
Proceedings of SIGDIAL 2010: the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 1–8,
The University of Tokyo, September 24-25, 2010. c©2010 Association for Computational Linguistics

Towards Incremental Speech Generation in Dialogue Systems

Gabriel Skantze

Dept. of Speech Music and Hearing
KTH, Stockholm, Sweden
gabriel@speech.kth.se

Anna Hjalmarsson
Dept. of Speech Music and Hearing

KTH, Stockholm, Sweden
annah@speech.kth.se

Abstract

We present a first step towards a model of
speech generation for incremental dialogue
systems. The model allows a dialogue system
to incrementally interpret spoken input, while
simultaneously planning, realising and self-
monitoring the system response. The model
has been implemented in a general dialogue
system framework. Using this framework, we
have implemented a specific application and
tested it in a Wizard-of-Oz setting, comparing
it with a non-incremental version of the same
system. The results show that the incremental
version, while producing longer utterances,
has a shorter response time and is perceived
as more efficient by the users.

1 Introduction

Speakers in dialogue produce speech in a piece-
meal fashion and on-line as the dialogue pro-
gresses. When starting to speak, dialogue partici-
pants typically do not have a complete plan of
how to say something or even what to say. Yet,
they manage to rapidly integrate information
from different sources in parallel and simultane-
ously plan and realize new dialogue contribu-
tions. Moreover, interlocutors continuously self-
monitor the actual production processes in order
to facilitate self-corrections (Levelt, 1989). Con-
trary to this, most spoken dialogue systems use a
silence threshold to determine when the user has
stopped speaking. The user utterance is then
processed by one module at a time, after which a
complete system utterance is produced and real-
ised by a speech synthesizer.

This paper has two purposes. First, to present
an initial step towards a model of speech genera-
tion that allows a dialogue system to incremen-
tally interpret spoken input, while simultaneously
planning, realising and self-monitoring the sys-
tem response. The model has been implemented

in a general dialogue system framework. This is
described in Section 2 and 3. The second purpose
is to evaluate the usefulness of incremental
speech generation in a Wizard-of-Oz setting, us-
ing the proposed model. This is described in Sec-
tion 4.

1.1 Motivation

A non-incremental dialogue system waits until
the user has stopped speaking (using a silence
threshold to determine this) before starting to
process the utterance and then produce a system
response. If processing takes time, for example
because an external resource is being accessed,
this may result in a confusing response delay. An
incremental system may instead continuously
build a tentative plan of what to say as the user is
speaking. When it detects that the user’s utter-
ance has ended, it may start to asynchronously
realise this plan while processing continues, with
the possibility to revise the plan if needed.

There are many potential reasons for why dia-
logue systems may need additional time for
processing. For example, it has been assumed
that ASR processing has to be done in real-time,
in order to avoid long and confusing response
delays. Yet, if we allow the system to start
speaking before input is complete, we can allow
more accurate (and time-consuming) ASR proc-
essing (for example by broadening the beam). In
this paper, we will explore incremental speech
generation in a Wizard-of-oz setting. A common
problem in such settings is the time it takes for
the Wizard to interpret the user’s utterance
and/or decide on the next system action, resulting
in unacceptable response delays (Fraser & Gil-
bert, 1991). Thus, it would be useful if the sys-
tem could start to speak as soon as the user has
finished speaking, based on the Wizard’s actions
so far.

1

1.2 Related work

Incremental speech generation has been studied
from different perspectives. From a psycholin-
guistic perspective, Levelt (1989) and others
have studied how speakers incrementally pro-
duce utterances while self-monitoring the output,
both overtly (listening to oneself speaking) and
covertly (mentally monitoring what is about to
be said). As deviations from the desired output is
detected, the speaker may initiate self-repairs. If
the item to be repaired has already been spoken,
an overt repair is needed (for example by using
an editing term, such as “sorry”). If not, the ut-
terance plan may be altered to accommodate the
repair, a so-called covert repair. Central to the
concept of incremental speech generation is that
the realization of overt speech can be initiated
before the speaker has a complete plan of what to
say. An option for a speaker who does not know
what to say (but wants to claim the floor) is to
use hesitation phenomena such as filled pauses
(“eh”) or cue phrases such as “let’s see”.

A dialogue system may not need to self-
monitor its output for the same reasons as hu-
mans do. For example, there is no risk of articu-
latory errors (with current speech synthesis tech-
nology). However, a dialogue system may utilize
the same mechanisms of self-repair and hesita-
tion phenomena to simultaneously plan and real-
ise the spoken output, as there is always a risk
for revision in the input to an incremental mod-
ule (as described in Section 2.1).

There is also another aspect of self-monitoring
that is important for dialogue systems. In a sys-
tem with modules operating asynchronously, the
dialogue manager cannot know whether the in-
tended output is actually realized, as the user
may interrupt the system. Also, the timing of the
synthesized speech is important, as the user may
give feedback in the middle of a system utter-
ance. Thus, an incremental, asynchronous system
somehow needs to self-monitor its own output.

From a syntactic perspective, Kempen &
Hoenkamp (1987) and Kilger & Finkler (1995)
have studied how to syntactically formulate sen-
tences incrementally under time constraints.
Dohsaka & Shimazu (1997) describes a system
architecture for incremental speech generation.
However, there is no account for revision of the
input (as discussed in Section 2.1) and there is no
evaluation with users. Skantze & Schlangen
(2009) describe an incremental system that partly
supports incremental output and that is evaluated

with users, but the domain is limited to number
dictation.

In this study, the focus is not on syntactic con-
struction of utterances, but on how to build prac-
tical incremental dialogue systems within limited
domains that can handle revisions and produce
convincing, flexible and varied speech output in
on-line interaction with users.

2 The Jindigo framework

The proposed model has been implemented in
Jindigo – a Java-based open source framework
for implementing and experimenting with incre-
mental dialogue systems (www.jindigo.net). We
will here briefly describe this framework and the
model of incremental dialogue processing that it
is based on.

2.1 Incremental units

Schlangen & Skantze (2009) describes a general,
abstract model of incremental dialogue process-
ing, which Jindigo is based on. In this model, a
system consists of a network of processing mod-
ules. Each module has a left buffer, a processor,
and a right buffer, where the normal mode of
processing is to receive input from the left
buffer, process it, and provide output in the right
buffer, from where it is forwarded to the next
module’s left buffer. An example is shown in
Figure 1. Modules exchange incremental units
(IUs), which are the smallest ‘chunks’ of infor-
mation that can trigger connected modules into
action (such as words, phrases, communicative
acts, etc). IUs are typically part of larger units:
individual words are parts of an utterance; con-
cepts are part of the representation of an utter-
ance meaning. This relation of being part of the
same larger unit is recorded through same-level
links. In the example below, IU2 has a same-level
link to IU1 of type PREDECESSOR, meaning that
they are linearly ordered. The information that
was used in creating a given IU is linked to it via
grounded-in links. In the example, IU3 is
grounded in IU1 and IU2, while IU4 is grounded
in IU3.

IU1 IU2

IU1 IU2

IU3 IU3
IU3

IU4
IU4

Module A

Module B
left buffer processor right buffer

left buffer processor right buffer
Figure 1: Two connected modules.

2

A challenge for incremental systems is to han-
dle revisions. For example, as the first part of the
word “forty” is recognised, the best hypothesis
might be “four”. As the speech recogniser re-
ceives more input, it might need to revise its pre-
vious output, which might cause a chain of revi-
sions in all subsequent modules. To cope with
this, modules have to be able to react to three
basic situations: that IUs are added to a buffer,
which triggers processing; that IUs that were er-
roneously hypothesized by an earlier module are
revoked, which may trigger a revision of a mod-
ule’s own output; and that modules signal that
they commit to an IU, that is, won’t revoke it
anymore.

Jindigo implements an efficient model for
communicating these updates. In this model, IUs
are associated with edges in a graph, as shown in
Table 1. The graph may be incrementally
amended without actually removing edges or
vertices, even if revision occurs. At each time-
step, a new update message is sent to the con-
suming module. The update message contains a
pair of pointers [C, A]: (C) the vertex from which
the currently committed hypothesis can be con-
structed, and (A) the vertex from which the cur-

rently best tentative hypothesis can be con-
structed. In Jindigo, all modules run as threads
within a single Java process, and therefore have
access to the same memory space.

2.2 A typical architecture

A typical Jindigo system architecture is shown in
Figure 2. The word buffer from the Recognizer
module is parsed by the Interpreter module
which tries to find an optimal sequence of top
phrases and their semantic representations. These
phrases are then interpreted in light of the current
dialogue context by the Contextualizer module
and are packaged as Communicative Acts (CAs).
As can be seen in Figure 2, the Contextualizer
also self-monitors Concepts from the system as
they are spoken by the Vocalizer, which makes it
possible to contextually interpret user responses
to system utterances. This also makes it possible
for the system to know whether an intended ut-
terance actually was produced, or if it was inter-
rupted. The current context is sent to the Action
Manager, which generates a SpeechPlan that is
sent to the Vocalizer. This is described in detail
in the next section.

Figure 2: A typical Jindigo system architecture.

String Right buffer Update
message

t1: one w1 one w2 [w1, w2]

t2: one five w1 one w2 five w3 [w1, w3]

t3: one w1 one w2 five w3 [w1, w2]

t4: one four five w1 one w2 five w3

five w5four w4

[w1, w5]

t5: [commit] w1 one w2 five w3

five w5four w4

[w5,w5]

Table 1: The right buffer of an ASR module, and up-
date messages at different time-steps.

Figure 3: Incremental Units at different levels of processing. Some grounded-in relations are shown with dotted
lines. W=Word, SS=SpeechSegment, SU=SpeechUnit, CA=Communicative Act.

Interpreter

VAD

ASR

Action Manager

Vocalizer

Contextualizer

SpeechPlan

Speech

Segment

SU SU SU SU SU SU

Self

Delay

Other

Delay

W W W W W W W W W

P

CA

SS

Concept

CA

Response

To
SS

C Phrase Concept

Utterance Utterance

Utterance

Segment
US US

User System

SS

User

Vocalizer

Speech

Speech
Interpreter

Word

ContextualizerActionManager

Utterance
Segment

ASR

SpeechPlan

Context

Phrase
Concept

3

3 Incremental speech generation

3.1 Incremental units of speech

In order for user and system utterances to be in-
terpreted and produced incrementally, they need
to be decomposed into smaller units of process-
ing (IUs). This decomposition is shown in Figure
3. Using a standard voice activity detector
(VAD) in the ASR, the user’s speech is chunked
into Utterance-units. The Utterance bounda-
ries determine when the ASR hypothesis is
committed. However, for the system to be able to
respond quickly, the end silence threshold of
these Utterances are typically too long. Therefore
smaller units of the type UtteranceSegment
(US) are detected, using a much shorter silence
threshold of about 50ms. Such short silence
thresholds allow the system to give very fast re-
sponses (such as backchannels). Information
about US boundaries is sent directly from the
ASR to the Vocalizer. As Figure 3 illustrates, the
grounded-in links can be followed to derive the
timing of IUs at different levels of processing.

The system output is also modelled using IUs
at different processing levels. The widest-
spanning IU on the output side is the
SpeechPlan. The rendering of a SpeechPlan
will result in a sequence of SpeechSegment’s,
where each SpeechSegment represents a con-
tinuous audio rendering of speech, either as a
synthesised string or a pre-recorded audio file.
For example, the plan may be to say “okay, a red
doll, here is a nice doll”, consisting of three seg-
ments. Now, there are two requirements that we
need to meet. First, the output should be varied:
the system should not give exactly the same re-
sponse every time to the same request. But, as
we will see, the output in an incremental system
must also be flexible, as speech plans are incre-
mentally produced and amended. In order to re-
lieve the Action Manager of the burden of vary-
ing the output and making time-critical adjust-
ments, we model the SpeechPlan as a directed
graph, where each edge is associated with a
SpeechSegment, as shown in Figure 4. Thus, the
Action Manager may asynchronously plan (a set
of possible) responses, while the Vocalizer se-
lects the rendering path in the graph and takes
care of time-critical synchronization. To control
the rendering, each SpeechSegment has the
properties optional, committing, selfDelay
and otherDelay, as described in the next sec-
tion. It must also be possible for an incremental
system to interrupt and make self-repairs in the
middle of a SpeechSegment. Therefore, each

SpeechSegment may also be decomposed into an
array of SpeechUnit’s, where each SpeechUnit
contains pointers to the audio rendering in the
SpeechSegment.

3.2 Producing and consuming SpeechPlans

The SpeechPlan does not need to be complete
before the system starts to speak. An example of
this is shown in Figure 4. As more words are
recognised by the ASR, the Action Manager may
add more SpeechSegment’s to the graph. Thus,
the system may start to say “it costs” before it
knows which object is being talked about.

w1 how w2 much w3 is w4 the w5 doll w6

eh

well

s1

you can have it for

it costs

let’s say s3 s640 crowns

Figure 4: The right buffer of an ASR (top) and the
SpeechPlan that is incrementally produced (bottom).
Vertex s1 is associated with w1, s3 with w3, etc. Op-
tional, non-committing SpeechSegment’s are marked
with dashed outline.

The SpeechPlan has a pointer called
finalVertex. When the Vocalizer reaches the
finalVertex, the SpeechPlan is completely
realised. If finalVertex is not set, it means that
the SpeechPlan is not yet completely con-
structed. The SpeechSegment property
optional tells whether the segment needs to be
realised or if it could be skipped if the
finalVertex is in sight. This makes it possible
to insert floor-keeping SpeechSegment’s (such
as “eh”) in the graph, which are only realised if
needed. The Vocalizer also keeps track of which
SpeechSegment’s it has realised before, so that it
can look ahead in the graph and realise a more
varied output. Each SpeechSegment may carry a
semantic representation of the segment (a
Concept). This is sent by the Vocalizer to the
Contextualizer as soon as the segment has been
realised.

The SpeechSegment properties selfDelay
and otherDelay regulate the timing of the out-
put (as illustrated in Figure 3). They specify the
number of milliseconds that should pass before
the Vocalizer starts to play the segment, depend-
ing on the previous speaker. By setting the
otherDelay of a segment, the Action Manager
may delay the response depending on how cer-
tain it is that it is appropriate to speak, for exam-
ple by considering pitch and semantic complete-
ness. (See Raux & Eskenazi (2008) for a study

4

on how such dynamic delays can be derived us-
ing machine learning.)

If the user starts to speak (i.e., a new
UtteranceSegment is initiated) as the system is
speaking, the Vocalizer pauses (at a SpeechUnit
boundary) and waits until it has received a new
response from the Action Manager. The Action
Manager may then choose to generate a new re-
sponse or simply ignore the last input, in which
case the Vocalizer continues from the point of
interruption. This may happen if, for example,
the UtteranceSegment was identified as a back-
channel, cough, or similar.

3.3 Self-repairs

As Figure 3 shows, a SpeechPlan may be
grounded in a user CA (i.e., it is a response to
this CA). If this CA is revoked, or if the
SpeechPlan is revised, the Vocalizer may initial-
ize a self-repair. The Vocalizer keeps a list of the
SpeechSegment’s it has realised so far. If the
SpeechPlan is revised when it has been partly
realised, the Vocalizer compares the history with
the new graph and chooses one of the different
repair strategies shown in Table 2. In the best
case, it may smoothly switch to the new plan
without the user noticing it (covert repair). In
case of a unit repair, the Vocalizer searches for a
zero-crossing point in the audio segment, close to
the boundary pointed out by the SpeechUnit.

covert
segment
repair

you are right it is blue

you are right they are blue
overt
segment
repair

you are right it is blue

you are wrong it is redsorry
covert
unit
repair

you are right it is blue

you are wrong it is red
overt
unit
repair

you are right it is blue

you are wrong it is red

sorry

Table 2: Different types of self-repairs. The shaded
boxes show which SpeechUnit’s have been realised,
or are about to be realised, at the point of revision.

The SpeechSegment property committing
tells whether it needs to be repaired if the
SpeechPlan is revised. For example, a filled
pause such as “eh” is not committing (there is no

need to insert an editing term after it), while a
request or an assertion usually is. If (parts of) a
committing segment has already been realised
and it cannot be part of the new plan, an overt
repaired is made with the help of an editing term
(e.g., “sorry”). When comparing the history with
the new graph, the Vocalizer searches the graph
and tries to find a path so that it may avoid mak-
ing an overt repair. For example if the graph in
Figure 4 is replaced with a corresponding one
that ends with “60 crowns”, and it has so far
partly realised “it costs”, it may choose the cor-
responding path in the new SpeechPlan, making
a covert repair.

4 A Wizard-of-Oz experiment

A Wizard-of-Oz experiment was conducted to
test the usefulness of the model outlined above.
All modules in the system were fully functional,
except for the ASR, since not enough data had
been collected to build language models. Thus,
instead of using ASR, the users’ speech was
transcribed by a Wizard. As discussed in section
1.1, a common problem is the time it takes for
the Wizard to transcribe incoming utterances,
and thus for the system to respond. Therefore,
this is an interesting test-case for our model. In
order to let the system respond as soon as the
user finished speaking, even if the Wizard hasn’t
completed the transcription yet, a VAD is used.
The setting is shown in Figure 5 (compare with
Figure 2). The Wizard may start to type as soon
as the user starts to speak and may alter whatever
he has typed until the return key is pressed and
the hypothesis is committed. The word buffer is
updated in exactly the same manner as if it had
been the output of an ASR.

User VAD

Vocalizer

Speech

Speech
Interpreter

Word

ContextualizerActionManager

Utterance
Segment

Wizard

Figure 5: The system architecture used in the Wizard-
of-Oz experiment.

For comparison, we also configured a non-
incremental version of the same system, where
nothing was sent from the Wizard until he com-

5

mitted by pressing the return key. Since we did
not have mature models for the Interpreter either,
the Wizard was allowed to adapt the transcrip-
tion of the utterances to match the models, while
preserving the semantic content.

4.1 The DEAL domain

The system that was used in the experiment was
a spoken dialogue system for second language
learners of Swedish under development at KTH,
called DEAL (Hjalmarsson et al., 2007). The
scene of DEAL is set at a flea market where a
talking agent is the owner of a shop selling used
goods. The student is given a mission to buy
items at the flea market getting the best possible
price from the shop-keeper. The shop-keeper can
talk about the properties of goods for sale and
negotiate about the price. The price can be re-
duced if the user points out a flaw of an object,
argues that something is too expensive, or offers
lower bids. However, if the user is too persistent
haggling, the agent gets frustrated and closes the
shop. Then the user has failed to complete the
task.

For the experiment, DEAL was re-
implemented using the Jindigo framework. Fig-
ure 6 shows the GUI that was shown to the user.

Figure 6: The user interface in DEAL. The object on
the table is the one currently in focus. Example ob-
jects are shown on the shelf. Current game score,
money and bought objects are shown on the right.

4.2 Speech segments in DEAL

In a previous data collection of human-human
interaction in the DEAL domain (Hjalmarsson,
2008) it was noted that about 40% of the speaker
turns were initiated with standardized lexical ex-
pressions (cue phrases) or filled pauses. Such
speech segments commit very little semantically
to the rest of the utterance and are therefore very
useful as initiations of utterances, since such

speech segments can be produced immediately
after the user has stopped speaking, allowing the
Wizard to exploit the additional time to tran-
scribe the rest of the utterance.

The DEAL corpus was used to create utter-
ance initial speech segments for the experiment.
The motivation to use speech segments derived
from human recordings was to make the system
sound convincing in terms of both lexical choice
and intonation. In particular, we wanted a reper-
toire of different types of filled pauses and feed-
back expression such as “eh” and “mm” in order
to avoid a system that sounds monotone and re-
petitive. First, a number of feedback expression
such as “ja”, “a”, “mm” (Eng: “yes”), filled
pauses such as “eh”, “ehm” and expressions used
to initiate different domain specific speech acts
(for example “it costs” and “let me see”) were
extracted. The segments were re-synthesized
using Expros, a tool for experimentation with
prosody in diphone voices (Gustafson & Edlund,
2008). Based on manual transcriptions and sound
files, Expros automatically extracts pitch, dura-
tion and intensity from the human voice and cre-
ates a synthetic version using these parameters.
In the speech plan, these canned segments were
mixed with generated text segments (for example
references to objects, prices, etc) that were syn-
thesized and generated on-line with the same
diphone voice.

An example interaction with the incremental
version of the system is shown in Table 3. S.11
exemplifies a self-correction, where the system
prepares to present another bid, but then realizes
that the user’s bid is too low to even consider. A
video (with subtitles) showing an interaction
with one of the users can be seen at
http://www.youtube.com/watch?v=cQQmgItIMvs.

S.1 [welcome] [how may I help you]
U.2 I want to buy a doll
S.3 [eh] [here is] [a doll]
U.4 how much is it?
S.5 [eh] [it costs] [120 crowns]
U.6 that is too expensive

how much is the teddy bear?
S.7 [well] [you can have it for] [let’s see]

[40 crowns]
U.8 I can give you 30 crowns
S.9 [you could have it for] [37 crowns]
U.10 I can give you 10 crowns
S.11 [let’s say] [or, I mean] [that is way too

little]
Table 3: An example DEAL dialogue (translated from
Swedish). Speech segments are marked in brackets.

6

4.3 Experimental setup

In order to compare the incremental and non-
incremental versions of the system, we con-
ducted an experiment with 10 participants, 4
male and 6 female. The participants were given a
mission: to buy three items (with certain charac-
teristics) in DEAL at the best possible price from
the shop-keeper. The participants were further
instructed to evaluate two different versions of
the system, System A and System B. However,
they were not informed how the versions dif-
fered. The participants were lead to believe that
they were interacting with a fully working dia-
logue system and were not aware of the Wizard-
of-Oz set up. Each participant interacted with the
system four times, first two times with each ver-
sion of the system, after which a questionnaire
was completed. Then they interacted with the
two versions again, after which they filled out a
second questionnaire with the same questions.
The order of the versions was balanced between
subjects.

The mid-experiment questionnaire was used to
collect the participants’ first opinions of the two
versions and to make them aware of what type of
characteristics they should consider when inter-
acting with the system the second time. When
filling out the second questionnaire, the partici-
pants were asked to base their ratings on their
overall experience with the two system versions.
Thus, the analysis of the results is based on the
second questionnaire. In the questionnaires, they
were requested to rate which one of the two ver-
sions was most prominent according to 8 differ-
ent dimensions: which version they preferred;
which was more human-like, polite, efficient, and
intelligent; which gave a faster response and bet-
ter feedback; and with which version it was eas-
ier to know when to speak. All ratings were done
on a continuous horizontal line with System A on
the left end and System B on the right end. The
centre of the line was labelled with “no differ-
ence”.

The participants were recorded during their in-
teraction with the system, and all messages in the
system were logged.

4.4 Results

Figure 7 shows the difference in response time
between the two versions. As expected, the in-
cremental version started to speak more quickly
(M=0.58s, SD=1.20) than the non-incremental
version (M=2.84s, SD=1.17), while producing
longer utterances. It was harder to anticipate

whether it would take more or less time for the
incremental version to finish utterances. Both
versions received the final input at the same
time. On the one hand, the incremental version
initiates utterances with speech segments that
contain little or no semantic information. Thus, if
the system is in the middle of such a segment
when receiving the complete input from the
Wizard, the system may need to complete this
segment before producing the rest of the utter-
ance. Moreover, if an utterance is initiated and
the Wizard alters the input, the incremental ver-
sion needs to make a repair which takes addi-
tional time. On the other hand, it may also start
to produce speech segments that are semantically
relevant, based on the incremental input, which
allows it to finish the utterance more quickly. As
the figure shows, it turns out that the average
response completion time for the incremental
version (M=5.02s, SD=1.54) is about 600ms
faster than the average for non-incremental ver-
sion (M=5.66s, SD=1.50), (t(704)=5.56,
p<0.001).

0,00

1,00

2,00

3,00

4,00

5,00

6,00

start end length

S
e
c
o
n
d
s

inc

non

Figure 7: The first two column pairs show the average
time from the end of the user’s utterance to the start
of the system’s response, and from the end of the
user’s utterance to the end of the system’s response.
The third column pair shows the average total system
utterance length (end minus start).

In general, subjects reported that the system
worked very well. After the first interaction with
the two versions, the participants found it hard to
point out the difference, as they were focused on
solving the task. The marks on the horizontal
continuous lines on the questionnaire were
measured with a ruler based on their distance
from the midpoint (labelled with “no difference”)
and normalized to a scale from -1 to 1, each ex-
treme representing one system version. A Wil-
coxon Signed Ranks Test was carried out, using
these rankings as differences. The results are
shown in Table 4. As the table shows, the two
versions differed significantly in three dimen-
sions, all in favour of the incremental version.

7

Hence, the incremental version was rated as
more polite, more efficient, and better at indicat-
ing when to speak.

 diff z-value p-value
preferred 0.23 -1.24 0.214
human-like 0.15 -0.76 0.445
polite 0.40 -2.19 0.028*
efficient 0.29 -2.08 0.038*
intelligent 0.11 -0.70 0.484
faster response 0.26 -1.66 0.097
feedback 0.08 -0.84 0.400
when to speak 0.35 -2.38 0.017*

Table 4: The results from the second questionnaire.
All differences are positive, meaning that they are in
favour of the incremental version.

A well known phenomena in dialogue is that
of entrainment (or adaptation or alignment), that
is, speakers (in both human-human and human-
computer dialogue) tend to adapt the conversa-
tional behaviour to their interlocutor (e.g., Bell,
2003). In order to examine whether the different
versions affected the user’s behaviour, we ana-
lyzed both the user utterance length and user re-
sponse time, but found no significant differences
between the interactions with the two versions.

5 Conclusions & Future work

This paper has presented a first step towards in-
cremental speech generation in dialogue systems.
The results are promising: when there are delays
in the processing of the dialogue, it is possible to
incrementally produce utterances that make the
interaction more efficient and pleasant for the
user.

As this is a first step, there are several ways to
improve the model. First, the edges in the
SpeechPlan could have probabilities, to guide
the path planning. Second, when the user has
finished speaking, it should (in some cases) be
possible to anticipate how long it will take until
the processing is completed and thereby choose a
more optimal path (by taking the length of the
SpeechSegment’s into consideration). Third, a
lot of work could be done on the dynamic gen-
eration of SpeechSegment’s, considering syntac-
tic and pragmatic constraints, although this
would require a speech synthesizer that was bet-
ter at convincingly produce conversational
speech.

The experiment also shows that it is possible
to achieve fast turn-taking and convincing re-
sponses in a Wizard-of-Oz setting. We think that
this opens up new possibilities for the Wizard-of-

Oz paradigm, and thereby for practical develop-
ment of dialogue systems in general.

6 Acknowledgements

This research was funded by the Swedish research
council project GENDIAL (VR #2007-6431).

References

Bell, L. (2003). Linguistic adaptations in spoken hu-
man-computer dialogues. Empirical studies of user
behavior. Doctoral dissertation, Department of
Speech, Music and Hearing, KTH, Stockholm.

Dohsaka, K., & Shimazu, A. (1997). System architec-
ture for spoken utterance production in collaborative
dialogue. In Working Notes of IJCAI 1997 Work-
shop on Collaboration, Cooperation and Conflict in
Dialogue Systems.

Fraser, N. M., & Gilbert, G. N. (1991). Simulating
speech systems. Computer Speech and Language,
5(1), 81-99.

Gustafson, J., & Edlund, J. (2008). expros: a toolkit
for exploratory experimentation with prosody in
customized diphone voices. In Proceedings of Per-
ception and Interactive Technologies for Speech-
Based Systems (PIT 2008) (pp. 293-296). Ber-
lin/Heidelberg: Springer.

Hjalmarsson, A., Wik, P., & Brusk, J. (2007). Dealing
with DEAL: a dialogue system for conversation
training. In Proceedings of SigDial (pp. 132-135).
Antwerp, Belgium.

Hjalmarsson, A. (2008). Speaking without knowing
what to say... or when to end. In Proceedings of
SIGDial 2008. Columbus, Ohio, USA.

Kempen, G., & Hoenkamp, E. (1987). An incremental
procedural grammar for sentence formulation. Cog-
nitive Science, 11(2), 201-258.

Kilger, A., & Finkler, W. (1995). Incremental Gen-
eration for Real-Time Applications. Technical Re-
port RR-95-11, German Research Center for Artifi-
cial Intelligence.

Levelt, W. J. M. (1989). Speaking: From Intention to
Articulation. Cambridge, Mass., USA: MIT Press.

Raux, A., & Eskenazi, M. (2008). Optimizing end-
pointing thresholds using dialogue features in a
spoken dialogue system. In Proceedings of SIGdial
2008. Columbus, OH, USA.

Schlangen, D., & Skantze, G. (2009). A general, ab-
stract model of incremental dialogue processing. In
Proceedings of EACL-09. Athens, Greece.

Skantze, G., & Schlangen, D. (2009). Incremental
dialogue processing in a micro-domain. In Proceed-
ings of EACL-09. Athens, Greece.

8

