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Abstract

We present the situated reference genera-
tion module of a hybrid human-robot in-
teraction system that collaborates with a
human user in assembling target objects
from a wooden toy construction set. The
system contains a sub-symbolic goal in-
ference system which is able to detect the
goals and errors of humans by analysing
their verbal and non-verbal behaviour. The
dialogue manager and reference genera-
tion components then use situated refer-
ences to explain the errors to the human
users and provide solution strategies. We
describe a user study comparing the results
from subjects who heard constant refer-
ences to those who heard references gener-
ated by an adaptive process. There was no
difference in the objective results across
the two groups, but the subjects in the
adaptive condition gave higher subjective
ratings to the robot’s abilities as a conver-
sational partner. An analysis of the objec-
tive and subjective results found that the
main predictors of subjective user satisfac-
tion were the user’s performance at the as-
sembly task and the number of times they
had to ask for instructions to be repeated.

1 Introduction

When two humans jointly carry out a mutual task
for which both know the plan—for example, as-
sembling a new shelf—it frequently happens that
one makes an error, and the other has to assist
and to explain what the error was and how it can
be solved. Humans are skilled at spotting errors
committed by another, as well as errors which
they made themselves. Recent neurological stud-
ies have shown that error monitoring—i.e., ob-
serving the errors made by oneself or by others—

plays an important role in joint activity. For ex-
ample, Bekkering et al. (2009) have demonstrated
that humans show the same brain activation pat-
terns when they make an error themselves and
when they observe someone else making an error.

In this paper, we describe a human-robot inter-
action (HRI) system that is able both to analyse
the actions and the utterances of a human part-
ner to determine if the human made an error in
the assembly plan, and to explain to the human
what went wrong and what to do to solve the prob-
lem. This robot combines approaches from sub-
symbolic processing and symbolic reasoning in a
hybrid architecture based on that described in Fos-
ter et al. (2008b).

During the construction process, it is frequently
necessary to refer to an object which is being used
to assemble the finished product, choosing an un-
ambigious reference to distinguish the object from
the others available. The classic reference gen-
eration algorithm, on which most subsequent im-
plementations are based, is the incremental algo-
rithm of Dale and Reiter (1995), which selects
a set of attributes of a target object to single it
out from a set of distractor objects. In real-world
tasks, the speaker and hearer often have more con-
text in common than just the knowledge of object
attributes, and several extensions have been pro-
posed, dealing with visual and discourse salience
(Kelleher and Kruijff, 2006) and the ability to pro-
duce multimodal references including actions such
as pointing (van der Sluis, 2005; Kranstedt and
Wachsmuth, 2005).

Foster et al. (2008a) noted another type of mul-
timodal reference which is particularly useful in
embodied, task-based contexts: haptic-ostensive
reference, in which an object is referred to as it
is being manipulated by the speaker. Manipulat-
ing an object, which must be done in any case as
part of the task, also makes an object more salient
and therefore affords linguistic references that in-



Figure 1: The dialogue robot

dicate the increased accessibility of the referent.
This type of reference is similar to the placing-for
actions noted by Clark (1996).

An initial approach for generating referring ex-
pressions that make use of haptic-ostensive refer-
ence was described in (Foster et al., 2009a). With
this system, a study was conducted comparing the
new reference strategy to the basic Dale and Reiter
incremental algorithm. Naı̈ve users reported that it
was significantly easier to understand the instruc-
tions given by the robot when it used references
generated by the more sophisticated algorithm. In
this paper, we perform a similar experiment, but
making use of a more capable human-robot in-
teraction system and a more complete process for
generating situated references.

2 Hybrid Human-Robot Dialogue
System

The experiment described in this paper makes use
of a hybrid human-robot dialogue system which
supports multimodal human-robot collaboration
on a joint construction task. The robot (Figure 1)
has a pair of manipulator arms with grippers,
mounted in a position to resemble human arms,
and an animatronic talking head (van Breemen,
2005) capable of producing facial expressions,
rigid head motion, and lip-synchronised synthe-
sised speech. The subject and the robot work to-
gether to assemble wooden construction toys on
a common workspace, coordinating their actions

through speech (English or German), gestures, and
facial expressions.

The robot can pick up and move objects in the
workspace and perform simple assembly tasks. In
the scenario considered here, both of the partici-
pants know the assembly plan and jointly execute
it. The robot assists the human, explains necessary
assembly steps in case the human makes an error,
and offers pieces as required. The workspace is di-
vided into two areas—one belonging to the robot
and one to the human—to make joint action nec-
essary for task success.

The system has components which use both
sub-symbolic and symbolic processing. It in-
cludes a goal inference module based on dynamic
neural fields (Erlhagen and Bicho, 2006; Bicho
et al., 2009), which selects the robot’s next actions
based on the human user’s actions and utterances.
Given a particular assembly plan and the knowl-
edge of which objects the user has picked up, this
module can determine when the user has made
an error. The system also incorporates a dialogue
manager based on the TrindiKit dialogue manage-
ment toolkit (Larsson and Traum, 2000), which
implements the information-state based approach
to dialogue management. This unique combina-
tion of abilities means that when the robot detects
that its human partner has made an error—for ex-
ample, picking up or requesting an assembly piece
that is not needed in the current step of the building
plan—it can explain to the human what the error
was and what can be done to correct the mistake—
for example by picking up or indicating the correct
assembly piece.

Messages from all of the system’s input chan-
nels (speech, object recognition, and gesture
recognition) are processed and combined by a
multimodal fusion component based on (Giuliani
and Knoll, 2008), which is the link between the
symbolic and the sub-symbolic parts of the sys-
tem. The fusion component then communicates
with the goal inference module, which calculates
the next action instructions for the robot and also
determines if the user made an error. From there,
fusion combines the information from goal infer-
ence with the input data and sends unified hy-
potheses to the dialogue manager.

When it receives the fusion hypotheses, the dia-
logue manager uses the dialogue history and the
physical and task context to choose a response.
It then sends a high-level specification of the de-



1. System First we will build a windmill.

2. User Okay.

3. User {picks up a yellow cube, unnecessary piece for a
windmill}

4. System You don’t need a yellow cube to build a windmill.

5. System To build a windmill, you first need to build a
tower.

6. System [picking up and holding out red cube] To build
the tower, insert the green bolt through the end of this
red cube and screw it into the blue cube.

7. User [takes cube, performs action] Okay.

Figure 2: Sample human-robot dialogue, showing
adaptively-generated situated references

sired response to the output planner, which in turn
sends commands to each output channel: linguis-
tic content (including multimodal referring ex-
pressions), facial expressions and gaze behaviours
of the talking head, and actions of the robot ma-
nipulators. The linguistic outputs are realised us-
ing the OpenCCG surface realiser (White, 2006).

3 Reference Generation

In this system, two strategies were implemented
for generating references to objects in the world:
a constant version that uses only the basic incre-
mental algorithm (Dale and Reiter, 1995) to se-
lect properties, and an adaptive version that uses
more of the physical, dialogue and task context
to help select the references. The constant sys-
tem can produce a definite or indefinite reference,
and the most appropriate combination of attributes
according to the incremental algorithm. The adap-
tive system also generates pronominal and deictic
references, and introduces the concept of multiple
types of distractor sets depending on context.

Figure 2 shows a fragment of a sample interac-
tion in which the user picks up an incorrect piece:
the robot detects the error and describes the correct
assembly procedure. The underlined references
show the range of output produced by the adap-
tive reference generation module; for the constant
system, the references would all have been “the
red cube”. The algorithms used by the adaptive
reference generation module are described below.

3.1 Reference Algorithm

The module stores a history of the referring ex-
pressions spoken by both the system and the user,
and uses these together with distractor sets to se-
lect referring expressions. In this domain there are
two types of objects which we need to refer to:
concrete objects in the world (everything which is
on the table, or in the robot’s or user’s hand), and
objects which do not yet exist, but are in the pro-
cess of being created. For non-existent objects we
do not build a distractor set, but simply use the
name of the object. In all other cases, we use one
of three types of distractor set:

• all the pieces needed to build a target object;

• all the objects referred to since the last men-
tion of this object; or

• all the concrete objects in the world.

The first type of set is used if the object under
consideration (OUC) is a negative reference to a
piece in context of the creation of a target object.
In all other cases, the second type is used if the
OUC has been mentioned before and the third type
if it has not.

When choosing a referring expression, we first
process the distractor set, comparing the proper-
ties of the OUC with the properties of all distrac-
tors. If a distractor has a different type from the
OUC, it is removed from the distractor set. With
all other properties, if the distractor has a different
value from the OUC, it is removed from the dis-
tractor set, and the OUC’s property value is added
to the list of properties to use.

We then choose the type of referring expression.
We first look for a previous reference (PR) to the
OUC, and if one exists, determine whether it was
in focus. Depending on the case, we use one of the
following reference strategies.

No PR If the OUC does not yet exist or we are
making a negative reference, we use an indef-
inite article. If the robot is holding the OUC,
we use a deictic reference. If the OUC does
exist and there are no distractors, we use a
definite; if there are distractors we use an in-
definite.

PR was focal If the PR was within the same turn,
we choose a pronoun for our next reference.
If it was in focus but in a previous turn, if



the robot is holding the OUC we use a deictic
reference, and if the robot is not holding it,
we use a pronoun.

PR was not focal If the robot is holding the
OUC, we make a deictic reference. Other-
wise, if the PR was a pronoun, definite, or de-
ictic, we use a definite article. If the PR was
indefinite and there are no distractors, we use
a definite article, if there are distractors, we
use an indefinite article.

If there are any properties in the list, and the
reference chosen is not a pronoun, we add them.

3.2 Examples of the Reference Algorithm
We will illustrate the reference-selection strategy
with two cases from the dialogue in Figure 2.

Utterance 4 “a yellow cube”
This object is going to be referred to in a negative
context as part of a windmill under construction,
so the distractor set is the set of objects needed to
make a windmill: {red cube, blue cube, small slat,
small slat, green bolt, red bolt}.

We select the properties to use in describing the
object under consideration, processing the distrac-
tor set. We first remove all objects which do not
share the same type as our object under considera-
tion, which leaves {red cube, blue cube}. We then
compare the other attributes of our new object with
the remaining distractors - in this case “colour”.
Since neither cube shares the colour “yellow” with
the target object, both are removed from the dis-
tractor set, and “yellow” is added to the list of
properties to use.

There is no previous reference to this object,
and since we are making a negative reference,
we automatically choose an indefinite article. We
therefore select the reference “a yellow cube”.

Utterance 6 “it” (a green bolt)
This object has been referred to before, earlier in
the same utterance, so the distractor set is all the
references between the earlier one and this one—
{red cube}. Since this object has a different type
from the bolt we want to describe, the distractor
set is now empty, and nothing is added to the list
of properties to use.

There is a previous definite reference to the ob-
ject in the same utterance: “the green bolt”. This
reference was focal, so we are free to use a pro-
noun if appropriate. Since the previous reference

was definite, and the object being referred to does
exist, we choose to use a pronoun. We therefore
select the reference “it”.

4 Experiment Design

In the context of the HRI system, a constant refer-
ence strategy is sufficient in that it makes it possi-
ble for the robot’s partner to know which item is
needed. On the other hand, while the varied forms
produced by the more complex mechanism can in-
crease the naturalness of the system output, they
may actually be insufficient if they are not used
in appropriate current circumstances—for exam-
ple, “this cube” is not a particularly helpful refer-
ence if a user has no way to tell which “this” is.
As a consequence, the system for generating such
references must be sensitive to the current state
of joint actions and—in effect—of joint attention.
The difference between the two systems is a test of
the adaptive version’s ability to adjust expressions
to pertinent circumstances. It is known that peo-
ple respond well to reduced expressions like “this
cube” or “it” when another person uses them ap-
propriately (Bard et al., 2008); we need to see if
the robot system can also achieve the benefits that
situated reference could provide.

To address this question, the human-robot di-
alogue system was evaluated through a user study
in which subjects interacted with the complete sys-
tem. Using a between-subjects design, this study
compared the two reference strategies, measuring
the users’ subjective reactions to the system along
with their overall performance in the interaction.
Based on the findings from the user evaluation de-
scribed in (Foster et al., 2009a)—in which the pri-
mary effect of varying the reference strategy was
on the users’ subjective opinion of the robot—the
main prediction for this study was as follows:

• Subjects who interact with a system using
adaptive references will rate the quality of
the robot’s conversation more highly than the
subjects who hear constant references.

We made no specific prediction regarding the
effect of reference strategy on any of the objec-
tive measures: based on the results of the user
evaluation mentioned above, there is no reason to
expect an effect either way. Note that—as men-
tioned above—if the adaptive version makes in-
correct choices, that may have a negative impact
on users’ ability to understand the system’s gener-
ated references. For this reason, even a finding of



(a) Windmill (b) Railway signal

Figure 3: Target objects for the experiment

no objective difference would demonstrate that the
adaptive references did not harm the users’ ability
to interact with the system, as long as it was ac-
companied by the predicted improvement in sub-
jective judgements.

4.1 Subjects

41 subjects (33 male) took part in this experiment.
The mean age of the subjects was 24.5, with a min-
imum of 19 and a maximum of 42. Of the subjects
who indicated an area of study, the two most com-
mon areas were Mathematics (14 subjects) and In-
formatics (also 14 subjects). On a scale of 1 to 5,
subjects gave a mean assessment of their knowl-
edge of computers at 4.1, of speech-recognition
systems at 2.0, and of human-robot systems at 1.7.
Subjects were compensated for their participation
in the experiment.

4.2 Scenario

This study used a between-subjects design with
one independent variable: each subject interacted
either with a system that used a constant strategy
to generate referring expressions (19 subjects), or
else with a system that used an adaptive strategy
(22 subjects).1

Each subject built two objects in collaboration
with the system, always in the same order. The
first target object was the windmill (Figure 3a);
after the windmill was completed, the robot and
human then built a railway signal (Figure 3b). For
both target objects, the user was given a building
plan (on paper). To induce an error, both of the
plans given to the subjects instructed them to use
an incorrect piece: a yellow cube instead of a red
cube for the windmill, and a long (seven-hole) slat
instead of a medium (five-hole) slat for the rail-

1The results of an additional three subjects in the constant-
reference condition could not be analysed due to technical
difficulties.

way signal. The subjects were told that the plan
contained an error and that the robot would cor-
rect them when necessary, but did not know the
nature of the error.

When the human picked up or requested an in-
correct piece during the interaction, the system de-
tected the error and explained to the human what
to do in order to assemble the target object cor-
rectly. When the robot explained the error and
when it handed over the pieces, it used referring
expressions that were generated using the constant
strategy for half of the subjects, and the adaptive
strategy for the other half of the subjects.

4.3 Experimental Set-up and Procedure

The participants stood in front of the table facing
the robot, equipped with a headset microphone for
speech recognition. The pieces required for the
target object—plus a set of additional pieces in or-
der to make the reference task more complex—
were placed on the table, using the same layout
for every participant. The layout was chosen to
ensure that there would be points in the interaction
where the subjects had to ask the robot for build-
ing pieces from the robot’s workspace, as well as
situations in which the robot automatically handed
over the pieces. Along with the building plan men-
tioned above, the subjects were given a table with
the names of the pieces they could build the ob-
jects with.

4.4 Data Acquisition

At the end of a trial, the subject responded to
a usability questionnaire consisting of 39 items,
which fell into four main categories: Intelligence
of the robot (13 items), Task ease and task suc-
cess (12 items), Feelings of the user (8 items),
and Conversation quality (6 items). The items on
the questionnaire were based on those used in the
user evaluation described in (Foster et al., 2009b),
but were adapted for the scenario and research
questions of the current study. The questionnaire
was presented using software that let the subjects
choose values between 1 and 100 with a slider. In
addition to the questionnaire, the trials were also
video-taped, and the system log files from all tri-
als were kept for further analysis.

5 Results

We analysed the data resulting from this study in
three different ways. First, the subjects’ responses



Table 1: Overall usability results

Constant Adaptive M-W
Intell. 79.0 (15.6) 74.9 (12.7) p = 0.19, n.s.
Task 72.7 (10.4) 71.1 (8.3) p = 0.69, n.s.
Feeling 66.9 (15.9) 66.8 (14.2) p = 0.51, n.s.
Conv. 66.1 (13.6) 75.2 (10.7) p = 0.036, sig.
Overall 72.1 (11.2) 71.8 (9.1) p = 0.68, n.s.

to the questionnaire items were compared to de-
termine if there was a difference between the re-
sponses given by the two groups. A range of sum-
mary objective measures were also gathered from
the log files and videos—these included the dura-
tion of the interaction measured both in seconds
and in system turns, the subjects’ success at build-
ing each of the target objects, the number of times
that the robot had to explain the construction plan
to the user, and the number of times that the users
asked the system to repeat its instructions. Finally,
we compared the results on the subjective and ob-
jective measures to determine which of the objec-
tive factors had the largest influence on subjective
user satisfaction.

5.1 Subjective Measures

The subjects in this study gave a generally positive
assessment of their interactions with the system on
the questionnaire—with a mean overall satisfac-
tion score of 72.0 out of 100—and rated the per-
ceived intelligence of the robot particularly highly
(overall mean of 76.8). Table 1 shows the mean
results from the two groups of subjects for each
category on the user-satisfaction questionnaire, in
all cases on a scale from 0–100 (with the scores
for negatively-posed questions inverted).

To test the effect of reference strategy on the
usability-questionnaire responses, we performed a
Mann-Whitney test comparing the distribution of
responses from the two groups of subjects on the
overall results, as well as on each sub-category of
questions. For most categories, there was no sig-
nificant difference between the responses of the
two groups, with p values ranging from 0.19 to
0.69 (as shown in Table 1). The only category
where a significant difference was found was on
the questionnaire items that asked the subjects to
assess the robot’s quality as a conversational part-
ner; for those items, the mean score from sub-
jects who heard the adaptive references was sig-
nificantly higher (p < 0.05) than the mean score
from the subjects who heard references generated
by the constant reference module. Of the six ques-

Table 2: Objective results (all differences n.s.)

Measure Constant Adaptive M-W
Duration (s.) 404.3 (62.8) 410.5 (94.6) p = 0.90
Duration (turns) 29.8 (5.02) 31.2 (5.57) p = 0.44
Rep requests 0.26 (0.45) 0.32 (0.78) p = 0.68
Explanations 2.21 (0.63) 2.41 (0.80) p = 0.44
Successful trials 1.58 (0.61) 1.55 (0.74) p = 0.93

tions that were related to the conversation quality,
the most significant impact was on the two ques-
tions which assessed the subjects’ understanding
of what they were able to do at various points dur-
ing the interaction.

5.2 Objective Measures

Based on the log files and video recordings, we
computed a range of objective measures. These
measures were divided into three classes, based
on those used in the PARADISE dialogue-system
evaluation framework (Walker et al., 2000):

• Two dialogue efficiency measures: the mean
duration of the interaction as measured both
in seconds and in system turns;

• Two dialogue quality measures: the number
of times that the robot gave explanations, and
the number of times that the user asked for
instructions to be repeated; and

• One task success measure: how many of the
(two) target objects were constructed as in-
tended (i.e., as shown in Figure 3).

For each of these measures, we tested whether the
difference in reference strategy had a significant
effect, again via a Mann-Whitney test. Table 2 il-
lustrates the results on these objective measures,
divided by the reference strategy.

The results from the two groups of subjects
were very similar on all of these measures: on
average, the experiment took 404 seconds (nearly
seven minutes) to complete with the constant strat-
egy and 410 seconds with the adaptive, the mean
number of system turns was close to 30 in both
cases, just over one-quarter of all subjects asked
for instructions to be repeated, the robot gave just
over two explanations per trial, and about three-
quarters of all target objects (i.e. 1.5 out of 2)
were correctly built. The Mann-Whitney test con-
firms that none of the differences between the two
groups even came close to significance on any of
the objective measures.



5.3 Comparing Objective and Subjective
Measures

In the preceding sections, we presented results on
a number of objective and subjective measures.
While the subjects generally rated their experi-
ence of using the system positively, there was
some degree of variation, most of which could not
be attributed to the difference in reference strat-
egy. Also, the results on the objective measures
varied widely across the subjects, but again were
not generally affected by the reference strategy.
In this section, we examine the relationship be-
tween these two classes of measures in order to
determine which of the objective measures had the
largest effect on users’ subjective reactions to the
HRI system.

Being able to predict subjective user satisfac-
tion from more easily-measured objective proper-
ties can be very useful for developers of interac-
tive systems: in addition to making it possible to
evaluate systems based on automatically available
data without the need for extensive experiments
with users, such a performance function can also
be used in an online, incremental manner to adapt
system behaviour to avoid entering a state that is
likely to reduce user satisfaction (Litman and Pan,
2002), or can be used as a reward function in a
reinforcement-learning scenario (Walker, 2000).

We employed the procedure used in the PAR-
ADISE evaluation framework (Walker et al.,
2000) to explore the relationship between the sub-
jective and objective factors. The PARADISE
model uses stepwise multiple linear regression to
predict subjective user satisfaction based on mea-
sures representing the performance dimensions of
task success, dialogue quality, and dialogue effi-
ciency, resulting in a predictor function of the fol-
lowing form:

Satisfaction =
n

∑
i=1

wi ∗N (mi)

The mi terms represent the value of each measure,
while the N function transforms each measure
into a normal distribution using z-score normali-
sation. Stepwise linear regression produces coef-
ficients (wi) describing the relative contribution of
each predictor to the user satisfaction. If a predic-
tor does not contribute significantly, its wi value is
zero after the stepwise process.

Table 3 shows the predictor functions that were
derived for each of the classes of subjective mea-

sures in this study, using all of the objective mea-
sures from Table 2 as initial factors. The R2 col-
umn indicates the percentage of the variance in the
target measure that is explained by the predictor
function, while the Significance column gives sig-
nificance values for each term in the function.

In general, the two factors with the biggest in-
fluence on user satisfaction were the number of
repetition requests (which had a uniformly neg-
ative effect on user satisfaction), and the num-
ber of target objects correctly built by the user
(which generally had a positive effect). Aside
from the questions on user feelings, the R2 values
are generally in line with those found in previous
PARADISE evaluations of other dialogue systems
(Walker et al., 2000; Litman and Pan, 2002), and
in fact are much higher than those found in a pre-
vious similar study (Foster et al., 2009b).

6 Discussion

The subjective responses on the relevant items
from the usability questionnaire suggest that
the subjects perceived the robot to be a bet-
ter conversational partner if it used contextually
varied, situationally-appropriate referring expres-
sions than if it always used a baseline, constant
strategy; this supports the main prediction for this
study. The result also agrees with the findings of
a previous study (Foster et al., 2009a)—this sys-
tem did not incorporate goal inference and had a
less-sophisticated reference strategy, but the main
effect of changing reference strategy was also on
the users’ subjective opinions of the robot’s inter-
active ability. These studies together support the
current effort in the natural-language generation
community to devise more sophisticated reference
generation algorithms.

On the other hand, there was no significant dif-
ference between the two groups on any of the
objective measures: the dialogue efficiency, dia-
logue quality, and task success were nearly iden-
tical across the two groups of subjects. A de-
tailed analysis of the subjects’ gaze and object-
manipulation behaviour immediately after various
forms of generated references from the robot also
failed to find any significant differences between
the various reference types. These overall results
are not particularly surprising: studies of human-
human dialogue in a similar joint construction task
(Bard et al., In prep.) have demonstrated that the
collaborators preserve quality of construction in



Table 3: PARADISE predictor functions for each category on the usability questionnaire

Measure Function R2 Significance
Intelligence 76.8+7.00∗N (Correct)−5.51∗N (Repeats) 0.39 Correct: p < 0.001,

Repeats: p < 0.005
Task 72.4+3.54∗N (Correct)−3.45∗N (Repeats)−2.17∗N (Explain) 0.43 Correct: p < 0.005,

Repeats: p < 0.01,
Explain: p≈ 0.10

Feeling 66.9−6.54∗N (Repeats)+4.28∗N (Seconds) 0.09 Repeats: p < 0.05,
Seconds: p≈ 0.12

Conversation 71.0+5.28∗N (Correct)−3.08∗N (Repeats) 0.20 Correct: p < 0.01,
Repeats: p≈ 0.10

Overall 72.0+4.80∗N (Correct)−4.27∗N (Repeats) 0.40 Correct: p < 0.001,
Repeats: p < 0.005

all cases, though circumstances may dictate what
strategies they use to do this. Combined with the
subjective findings, this lack of an objective effect
suggests that the references generated by the adap-
tive strategy were both sufficient and more natural
than those generated by the constant strategy.

The analysis of the relationship between the
subjective and objective measures analysis has
also confirmed and extended the findings from a
similar analysis (Foster et al., 2009b). In that
study, the main contributors to user satisfaction
were user repetition requests (negative), task suc-
cess, and dialogue length (both positive). In the
current study, the primary factors were similar,
although dialogue length was less prominent as
a factor and task success was more prominent.
These findings are generally intuitive: subjects
who are able to complete the joint construction
task are clearly having more successful interac-
tions than those who are not able to complete the
task, while subjects who need to ask for instruc-
tions to be repeated are equally clearly not hav-
ing successful interactions. The findings add ev-
idence that, in this sort of task-based, embodied
dialogue system, users enjoy the experience more
when they are able to complete the task success-
fully and are able to understand the spoken contri-
butions of their partner, and also suggest that de-
signers should concentrate on these aspects of the
interaction when designing the system.

7 Conclusions

We have presented the reference generation mod-
ule of a hybrid human-robot interaction system
that combines a goal-inference component based
on sub-symbolic dynamic neural fields with a
natural-language interface based on more tradi-
tional symbolic techniques. This combination of
approaches results in a system that is able to work

together with a human partner on a mutual con-
struction task, interpreting its partner’s verbal and
non-verbal behaviour and responding appropri-
ately to unexpected actions (errors) of the partner.

We have then described a user evaluation of this
system, concentrating on the impact of different
techniques for generating situated references in
the context of the robot’s corrective feedback. The
results of this study indicate that using an adaptive
strategy to generate the references significantly in-
creases the users’ opinion of the robot as a con-
versational partner, without having any effect on
any of the other measures. This result agrees with
the findings of the system evaluation described in
(Foster et al., 2009a), and adds evidence that so-
phisticated generation techniques are able to im-
prove users’ experiences with interactive systems.

An analysis of the relationship between the ob-
jective and subjective measures found that the
main contributors to user satisfaction were the
users’ task performance (which had a positive ef-
fect on most measures of satisfaction), and the
number of times the users had to ask for instruc-
tions to be repeated (which had a generally neg-
ative effect). Again, these results agree with the
findings of a previous study (Foster et al., 2009b),
and also suggest priorities for designers of this
type of task-based interactive system.
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