a higher F-score. ablesB;”ys to penalize non-resolved coreferent key
r5‘nentions without penalizing non-resolved single-
ton key mentions, and also avoids the prob&p
andB?, , have as shown in Table 2. All twinless
system mentions which were deemed not coref-
erent (hence being singletons) are discarded. To
quite different results for precision and thus for F-(‘talCUIatEj‘Bgys precision, all twinless system men-

tions which were mistakenly resolved are put into

score. This is due to the cred§,, takes from un- he kev si h . luti :
resolved singleton twinless system mentions (i. the key since they are spurious resolutions (equiv-

mentioni, j, kin System 2). Since the metric is ex- alent to the assignment operationsgj),), which

pected to evaluate the end-to-end coreference sy§t3]0u'§I be penzllzeo]l_ b]}/ precision. | UQ"@H;
tem performance rather than the mention tagginfsys 0€s nqt ene It from unresolve twinless
quality, it is not satisfying to observe thag,'s ystem mentlons (i.e. the twmless' singleton sys-
numbers actually fluctuate when the system is extem ment|ons)._ Eor recall, the algo_nthm only goes
posed to different mention taggers. through thg orlglngl key sets, s_lmllar 87, and

_ B3, . Details are given in Algorithm 1.

Rahman & Ng (2009) apply another variant, de-  For example, a coreference resolution system

noted here aB?,,,. They remove only those twin- pas the following key and response:
less system mentions that are singletons before ap- Key:{abgd

plying the B? algorithm. So, a system would not  Response{abd} {ij}

be rewarded by the the spurious mentions whichg calculate the precision &,
are correctly identified as singletons during resoxpongse are altered to: Y
lution (as has been the case Wify,'s higher pre- Key, : {abd {d} {i} {j}

cision forSystem 2 as can be seen in Table 3). Responsg {abd} {ij} {c}

B3, retains all twinless system mentions, as ca
be seen in Table Bystem 2's mention tagger tags
more mentions (i.e. the mentiong andk), while
both System 1 and System 2 have identical coref-
erence resolution performance. StBf, outputs

the key and re-
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Algorithm 1 B3 The CEAF precision and recall are derived from

sYs

Input: key setstey, response sets:sponse the alignment which has the best total similarity
Output: precisionP, recall R and F-score” (denoted a®(g*)), shown in Equations 5 and 6.

1: Discard all the singleton twinless system mentions in

response; (I)<g*)

2: Put all the twinless annotated mentions inteponse; Precision = ————~~% (5)

3: if calculating precisiothen > ¢(Ri, Ry)

4: Merge all the remaining twinless system mentions

with key to form keyp; CI)(g*)

5. Useresponse to formresponse, Recall = ——F———~ (6)

6: Throughke%p andresponsep; i (K, K;)

;; endci‘?lcu'ateB precision?. If not specified otherwise, we apply Luajg (x, )

9: if calculating recalthen in the example illustrations. We denote the origi-
10:

Discard all the remaining twinless system mentions inngq| CEAF algorithm asCEAF

response to fromresponse,; o

11:  Usekey to form key, Detailed calculations are illustrated below:
12: ThroughkeyT andresponse,; Key:{abd
13:  CalculateB? recall R Response{a b d:
14: end if . .
15: Calculate F-scor& The CEAF iy ¢3(x, ) are given by:
¢3(K1,R1) =2 (Kl : {CLbC};Rl : {abd})
¢3(K1,K1) =3
So, the precision dB?,, is given by: @s(F, ) =3
. So theCEAF,,.;, evaluation numbers are:
Prps =g(3+5+3+35+5+1)=0611 . orig .
The modified key and response for recall are: TCEAForig = 3 = 0.66
ReCCEAFO,,,i = 3 = 0.667
Key, : {abc F e 9 x 0:667X0.667 _ () g7
Responsg {a b} {c} CEAForig = 2 X 066740.667 — -
The resulting recall 0B, is: 2.3.1 Problems ofCEAF,,;,
Recps = 3(3 + 3 + %) = 0.556 CEAF,,;; Was intended to deal with key mentions.
Thus the F-score number is calculated as: Its adaptation to system mentions has not been ad-
Fps =2 x Q8X055 - 559 dressed explicitly. AlthouglCEAF,,;, theoreti-
sYs . .

3 . (t:ally does not require to have the same number of
B2, . indicates more adequately the performance o . . o .
Y mentions in key and response, it still cannot be di-

end-to-end coreference resolution systems. It i?ectl aoplied to end-to-end svstems. because the
not easily tricked by different mention taggérs y app y '

entity alignments are based on mention mappings.
2.3 CEAF As can be seen from Table €EAF,,;, fails
to produce intuitive results for system mentions.

Luo (2005) criticizes theB? algorithm for using <em 2 outout ; tit
entities more than one time, becalBecomputes System 2 outputs one more spurious entity (con-
taining mention andj) thanSystem 1 does, how-

precision and recall of mentions by comparing en- hi NREAF . Sj
tities containing that mention. Hence Luo pro- Ever, achieves a sa orig PrECISION. SInce

poses th&€€EAF algorithm which aligns entities in LW'nI?:S syst(imbrrlentlotl;lf dotn(;':]have mappings in
key and respons€CEAF applies a similarity met- €y, they contribute hothing fo the mapping simi-

ric (which could be either mention based or entityla”ty' S0, resolution mistakes for system me_nfuon_s
are not calculated, and moreover, the precision is

based) for each pair of entities (i.e. a set of men- iv skewed by th b ¢ outout entit
tions) to measure the goodness of each possib astly skewed by the number of oulput entiies.
CEAF,,;, reports very low precision for system

alignment. The best mapping is used for calculat i lso St tal. (2009
ing CEAF precision, recall and F-measure. mentions (see also Stoyanov etal. ( )-

Luo proposes two entity based similarity met-2.3.2 ExistingCEAF variants
rics (Equation 3 and 4) for an entity pdik, R;)  Rahman & Ng (2009) briefly introduce their

originating from key,K;, and responses;. CEAF variant, which is denoted a€EAF,,,
¢3(Ki, R;) = |K; N Ry (3) here. They useb;(x,*), which results in equal
2K, M R| CEAF,.,.,, precision and recall figures when using
o4(Ki, Rj) = m (4) true mentions. Since Rahman & Ng'’s experiments
? J

using system mentions produce unequal precision
3Further example analyses can be found in Appendix A. and recall figures, we assume that, after removing
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Set 1 Set2  Singletons Set 1 Set 2 Set3  Singletons
key {abd key {abd
stem 1 s
&4 response| {a b} {c}{i} {i} System 1 response| {a b} {ij} {kl}  {c}
P R F P R F
C?I)EAFOTig 0.4 0.667  0.500 CEAF, & 0.286 0.667 0.400
Biys 1.0 0.556  0.715 Bj;‘ys 0.714 0.556 0.625
CEAF,,, 0.667 0.667  0.667 CEAF,y, 0.571 0.667 0.615
key {abd key {abcd
stem 2 ..
Y response| {a b} {iji}  {c} System 2 response| {a b} {ijkl} {c}
P R F P R F
CSEAForig 0.4 0.667  0.500 CEAF,.&n 0.286 0.667 0.400
BZ,. 0.8 0.556  0.656 B?,. 0571  0.556  0.563
CEAF s 0.6 0.667 0.632 CEAF,y, 0.429 0.667 0.522
Table 4: Problems o€EAF ;4 Table 5: Problems of CEAE.,,

twinless singleton system mentions, they do noffakingSystem 2 in Table 4 as an example, key and
put any twinless mentions into the other set. In thegesponse are altered for precision:

example in Table 5CEAF,.,, does not penalize Key, : {abd {i} {j}

adequately the incorrectly resolved entities con- Responsg {abd {ij} {c}

sisting of twinless sytem mentions. §fAF, ¢, So thegs(x, ) are as below, only listing the best
does not tell the difference betwe&stem 1 and mappings:

System 2. It can be concluded from the examples  ¢s(Ki1, R1) = 2 (K : {abc}; Ry : {abd})
that the same number of mentions in key and re- ¢3(f, R2) =1 (K : {i}; Rz : {ij})
. . ¢3(0, R3) =0 (R3 : {c})
sponse is needed for computing tBEAF score. ¢3(R1, R1) =3
¢3(R2, R2) = 2
2.3.3 CEAFsyS ¢3(Rs, R3) =1
We propose to adjusEEAF in the same way as he precision is thus give by:
we did for B}, resulting inCEAF,,,. We put Propar,,, = $511 = 0.6

all twinless key mentions into the response as sinThe key and response for recall are:
gletons. All singleton twinless system mentions Key, : {ab¢d

are discarded. For calculati@EAF ,,; precision, Response {a b} {c}

all twinless system mentions which were mistak-The resultingps (x, x) are:

enly resolved are put into the key. For computing  ¢3(K1, R1) = 2(K1 : {abc}; R1 : {ab})
CEAF,,, recall, only the original key sets are con- ~ #3(0; fi2) = 0(F2 : {c})

: : 3(K1, K1) =3
sidered. That waEAF ,,, deals adequately with i;g Rr. Rll)): 2
system mentions (see Algorithm 2 for details). ¢3(R2, R2) =1
_ The recall and F-score are thus calculated as:
Algorithm 2 CEAF Reccpar,,, = 2 = 0.667
Input: key setskey, response setssponse Fopar,,, =2 X Fe0080 — 0.632

Output: precisionP, recall R and F-score” .. . .
1: Discard all the singleton twinless system mentions in HOwever, one additional complication arises

response; with regard to the similarity metrics used by
2: Put all the twinless annotated mentions inteponse; CEAF. It turns out that onlye (* *) is suitable
3: if calculating precisiothen C ) 31 .
4: Merge all the remaining twinless system mentionsfor dealing with system mentions whilg; (x, x)
. Vuvith key to fortm i;:eyp; produces uninituitive results (see Table 6).

seresponse 10 Torm response H H H H
6 Form Mﬁpg* betweemeyi andiesponsep Ga(*, *_) comput_es a normalized similarity for
7. CalculateC’ EAF precisionP usingos(x, *) each entity pair using the summed number of men-
8 endif tions in the key and the responseEAF precision
9: if calculating recalthen _ L
10:  Discard all the remaining twinless system mentions inthen distributes that similarity evenly over the re-
response to formresponse,; sponse set. Spurious system entities, such as the

11:  Usekey to form key, one with mentioni andj in Table 6, are not pe-
12: Form Mapg* betweerkey, andresponse, . . L
13:  Calculate" EAF recall R usinges (x, %) nalized.¢s(x, =) calculates unnormalized similar-
14: end if ities. It compares the two systems in Table 6 ade-

15: Calculate F-scor& quately. Hence we use ondy (x, x) in CEAF .
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Setl Singletons M1 Sv2
System1 key {abdc training mentions 31,370 16,081
response| {a b} {c} {i} {i} twin mentions| 13,072 14,179
P R development mentions 8,045 -
a(x, %) 0.4 0.8 0.533 twin mentions| 3,371 —
@3 (*, %) 0.667 0.667 0.667 test mentions 8,387 4,956
ke abc twin mentions| 4,242 4,212
System2 regponse }a b} }{i it {c head coverage 79.3%  73.3%
P R E accuracy 57.3% 81.2%
Bk, * 0.489 0.8 0.607 .
¢§§*7 *g 06 0.667 0.632 Table 7: Mention Taggers on ACE2004 Data

Table 6: Problems a4 (x, *) ,
are shown in Table 7.

When normalizing the similarities by the num- 3.2  Artificial Setting
ber of entities or mentions in the key (for recall) For the artificial setting we report results on the
and the response (for precision), tREAF al-  development data using tt8M1 tagger. To illus-
gorithm considers all entities or mentions to betrate the stability of the evaluation metrics with
equally important. Henc€EAF tends to compute respect to different mention taggers, we reduce
quite low precision for system mentions whichthe number of twinless system mentions in inter-
does not represent the system performance adeals of 10%, while correct (non-twinless) ones are
quately. Here, we do not address this issue. kept untouched. The coreference resolution sys-
tem used is the BART (Versley et al., 2008) reim-
24 BLANC plementation of Soon et al. (2001). The results are
Recently, a new coreference resolution evaluaplotted in Figures 1 and 2.
tion algorithm,BLANC, has been introduced (Re-
casens & Hovy, 2010). This measure implements °*
theRand index (Rand, 1971) which has been orig-
inally developed to evaluate clustering methods.
The BLANC algorithm deals correctly with sin-
gleton entities and rewards correct entities accord
ing to the number of mentions. However, a ba-
sic assumption behinBLANC is, that the sum of
all coreferential and non-coreferential links is con- ;
stant for a given set of mentions. This implies that o}
BLANC assumes identical mentions in key and re-
sponse. Itis not clear how to ad@itANC to sys- ‘““1 0s 0s ot 02 o
tem mentions. We do not address this issue here. e e e e e e

T
MUC ---x¢---
BCubedsys &
BCubed0 ---o--
BCubedall ——
08 [ BCubedng ---%-— |

ata
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diopment D:
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>
[
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,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,
e

et X
,,,,,,,,,,,,,,

. Figure 1: Artificial SettingB? Variants
3 Experiments g &

While Section 2 used toy examples to motivate our
metrics B3 andCEAF,,,, we here report results

sYs

on two larger experiments using ACE2004 data.

T

MUC ------
CEAFsys &

CEAForig --6--

075 | CEAFng —+— -

3.1 Data and Mention Taggers

We use the ACE2004 (Mitchell et al., 2004) En-
glish training data which we split into three sets
following Bengtson & Roth (2008): Train (268
docs), Dev (76), and Test (107). We use two in-¢ osg.-=
house mention taggers. The fir€@M1) imple-
ments a heuristic aiming at high recall. The second
(SM2) uses thel48 decision tree classifier (Wit-
ten & Frank, 2005). The number of detected men-
tions, head coverage, and accuracy on testing data Figure 2: Artificial SettingCEAF Variants

score for ACE04 Development Data

. . . .
1 0.8 0.6 0.4 0.2 0
Proportion of twinless system mentions used in the experiment
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MUC B, B}

R Pr F R Pr F |R Pr F
Soon(SM1) | 51.7 531  52.4 Soon(SM2) | 64.1 87.3 739 547 91.3 68.4
Soon (SM2) | 49.1 69.9 57.7 Bengtson 66.1 819 73.1|69.5 747 720

Table 8: Realistic SettingylUC Table 11: Realistic Setting

Omitting twinless system mentions from the lenient by ignoring all twinless mentions.
training data while keeping the number of cor- TheCEAF,,;, numbers in Table 10 llustrate the
rect mentions constant should improve the coreferig influence the system mentions have on preci-
ence resolution performance, because a more preion (e.g. the very low precision number f8von
cise coreference resolution model is obtained. A§SV1)). The big improvement foSoon (SM2) is
can be seen from Figures 1 and 2, MBC-score, largely due to the system mentions it uses, rather
B3, andCEAF,, follow this intuition. than to different coreference models.

B3 is almost constant. It does not take twinless Both B%&n andCEAF, ¢, show no serious prob-
mentions into account.B3,’s curve, also, has a lems in the experimental results. However, as dis-
lower slope in comparison to?B, and MUC (i.e. cussed before, they fail to penalize the spurious
B?,, computes similar numbers for worse models) entities with twinless system mentions adequately.
This shows that the33;, score can be tricked by .
using a high recall mention tagger, e.g. in cases-3-2 Experiment2
with the worse models (i.e. ones on the left side/We compare results of Bengtson & Roth’s (2008)
of the figures) which have much more twinlesssystem with ouiSoon (SM2) system. Bengtson &
system mentions. The origin@EAF algorithm, Roth’s embedded mention tagger aims at high pre-
CEAF,,4, is too sensitive to the input system cision, generating half of the mentio®1 gen-
mentions making it less reliabl€EAF;, is par-  erates (explicit statistics are not available to us).

allel to Bg’ys. Thus both of our metrics exhibitthe  Bengtson & Roth report &3 F-score for sys-
same intuition. tem mentions, which is very close to the one for

true mentions. TheiB3-variant does not impute
3.3 Realistic Setting errors of twinless mentions and is assumed to be
3.3.1 Experiment1 quite similar to theBj strategy.

. 3 5 o
For the realistic setting we compas#1 andSvi2 We integrate both thBj andB;,, variants into

as preprocessing components for the BART (VeriN€ir system and show results in Table 11 (we can-
sley et al., 2008) reimplementation of Soon et al N0t reportsignificance, because we do not have ac-
(2001). The coreference resolution system witfeess to results for single documents in Bengtson &
the SM2 tagger performs better, because a betteBOth s system). It can be seen that, when different

coreference model is achieved from system menvariants of evaluation metrics are applied, the per-

tions with higher accuracy. formance of the systems vary wildly.

TheMUC, B andCEAF,,; metrics have the ,  ~ 0o
same tendency when applied to systems with dif-
ferent mention taggers (Table 8, 9 and 10 and thén this paper, we address problems of commonly
bold numbers are higher with a p-value of 0.05,used evaluation metrics for coreference resolution
by a paired-t test). Since tHdUC scorer does and suggest two variants fé> andCEAF, called
not evaluate singleton entities, it produces too low? . and CEAF,,,. In contrast to the variants
numbers which are not informative any more. proposed by Stoyanov et al. (200 ,gys and

As shown in Table 9,B3, reports counter- CEAF,, are able to deal with end-to-end systems
intuitive results when a system is fed with systemwhich do not use any gold information. The num-
mentions generated by different mention taggersbers produced b;B;”ys andCEAF,,, are able to
B3, cannot be used to evaluate two different endindicate the resolution performance of a system
to-end coreference resolution systems, because tineore adequately, without being tricked easily by
mention tagger is likely to have bigger impact thantwisting preprocessing components. We believe
the coreference resolution systeB. fails to gen-  that the explicit description of evaluation metrics,
erate the right comparison too, because it is to@s given in this paper, is a precondition for the re-
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Bgys Bg Bgll Bg&n
R  Pr F |[R Pr F |[R Pr F |R Pr F
Soon (SM1) | 65.7 76.8 70.8/ 57.0 91.1 70.1| 65.1 858 74.0 65.1 78.7 71.2
Soon(SM2) | 64.1 87.3 73.9| 54.7 91.3 684 643 871 739 643 849 732

Table 9: Realistic Setting? Variants

CEAFSUS CEAForig CEAFT&n
R  Pr F |R Pr F |[R Pr F
Soon (SM1) | 66.4 61.2 63.7] 62.0 39.9 48.5| 62.1 59.8 60.9
Soon (SM2) | 67.4 65.2 66.3 | 60.0 56.6 58.2 | 60.0 66.2 62.9

Table 10: Realistic SettinGEAF Variants
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A B3 Example Output

sys

Here, we provide additional examples for analyzing the behaviﬁiﬁfwhere we systematically vary
system outputs. Since we propoﬁgs for dealing with end-to-end systems, we consider only examples
also containing twinless mentions. The systems in Table 12 and 14 generaterdiffwinless key
mentions while keeping the twinless system mentions untouched. In Table 1Bbatite number of
twinless system mentions changes through different responses anththemof twinless key mentions
is fixed.

In Table 12,B§ys recall goes up when more key mentions are resolved into the correct sétthA
precision stays the same, because there is no change in the number obtle®es resolutoins (i.e. the
spurious cluster with mentions i and j). For the examples in Tables 13 alﬁiy];;'gives worse precision
to the outputs with more spurious resolutions, and the same recall if the systsohserkey mentions in
the same way. Since the set of key mentions intersects with the set of twinkssigpentions in Table
14, we do not have an intuitive explanation for the decrease in precigionresponseto responsge
However, both the F-score and the recall still show the right tendency.

Set1 Set?2 B,
key {abcdé¢ P R F
response | {ab} {ij} | 0.857 0.280 0.422
response | {abc {ij} | 0.857 0.440 0.581
responsg | {abcd {ij} 10857 068 0.784
responsg | {abcdeg¢ {ij} | 0.857 1.0 0.923

Table 12: Analysis oB?,, 1

sys

Set1 Set 2 B2,s
key {abcdg P R F
response | {ab ¢} {ij} 0.857 0.440 0.581
response | {ab ¢} {ijk} 0.75 0.440 0.555
responsg | {abc {ijkl} 0.667 0.440 0.530
response | {abc {ijkIm} | 0.6 0.440 0.508

Table 13: Analysis oB?,, 2

sys

Set 1 B,
key {abcdé¢ P R F
response | {abij} 0.643 0.280 0.390

response | {abcij} 0.6 0.440 0.508
response | {abcdij 0.571 0.68 0.621
responsg | {abcdei} | 0551 1.0 0.711

Table 14: Analysis oB3 . 3

sys

Set 1 BZ,.
key {abcd¢g P R F
response | {abcij} 0.6 0.440 0.508
response | {abcijk} 0.5 0.440 0.468
responsg | {abcijkl} 0.429 0.440 0.434
response | {abcijkIm} [ 0.375 0.440 0.405

Table 15: Analysis oB? . 4

sys
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