Using Semantic Web Technology to Support NLG
Case study: OWL finds RAGS

Chris Mellish
Computing Science
University of Aberdeen, Aberdeen AB24 3UE, UK
c.mellish@abdn.ac.uk

Abstract

The semantic web is a general vision
for supporting knowledge-based process-
ing across the WWW and its successors.
As such, semantic web technology has po-
tential to support the exchange and pro-
cessing of complex NLG data. This pa-
per discusses one particular approach to
data sharing and exchange that was de-
veloped for NLG — the RAGS framework.
This was developed independently of the
semantic web. RAGS was relatively com-
plex and involved a number of idiosyn-
cratic features. However, we present a ra-
tional reconstruction of RAGS in terms of
semantic web concepts, which yields a rel-
atively simple approach that can exploit
semantic web technology directly. Given
that RAGS was motivated by the concerns
of the NLG community, it is perhaps re-
markable that its aspirations seem to fit so
well with semantic web technology.

1 Introduction

The semantic web is a vision of a future world
wide web where content, rather than being primar-
ily in the form of unanalysed natural language, is
machine accessible (Antoniou and van Harmelen,
2004). This could bring a number of advantages
compared to the present web, in terms, for instance
of the precision of web search mechanisms and the
extent to which web resources can be brought to-
gether automatically for solving complex process-
ing problems.

From the point of view of NLG, the seman-
tic web offers a vision of a situation where re-
sources can be formally described and composed,
and where it is possible to live with the variety of
different approaches and views of the world which
characterise the users of the web. Given the het-

erogeneous nature of NLG, it seems worth con-
sidering whether there might be some useful ideas
here for NLG.

The foundation of the semantic web is the idea
of replacing formatting-oriented languages such as
HTML by varieties of XML which can capture the
structure of content explicitly. Markup of linguis-
tic resources (text corpora, transcribed dialogues,
etc.) via XML is now standard in NLP, but very
often each use of XML is unique and hard to rec-
oncile with any other use. The semantic web goes
beyond this in proposing a more abstract basic lan-
guage and allowing explicit representation of what
things in it mean. For the semantic web, RDF
(Klyne and Carroll, 2003), which is built on top of
XML, represents a common language for express-
ing content as a “semantic network” of triples, and
ontology languages, such as OWL (McGuinness
and van Harmelen, 2004), allow the expression
of constraints and principles which partially con-
strain possible interpretations of the symbols used
in the RDF. These ontologies are statements that
themselves can be inspected and modified. They
can provide the basis for different people to ex-
press their assumptions, agreements and disagree-
ments, and to synthesise complex data from mul-
tiple sources.

2 RAGS

RAGS (“Reference Architecture for Generation
Systems”) was an attempt to exploit previous ideas
about common features between NLG systems
in order to propose a reference architecture that
would help researchers to share, modularise and
evaluate NLG systems and their components. In
practice, the project found that there was less
agreement than expected among NLG researchers
on the modules of an NLG system or the order of
their running. On the other hand, there was rea-
sonable agreement (at an abstract level) about the
kinds of data that an NLG system needs to repre-

- e IMPLEMENTS

B g;Abmm Tye Dcﬂ.ﬂ.i.ti.ons>\
IMPLEMENTS _— / — e

<1:I:1ti.vc format L '{N:{ﬂvc fom_::;_:‘?

REFERTO

(:;Agrcc dIn stnntLa;:_nD

Figure 1:

sent, in passing from some original non-linguistic
input to a fully-formed linguistic description as its
output. Figure 1 summarises RAGS and how it
was intended to be used. The following descrip-
tion simplifies/ rationalises in a number of ways;
more information about RAGS can be found in
(Mellish et al., 2006) and (Cahill et al., 2001).

RAGS provides abstract type definitions for 6
different types of data representations: concep-
tual, rhetorical, document, semantic, syntactic and
“quote”. As an example, here are the definitions
associated with document representations (which
describe the parts of a document and aspects of
their logical formatting).

DocRep = DocAttr x DocRepSeq
DocRepSeq = DocRep”
DocAttr = (DocFeat — DocAtom)
DocFeat, DocAtom € Primitives

These type definitions express the types in terms
of set theory (using constructions such as union,
Cartesian product, subset and function), where
the “primitive” types correspond to basic sets
that have to be defined in a theory-specific way.
Thus a document representation (DocRep) has
two components, a DocAttr and a DocRepSeq.
A DocRepSeq is a sequence of zero or more
DocReps, which represent the document structure
of the parts of the document. A DocAttr is a

IMFLEMENTS

—_—

Gt
—%

--._‘______::r__-_-:';:‘ ObjcctsandArrows@
e o i

—_—

\ DETERMINES

CORRESPOND

v
CE{E\-EL_ offline rcprc:cnt@

S — = _h\%

\\E):[ﬂan Storage

v

LOAD/STORE

RAGS

function from DocF'eats to DocAtoms. The for-
mer can be thought of as a set of names of “fea-
tures” for parts of documents (e.g. text level, in-
dentation) and the latter as a set of values for these
(e.g. “Clause”, 3). However the sets DocFeat
and DocAtom are left unspecified in the RAGS
formalisation. The idea is that researchers will not
necessarily agree how to instantiate these primi-
tives. Clusters of researchers may agree on stan-
dard possibilities for these sets and this will help
them to share data (but even researchers not able
to agree on the primitive sets will be able to under-
stand one anothers’ data to some extent). When
two NLG modules need to exchange data, they
need to refer to an agreed instantiation of the prim-
itive types in order to share fully.

Although it gives some examples, RAGS does
not specify any particular formats in which data
should be represented in different programming
languages and used by NLG modules — poten-
tially, arbitrary “native formats” could be used,
as long as they can be viewed as “implementa-
tions” of the abstract type definitions. Further
conditions are, however, imposed by requiring a
correspondance between native formats and repre-
sentations in a “reference implementation” called
the Objects and Arrows (OA) model. This pro-
vides answers to further questions, such as what
partially-specified data representations are possi-

ble, where re-entrancy can occur and how data
representations of different types can be mixed.
The OA model represents data as directed graphs,
whose nodes represent typed pieces of data and
whose edges represent relations. The possible le-
gal states of an OA representation are formally de-
fined, in a way that resembles the way that infor-
mation states in a unification grammar can be char-
acterised (Shieber, 1986). Each node in the graph
is labelled with a type, e.g. DocRep, DocAtom.
Each node is assumed to have a unique identifier
and for primitive types a node can also have a sub-
type, a theory-dependent elaboration that applies
to this particular data object (e.g. a DocAtom
could have the subtype 3). Some edges in the
graph indicate “local arrows”, which describe the
parts of complex datastructures. For instance,
edges labelled el indicate elements of unordered
structures, and arrows labelled el-1, el-2 etc. indi-
cate components of ordered structures. Edges can
also represent “non-local arrows” which describe
relationships between representations at different
levels. Non-local arrows allow data representa-
tions at different levels to be mixed into a single
graph.

Representations in the Objects and Arrows
model can be mapped to an XML interchange rep-
resentation. The correspondance between native
formats and the OA model can then be used to map
between native data representations and XML (in
both directions). Modules can communicate via
agreed native formats or, if this is undesirable, via
the XML representation.

3 Some Problems with RAGS

Some of the problems with RAGS, which have im-
peded its uptake, include:

e Complexity and lack of tools — RAGS was a
proposal with a unique shape and takes some
time to understand fully. It ploughs its own
distinctive furrow. Because it was developed
in a project with limited resources, there are
limited tools provided for, for instance, dis-
playing RAGS structures, supporting differ-
ent programming languages and styles and
automatic consistency checking. This means
that engaging with RAGS involves initially
a significant amount of low-level program-
ming, with benefits only to be seen at some
time in the future.

e Idiosyncratic use of XML — RAGS had to ad-
dress the problem of expressing a graph in a
serialised form, where there can be multiple,
but different, serialisations of the same graph.
It did this in its own way, which means that it
is hard to exploit general tools which address
this problem in other areas.

e Inclarity about how to “buy-in” to limited de-
grees - there is no defined mechanism for di-
viding generally agreed from non-agreed el-
ements of a RAGS representation or for ex-
pressing or referring to an “agreed instantia-
tion”.

4 Recasting RAGS data in terms of RDF

The first step in recasting RAGS in semantic web
terms is to exploit the fact that it is the OA model
(rather than the abstract type definitions) that is the
basis of data communication, since this model ex-
presses more concrete requirements on the form of
the data. Therefore initially we concentrate on the
OA model and its XML serialisation.

RDF is a data model that fits OA graphs very
well. It provides a way of creating “seman-
tic networks” with sets of object-attribute-value
triples. Objects and attributes are “resources”,
which are associated with Universal Resource
Identifiers (URIs), and values are either resources
or basic data items (“literals”, e.g. strings or in-
tegers). Resources have types, indicated by the
RDF type attribute. The idea of an RDF resource
maps nicely to a RAGS object, and the idea of an
RDF attribute maps nicely to a RAGS arrow.

URIs provide a natural way to allow reen-
trancy to be represented and at the same time per-
mit unambiguous references to external objects
in the way that RAGS intended should be pos-
sible. The XML namespace mechanism allows
complex IDs to be abbreviated by names of the
form Prefix:N, where Prefix is an abbrevi-
ation for the place where the name N is defined
and N is the basic name (sometimes the prefix can
be inferred from context and can be missed out).
Thus, for instance, if the prefix rags is defined
to stand for the start of a URI identifying RAGS
then rags:DocRep identifies the type DocRep
defined by RAGS, as distinct from any other defi-
nition anyone might have.

It follows from the preceding discussion that in-
stances of the RAGS abstract types can be mapped
naturally to RDF resources with the abstract type

as the value for the RDF attribute type. Arrows
can be mapped into RDF attributes, and so it re-
ally only remains to have a convention for the rep-
resentation of “subtype” information in RAGS. In
this paper, we will assume that instances of primi-
tive types can have a value for the attribute sub.

RDF can be serialised in XML in a number of
ways (which in fact are closely related to the pos-
sible XML serialisations of RAGS).

To summarise, using RDF rather than RAGS
XML introduces negligable extra complexity but
has a number of advantages:

e Because it is a standard use of XML, it means
that generic software tools can be used with
it. Existing tools, for instance, support read-
ing and writing RDF from different program-
ming languages, visualising RDF structures
(see Figure 4) and consistency checking.

e Because it comes with a universal way of
naming concepts, it means that it is possi-
ble for different RAGS resources to be un-
ambiguous and reference one another.

S Formalising the RAGS types using
ontologies

RDF gives us a more standard way to interpret the
OA model and to serialise OA instance informa-
tion in XML. However, on its own it does not en-
force data representations to be consistent with the
intent of the abstract type definitions. For instance,
it does not prevent an element of a DocRepSeq
being something other than a DocRep.

For RAGS, an XML DTD provided constraints
on what could appear in the XML serialisation, but
DTDs are not very expressive and the RAGS DTD
had to be quite loose in order to allow partial rep-
resentations. The modern way to define the terms
that appear in a use of RDF, and what constraints
there are on their use, is to define an ontology us-
ing a language like RDFS (Brickley and Guha,
2003) or OWL (McGuinness and van Harmelen,
2004). An ontology can be thought of as a set of
logical axioms that limits possible interpretations
of the terms. This could be used to show, for in-
stance, that a given set of instance data is inconsis-
tent with an ontology, or that further logical conse-
quences follow from it. There are various versions
of the web ontology language OWL. In this paper,
we use OWL DL, which is based on a description

logic, and we will use standard description logic
notation in this paper.

Description logics allow one to make statements
about the terms (names of concepts and roles) used
in some knowledge representation. In our case,
a concept corresponds to a RAGS type (imple-
mented by an RDF resource linked to from in-
dividuals by a type attribute) and a role cor-
responds to a RAGS arrow (implemented by an
RDF attribute). Complex names of concepts can
be built from simple names using particular con-
structors. For instance, if o and 3 are two con-
cept names (simple concept names or more com-
plex expressions made from them) and p is a role
name, then, the following are also concept names:

o U B - names the concept of everything
which is « or 3

a M3 - names the concept of everything
which is « and 5

dp.a - names the concept of everything
which has a value for p which is an
instance of concept «

Vp.a - names the concept of everything
which only has values for p which
are instances of concept «

=, p - names the concept of everything
with exactly n different values of p

Constructors can be nested, so that, for instance,
C1 M 3r.Cy is a possible concept name, assuming
that C'; and C are simple concept names and 7 is
a role name.

For an ontology, one then writes logical axioms
stating relationships between simple or complex
concept names, €.g.

a1 C ag - states that ov; names a more
specific concept than a

a1 = ag - states that o names the same
concept as s

disjoint({a,...an}) - states that
azi, ...y, are disjoint concepts (no
pair can have a common instance).

p1 C, p2 - states that p; names a sub-
property of ps

domain(p,«) - states that p can only
apply to things satisfying concept «

range(p,«) - states that values of p
must satisfy concept o

functional(p) - states that p is a func-
tional role

/ RAGS Upper Ontology

/

RAGS NLG Ontclogy /

Dataset

Theory—dependent claborations

Cenceptual Representation Ontology

* . Rhetorical Representation Ontelogy

Semantic Reprezentation Ontology

*+ Syntactic Representation Ontelogy

*~ (Quote Representation Cntology

= ¥ means that X is imported by ¥

Figure 2: Using Multiple Ontologies in RAGS

For more information on the formal basis of de-
scription logics and their relevance for ontologies,
see (Horrocks, 2005).

For RAGS, a number of advantages follow from
adopting DLs as the basis for formalising data rep-
resentations:

Modularity. A given set of instance data may re-
late to more than one ontology which ex-
presses constraints on it. One ontology is
said to import another if it inherits the con-
straints that the other provides. The standard
(monotonic) logic approach applies, in that
one can choose to describe the world in terms
of any consistent set of axioms. Ontologies
package up sets of axioms into bundles that
one might decide to include or not include in
one’s own model of the world. Ontologies for
different purposes can be built by different
people but used together in an eclectic way.
This formalises the idea of “variable buy-in”
in RAGS.

Openness. Also corresponding to the usual ap-
proach with logic, the semantics of OWL
makes no closed world assumption. Thus a
statement cannot be inconsistent purely by
failing to specify something. This means that
it is only necessary to describe the proper-
ties of complete datastructures in an ontol-
ogy. Partial descriptions of data will be not
be inconsistent by virtue of their partiality.
Only having to describe complete datastruc-

tures makes the specification job much sim-
pler. In a similar way, the semantics of OWL
makes no unique names assumption. Thus
individuals with different names are not nec-
essarily distinct. This means that it is gen-
erally possible to make a given description
more specific by specifying the identity of
two individuals (unless inconsistency arises
through, for instance, the individuals having
incompatible types). This is another require-
ment if one wishes the power to add further
information to partial representations.

Software tools. As with RDF, use of OWL DL
opens up the possibility of exploiting generic
tools developed elsewhere, for instance rea-
soners and facilities to translate RAGS con-
cepts into programming language structures.

6 The RAGS Ontologies

It is convenient to modularise what RAGS requires
as well-formedness constraints as a set of ontolo-
gies. This allows us to formalise what it means to
“buy-in” to one or more parts of RAGS. It simply
means importing one or more of the RAGS ontolo-
gies (in addition to one’s own) and making use of
some of the terms defined in them. We now outline
one possible version of the core RAGS ontologies.

Figure 2 shows the way that the RAGS ontolo-
gies are intended to be used. A dataset in general
makes use of concepts defined in the core RAGS
ontologies (the “upper ontology” and the “NLG

Tawa)
(RhetRepSeq)

isa"

sa L Seepine)
—(ag)
(DocRepSeq)

_iza——— RhetRep)

R
T ScopedSemRep

1 ScopeConstr)

Figure 3: The RAGS “NLG ontology”

ontology”)! and also theory-dependent elabora-
tions defined in separate ontologies (which may
correspond one-to-one to the different levels, as
shown, but need not do so necessarily). These
elaborations are not (initially) provided by RAGS
but may arise from arbitrary research subcom-
munities. Logically, the dataset is simple de-
scribed/constrained by the union of the axioms
coming from the ontologies it makes use of. In
general, different datasets will make consistent
references to the concepts in the core RAGS
ontologies, but they may make use of different
theory-dependent elaborations.

The basis of RAGS is a very neutral theory
about datatypes (and how they can be encoded in
XML). This is in fact independent of the fact that
RAGS is intended for NLG - at this level, RAGS
could be used to describe data in other domains, or
NLG-oriented data that is not covered by RAGS. It
therefore makes sense to think of this as a separa-
ble part of the theory, the “upper ontology”. At the
top level, datastructures (instances of Object)
belong to one of the concepts Ordered, Set
and Primitive. Ordered structures are divided

'These are both available in full from
http://www.abdn.ac.uk/~csc248/ontologies/

up in terms of the number of components (con-
cepts Arity—1, Arity-2 etc) and whether they
are Tuples or Sequences. For convenience,
union types such as Arity-atleast-2 are
also defined.

The RAGS NLG ontology (see Figure 3 for
an overview) contains the main substance of the
RAGS type definitions. As the figure shows,
it introduces a number of new concepts as sub-
concepts of the upper ontology concepts. For
instance, DocRepSeq, RhetRepSeq, Ad]
and Scoping are introduced as subconcepts
of SpecificSequence (these concepts cor-
respond to types used in RAGS at the doc-
ument, rhetorical, syntactic and semantic lev-
els). Not shown in the diagram is the type of
roles, Functional that includes all arguments
of RAGS functional objects?>. The set of type
definitions describing a level of representation in
RAGS translates quite directly into a set of axioms
in this ontology. For instance, the following is the
encoding of the type definitions for document rep-

>Whereas in RAGS a functional type (e.g. DocAttr)
is represented as an unordered set of (ordered) pairs of the
form <function argument,function value>>, here we can sim-
ply implement the function arguments as RDF attributes and
omit the functional types.

@DocRep

@DocRepSeq

ﬂ @Indentation

e .

asFosition

@ Fozition

FPosition_6G

Hentation

Figure 4: Visualisation of example Document Representation

resentations. First of all, it is necessary to specify
that a DocRep is a tuple with arity 1 (the DocAttr
is not needed), and that its component must have a
specific type:

DocRep T Tuple N Arity-1
DocRep C (Vel-1.DocRepSeq)

The next few axioms do a similar job for
DocRepSeq, a kind of sequence:

DocRepSeq C Speci ficSequence
DocRepSeq C (VYn—el.DocRep)

Finally, a high level role DocFeat is introduced,
whose subroles will correspond to particular docu-
ment features like Indentation. The domain and
range of such roles are constrained via constraints
on DocFeat:

DocFeat T, Functional
domain(DocFeat, DocRep)
range(DocFeat, DocAtom)

7 Other Ontologies and RAGS

As stated above, in general one produces special-
isations of the RAGS framework by creating new
ontologies that:

o Introduce specialisations of the RAGS prim-
itive concepts (and perhaps new roles that in-
stances of these can have).

e Introduce subroles of the RAGS functional
roles.

e Add new axioms that specialise existing
RAGS requirements, involving the core con-
cepts and roles and/or the newly introduced
ones.

An example of this might be an example ontol-
ogy that instantiates a simple theory of document
structure, following (Power et al., 2003). Given
the notion of document structure introduced in
section 2 and formalised in section 6, it is really
only necessary to specify the “features” of pieces
of document structure (DocF'eat) and their “val-
ues” (DocAtom). The former are modelled as
roles and the latter in terms of concepts. First we
introduce the basic types of values:

DocAtom = (Position U Indentation L
Level U Connective)
disjoint({(Position, Indentation, Level,
Connective})

Positions in the text could be modelled by objects
whose sub values are positive integers (there is a
standard (RDFS) datatype for these). The follow-
ing axioms capture this and the characteristics of
the role hasPosition:

Position C (Vsub.xzsd : positivelnteger)
hasPosition T, DocFeat
range(hasPosition, Position)
functional(hasPosition)

For text levels, on the other hand, there is a fixed
set of possible values. These are introduced as dis-
joint concepts. In addition, the role hasLevel is
introduced:

Level = (Chapter U Paragraph U Section
Text-Clause U Text-Phrase U
Text-Sentence)

disjoint({Chapter, Paragraph, Section,

Text-Clause, Text-Phrase, Text-Sentence})
hasLevel T, DocFeat

range(hasLevel, Level)

functional(hasLevel)

Figure 4 shows an example DocRep (labelled
“d12”) described by this ontology, as visualised
by the RDF-Gravity tool developed by Salzburg
Research. It consists of a DocRepSeq (“d6”) with

two DocRep components (“d0” and “d13”). The
indentations of “d12”” and “d0” are not known, but
they are constrained to be the same.

It is easy to think of examples of other (ex-
isting or potential) ontologies that could provide
theories of the RAGS primitive types. For in-
stance, WordNet (Miller, 1995) or the Generalised
Upper Model (Bateman et al., 1995) could be
used to bring in a theory of semantic predicates
(SemPred). An ontology of rhetorical relations
(RhetRel) could be built based on RST, and so
on.

Ontologies can use the expressive power of
OWL to make relatively complex statements.
For instance, the following could be used in an
RST ontology to capture the concept of nucleus-
satellite relations and the constraint that a rhetori-
cal representation with such a relation (as its first
component) has exactly two subspans (recorded in
the second component):

NS C RhetRel
(RhetRepM3el-1.NS) C (Jel-2.Arity-2)

8 Relation to Other Work

Reworking RAGS to use semantic web technology
relates to two main strands of previous work: work
on XML-based markup of linguistic resources and
work on linguistic ontologies.

The trouble with applying existing annotation
methods (e.g. the Text Encoding Initiative) to
NLG is that they presuppose the existence of a
linear text to start with, whereas in NLG one is
forced to represent more abstract structures before
coming up with the actual text. A recent proposal
from Linguistics for a linguistic ontology for the
semantic web (Farrar and Langendoen, 2003) is
again based around making annotations to exist-
ing text. Research is only just beginning to es-
cape from a “time-based” mode of annotation, for
instance by using “stand-off”” annotations to indi-
cate layout (Bateman et al., 2002). In addition,
most annotation schemes are partial (only describe
certain aspects of the text) and non-structured (as-
sign simple labels to portions of text). For NLG,
one needs a way of representing all the informa-
tion that is needed for generating a text, and this
usually has complex internal structure.

Linguistic ontologies are ontologies developed
to describe linguistic concepts. Although ontolo-
gies are used in a number of NLP projects (e.g.
(Estival et al., 2004)), the ontologies used are usu-
ally ontologies of the application domain rather

than the linguistic structures of natural languages.
The development of ontologies to describe aspects
of natural languages is comparatively rare. The
WordNet ontologies are a widely used resource
describing the repertoire of word senses of nat-
ural languages, but these concentrate on individ-
ual words rather than larger linguistic structures.
More relevant to NLG is work on various versions
of the Generalised Upper Model (Bateman et al.,
1995), which outlines aspects of meaning relevant
to making NLG decisions. This has been used to
help translate domain knowledge in a number of
NLG systems (Aguado et al., 1998).

In summary, existing approaches to using on-
tologies or XML for natural language related pur-
poses are not adequate to describe the datastruc-
tures needed for NLG. Semantic web technology
applied to specifications with the complexity of
those generated by RAGS might, however, be able
to fill this gap.

9 The Semantic Web for NLG tasks

In the above, we have made a case for the use of
semantic web technology to aid inter-operability
and sharing of resources for NLG. This was jus-
tified largely by the fact that the most significant
NLG “standardisation” effort so far, RAGS, can
be straightfowardly recast in semantic web terms,
bringing distinct advantages. Even if RAGS itself
is not taken forward in its current form, this sug-
gests that further developments of the idea could
bear fruit in semantic web terms.

The semantic web is certainly not a panacea for
all the problems of NLG, and indeed there are as-
pects of the technology that are still at an early
stage of development. For instance, the problems
of matching/ reconciling alternative ontologies are
many and complex. Some researchers even dis-
pute the viability of the general approach. On the
other hand, the semantic web community is con-
cerned with a number of problems that are also
very relevant to NLG. Fundamentally, the seman-
tic web is about sharing and exploiting distributed
computational resources in an open community
where many different goals, viewpoints and the-
ories are represented. This is something that NLG
also seeks to do in a number of ways. The seman-
tic web movement has considerable momentum.
There are more of them than us. Let’s see what we
can get from it.

Acknowledgments

This work was supported by EPSRC grant
EP/E011764/1.

References

G. Aguado, A. Bandn, John A. Bateman, S. Bernardos,
M. Fernandez, A. Gémez-Pérez, E. Nieto, A. Olalla,
R. Plaza, and A. Sanchez. 1998. Ontogeneration:
Reusing domain and linguistic ontologies for Span-
ish text generation. In Proceedings of the ECAI’'98
Workshop on Applications of Ontologies and Prob-
lem Solving Methods, pages 1-10, Brighton, UK.

Grigoris Antoniou and Frank van Harmelen. 2004. A
Semantic Web Primer. MIT Press.

John A. Bateman, Renate Henschel, and Fabio Rinaldi.
1995. Generalized Upper Model 2.0: documenta-
tion. Technical report, GMD/Institut fiir Integrierte
Publikations- und Informationssysteme, Darmstadt,
Germany.

John Bateman, Renate Henschel, and Judy Delin.
2002. A brief introduction to the GeM annotation
scheme for complex document layout. In Proceed-
ings of NLP-XML 2002, Taipei.

D. Brickley and R. V. Guha. 2003. Rdf vocabulary
description language 1.0: Rdf schema. Technical
Report http://www.w3.org/TR/rdf-schema, World
Wide Web Consortium.

Lynne Cahill, Roger Evans, Chris Mellish, Daniel
Paiva, Mike Reape, and Donia Scott. 2001.
The RAGS Reference Manual . Available at

D. L. McGuinness and F. van Harmelen.
2004. Owl web ontology language overview.
http://www.w3.0rg/TR/owl-features/.

Chris Mellish, Donia Scott, Lynne Cahill, Daniel Paiva,
Roger Evans, and Mike Reape. 2006. A reference
architecture for generation systems. Natural lan-
guage engineering, 1:1-34.

G. Miller. 1995. Wordnet: A lexical database for en-
glish. CACM, 38(11):39-41.

Richard Power, Donia Scott, and Nadjet Bouayad-
Agha. 2003. Document structure. Computational
Linguistics, 29:211-260.

Stuart M. Shieber. 1986. An introduction to
unification-based approaches to grammar. CSLI.

http://www.itri.brighton.ac.uk/projects/rags.

Dominique Estival, Chris Nowak, and Andrew
Zschorn. 2004. Towards ontology-based natural
language processing. In Proceedings of NLP-XML
2004, Barcelona.

Scott Farrar and Terry Langendoen. 2003. A linguistic
ontology for the semantic web. Glot International,
7(3):1-4.

Ian Horrocks. 2005. Description logics in ontology
applications. In B. Beckert, editor, Proc. of the 9th
Int. Conf. on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX 2005),
pages 2—13. Springer Verlag LNCS 3702.

Baden Hughes and Steven Bird. 2003. Grid-enabling
natural language engineering by stealth. In Pro-
ceedings of the HLT-NAACL 2003 Workshop on The
Software Engineering and Architecture of Language
Technology Systems.

G. Klyne and J. Carroll. 2003. Resource descrip-
tion framework (rdf): Concepts and abstract syn-
tax. Technical Report http://www.w3.org/TR/rdf-
concepts, World Wide Web Consortium.

