
Grouping axioms for more coherent ontology descriptions

Sandra Williams
The Open University

Milton Keynes, United Kingdom
s.h.williams@open.ac.uk

Richard Power
The Open University

Milton Keynes, United Kingdom
r.power@open.ac.uk

Abstract

Ontologies and datasets for the Semantic
Web are encoded in OWL formalisms that
are not easily comprehended by people.
To make ontologies accessible to human
domain experts, several research groups
have developed ontology verbalisers using
Natural Language Generation. In practice
ontologies are usually composed of simple
axioms, so that realising them separately
is relatively easy; there remains however
the problem of producing texts that are co-
herent and efficient. We describe in this
paper some methods for producing sen-
tences that aggregate over sets of axioms
that share the same logical structure. Be-
cause these methods are based on logical
structure rather than domain-specific con-
cepts or language-specific syntax, they are
generic both as regards domain and lan-
guage.

1 Introduction

When the Semantic Web becomes established,
people will want to build their own knowledge
bases (i.e., ontologies, or TBox axioms, and data,
or ABox axioms1). Building these requires a high
level of expertise and is time-consuming, even
with the help of graphical interface tools such as
Protégé (Knublauch et al., 2004). Fortunately, nat-
ural language engineers have provided a solution
to at least part of the problem: verbalisers, e.g.,
the OWL ACE verbaliser (Kaljurand and Fuchs,
2007).

Ontology verbalisers are NLG systems that gen-
erate controlled natural language from Semantic

1Description Logic (DL) underlies the Web Ontology
Language OWL. DL distinguishes statements about classes
(TBox) from those about individuals (ABox). OWL cov-
ers both kinds of statements, which in OWL terminology are
called ‘axioms’.

Web languages, see Smart (2008). Typically they
generate one sentence per axiom: for example,
from the axiom2 Cat v Animal the OWL ACE
verbaliser (Kaljurand and Fuchs, 2007) generates
‘Every cat is an animal’. The result is not a co-
herent text, however, but a disorganised list, often
including inefficient repetitions such as:

Every cat is an animal.
Every dog is an animal.
Every horse is an animal.
Every rabbit is an animal.

An obvious first step towards improved efficiency
and coherence would be to replace such lists with
a single aggregated sentence:

The following are kinds of animals: cats, dogs,
horses and rabbits.

In this paper, we show how all axiom patterns
in EL++, a DL commonly used in the Semantic
Web, can be aggregated without further domain
knowledge, and describe a prototype system that
performs such aggregations. Our method aggre-
gates axioms while they are still in logical form,
i.e., as part of sentence planning but before con-
verting to a linguistic representation and realising
as English sentences. This approach is somewhat
different from that proposed by other researchers
who convert ontology axioms to linguistic struc-
tures before aggregating (Hielkema, 2009; Galanis
et al., 2009; Dongilli, 2008). We present results
from testing our algorithm on over fifty ontologies
from the Tones repository3.

2 Analysis of axiom groupings

In this section we analyse which kinds of axioms
might be grouped together. Power (2010) anal-

2For brevity we use logic notation rather than e.g., OWL
Functional Syntax: subClassOf(class(ns:cat)
class(ns:animal)) where ns is any valid namespace.
The operatorv denotes the subclass relation, u denotes class
intersection, and ∃P.C the class of individuals bearing the
relation P to one or more members of class C.

3http://owl.cs.manchester.ac.uk/

No. Logic OWL %
1 A v B subClassOf(A B) 51
2 A v ∃P.B subClassOf(A

someValuesFrom(P B)) 33
3 [a, b] ∈ P propertyAssertion(P a b) 8
4 a ∈ A classAssertion(A a) 4

Table 1: The four most common axiom patterns.

ysed axiom patterns present in the same fifty on-
tologies. In spite of the richness of OWL, the sur-
prising result was that only four relatively simple
patterns dominated, accounting for 96% of all pat-
terns found in more than 35,000 axioms. Overall
there were few unique patterns, typically only 10
to 20, and up to 34 in an unusually complex ontol-
ogy. Table 1 lists the common patterns in logic no-
tation and OWL Functional Syntax, and also gives
the frequencies across the fifty knowledge bases.
Examples of English paraphrases for them are:

1. Every Siamese is a cat.
2. Every cat has as body part a tail.
3. Mary owns Kitty.
4. Kitty is a Siamese.

When two or more axioms conform to a pattern:
A v B
A v C
B v C
C v D

there are two techniques with which to aggregate
them: merging and chaining. If the right-hand
sides are identical we can merge the left-hand
sides, and vice versa:4

[A, B] v C
A v [B, C]

Alternatively, where the right-hand side of an ax-
iom is identical to the left-hand side of another ax-
iom, we can ‘chain’ them:

A v B v C v D

Merging compresses the information into a more
efficient text, as shown in the introduction, while
chaining orders the information to facilitate infer-
ence — for example, ‘Every A is a B and every
B is a C’ makes it easier for readers to draw the
inference that every A is a C.

4We regard expressions like A v [B, C] and A v B v C
as shorthand forms allowing us to compress several axioms
into one formula. For merges one could also refactor the set
of axioms into a new axiom: thus for example A v [B, C]
could be expressed as A v (B u C), or [A, B] v C as
(A t B) v C. This formulation would have the advantage
of staying within the normal notation and semantics of DL;
however, it is applicable only to merges, not to chains.

1. 2. 3. 4.
1. L,R,C ×,R?,× ×,×,× L?,×,C

2. L,R,× ×,×,× ×,×,C
3. L,R,× ×,R?,×

4. L,R,×

Table 2: Aggregating common axioms: 1. A v B,
2. A v ∃P.B, 3. [a, b] ∈ P , 4. a ∈ A

Table 2 summarises our conclusions on whether
each pair of the four common patterns can be
merged or chained. Each cell contains three en-
tries, indicating the possibility of left-hand-side
merge (L), right-hand-side merge (R), and chain-
ing (C). As can be seen, some merges or chains
are possible across different patterns, but the safest
aggregations are those grouping axioms with the
same pattern (down the diagonal), and it is these
on which we focus here.

3 Merging similar patterns

Function Merge Patterns
f1(A) f1([A1, A2, A3, . . .])

f2(A, B) f2([A1, A2, A3, . . .], B)
f2(A, [B1, B2, B3, . . .])

f3(A, B, C) f3([A1, A2, A3, . . .], B, C)
f3(A, [B1, B2, B3, . . .], C)
f3(A, B, [C1, C2, C3, . . .])

Table 3: Generic merging rules.

If we represent ABox and TBox axioms as
Prolog terms (or equivalently in OWL Func-
tional Syntax), they take the form of functions
with a number of arguments — for example
subClassOf(A,B), where subClassOf is the func-
tor, A is the first argument and B is the second argu-
ment. We can then formulate generic aggregation
rules for merging one-, two- and three-argument
axioms, as shown in table 3.

In general, we combine axioms for which the
functor is the same and only one argument differs.
We do not aggregate axiom functions with more
than three arguments. The merged constituents
must be different expressions with the same log-
ical form.

4 Implemention

This section describes a Prolog application which
performs a simple verbalisation including aggre-
gation. It combines a generic grammar for real-
ising logical forms with a domain-specific lexicon

derived from identifiers and labels within the input
ontology.

Input to the application is an OWL/XML file.5

Axioms that conform to EL++ DL are selected
and converted into Prolog format. A draft lex-
icon is then built automatically from the iden-
tifier names and labels, on the assumption that
classes are lexicalised by noun groups, properties
by verb groups with valency two, and individuals
by proper nouns.

Our aggregation rules are applied to axioms
with the same logical form. The first step picks
out all the logical patterns present in the input
ontology by abstracting from atomic terms. The
next step searches for all axioms matching each
of the patterns present. Then within each pattern-
set, the algorithm searches for axioms that differ
by only one argument, grouping axioms together
in the ways suggested in table 3. It exhaustively
lists every possible grouping and builds a new, ag-
gregated axiom placing the values for the merged
argument in a list, e.g., consider the axioms:
subClassOf(class(cat), class(feline)).
subClassOf(class(cat), class(mammal)).
subClassOf(class(dog), class(mammal)).
subClassOf(class(mouse), class(mammal)).

Identical first arguments =⇒
subClassOf(class(cat),

[class(feline),
class(mammal)]).

‘Every cat is a feline and a mammal.’

Identical second arguments =⇒
subClassOf([class(cat), class(dog),
class(mouse)], class(mammal)).
‘The following are kinds of mammal:

cats, dogs and mice.’

For all axioms with an identical first argu-
ment, class(cat), the algorithm places the
second arguments in a list, [class(feline),

class(mammal)], and builds a new axiom with the
first argument and the merged second argument.
From this, our realiser generates the sentence ‘Ev-
ery cat is a feline and a mammal.’ A similar pro-
cess is performed on first arguments when the sec-
ond arguments are identical.

To construct the grammar, we first formulated
rules for realising single axioms, and then added
rules for the aggregated patterns, incorporating
aggregation cues such as ‘both’ and ‘the follow-
ing:’ (Dalianis and Hovy, 1996). For the word-
ing of single axioms we relied mainly on proposals

5We convert OWL to OWL/XML with
the Manchester OWL Syntax Converter
http://owl.cs.manchester.ac.uk/converter/

from the OWL Controlled Natural Language task
force (Schwitter et al., 2008), so obtaining rea-
sonably natural sentences for common axiom pat-
terns, even though some less common axioms such
as those describing attributes of properties (e.g.,
domain, range, functionality, reflexivity, transitiv-
ity) are hard to express without falling back on
technical concepts from the logic of relations; for
these we have (for now) allowed short technical
formulations (e.g., ‘The property “has as part”
is transitive’). With these limitations, the gram-
mar currently realises any single axiom conform-
ing to EL++, or any aggregation of EL++ axioms
through the merge rules described above. Table 4
lists example aggregated axiom patterns and En-
glish realisations generated with our grammar.

5 Testing the ‘merging’ algorithm

Unit Original Aggregated Reduction
Sentences 35,542 11,948 66%
Words 320,603 264,461 18%

Table 5: Reduction achieved by aggregating

We have tested our generic merging rules on ax-
ioms conforming to EL++ in a sample of around
50 ontologies. Table 5 shows the reduction in the
number of generated sentence after aggregation.
Remember that previously, the system generated
one sentence for every axiom (35,542 sentences),
but with aggregation this is reduced to 11,948 sen-
tences, an overall reduction of 66%. However, ag-
gregation increases sentence length so the saving
in words is only 18%.

The effect of merging is to replace a large num-
ber of short sentences with a smaller number of
longer ones. Sometimes the aggregated sentences
were very long indeed, e.g., when a travel ontol-
ogy cited 800 instances of the class island —
perhaps such cases would be expressed better by
a table than by prose6.

The algorithm computes all possible merges, so
we get, for instance, Fred described as a person
in both ‘The following are people: Fred, . . . ’ and
‘Fred is all of the following: a person, . . . ’. This
means that the greater efficiency achieved through
aggregation may be counterbalanced by the extra
text required when the same axiom participates in
several merges — for a few of our ontologies, in

6In a summary one might instead simply give a count and
an example: ‘There are 800 islands, e.g., The Isle of Skye’.

Aggregated Axiom Pattern Example of Generated Text
subClassOf([C1,C2,. . .], C3). The following are kinds of vehicles: a bicycle, a car, a truck and a van.
subClassOf(C1, [C2,C3,. . .]). Every old lady is all of the following: a cat owner, an elderly and a woman.
subClassOf([C1,C2,. . .], The following are kinds of something that has as topping a tomato: a fungi,

objectSomeValuesFrom(P1, C3)). a fiorella and a margherita.
subClassOf(C1, [objectSomeValuesFrom(P1, C2) Every fiorella is something that has as topping a mozzarella and is

objectSomeValuesFrom(P2, C3)]). something that has as topping an olive.
classAssertion(C1, [I1, I2, . . .]). The following are people: Fred, Joe, Kevin and Walt.
classAssertion([C1,C2,. . .], I). Fred is all of the following: an animal, a cat owner and a person.
objectPropertyAssertion(P1, [I1, I2, I3], I4). The following are pet of Walt: Dewey, Huey and Louie.
objectPropertyAssertion(P1, I4, [I1, I2, I3]). Walt has as pet Dewey, Huey and Louie.
disjointClasses([C1,C2,. . .], C3). None of the following are mad cows: an adult, . . . a lorry or a lorry driver.
disjointClasses(C1, [C2,C3,. . .]). No grownup is any of the following: a kid, a mad cow, a plant, or a tree.
dataPropertyDomain([P1, P2, . . .], C1). If any of the following relationships hold between X and Y then X

must be a contact: “has as city”, “has as street” and “has as zip code”.
dataPropertyRange([P1, P2, . . .], C1). If any of the following relationships hold between X and Y then Y

must be a string: “has as city”, “has as e mail” and “has as street”.
differentIndividuals(I1, [I2, I3, . . .]). The One Star Rating is a different individual from any of the following:
differentIndividuals([I1, I2, . . .], I3). the Three Star Rating or the Two Star Rating.
equivalentDataProperties(P1, [P2,P3,. . .]). The following properties are equivalent to the property “has as zip code”:
equivalentDataProperties([P1,P2,. . .], P3). “has as post code”, “has as zip” and “has as postcode”.
equivalentObjectProperties([P1,P2,. . .], P3). The following properties are equivalent to the property “has as father”:
negativeobjectPropertyAssertion(P1, [I1, I2, . . .], I3). None of the following are pet of Walt: Fluffy, Mog or Rex.
negativeobjectPropertyAssertion(P1, I1, [I2, I3, . . .]). It is not true that Walt has as pet Fluffy or Rex.

Table 4: Example realisations of common aggregated EL++ axiom patterns.

fact, the word count for the aggregated version was
greater. This is an interesting problem that we
have not seen treated elsewhere. Merely pursu-
ing brevity, one might argue that an axiom already
included in a merge should be removed from any
other merges in which it participates; on the other
hand, the arbitrary exclusion of an axiom from a
list might be regarded as misleading. For now we
have allowed repetition, leaving the problem to fu-
ture work.

6 Related work

Reape and Mellish’s (1999) survey of aggrega-
tion in NLG proposed a continuum of definitions
ranging from narrow to wide. Our technique fits
into the narrow definition, i.e., it is language-
independent, operating on non-linguistic concep-
tual representations with the aim of minimising re-
dundancy and repetition. It implements the subject
and predicate grouping rules and aggregation cues
suggested by Dalianis and Hovy (1996).

Recent NLG systems that aggregate data from
ontologies (Hielkema, 2009; Galanis and An-
droutsopoulos, 2007; Dongilli, 2008) do not per-
form aggregation directly on axioms, but only af-
ter converting them to linguistic representations.
Moreover, their systems generate only from ABox
axioms in restricted domains while ours generates
English for both ABox and TBox in any domain.

The approach most similar to ours is that
of Bontcheva and Wilks (2004), who aggre-
gate a subset of RDF triples after domain-
dependent discourse structuring — a task equiv-

alent to merging axioms that conform to the
objectPropertyAssertion pattern in table 4.

7 Conclusion

We have demonstrated that for the EL++ DL that
underlies many Semantic Web ontologies we can
define generic aggregation rules based on logical
structure, each linked to a syntactic rule for ex-
pressing the aggregated axioms in English. The
work described here is a first step in tackling a
potentially complex area, and relies at present on
several intuitive assumptions that need to be con-
firmed empirically. First, from an examination
of all combinations of the four commonest axiom
patterns, we concluded that axioms sharing the
same pattern could be combined more effectively
than axioms with different patterns, and there-
fore focussed first on same-pattern merges with
variations in only one constituent. Secondly, af-
ter systematically enumerating all such merges for
EL++, we have implemented a grammar that ex-
presses each aggregated pattern in English, relying
on an intuitive choice of the best form of words: at
a later stage we need to confirm that the resulting
sentences are clearly understood, and to consider
whether different formulations might be better.

Acknowledgments

This work is supported by the UK Engineering
and Physical Sciences Research Council (EPSRC)
grant EP/G033579/1 (SWAT: Semantic Web Au-
thoring Tool). We thank our colleagues and the
anonymous reviewers.

References
K. Bontcheva and Y. Wilks. 2004. Automatic re-

port generation from ontologies: the MIAKT ap-
proach. In Nineth International Conference on Ap-
plications of Natural Language to Information Sys-
tems (NLDB’2004), pages 214–225, Manchester,
UK.

Hercules Dalianis and Eduard H. Hovy. 1996. Aggre-
gation in natural language generation. In EWNLG
’93: Selected papers from the Fourth European
Workshop on Trends in Natural Language Gener-
ation, An Artificial Intelligence Perspective, pages
88–105, London, UK. Springer-Verlag.

Paolo Dongilli. 2008. Natural language rendering of
a conjunctive query. Technical Report Knowledge
Representation Meets Databases (KRDB) Research
Centre Technical Report: KRDB08-3, Free Univer-
sity of Bozen-Bolzano.

Dimitrios Galanis and Ion Androutsopoulos. 2007.
Generating multilingual descriptions from linguisti-
cally annotated OWL ontologies: the NaturalOWL
system. In Proceedings of the 11th European Work-
shop on Natural Language Generation, pages 143–
146, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Dimitrios Galanis, George Karakatsiotis, Gerasimos
Lampouras, and Ion Androutsopoulos. 2009. An
open-source natural language generator for OWL
ontologies and its use in protégé, and second life.
In Proceedings of the 12th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Demonstrations Session, pages 17–20,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Feikje Hielkema. 2009. Using Natural Language Gen-
eration to Provide Access to Semantic Metadata.
Ph.D. thesis, University of Aberdeen.

Kaarel Kaljurand and Norbert Fuchs. 2007. Ver-
balizing OWL in Attempto Controlled English. In
Proceedings of the Third International Workshop on
OWL: Experiences and Directions OWLED 2007.

Holger Knublauch, Ray W. Fergerson, Natalya Frid-
man Noy, and Mark A. Musen. 2004. The Protégé
OWL Plugin: An Open Development Environment
for Semantic Web Applications. In International Se-
mantic Web Conference, pages 229–243.

Richard Power. 2010. Complexity assumptions in on-
tology verbalisation. In 48th Annual Meeting of the
Association for Computational Linguistics.

Michael Reape and Chris Mellish. 1999. Just what is
aggregation anyway? In Proceedings of the 7th Eu-
ropean Workshop on Natural Language Generation,
pages 20–29, Toulouse, France.

Rolf Schwitter, Kaarel Kaljur, Anne Cregan, Cather-
ine Dolbear, and Glen Hart. 2008. A comparison

of three controlled natural languages for owl 1.1.
In 4th OWL Experiences and Directions Workshop
(OWLED 2008).

Paul Smart. 2008. Controlled Natural Languages
and the Semantic Web. Technical Report Technical
Report ITA/P12/SemWebCNL, School of Electron-
ics and Computer Science, University of Southamp-
ton),.

