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Abstract

The generation of referring expressions
(GRE), an important subtask of Natural
Language Generation (NLG) is to gener-
ate phrases that uniquely identify domain
entities. Until recently, many GRE algo-
rithms were developed using only simple
formalisms, which were taylor made for
the task. Following the fast development
of ontology-based systems, reinterpreta-
tions of GRE in terms of description logic
(DL) have recently started to be studied.
However, the expressive power of these
DL-based algorithms is still limited, not
exceeding that of older GRE approaches.
In this paper, we propose a DL-based ap-
proach to GRE that exploits the full power
of OWL2. Unlike existing approaches, the
potential of reasoning in GRE is explored.

1 GRE and KR: the story so far

Generation of Referring Expressions (GRE) is the
subtask of Natural Language Generation (NLG)
that focuses on identifying objects in natural lan-
guage. For example, Fig.1 depicts the relations
between several women, dogs and cats. In such
a scenario, a GRE algorithm might identify d1 as
“the dog that loves a cat”, singling out d1 from
the five other objects in the domain. Reference
has long been a key issue in theoretical linguis-
tics and psycholinguistics, and GRE is a crucial
component of almost every practical NLG sys-
tem. In the years following seminal publications
such as (Dale and Reiter, 1995), GRE has be-
come one of the most intensively studied areas of
NLG, with links to many other areas of Cogni-
tive Science. After plan-based contributions (e.g.,
(Appelt, 1985)), recent work increasingly stresses
the human-likeness of the expressions generated
in simple situations, culminating in two evalua-

tion campaigns in which dozens of GRE algo-
rithms were compared to human-generated ex-
pressions (Belz and Gatt, 2008; Gatt et al., 2009).

Figure 1: An example in which edges from women
to dogs denote feed relations, from dogs to cats
denote love relations.

Traditional GRE algorithms are usually based
on very elementary, custom-made, forms of
Knowledge Representation (KR), which allow
little else than atomic facts (with negation of
atomic facts left implicit), often using a simple
〈Attribute : V alue〉 format, e.g 〈Type : Dog〉.
This is justifiable as long as the properties ex-
pressed by these algorithms are simple one-place
predicates (e.g., being a dog), but when logically
more complex descriptions are involved, the po-
tential advantages of “serious” KR become over-
whelming. (This point will become clearer in later
sections.) This realisation is now motivating a
modest new line of research which stresses logi-
cal and computational issues, asking what proper-
ties a KR framework needs to make it suitable to
generate all the referring expressions that people
can produce (and to generate them in reasonable
time). In this new line of work, which is proceed-
ing in tandem with the more empirically oriented
work mentioned above, issues of human-likeness
are temporarily put on the backburner. These and
other empirical issues will be brought to bear once
it is better understood what types of KR system are
best suitable for GRE, and what is the best way to
pursue GRE in them.



A few proposals have started to combine GRE
with KR. Following on from work based on la-
belled directed graphs (cf. (Krahmer et al., 2003))
– a well-understood mathematical formalism that
offers no reasoning support – (Croitoru and van
Deemter, 2007) analysed GRE as a projection
problem in Conceptual Graphs. More recently,
(Areces et al., 2008) analysed GRE as a problem in
Description Logic (DL), a formalism which, like
Conceptual Graphs, is specifically designed for
representing and reasoning with potentially com-
plex information. The idea is to produce a for-
mula such as Dog u ∃love.Cat (the set of dogs
intersected with the set of objects that love at least
one cat); this is, of course, a successful reference
if there exists exactly one dog who loves at least
one cat. This approach forms the starting point for
the present paper, which aims to show that when a
principled, logic based approach is chosen, it be-
comes possible to refer to objects which no exist-
ing approach to GRE (including that of Areces et
al.) has been able to refer to. To do this, we de-
viate substantially from these earlier approaches.
For example, while Areces et al. use one finite in-
terpretation for model checking, we consider arbi-
trary (possibly infinite) interpretations, hence rea-
soning support becomes necessary.

We shall follow many researchers in focussing
on the semantic core of the GRE problem: we
shall generate descriptions of semantic content,
leaving the decision of what words to use for ex-
pressing this content (e.g., ‘the ancient dog’, or
‘the dog which is old’) to later stages in the NLG
pipeline. Furthermore, we assume that all domain
objects are equally salient (Krahmer and Theune,
2002). As explained above, we do not consider
here the important matter of the naturalness or ef-
ficacy of the descriptions generated. We shall be
content producing uniquely referring expressions
whenever such expressions are possible, leaving
the choice of the optimal referring expression in
each given situation for later.

In what follows, we start by explaining how DL
has been applied in GRE before (Sec. 2) , point-
ing out the limitations of existing work. In Sec.3
we discuss which kinds of additional expressivity
are required and how they can be achieved through
modern DL. In Sec.4 we present a generic algo-
rithm to compute these expressive REs. Sec.5
concludes the paper by comparing its aims and
achievements with current practise in GRE.

2 DL for GRE

2.1 Description Logics
Description Logic (DLs) come in different
flavours, based on decidable fragments of first-
order logic. A DL-based KB represents the
domain with descriptions of concepts, relations,
and their instances. DLs underpin the Web On-
tology Language (OWL), whose latest version,
OWL2 (Motik et al., 2008), is based on DL
SROIQ (Horrocks et al., 2006).

An SROIQ ontology Σ usually consists of a
TBox T and an ABox A. T contains a set of con-
cept inclusion axioms of the formC v D, relation
inclusion axioms such as R v S (the relation R is
contained in the relation S), R1 ◦ . . . ◦ Rn v S,
and possibly more complex information, such as
the fact that a particular relation is functional, or
symmetric; A contains axioms about individuals,
e.g. a : C (a is an instance of C), (a, b) : R (a has
an R relation with b).

Given a set of atomic concepts, the entire set
of concepts expressible by SROIQ is defined re-
cursively. First, all atomic concepts are concepts.
Furthermore, if C and D are concepts, then so are
> | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C | ≤
nR.C | ≥ nR.C | ∃R.Self | {a1, . . . , an},
where > is the top concept, ⊥ the bottom con-
cept, n a non-negative integer number, ∃R.Self
the self-restriction ((i.e., the set of those x such
that (x, x) : R holds)), ai individual names and
R a relation which can either be an atomic rela-
tion or the inverse of another relation (R−). We
call a set of individual names {a1, . . . , an} a nom-
inal, and use CN , RN and IN to denote the set
of atomic concept names, relation names and indi-
vidual names, respectively.

An interpretation I is a pair 〈∆I , �I〉 where ∆I

is a non-empty set and �I is a function that maps
atomic concept A to AI ⊆ ∆I , atomic role r to
rI ⊆ ∆I × ∆I and individual a to aI ∈ ∆I .
The interpretation of complex concepts and ax-
ioms can be defined inductively based on their se-
mantics, e.g. (C uD)I = CI ∩DI , etc.
I is a model of Σ, written I |= Σ, iff all the ax-

ioms in Σ are satisfied in I. It should be noted
that one Σ can have multiple models. For ex-
ample when T = ∅,A = {a : A t B}, there
can be a model I1 s.t. ∆I1 = {a}, aI1 =
a,AI1 = {a}, BI1 = ∅, and another model I2

s.t. ∆I2 = {a}, aI2 = a,BI2 = {a}, AI2 = ∅.
In other words, the world is open. For details, see



(Horrocks et al., 2006).

The possibly multiple models indicate that an
ontology is describing an open world. In GRE,
researchers usually impose a closed world. From
the DL point of view, people can (partially) close
the ontology with a DBox D (Seylan et al., 2009),
which is syntactically similar to the ABox, except
that D contains only atomic formulas. Further-
more, every concept or relation appearing in D
is closed. Its extension is exactly defined by the
contents of D, i.e. if D 6|= a : A then a : ¬A,
thus is the same in all the models. The concepts
and relations not appearing in D can still remain
open. DL reasoning can be exploited to infer
implicit information from ontologies. For exam-
ple, given T = {Dog v ∃feed−.Woman} (ev-
ery dog is fed by some woman) and A = {d1 :
Dog,w1 : Woman}, we know that there must be
some Woman who feeds d1. When the domain
is closed as D = A we can further infer that this
Woman is w1 although there is no explicit rela-
tion between w1 and d1. Note that the domain ∆I

in an interpretation ofD is not fixed, but it includes
all the DBox individuals.

However, closing ontologies by means of the
DBox can restrict the usage of implicit knowledge
(from T ). More precisely, the interpretations of
the concepts and relations appearing inD are fixed
therefore no implicit knowledge can be inferred.
To address this issue, we introduce the notion of
NBox to support Negation as Failure (NAF): Un-
der NAF, an ontology is a triple O = (T ,A,N ),
where T is a TBox, A an ABox and N is a subset
of CNorRN . We callN an NBox. NAF requires
that O satisfy the following conditions:

1. Let x ∈ IN and A ∈ N uCN . Then
(T ,A) 6|= x : A implies O |= x : ¬A.
2. Let x, y ∈ IN and r ∈ N u RN .
Then (T ,A) 6|= (x, y) : r implies O |=
(x, y) : ¬r.

Like the DBox approach, the NBox N defines
conditions in which “unknown” should be treated
as “failure”. But, instead of hard-coding this, it
specifies a vocabulary on which such treatment
should be applied. Different from the DBox ap-
proach, inferences on this NAF vocabulary is still
possible. An example of inferring implicit knowl-
edge with NAF will be shown in later sections.

2.2 Background Assumptions
When applying DL to GRE, people usually im-
pose the following assumptions.

• Individual names are not used in REs. For
example, “the Woman who feeds d1” would
be invalid, because d1 is a name. Names are
typically outlawed in GRE because, in many
applications, many objects do not have names
that readers/hearers would be familiar with.

• Closed World Assumption (CWA): GRE re-
searchers usually assume a closed world,
without defining what this means. As ex-
plained above, DL allows different interpre-
tations of the CWA. Our solution does not de-
pend on a specific definition of CWA. In what
follows, however, we use NAF to illustrate
our idea. Furthermore, the domain is usually
considered to be finite and consists of only
individuals appearing in A.

• Unique Name Assumption (UNA): Different
names denote different individuals. If, for
example, w1 and w2 may potentially be the
same woman, then we can not distinguish one
from the other.

We follow these assumptions when discussing ex-
isting works and presenting our approach. In ad-
dition, we consider the entire KB, including A,
T and N . It is also worth mentioning that, in
the syntax of SROIQ, negation of relations are
not allowed in concept expressions, e.g. you can-
not compose a concept ∃¬feed.Dog. However,
if feed ∈ N , then we can interpret (¬feed)I =
∆I ×∆I \ feedI . In the rest of the paper, we use
this as syntactic sugar.

2.3 Motivation: DL Reasoning and GRE
Every DL concept can be interpreted as a set. If
the KB allows one to prove that this set is a sin-
gleton then the concept is a referring expression.
It is this idea (Gardent and Striegnitz, 2007) that
(Areces et al., 2008) explored. In doing so, they
say little about the TBox, appearing to consider
only the ABox, which contains only axioms about
instances of atomic concepts and relations. For ex-
ample, the domain in Fig.1 can be described as

KB1: T1 = ∅, A1 = {w1 : Woman,
w2 : Woman, d1 : Dog, d2 : Dog,
c1 : Cat, c2 : Cat, (w1, d1) : feed,



(w2, d1) : feed, (w2, d2) : feed,
(d1, c1) : love}

Assuming that this represents a Closed World,
Areces et al. propose an algorithm that is able
to generate descriptions by partitioning the do-
main.1 More precisely, the algorithm first finds
out which objects are describable through increas-
ingly large conjunctions of (possibly negated)
atomic concepts, then tries to extend these con-
junctions with complex concepts of the form
(¬)∃R1.Concept, then with concepts of the form
(¬)∃R2.(Concept u (¬)∃R1.Concept), and so
on. At each stage, only those concepts that have
been acceptable through earlier stages are used.
Consider, for instance, KB1 above. Regardless of
what the intended referent is, the algorithm starts
partitioning the domain stage by stage as follows.
Each stage makes use of all previous stages. Dur-
ing stage (3), e.g., the object w2 could only be
identified because d2 was identified in stage (2):

1. Dog = {d1, d2},
¬Dog uWoman = {w1, w2},
¬Dog u ¬Woman = {c1, c2}.

2. Dog u ∃love.(¬Dog u ¬Woman) = {d1},
Dogu¬∃love.(¬Dogu¬Woman) = {d2}.

3. (¬Dog u Woman) u ∃feed.(Dog u
¬∃love.(¬Dog u ¬Woman)) = {w2},
(¬Dog u Woman) u ¬∃feed.(Dog u
¬∃love.(¬Dog u ¬Woman)) = {w1}.

As before, we disregard the important question
of the quality of the descriptions generated, other
than whether they do or do not identify a given
referent uniquely. Other aspects of quality depend
in part on details, such as the question in which
order atomic concepts are combined during phase
(1), and analogously during later phases.

However this approach does not extend the ex-
pressive power of GRE. This is not because of
some specific lapse on the part of the authors: it
seems to have escaped the GRE community as a
whole that relations can enter REs in a variety of
alternative ways.

Furthermore, the above algorithm considers
only the ABox, therefore background information

1Areces et al. (Areces et al., 2008) consider several DL
fragments (e.g., ALC and EL). Which referring expressions
are expressible, in their framework, depends on which DL
fragment is chosen. Existential quantification, however, is
the only quantifier that was used, and inverse relations are
not considered.

will not be used. It follows that the domain al-
ways has a fixed single interpretation/model. Con-
sequently the algorithm essentially uses model-
checking, rather than full reasoning. We will
show that when background information is in-
volved, reasoning has to be taken into account.
For example, suppose we extend Fig.1 with back-
ground (i.e., TBox) knowledge saying that one
should always feed any animal loved by an ani-
mal whom one is feeding, while also adding a love
edge (Fig.2) between d2 and c2:

Figure 2: An extended example of Fig.1. Edges
from women to cats denote feed relations.
Dashed edges denote implicit relations.

If we close the domain with NAF, the ontology
can be described as follows:

KB2: T2 = {feed ◦ love v feed},
A2 = A1 ∪ {(d2, c2) : love}, N2 =
{Dog,Woman, feed, love}

The TBox axiom enables the inference of implicit
facts: the facts (w1, c2) : feed, (w2, c1) : feed,
and (w2, c2) : feed can be inferred using DL rea-
soning under the above NBox N2. Axioms of this
kind allow a much more natural, insightful and
concise representation of information than would
otherwise be possible.

Continuing to focus on the materialised KB2,
we note another limitation of existing works: if
only existential quantifiers are used then some ob-
jects are unidentifiable (i.e., it is not possible to
distinguish them uniquely). These objects would
become identifiable if other quantifiers and inverse
relations were allowed. For example,

• The cat which is fed by at least 2 women =
Catu ≥ 2feed−.Woman = {c1},

• The woman feeding only those fed by at
least 2 women = Woman u ∀feed. ≥
2.feed−.Woman = {w1},

• The woman who feeds all the dogs = {w2}.

It thus raises the question: which quantifiers
would it be natural to use in GRE, and how might
DL realise them?



3 Beyond Existential Descriptions

In this section, we show how more expressive DLs
can make objects referable that were previously
unreferable. This will amount to a substantial re-
formulation which allows the approach based on
DL reasoning to move well beyond other GRE al-
gorithms in its expressive power.

3.1 Expressing Quantifiers in OWL2
Because the proposal in (Areces et al., 2008) uses
only existential quantification, it fails to identify
any individual in Fig.2. Before filling this gap,
we pause to ask what level of expressivity ought
to be achieved. In doing so, we make use of
a conceptual apparatus developed in an area of
formal semantics and mathematical logic known
as the theory of Generalized Quantifiers (GQ),
where quantifiers other than all and some are stud-
ied (Mostowski, 1957). The most general format
for REs that involves a relation R is, informally,
the N1 who R Q N2’s, where N1 and N2
denote sets, R denotes a relation, and Q a gener-
alized quantifier. (Thus for example the women
who feed SOME dogs.) An expression of this
form is a unique identifying expression if it corre-
sponds to exactly one domain element. Using a
set-theoretic notation, this means that the follow-
ing set has a cardinality of 1:

{y ∈ N1 : Qx ∈ N2 | Ryx}

where Q is a generalized quantifier. For example,
if Q is the existential quantifier, while N1 denotes
the set of women, N2 the set of dogs, and R the
relation of feeding, then this says that the number
of women who feed SOME dog is one. If Q is the
quantifier at least two, then it says that the num-
ber of women who feed at least two dogs is one.
It will be convenient to write the formula above
in the standard GQ format where quantifiers are
cast as relations between sets of domain objects
A,B. Using the universal quantifier as an exam-
ple, instead of writing ∀x ∈ A | x ∈ B, we write
∀(AB). Thus, the formula above is written

{y ∈ N1 : Q(N2{z : Ryz)}}.

Instantiating this as before, we get {y ∈Woman :
∃(Dog{z : Feed yz)}}, or “women who feed a
dog”, where Q is ∃, A = Dog and B = {z :
Feed yz} for some y.

Mathematically characterising the class of all
quantifiers that can be expressed in referring

expressions is a complex research programme
to which we do not intend to contribute here,
partly because this class includes quantifiers that
are computationally problematic; for example, a
quantifiers such as most (in the sense of more than
50%), which is not first-order expressible, as is
well known.

To make transparent which quantifiers are ex-
pressible in the logic that we are using, let us think
of quantifiers in terms of simple quantitative con-
straints on the sizes of the sets A∩B, A−B, and
B−A, as is often done in GQ theory, asking what
types of constraints can be expressed in referring
expressions based on SROIQ. The findings are
summarised in Tab.1. OWL2 can express any of
the following types of descriptions, plus disjunc-
tions and conjunctions of anything it can express.

Table 1: Expressing GQ in DL
QAB DL

1 ≥ nN2{z : Ryz} y :≥ nR.N2
2 ≥ nN2¬{z : Ryz} y :≥ n¬R.N2
3 ≥ n¬N2{z : Ryz} y :≥ nR.¬N2
4 ≥ n¬N2¬{z : Ryz} y :≥ n¬R.¬N2
5 ≤ nN2{z : Ryz} y :≤ nR.N2
6 ≤ nN2¬{z : Ryz} y :≤ n¬R.N2
7 ≤ n¬N2{z : Ryz} y :≤ nR.¬N2
8 ≤ n¬N2¬{z : Ryz} y :≤ n¬R.¬N2

When n = 1, for example, type 1 becomes
∃R.N2, i.e. the existential quantifier. When n = 0
type 7 becomes ∀R.N2, i.e. the quantifier only.
When n = 0 type 6 becomes ∀¬R.¬N2, i.e. the
quantifier all. In types 2, 4, 6 and 8, negation of
a relation is used. This is not directly supported
in SROIQ but, as we indicated earlier, given
R ∈ N , ¬R can be used in concepts.

Together, this allows the expression of a de-
scription such as “women who feed at least one
but at most 7 dogs”, by conjoining type 1 (with
n = 1) with type 5 (with n = 7). Using nega-
tion, it can say “women who do not feed all dogs
and who feed at least one non-dog” (Woman u
¬∀¬Feed.¬Dog u ∃Feed.¬Dog). In addition
to Tab.1, SROIQ can even represent reflexive
relation such as “the dog who loves itself” by
Dogu∃love.Self , which was regarded infeasible
in (Gardent and Striegnitz, 2007).

Comparing the quantifiers that become express-
ible through OWL2’s apparatus with classes of
quantifiers studied in the theory of GQ, it is clear
that OWL2 is highly expressive: it does not only



include quantifiers expressible in the binary tree
of numbers, e.g. (van Benthem, 1986) – which is
generally regarded as highly general – but much
else besides. Even wider classes of referring ex-
pressions can certainly be conceived, but these are
not likely to have overwhelming practical utility in
today’s NLG applications.

4 Generating SROIQ-enabled REs

In this section, we present an algorithm that com-
putes the descriptions discussed in sect.3. A GRE
algorithm should have the following behaviour: if
an entity is distinguishable from all the others, the
algorithm should find a unique description; oth-
erwise, the algorithm should say there exists no
unique description. In this paper, we follow Are-
ces et al.’s strategy of generating REs for all ob-
jects simultaneously, but we apply it to a much
larger search space, because many more constructs
are taken into account.

4.1 GROWL: an algorithm for Generating
Referring expressions using OWL-2.

In this section we show how the ideas of pre-
vious sections can be implemented. To do this,
we sketch an algorithm scheme called GROWL.
GROWL applies a generate-and-test strategy that
composes increasingly complicated descriptions
and uses DL reasoning to test whether a de-
scription denotes a singleton w.r.t. the KB. To
avoid considering unnecessarily complicated de-
scriptions, the algorithm makes use of the (syntac-
tic) depth of a description, defined as follows:

Definition 1 (Depth) Given a description d, its
depth |d| is calculated as follows:

1. |d| = 1 for d := >|⊥|A|¬A, where A is
atomic.

2. |d u d′| = |d t d′| = max(|d|, |d′|) + 1.

3. |∃r.d| = |∀r.d| = | ≤ nr.d| = | ≥ nr.d| =
| = nr.d| = |d|+ 1.

Different descriptions can mean the same of
course, e.g. ¬∀R.A ≡ ∃R.¬A. We do not know
which syntactic variant should be used but focus,
for simplicity, on generating their unique negated
normal form (NNF). The NNF of a formula φ
can be obtained by pushing all the ¬ inward un-
til only before atomic concepts (including > and
⊥), atomic relations, nominals or self restrictions

(e.g. ∃r.Self ). Without loss of generality, in what
follows we assume all the formulas are in their
NNF. To avoid confusion, the NNF of negation
of a formula φ is denoted by ~φ instead of ¬φ.
For example ~(A t B) = ¬A u ¬B if A and B
are atomic. Obviously, ~(~A) = A, ~(~R) = R,
(R−)− = R, and (~R)− =~R−. The use of NNF
substantially reduces the redundancies generated
by the algorithm. For example, we won’t generate
both ¬∀R.A and ∃R.¬A but only the later.

Given an ontology Σ, we initialise GROWL
with the following sets:

1. The relation name set RN is the minimal set
satisfying:

• if R is an atomic relation in Σ, then R ∈
RN ;

• if R ∈ RN , then ~R ∈ RN ;
• if R ∈ RN , then R− ∈ RN ;

2. The concept name set CN is the minimal set
satisfying:

• > ∈ CN ;
• if A is an atomic concept in Σ, then A ∈
CN ;

• if R ∈ RN , then ∃R.Self ∈ CN ;
• if A ∈ CN , then ~A ∈ CN ;

3. The natural number set N contains
1, 2, . . . , n where n is the number of
individuals in Σ.

4. The construct set S contains all the con-
structs supported by a particular language.
For SROIQ, S = {¬,u,t,∃,∀,≤,≥,=}.
We assume here that nominals are disallowed
(cf. sect.2).

Algorithm GROWL:
Construct− description(Σ, CN,RN,N, S)
INPUT: Σ, CN,RN,N, S
OUTPUT: Description Queue D

1: D := ∅
2: for e ∈ CN do
3: D := Add(D, e)
4: for d = fetch(D) do
5: for each s ∈ S do
6: if s = u or s = t then
7: for each d′ ∈ D do
8: D := Add(D, d s d′)
9: if s = ∃ or s = ∀ then



10: for each r ∈ RN do
11: D := Add(D, s r.d)
12: if s =≤ or s =≥ or s is = then
13: for each r ∈ RN , each k ∈ N do
14: D := Add(D, s k r.d)
15: return D

Algorithm ADD:Add(D, e)
INPUT: D, e
OUTPUT: (Extended) Description Queue D

1: for d ∈ D do
2: if |d| < |e| and d vΣ e then
3: return D
4: else if |d| = |e| and d vΣ e and e u ¬d is

satisfiable then
5: return D
6: if e is satisfiable in Σ then
7: D := D ∪ {e}
8: return D

GROWL takes an ontology Σ as its input and
output a queue D of descriptions by adding in-
creasingly complex concepts e to D, using the
function Add(D, e), which is implemented as the
algorithm ADD. Because of the centrality of ADD
we start by explaining how this function works.

In the simple algorithm we are proposing in this
paper – which represents only one amongst many
possibilities – addition is governed by the heuris-
tic that more complex descriptions should have
smaller extensions. To this end, a candidate de-
scription e is compared with each existing descrip-
tion d ∈ D. Step 2 ensures that if there exists a
simpler description d (|d| < |e|) whose extension
is no larger than e (d vΣ e), then e is not added
into D (because the role of e can be taken by the
simpler description d). Similarly, step 4 ensures
that if there exists d with same depth (|d| = |e|)
but smaller extension (d vΣ e and e u ¬d is satis-
fiable), then e should not be added into D. The
subsumption checking in Step 2 and 4, and the
instance retrieval in Step 6, must be realised by
DL reasoning, in which TBox, ABox and NBox
must all be taken into account. ADD guaran-
tees that when the complexity of descriptions in-
creases, their extensions are getting smaller.

We now turn to the main algorithm, GROWL. In
Step 1 of this algorithm,D is initialised to ∅. Steps
2 to 3 add all satisfiable elements of CN to D.
From Steps 4 to 14, we recursively “process” ele-

ments ofD one by one, by which we mean that the
constructors in S are employed to combine these
elements with other elements of D (e.g., an ele-
ment is intersected with all other elements, and so
on). We use fetch(D) to retrieve the first unpro-
cessed element of D. New elements are added to
the end of D. Thus D is a first-come-first-served
queue (note that processed elements are not re-
moved from D).

To see in more detail how elements of D are
processed, consider Steps 5-14 once again. For
each element d of D, Step 5 uses a construct s to
extend it:

1. If s is u or t, in Step 7 and 8, we extend d
with each element ofD and add new descrip-
tions to D.

2. If s is ∃ or ∀, in Step 10 and 11, we extend
d with all relations of RN and add new de-
scriptions to D. In Areces et el.’s work, ∀ is
also available when using ¬ and ∃ together,
however due to their algorithm they can never
generates descriptions like ∀r.A.

3. If s is ≤,≥ or =, in Step 13 and 14, we ex-
tend d with all relations in RN and all num-
bers in N , and add new descriptions to D.

Because the = construct can be equivalently
substituted by the combination of≤,≥ and u
constructs (= kr.d is semantically equivalent
to ≥ kr.du ≤ kr.d), it is a modelling choice
to use either ≤,≥, or only =, or all of them.
In this algorithm we use them all.

Because we compute only the NNF and we
disallow the use of individual identifiers, nega-
tion ¬ appears only in front of atomic concept
names. For this reason, processing does not con-
sider s = ¬. Note that GROWL leaves some
important issues open. In particular, the or-
der in which constructs, relations, integers and
conjuncts/disjuncts are chosen is left unspecified.
Note that D,RN,N, S are all assumed to be fi-
nite, hence Steps 5 to 14 terminate for a given
d ∈ D. Because Steps 5 to 14 generate descrip-
tions whose depth increases with one constructor
at a time, there are finitely many d ∈ D such that
|d| = n (for a given n).

GROWL extends the algorithm presented by
Areces et al. The example in Fig.2 shows that
many referring expressions generated by our algo-
rithm cannot be generated by our predecessors; in



fact, some objects that are not referable for them
are referable by GROWL. For example, if we ap-
ply the algorithm to the KB in Fig.2, a possible
solution is as follows:

1. {w1} = Womanu∃¬feed.Cat, the woman
that does not feed all cats.

2. {w2} =≤ 0¬feed.Cat , the woman that
feeds all cats.

3. {d1} = Dogu ≤ 0¬feed−.Woman, the
dog that is fed by all women.

4. {d2} = Dog u ∃¬feed−.Woman, the dog
that is not fed by all women.

5. {c1} = Catu ≤ 0¬feed−.Woman, the cat
that is fed by all women.

6. {c2} = Cat u ∃¬feed−.Woman, the cat
that is not fed by all women.

It is worth reiterating here that our algorithm fo-
cusses on finding uniquely referring expressions,
leaving aside which of all the possible ways in
which an object can be referred to is “best”. For
this reason, empirical validation of our algorithm
– a very sizable enterprise in itself, which should
probably be based on descriptions elicited by hu-
man speakers – is not yet in order.

4.2 Discussion

Let us revisit the basic assumptions of Sec.2.2, to
see what can be achieved if they are abandoned.

1. In natural language, people do using names,
e.g. “the husband of Marie Curie”. To allow
REs of this kind, we can extend our Algo-
rithm A-1 by including singleton classes such
as {Maria Curie} in CN .

2. Traditional GRE approaches have always as-
sumed a single model with complete knowl-
edge. Without this assumption, our approach
can still find interesting REs. For example,
if a man’s nationality is unknown, but he is
known to be the Chinese or Japanese, we can
refer to him/her as Chinese t Japanese.
However, models should be finite to guaran-
tee that N is finite.

3. Individuals with multiple names. DL im-
poses the UNA by explicitly asserting the

inequality of each two individuals. With-
out UNA, reasoning can still infer some re-
sults, e.g. {Woman uMan v ⊥, David :
Man,May : Woman} |= David 6= May.
Thus we can refer to David as “the man” if
the domain is closed.

5 Widening the remit of GRE

This paper has shown some of the benefits that
arise when the power of KR is brought to bear
on an important problem in NLG, namely the gen-
eration of referring expressions (GRE). We have
done this by using DL as a representation and
reasoning formalism, extending previous work in
GRE in two ways. First, we have extended GRE
by allowing the generation of REs that involve
quantifiers other than ∃. By relating our algo-
rithm to the theory of Generalised Quantifiers, we
were able to formally characterise the set of quan-
tifiers supported by our algorithm, making exact
how much expressive power we have gained. Sec-
ondly, we have demonstrated the benefits of im-
plicit knowledge through inferences that exploit
TBox-information, thereby allowing facts to be
represented more efficiently and elegantly, and al-
lowing GRE to tap into kinds of generic (as op-
posed to atomic) knowledge that it had so far left
aside, except for hints in (Gardent and Striegnitz,
2007) and in (Croitoru and van Deemter, 2007).
Thirdly, we have allowed GRE to utilise incom-
plete knowledge, as when we refer to someone as
“the man of Japanese or Chinese nationality”.

Current work on reference is overwhelmingly
characterised by an emphasis on empirical accu-
racy, often focussing on very simple referring ex-
pressions, which are constituted by conjunctions
of 1-place relations (as in “the grey poodle”), and
asking which of these conjunctions are most likely
to be used by human speakers (or which of these
would be most useful to a human hearer). The
present work stresses different concerns: we have
focussed on questions of expressive power, fo-
cussing on relatively complex descriptions, asking
what referring expressions are possible when re-
lations between domain objects are used. We be-
lieve that, at the present stage of work in GRE, it
is of crucial importance to gain insight into ques-
tions of this kind, since this will tell us what types
of reference are possible in principle. Once such
insight, we hope to explore how the newly gained
expressive power can be put to practical use.
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