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Abstract

In this paper we describe a cross-linguistic
experiment in attribute selection for refer-
ring expression generation. We used a
graph-based attribute selection algorithm
that was trained and cross-evaluated on
English and Dutch data. The results indi-
cate that attribute selection can be done in
a largely language independent way.

1 Introduction

A key task in natural language generation is refer-
ring expression generation (REG). Most work on
REG is aimed at producing distinguishing descrip-
tions: descriptions that uniquely characterize a tar-
get object in a visual scene (e.g., “the red sofa”),
and do not apply to any of the other objects in the
scene (the distractors). The first step in generating
such descriptions is attribute selection: choosing a
number of attributes that uniquely characterize the
target object. In the next step, realization, the se-
lected attributes are expressed in natural language.
Here we focus on the attribute selection step. We
investigate to which extent attribute selection can
be done in a language independent way; that is,
we aim to find out if attribute selection algorithms
trained on data from one language can be success-
fully applied to another language. The languages
we investigate are English and Dutch.

Many REG algorithms require training data, be-
fore they can successfully be applied to generate
references in a particular domain. The Incremen-
tal Algorithm (Dale and Reiter, 1995), for exam-
ple, assumes that certain attributes are more pre-
ferred than others, and it is assumed that determin-
ing the preference order of attributes is an empir-
ical matter that needs to be settled for each new
domain. The graph-based algorithm (Krahmer et
al., 2003), to give a second example, similarly
assumes that certain attributes are preferred (are
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“cheaper”) than others, and that data are required
to compute the attribute-cost functions.
Traditional text corpora have been argued to be
of restricted value for REG, since these typically
are not “semantically transparent” (van Deemter
et al., 2006). Rather what seems to be needed is
data collected from human participants, who pro-
duce referring expressions for specific targets in
settings where all properties of the target and its
distractors are known. Needless to say, collecting
and annotating such data takes a lot of time and ef-
fort. So what to do if one wants to develop a REG
algorithm for a new language? Would this require
a new data collection, or could existing data col-
lected for a different language be used? Clearly,
linguistic realization is language dependent, but to
what extent is attribute selection language depen-
dent? This is the question addressed in this paper.
Below we describe the English and Dutch cor-
pora used in our experiments (Section 2), the
graph-based algorithm we used for attribute se-
lection (Section 3), and the corpus-based attribute
costs and orders used by the algorithm (Section 4).
We present the results of our cross-linguistic at-
tribute selection experiments (Section 5) and end
with a discussion and conclusions (Section 6).

2 Corpora

2.1 English: the TUNA Corpus

For English data, we used the TUNA corpus of
object descriptions (Gatt et al., 2007). This cor-
pus was created by presenting the participants in
an on-line experiment with a visual scene consist-
ing of seven objects and asking them to describe
one of the objects, the target, in such a way that it
could be uniquely identified. There were two ex-
perimental conditions: in the +LOC condition, the
participants were free to describe the target object
using any of its properties, including its location
on the screen, whereas in the -LOC condition they



were discouraged (but not prevented) from men-
tioning object locations. The resulting object de-
scriptions were annotated using XML and com-
bined with an XML representation of the visual
scene, listing all objects and their properties in
terms of attribute-value pairs. The TUNA corpus
is split into two domains: one with descriptions of
furniture and one with descriptions of people.

The TUNA corpus was used for the comparative
evaluation of REG systems in the TUNA Chal-
lenges (2007-2009). For our current experiments,
we used the TUNA 2008 Challenge training and
development sets (Gatt et al., 2008) to train and
evaluate the graph-based algorithm on.

2.2 Dutch: the D-TUNA Corpus

For Dutch, we used the D(utch)-TUNA corpus of
object descriptions (Koolen and Krahmer, 2010).
The collection of this corpus was inspired by the
TUNA experiment described above, and was done
using the same visual scenes. There were three
conditions: text, speech and face-to-face. The
text condition was a replication (in Dutch) of the
TUNA experiment: participants typed identify-
ing descriptions of target referents, distinguishing
them from distractor objects in the scene. In the
other two conditions participants produced spo-
ken descriptions for an addressee, who was either
visible to the speaker (face-to-face condition) or
not (speech condition). The resulting descriptions
were annotated semantically using the XML anno-
tation scheme of the English TUNA corpus.

The procedure in the D-TUNA experiment dif-
fered from that used in the original TUNA exper-
iment in two ways. First, the D-TUNA experi-
ment used a laboratory-based set-up, whereas the
TUNA study was conducted on-line in a relatively
uncontrolled setting. Second, participants in the
D-TUNA experiment were completely prevented
from mentioning object locations.

3 Graph-Based Attribute Selection

For attribute selection, we use the graph-based al-
gorithm of Krahmer et al. (2003), one of the
highest scoring attribute selection methods in the
TUNA 2008 Challenge (Gatt et al. (2008), table
11). In this approach, a visual scene with tar-
get and distractor objects is represented as a la-
belled directed graph, in which the objects are
modelled as nodes and their properties as looping
edges on the corresponding nodes. To select the

attributes for a distinguishing description, the al-
gorithm searches for a subgraph of the scene graph
that uniquely refers to the target referent. Starting
from the node representing the target, it performs a
depth-first search over the edges connected to the
subgraph found so far. The algorithm’s output is
the cheapest distinguishing subgraph, given a par-
ticular cost function that assigns costs to attributes.
By assigning zero costs to some attributes, e.g.,
the type of an object, the human tendency to men-
tion redundant attributes can be mimicked. How-
ever, as shown by Viethen et al. (2008), merely
assigning zero costs to an attribute is not a suffi-
cient condition for inclusion; if the graph search
terminates before the free attributes are tried, they
will not be included. Therefore, the order in which
attributes are tried must be explicitly controlled.
Thus, when using the graph-based algorithm for
attribute selection, two things must be specified:
(1) the cost function, and (2) the order in which the
attributes should be searched. Both can be based
on corpus data, as described in the next section.

4 Costs and Orders

For our experiments, we used the graph-based at-
tribute selection algorithm with two types of cost
functions: Stochastic costs and Free-Naive costs.
Both reflect (to a different extent) the relative at-
tribute frequencies found in a training corpus: the
more frequently an attribute occurs in the training
data, the cheaper it is in the cost functions.

Stochastic costs are directly based on the at-
tribute frequencies in the training corpus. They
are derived by rounding —logs(P(v)) to the first
decimal and multiplying by 10, where P(v) is the
probability that attribute v occurs in a description,
given that the target object actually has this prop-
erty. The probability P(v) is estimated by deter-
mining the frequency of each attribute in the train-
ing corpus, relative to the number of target ob-
jects that possess this attribute. Free-Naive costs
more coarsely reflect the corpus frequencies: very
frequent attributes are “free” (cost 0), somewhat
frequent attributes have cost 1 and infrequent at-
tributes have cost 2. Both types of cost functions
are used in combination with a stochastic ordering,
where attributes are tried in the order of increasing
stochastic costs.

In total, four cost functions were derived from
the English corpus data and four cost functions de-
rived from the Dutch corpus data. For each lan-



guage, we had two Stochastic cost functions (one
for the furniture domain and one for the people do-
main), and two Free-Naive cost functions (idem),
giving eight different cost functions in total. For
each language we determined two attribute orders
to be used with the cost functions: one for the fur-
niture domain and one for the people domain.

4.1 English Costs and Order

For English, we used the Stochastic and Free-
Naive cost functions and the stochastic order from
Krahmer et al. (2008). The Stochastic costs
and order were derived from the attribute frequen-
cies in the combined training and development
sets of the TUNA 2008 Challenge (Gatt et al.,
2008), containing 399 items in the furniture do-
main and 342 items in the people domain. The
Free-Naive costs are simplified versions of the
stochastic costs. “Free” attributes are TYPE in
both domains, COLOUR for the furniture domain
and HASBEARD and HASGLASSES for the people
domain. Expensive attributes (cost 2) are X- and
Y-DIMENSION in the furniture domain and HAS-
SUIT, HASSHIRT and HASTIE in the people do-
main. All other attributes have cost 1.

4.2 Dutch Costs and Order

The Dutch Stochastic costs and order were de-
rived from the attribute frequencies in a set of 160
items (for both furniture and people) randomly se-
lected from the text condition in the D-TUNA cor-
pus. Interestingly, our Stochastic cost computa-
tion method led to an assignment of O costs to
the COLOUR attribute in the furniture domain, thus
enabling the Dutch Stochastic cost function to in-
clude colour as a redundant property in the gener-
ated descriptions. In the English stochastic costs,
none of the attributes are free. Another difference
is that in the furniture domain, the Dutch stochas-
tic costs for ORIENTATION attributes are much
lower than the English costs (except with value
FRONT); in the people domain, the same holds for
attributes such as HASSUIT and HASTIE. These
cost differences, which are largely reflected in the
Dutch Free-Naive costs, do not seem to be caused
by differences in expressibility, i.e., the ease with
which the attributes can be expressed in the two
languages (Koolen et al., 2010); rather, they may
be due to the fact that the human descriptions in D-
TUNA do not include any DIMENSION attributes.

Furniture
Dice Acc.

Language
Training Test

People
Dice Acc.

Dutch Dutch 092 0.63 | 0.78 0.28
English | 0.83 055 | 0.73  0.29
English ~ Dutch 0.87 058 | 0.75 025

English | 0.67 029 | 0.67 0.24

Table 1: Evaluation results for stochastic costs.

Language Furniture People
Training  Test Dice Acc. | Dice Acc.
Dutch Dutch 094 0.70 | 0.78 0.28

English | 0.83 055 | 0.73 0.29
Dutch 094 070 | 0.78 0.28
English | 0.83 055 | 0.73 0.29

English

Table 2: Evaluation results for Free-Naive costs.

5 Results

All cost functions were applied to both Dutch and
English test data. As Dutch test data, we used a set
of 40 furniture items and a set of 40 people items,
randomly selected from the text condition in the
D-TUNA corpus. These items had not been used
for training the Dutch cost functions. As English
test data, we used a subset of the TUNA 2008 de-
velopment set (Gatt et al., 2008). To make the En-
glish test data comparable to the Dutch ones, we
only included items from the -LOC condition (see
Section 2.1). This resulted in 38 test items for the
furniture domain, and 38 for the people domain.

Tables 1 and 2 show the results of applying the
Dutch and English cost functions (with Dutch and
English attribute orders respectively) to the Dutch
and English test data. The evaluation metrics used,
Dice and Accuracy (Acc.), both evaluate human-
likeness by comparing the automatically selected
attribute sets to those in the human test data. Dice
is a set-comparison metric ranging between 0 and
1, where 1 indicates a perfect match between sets.
Accuracy is the proportion of system outputs that
exactly match the corresponding human data. The
results were computed using the ‘teval’ evaluation
tool provided to participants in the TUNA 2008
Challenge (Gatt et al., 2008).

To determine significance, we applied repeated
measures analyses of variance (ANOVA) to the
evaluation results, with three within factors: train-
ing language (Dutch or English), cost function
(Stochastic or Free-Naive), and domain (furniture
or people), and one between factor representing
test language (Dutch or English).

An overall effect of cost function shows that the
Free-Naive cost functions generally perform better



than the Stochastic cost functions (Dice: F(1,76) =
34.853, p < .001; Accuracy: F(1,76) =13.052,p =
.001). Therefore, in the remainder of this section
we mainly focus on the results for the Free-Naive
cost functions (Table 2).

As can be clearly seen in Table 2, Dutch and
English Free-Naive cost functions give almost the
same scores in both the furniture and the people
domain, when applied to the same test language.
The English Free-Naive cost function performs
slightly better than the Dutch one on the Dutch
people data, but this difference is not significant.

An overall effect of test language shows that the
cost functions (both Stochastic and Free-Naive)
generally give better Dice results on the Dutch
data than for the English data (Dice: F(1,76) =
7.797, p = .007). In line with this, a two-way in-
teraction between test language and training lan-
guage (Dice: F(1,76) =6.870, p=.011) shows that
both the Dutch and the English cost functions per-
form better on the Dutch data than on the English
data. However, the overall effect of test language
did not reach significance for Accuracy, presum-
ably due to the fact that the Accuracy scores on the
English people data are slightly higher than those
on the Dutch people data.

Finally, the cost functions generally perform
better in the furniture domain than in the people
domain (Dice: F(1,76) = 10.877, p = .001; Accu-
racy: F(1,76) = 16.629, p < .001).

6 Discussion

The results of our cross-linguistic attribute selec-
tion experiments show that Free-Naive cost func-
tions, which only roughly reflect the attribute fre-
quencies in the training corpus, have an overall
better performance than Stochastic cost functions,
which are directly based on the attribute frequen-
cies. This holds across the two languages we in-
vestigated, and corresponds with the findings of
Krahmer et al. (2008), who compared Stochas-
tic and Free-Naive functions that were trained and
evaluated on English data only. The difference in
performance is probably due to the fact that Free-
Naive costs are less sensitive to the specifics of
the training data (and are therefore more generally
applicable) and do a better job of mimicking the
human tendency towards redundancy.

Moreover, we found that Free-Naive cost func-
tions trained on different languages (English or
Dutch) performed equally well when tested on the

same data (English or Dutch), in both the furniture
and people domain. This suggests that attribute
selection can in fact be done in a language inde-
pendent way, using cost functions that have been
derived from corpus data in one language to per-
form attribute selection for another language.

Our results did show an effect of test language
on performance: both English and Dutch cost
functions performed better when tested on the
Dutch D-TUNA data than on the English TUNA
data. However, this difference does not seem to
be caused by language-specific factors but rather
by the quality of the respective test sets. Although
the English test data were restricted to the -LOC
condition, in which using DIMENSION attributes
was discouraged, still more than 25% of the En-
glish test data (both furniture and people) included
one or more DIMENSION attributes, which were
never selected for inclusion by either the English
or the Dutch Free-Naive cost functions. The Dutch
test data, on the other hand, did not include any
DIMENSION attributes. In addition, the English
test data contained more non-unique descriptions
of target objects than the Dutch data, in particu-
lar in the furniture domain. These differences may
be due to the fact that data collection was done
in a more controlled setting for D-TUNA than for
TUNA. In other words, the seeming effect of test
language does not contradict our main conclusion
that attribute selection is largely language inde-
pendent, at least for English and Dutch.

The success of our cross-linguistic experiments
may have to do with the fact that English and
Dutch hardly differ in the expressibility of object
attributes (Koolen et al., 2010). To determine the
full extent to which attribute selection can be done
in a language-dependent way, additional experi-
ments with less similar languages are necessary.
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