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Preface

It gives us great pleasure to introduce the technical program of the Sixth In-
ternational Natural Language Generation Conference (INLG 2010), the biennial
meeting of the ACL Special Interest Group in Natural Language Generation
(SIGGEN). The INLG conference provides the premier forum for the discus-
sion, dissemination and archiving of research and results in the field of natural
language generation. Previous INLG conferences have been held in the USA,
Australia, the UK and Israel. Prior to 2000, INLG meetings were held as inter-
national workshops with a history stretching back to 1983. In 2010, on behalf
of SIGGEN, INLG is being co-hosted by Trinity College Dublin and the Dublin
Institute of Technology; and held in Trim Castle Hotel, Trim, Co. Meath, Ireland.

The INLG 2010 programme consists of presentations of substantial, original,
and previously unpublished results on all topics related to natural language
generation. This year we received 50 submissions (36 full papers and 14 short
papers) from 18 different countries from around the world. As in previous years,
each submission was reviewed by at least three members of an international
programme committee of leading researchers in the field. Based on these reviews
16 submissions were accepted as full papers and 8 as short papers (4 papers were
withdrawn). The accepted papers are of the highest quality and cover all of the
major aspects of natural language generation.

This year, the conference programme includes two keynote speakers. Su-
san E. Brennan, Professor of Psychology at Stony Brook University, will speak
on “Adapting Generation to Addressees: What Drives Audience Design?” and
Richard Power of The Open University will present a talk entitled “Ontologies
and Text: Can NLG Bridge the Gap?”. This year we are also delighted to host the
2010 Generation Challenges organised by Anja Belz, Albert Gatt and Alexander
Koller. This is a part of INLG that has been growing in importance over the last
number of conferences and is a great addition to the event.

The organising committee would like to offer their thanks to our invited
speakers for agreeing to join us, the organisers of INLG 2008 for their enormous
help, the SIGGEN board for allowing us host the conference and for their as-
sistance, Priscilla Rasmussen at ACL and Alena Moison at TCD for handling
finances, the programme committee for their dedicated work, and, most of all,
the authors of all submitted papers. We have also received generous sponsor-
ship from the Centre for Next Generation Localisation and Science Foundation
Ireland for which we are extremely grateful.

Finally, we would like to welcome you to Trim and hope that you have an
enjoyable and inspiring visit. We will leave you with an Irish proverb in the spirit
of INLG: Tı́r gan teanga, t́ır gan anam.

The INLG 2010 Organising Committee
John Kelleher, Brian Mac Namee & Ielka van der Sluis
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Richard Power

14:45 - 15:00 Break

Session 2: Ontology Based Generation
15:00 - 15:30 Using Semantic Web Technology to Support NLG.

Case study: OWL finds RAGS.
Chris Mellish

15:30 - 16:00 Charting the Potential of Description Logic for the
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16:00 - 16:30 Generating and Validating Abstracts of Meeting
Conversations: a User Study.
Gabriel Murray, Giuseppe Carenini and Raymond Ng
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Session 3: Sentence Level Generation
and Machine Learning in NLG

16:45 - 17:15 Complex Lexico-syntactic Reformulation of Sentences
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Advaith Siddharthan

17:15 - 17:45 Feature Selection for Fluency Ranking.
Daniel de Kok

17:45 -18:15 Hierarchical Reinforcement Learning for Adaptive Text Generation.
Nina Dethlefs and Heriberto Cuayahuitl

Evening Banquet and drinks and music at the Hotel Bar
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Thursday, July 8th, 2010 (Morning)

Generation Challenges

08:30 - 09:00 Preparation for Generation Challenge Poster Session

GC Session 1: Shared Task Reports
(chaired by Albert Gatt)

09:00 - 09:10 Introduction (Albert Gatt)
09:10 - 09:40 GREC’10 results presentation

Anja Belz
09:40 - 10:05 GIVE-2 results presentation

Alexander Koller
10:05 - 10:20 Question Generation presentation

Vasile Rus

10:20 - 10:50 GC Poster Session and Tea/Coffee Break

GC Session 2: Invited Talk
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Victor Ferreira

GC Session 3: New Shared Task Proposals
(chaired by Anja Belz )

11:35 -11:55 Generation Under Uncertainty
Oliver Lemon

11:55 -12:15 Text Improvement
Robert Dale

12:15 - 12:35 Surface Realisation
Mike White

12: 35 - 13:30 Lunch
Generation Challenge Working Lunch
Table 1: Generation Under Uncertainty; chair: Oliver Lemon
Table 2: Text Improvement; chair: Robert Dale
Table 3: Surface Realisation; chair: Mike White
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Thursday, July 8th, 2010 (Afternoon/Evening)

Session 4: Evaluation in NLG and Poster Introductions
13:30 - 14:00 Towards a Programmable Instrumented Generator.

Chris Mellish
14:00 - 14:30 Comparing Rating Scales and Preference Judgements

in Language Evaluation.
Anja Belz and Eric Kow

14:30 - 15:00 Textual properties and task-based evaluation: Investigating
the role of surface properties, structure and content.
Albert Gatt and Francois Portet

15:00 - 15:15 Poster Introductions

15:15 - 17:15 Activity break

18:00 - late INLG Poster session with drinks and dinner and music!
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Friday, July 9th, 2010

Session 5: Invited Talk
09:00 - 10:00 Adapting Generation to Addressees: What Drives Audience Design?

Susan E. Brennan

10:00 - 10:15 Break

Session 6: Situated Reference
10:15 - 10:45 Situated Reference in a Hybrid Human-Robot Interaction System.

Manuel Giuliani, Mary Ellen Foster, Amy Isard,
Colin Matheson, Jon Oberlander and Alois Knoll

10:45 - 11:15 Natural Reference to Objects in a Visual Domain.
Margaret Mitchell, Kees van Deemter and Ehud Reiter

11:15 - 11:45 Generating Referring Expressions with Reference Domain Theory.
Alexandre Denis

11:45 - 12:15 Towards an extrinsic evaluation of referring expressions
in situated dialogs.
Philipp Spanger, Ryu Iida, Takenobu Tokunaga,
Asuka Terai and Naoko Kuriyama

12:15 - 13:30 Lunch

Session 7: Discourse/Dialogue Generation
13:30 - 14:00 Harvesting Re-usable High-level Rules for

Expository Dialogue Generation.
Paul Piwek and Svetlana Stoyanchev

14:00 - 14:30 A Discourse-Aware Graph-Based Content-Selection Framework.
Seniz Demir, Sandra Carberry and Kathleen F. McCoy

14:30 - 15:00 Tense and Aspect Assignment in Narrative Discourse.
David Elson and Kathleen McKeown

15:00 - 15:15 Closing Remarks

16:00 Bus departs for Dublin
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Adapting Generation to Addressees: What
Drives Audience Design?

Susan E. Brennan

Stony Brook University
New York, USA

susan.brennan@sunysb.edu

Abstract: Utterances are enormously variable in the forms they take. Al-
though variability is often treated as noise to be normalized or filtered out,
some who study spoken dialogprobably some in this communitysuspect that
this variability is meaningful. In this talk I will present experimental data about
partner-specific variability, or audience design. No one disputes that audience
design exists, but there is debate about how and why it emerges and whether it
matters. After discussing some systematic ways in which speakers adapt their ut-
terances to addressees, I will consider: What drives this adaptation? How does
it affect processing by addressees? And what are the implications for natural
language generation?

Bio: Susan Brennan is Professor of Psychology at Stony Brook University
and is also affiliated with the Departments of Linguistics and Computer Science.
She received a Ph.D. in Cognitive Psychology from Stanford University with a
focus on psycholinguistics; an M.S. from the MIT Media Lab, where she worked
on computer-generated caricatures and mediated communication; and a B.A. is
in cultural anthropology from Cornell University. She uses eyetracking and other
behavioral techniques to study language processing by interacting partners.
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Ontologies and Text: Can NLG Bridge the Gap?

Richard Power

The Open University
Milton Keynes, United Kingdom

r.power@open.ac.uk

Abstract: Ontologies are akin to technical documents in that they describe
domain knowledge, but they express this content very differently, in formal lan-
guages like OWL designed for use by machines, not people. During the last
decade, interest has grown in the task of mapping from OWL to controlled frag-
ments of natural language, thus providing a niche for NLG in which we are at
last agreed on the formal specification of the input.

The aim of the talk is to compare ontologies and their textual counterparts
(e.g., technical dictionaries, encyclopedias) at several linguistic levels. After look-
ing at their usage (pragmatic level), we will consider terminology (roughly, word
level), statements (sentence level), and groups of related statements (discourse
level). The question is whether we can find similar levels in the organisation of
OWL ontologies, thus allowing a mapping from ontologies to texts that can be
exploited by NLG systems.

Bio: Richard Power has a B.A. in Psychology from the University of Sheffield,
and a PhD from the University of Edinburgh for research on generating con-
versation. From 1975-78 he worked as a postdoc at the University of Sussex,
on topics including automatic learning of numeral systems. He then moved to
Padua, Italy, where he taught English in the Psychology department for some
years, and worked as chief scientist and knowledge engineer for a Milan-based
Artificial Intelligence company. In 1993 he returned to the UK and joined the
Information Technology Research Centre at the University of Brighton. Since
2005 he has been senior lecturer in the Department of Computing at the Open
University.

His research interests since 1993 have focussed on two areas in NLG: ap-
plications of Constraint Logic Programming (especially in the ICONOCLAST
project), and natural language tools for knowledge editing (the WYSIWYM
systems). He is currently working on the development of NLG-based tools for
viewing and editing knowledge on the semantic web (SWAT project).
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Comparing Rating Scales and Preference Judgements
in Language Evaluation

Anja Belz Eric Kow
Natural Language Technology Group

School of Computing, Mathematical and Information Sciences
University of Brighton
Brighton BN2 4GJ, UK

{asb,eykk10}@bton.ac.uk

Abstract

Rating-scale evaluations are common in
NLP, but are problematic for a range of
reasons, e.g. they can be unintuitive for
evaluators, inter-evaluator agreement and
self-consistency tend to be low, and the
parametric statistics commonly applied to
the results are not generally considered
appropriate for ordinal data. In this pa-
per, we compare rating scales with an al-
ternative evaluation paradigm, preference-
strength judgement experiments (PJEs),
where evaluators have the simpler task of
deciding which of two texts is better in
terms of a given quality criterion. We
present three pairs of evaluation experi-
ments assessing text fluency and clarity
for different data sets, where one of each
pair of experiments is a rating-scale ex-
periment, and the other is aPJE. We find
the PJE versions of the experiments have
better evaluator self-consistency and inter-
evaluator agreement, and a larger propor-
tion of variation accounted for by system
differences, resulting in a larger number of
significant differences being found.

1 Introduction

Rating-scale evaluations, where human evaluators
assess system outputs by selecting a score on a dis-
crete scale, are the most common form of human-
assessed evaluation inNLP. Results are typically
presented in rank tables of means for each system
accompanied by means-based measures of statisti-
cal significance of the differences between system
scores.

NLP system evaluation tends to involve sets of
systems, rather than single ones (evaluations tend
to at least incorporate a baseline or, more rarely, a
topline system). The aim of system evaluation is

to gain some insight into which systems are bet-
ter than which others, in other words, the aim is
inherently relative. YetNLP system evaluation ex-
periments have generally preferred rating scale ex-
periments where evaluators assess each system’s
quality in isolation, in absolute terms.

Such rating scales are not very intuitive to use;
deciding whether a text deserves a 5, a 4 or a 3
etc. can be difficult. Furthermore, evaluators may
ascribe different meanings to scores and the dis-
tances between them. Individual evaluators have
different tendencies in using rating scales, e.g.
what is known as ‘end-aversion’ tendency where
certain individuals tend to stay away from the ex-
treme ends of scales; other examples are positive
skew and acquiescence bias, where individuals
make disproportionately many positive or agree-
ing judgements; see e.g. Choi and Pak, (2005).

It is not surprising then that stable averages of
quality judgements, let alone high levels of agree-
ment, are hard to achieve, as has been observed for
MT (Turian et al., 2003; Lin and Och, 2004), text
summarisation (Trang Dang, 2006), and language
generation (Belz and Reiter, 2006). It has even
been demonstrated that increasing the number of
evaluators and/or data can have no stabilising ef-
fect at all on means (DUC literature).

The result of a rating scale experiment is ordi-
nal data (sets of scores selected from the discrete
rating scale). The means-based ranks and statisti-
cal significance tests that are commonly presented
with the results ofRSEs are not generally consid-
ered appropriate for ordinal data in the statistics
literature (Siegel, 1957). At the least, “a test on the
means imposes the requirement that the measures
must be additive, i.e. numerical” (Siegel, 1957, p.
14). Parametric statistics are more powerful than
non-parametric alternatives, because they make a
number of strong assumptions (including that the
data is numerical). If the assumptions are violated
then the risks is that the significance of results is
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overestimated.
In this paper we explore an alternative evalua-

tion paradigm, Preference-strength Judgement Ex-
periments (PJEs). Binary preference judgements
have been used inNLP system evaluation (Reiter et
al., 2005), but to our knowledge this is the first sys-
tematic investigation of preference-strength judge-
ments where evaluators express, in addition to
their preference (which system do you prefer?),
also the strength of their preference (how strongly
do you prefer the system you prefer?). It seems
intuitively convincing that it should be easier to
decide which of two texts is clearer than to de-
cide whether a text’s clarity deserves a 1, 2, 3, 4 or
5. However, it is less clear whether evaluators are
also able to express the strength of their preference
in a consistent fashion, resulting not only in good
self-consistency, but also in good agreement with
other evaluators.

We present three pairs of directly comparable
RSEandPJEevaluations, and investigate how they
compare in terms of (i) the amount of variation ac-
counted for by differences between systems (the
more the better), relative to the amount of varia-
tion accounted for by other factors such as evalu-
ator and arbitrary text properties (the less the bet-
ter); (ii) inter-evaluator agreement, (iii) evaluator
self-consistency, (iv) the number of significant dif-
ferences identified, and (v) experimental cost.

2 Overview of Experiments

In the following three sections we present the de-
sign and results of three pairs of evaluations. Each
pair consists of a rating-scale experiment (RSE)
and a preference-strength judgement experiment
(PJE) that differ only in the rating method they em-
ploy (relative ratings in thePJE and absolute rat-
ings in theRSE).1 In other words, they involve the
same set of system outputs, the same instructions
and method of presentating system outputs. Each
pair is for a different data domain and system task,
the first for generating chains of references to peo-
ple in Wikipedia articles (Section 3); the second
for weather forecast text generation (Section 4);
and the third for generating descriptions of images
of furniture and faces (Section 5).

All experiments use a Repeated Latin Squares

1We are currently preparing an open-source release of the
RSE/PJEtoolkit we have developed for implementing the ex-
periments described in this paper which automatically gen-
erates an experiment, including webpages, given some user-
specified parameters and the data to be evaluated.

Figure 1: Standardised 1–5 rating scale represen-
tation for Fluency and Clarity criteria.

design which ensures that each subject sees the
same number of outputs from each system and
for each test set item. Following detailed instruc-
tions, subjects first do 2 or 3 practice examples,
followed by the texts to be evaluated, in an order
randomised for each subject. Subjects carry out
the evaluation over the internet, at a time and place
of their choosing. They are allowed to interrupt
and resume (but are discouraged from doing so).

There are subtle differences between the three
experiment pairs, and for ease of comparison we
provide an overview of the six experiments we in-
vestigate in this paper in Table 1. Each of the as-
pects of experimental design and execution shown
in this table is explained and described in more de-
tail in the relevant subsection below, but some of
the important differences are highlighted here.

In GREC-NEG PJE, each system is compared
with only one other comparisor system (a human-
authored topline), whereas in the other twoPJEex-
periments, each system is compared with all other
systems for each test data set item.

In the two versions of theMETEO evaluation,
evaluators were not drawn from the same cohort of
people, whereas in the other two evaluation pairs
they were drawn from the same cohort.GREC-
NEG RSEandMETEO RSEused radio buttons (as
shown in Figure 1) as the rating-scale evaluation
mechanism whereas inTUNA RSE it was an un-
marked slider bar. While slightly different names
were used for the evaluation criteria in two of
the evaluation pairs, Fluency/Readability were ex-
plained in very similar terms (does it read well?),
and Adequacy inTUNA was explained in terms of
clarity of reference (is it clear which entity the de-
scription refers to?), so there are in fact just two
evaluation criteria (albeit with different names).

Where we use preference-strength judgements,
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Data set GREC-NEG METEO TUNA
Type RSE PJE RSE PJE RSE PJE
Criteria names Fluency, Clarity Readability, Clarity Fluency, Adequacy
Evaluator type linguistics students uni staff ling stud linguistics students
Num evaluators 10 10 22 22 8 28
Comparisor(s) – human topline – all systems – all systems
Test set size 30 22 112
N trials 300 300 484 1210 896 3136
Rating tool radio buttons slider radio buttons slider slider bar slider
Range 1–5 −10.0.. + 10.0 1–7 −50.0.. + 50.0 0–100 −50.0.. + 50.0

Numbers visible? yes no yes no no no

Table 1: Overview of experiments with details of design and execution. (Comparisor(s) = the other
systems against which each system is evaluated.)

the evaluation mechanism is implemented using
slider bars as shown at the bottom of Figure 2
which map to a scale−X.. + X. The evalua-
tor’s task is to express their preference in terms of
each quality criterion by moving the pointers on
the sliders. Moving the pointer to the left means
expressing a preference for the text on the left,
moving it to the right means preferring the text on
the right; the further to the left/right the slider is
moved, the stronger the preference. It was not ev-
ident to the evaluators that sliders were associated
with numerical values. Slider pointers started out
in the middle of the scale (the position correspond-
ing to no preference). If they wanted to leave the
pointer in the middle (i.e. if they had no prefer-
ence for either of the two texts), evaluators had to
check a box to confirm their rating (to avoid evalu-
ators accidentally not rating a text and leaving the
pointer in the default position).

3 GREC-NEG RSE/PJE: Named entity
reference chains

3.1 Data and generic design

In our first pair of experiments we used system and
human outputs for theGREC-NEG task of selecting
referring expressions for people in discourse con-
text. TheGREC-NEG data2 consists of introduction
sections from Wikipedia articles about people in
which all mentions of people have been annotated
by marking up the word strings that function as
referential expressions (REs) and annotating them
with coreference information as well as syntactic
and semantic features. The following is an exam-
ple of an annotatedRE from the corpus:
<REF ENTITY="0" MENTION="1" SEMCAT="person" SYNCAT="np"

SYNFUNC="subj"><REFEX ENTITY="0" REG08-TYPE="name"

2The GREC-NEG data and documen-
tation is available for download from
http://www.nltg.brighton.ac.uk/home/Anja.Belz

CASE="plain">Sir Alexander Fleming</REFEX> </REF>
(6 August 1881 - 11 March 1955) was a Scottish biol-
ogist and pharmacologist.

This data was used in theGREC-NEG’09
shared-task competition (Belz et al., 2009), where
the task was to create systems which automatically
select suitableREs for all references to all person
entities in a text.

The evaluation experiments use Clarity and Flu-
ency as quality criteria which were explained in
the introduction as follows (the wording of the first
is from DUC):

1. Referential Clarity: It should be easy to identify who
the referring expressions are referring to. If a person
is mentioned, it should be clear what their role in the
story is. So, a reference would be unclear if a person
is referenced, but their identity or relation to the story
remains unclear.

2. Fluency: A referring expression should ‘read well’,
i.e. it should be written in good, clear English, and the
use of titles and names should seem natural. Note that
the Fluency criterion is independent of the Referential
Clarity criterion: a reference can be perfectly clear, yet
not be fluent.

The evaluations involved outputs for 30 randomly
selected items from the test set from 5 of the 6
systems which participated inGREC-NEG’10, the
four baseline systems developed by the organisers,
and the original corpus texts (10 systems in total).

3.2 Preference judgement experiment

The human-assessed intrinsic evaluation in
GREC’09 was designed as a preference-judgement
test where subjects expressed their preference, in
terms of the two criteria, for either the original
Wikipedia text (human-authored ‘topline’) or
the version of it with system-selected referring
expressions in it. There were three 10x10 Latin
Squares, and a total of 300 trials (with two
judgements in each, one for Fluency and one for
Clarity) in this evaluation. The subjects were 10
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Figure 2: Example of text pair presented in human intrinsic evaluationof GREC-NEG systems.

native speakers of English recruited from cohorts
of students currently completing a linguistics-
related degree at Kings College London and
University College London.

Figure 2 shows what subjects saw during the
evaluation of an individual text pair. The place
(left/right) of the original Wikipedia article was
randomly determined for each individual evalua-
tion of a text pair. People references are high-
lighted in yellow/orange, those that are identical
in both texts are yellow, those that are different are
orange.3 The sliders are the standardised design
described in the preceding section.

3.3 Rating scale experiment

Our new experiment used our standardised radio
button design for a 1–5 rating scale as shown in
Figure 1. We used the same Latin Squares design
as for thePJE version, and recruited 10 different
evaluators from the same student cohorts at Kings
College London and University College London.
Evaluators saw just one text in each trial, with the
people references highlighted in yellow.

3.4 Results and comparative analysis

Measures comparing the results from the two ver-
sions of theGREC-NEG evaluation are shown in
Table 2. The first row for each experiment type

3When viewed in black and white, the orange highlights
are the slighly darker ones.

Type Measure Clarity Fluency
RSE F(9,290) 10.975** 35.998**

N sig diffs 19/45 27/45
K’s W (inter) .543** .760**
avg W (intra) .5275 .7192

( Text F(29,270) 2.512** 1.825** )

( Evaluator F(9,290) 3.998** .630 )

PJE F(9,290) 29.539** 26.596**
N sig diffs 26/45 24/45
K’s W (inter) .717** .725**
avg W (intra) .6909 .7125

( Text F(29,270) .910 1.237 )

( Evaluator F(9,290) 1.237 4.145** )

Table 2: GREC-NEG RSE/PJE: Results of analy-
ses looking at effect of System.

shows the F ratio as determined by a one-way
ANOVA with the evaluation criterion in question
as the dependent variable and System as the fac-
tor. F is the ratio of between-groups variability
over within-group (or residual) variability, i.e. the
larger the value of F, the more of the variability ob-
served in the data is accounted for by the grouping
factor, here System, relative to what variability re-
mains within the groups.

The second row shows the number of signifi-
cant differences out of the possible total, as deter-
mined by a Tukey’sHSD analysis. Kendall’s W
(interpretable as a coefficient of concordance) is
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a commonly used measure of the agreement be-
tween judges and is based on mean rank. It ranges
from 0 to 1, and the closer to 1 it is the greater the
agreement. The fourth row (K’s W, inter) shows
the standard W measure, estimating the degree to
which the evaluators agreed. The 5th row (K’s W,
intra) shows the average W for repeated ratings
by the same judge, i.e. it is a measure of the av-
erage self-consistency achieved by the evaluators.
Finally, in the last two rows we give F-ratios for
Text (test data set item) and Evaluator, estimating
the effect these two have independently of System.

The F ratios and numbers of significant differ-
ences are very similar in thePJEversion, but very
dissimilar in theRSE version of this experiment.
For Fluency, F is greater in theRSE version than
in the PJE version where there appear to be big-
ger differences between scores assigned by evalua-
tors. However, Kendall’s W shows that in terms of
mean score ranks, the evaluators agreed to a simi-
lar extent in both experiment versions.

Clarity in the RSE version has lower values
across the board than the rest of Table 2: it ac-
counts for less of the variation, has fewer signifi-
cant differences and lower levels of inter-evaluator
agreement and self-consistency. If the results from
the PJEversion were not also available one might
be inclined to conclude that there was not as much
difference between systems in terms of Clarity as
there was in terms of Fluency. However, because
Fluency and Clarity have a similarly strong effect
in GREC-NEG PJE, it looks instead as though the
evaluators found it harder to apply the Clarity cri-
terion in GREC-NEG RSE than Fluency inGREC-
NEG RSE, and than Clarity inGREC-NEG PJE.

One way of interpreting this is that it is possible
to achieve the same good levels of inter-evaluator
and intra-evaluator variation for the Clarity crite-
rion as for Fluency (both as defined and applied
within the context of this specific experiment), and
that it is therefore worrying that theRSE version
does not achieve it.

4 METEO RSE/PJE: Weather forecasts

4.1 Data

Our second pair of evaluations used the Prodigy-
METEO4 version (Belz, 2009) of the SUMTIME-
METEO corpus (Sripada et al., 2002) which con-
tains system outputs and the pairs of wind forecast

4The Prodigy-METEO corpus is freely available here:
http://www.nltg.brighton.ac.uk/home/Anja.Belz

texts and wind data the systems were trained on,
e.g.:

Data: 1 SSW 16 20 - - 0600 2 SSE - - -
- NOTIME 3 VAR 04 08 - - 2400

Text: SSW 16-20 GRADUALLY BACKING SSE
THEN FALLING VARIABLE 4-8 BY
LATE EVENING

The input vector is a sequence of 7-tuples
〈i, d, smin, smax, gmin, gmax, t〉 wherei is the tu-
ple’s ID, d is the wind direction,smin andsmax are
the minimum and maximum wind speeds,gmin

and gmax are the minimum and maximum gust
speeds, andt is a time stamp (indicating for what
time of the day the data is valid). The wind fore-
cast texts were taken from comprehensive mar-
itime weather forecasts produced by the profes-
sional meteorologists employed by a commercial
weather forecasting company for clients who run
offshore oilrigs.

There were two evaluation criteria; Clarity was
explained as indicating how understandable a fore-
cast was, and Readability as indicating how fluent
and readable it was. The experiment involved 22
forecast dates and outputs from the 10 systems de-
scribed in (Belz and Kow, 2009) (also included in
the corpus release) for those dates (as well as the
corresponding forecasts in the corpus) in the eval-
uation, i.e. a total of 242 forecast texts.

4.2 Rating scale experiment

We used the results of a previous experiment (Belz
and Kow, 2009) in which participants were asked
to rate forecast texts for Clarity and Readability,
each on a scale of 1–7.

The 22 participants were all University of
Brighton staff whose first language was English
and who had no experience ofNLP. While ear-
lier experiments used master mariners as well as
lay-people in a similar evaluation (Belz and Re-
iter, 2006), these experiments also demonstrated
that the correlation between the ratings by expert
evaluators and lay-people is very strong in theME-
TEO domain (Pearson’sr = 0.845).

We used a single 22 (evaluators) by 22 (test data
items) Latin Square; there were 484 trials in this
experiment.

4.3 Preference judgement experiment

Our new experiment used our standardised pref-
erence strength sliders (bottom of Figure 2). We
recruited 22 different evaluators from among stu-
dents currently completing or recently having
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Type Measure Clarity Readability
RSE F(10,473) 23.507** 24.351**

N sig diffs 24/55 23/55
K’s W .497** .533**

( Text F(21,462) 1.467 1.961** )

( Evaluator F(21,462) 4.832** 4.824** )

PJE F(10,1865) 45.081** 41.318**
N sig diffs 34/55 32/55
K’s W .626** .542**

( Text F(21,916) 1.436 1.573 )

( Evaluator F(21,921) .794 1.057 )

Table 3: METEO RSE/PJE: Results of analyses
looking at effect of System.

completed a linguistics-related degree at Oxford,
KCL, UCL, Sussex and Brighton.

We had at our disposal 11METEO systems, so
there were

(11
2

)

= 55 system combinations to eval-
uate on the 22 test data items. We decided on a
design of ten 11× 11 Latin Squares to accommo-
date the 55 system pairings, so there was a total of
1210 trials in this experiment.

4.4 Results and comparative analysis

Table 3 shows the same types of comparative mea-
sures as in the previous section. Note that the
self-consistency measure is missing, because for
METEO-PJEwe do not have multiple scores for the
same pair of systems by the same evaluator.

For theMETEO task, the relative amount vari-
ation in Clarity and Radability accounted for by
System is similar in theRSE, and again similar in
thePJE. However, F ratios and numbers of signifi-
cant differences found are higher in the latter than
in theRSE. The inter-evaluator agreement measure
also has higher values for both Clarity and Read-
ability in the PJE, although the difference is much
more pronounced in the case of Clarity.

In the RSE version, Evaluator has a small but
significant effect on both Clarity and Readability,
which disappears in thePJE version. Similarly, a
small effect of Text (date of weather forecast in
this data set) on Fluency in theRSEversion disap-
pears in thePJEversion.

5 RSE/PJE Pair 2: Descriptions of
furniture items and faces

5.1 Data and generic design

In our third pair of evaluations, we used the sys-
tem outputs from theTUNA ’09 shared-task com-

petition (Gatt et al., 2009).5 The TUNA data is
a collection of images of domain entities paired
with descriptions of entities. Each pair consists of
seven entity images where one is highlighted (by a
red box surrounding it), paired with a description
of the highlighted entity, e.g.:

the small blue fan

The descriptions were collected in an online ex-
periment with anonymous participants, and then
annotated for semantic content. InTUNA ’09, the
task for participating systems was to generate de-
scriptions of the highlighted entities given seman-
tic representations of all seven entities. In the eval-
uation experiments, evaluators were asked to give
two ratings in answer to the following questions
(the first for Adequacy, the second for Fluency):

1. How clear is this description? Try to imagine someone
who could see the same grid with the same pictures, but
didn’t know which of the pictures was the target. How
easily would they be able to find it, based on the phrase
given?

2. How fluent is this description? Here your task is to
judge how well the phrase reads. Is it good, clear En-
glish?

Participants were shown a system output, to-
gether with its corresponding domain, displayed
as the set of corresponding images on the screen.
The intended (target) referent was highlighted by
a red frame surrounding it on the screen.

Following detailed instructions, subjects did
two practice examples, followed by the 112 test
items in random order.

There were 8 ‘systems’ in theTUNA evalua-
tions: the descriptions produced by the 6 systems
and two sets of humans-authored descriptions.

5.2 Rating scale experiment

The rating scale experiment that was part of the
TUNA ’09 evaluations had a design of fourteen 8×
8 squares, and a total of 896 trials.

5The TUNA ’09 data and documen-
tation is available for download from
http://www.nltg.brighton.ac.uk/home/Anja.Belz
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Type Measure Adequacy Fluency
RSE F(7,888) 6.371** 17.207**

N sig diffs 7/28 15/28
K’s W .471** .676**

( Text1 F(111,784) 1.519** 1.091 )

( Text2 F(14,881) 8.992** 4.694** )

( Evaluator F(7,888) 13.136** 17.479** )

PJE F(7,6264) 46.503** 89.236**
N sig diffs 19/28 22/28
K’s W .573** .654**

( Text1 F(111,3024) .746 .921 )

( Text2 F(14,3121) .856 .853 )

( Evaluator F(27,3108) 1.3 1.638* )

Table 4: TUNA RSE/PJE: Results of analyses
looking at effect of System.

Subjects were asked to give their judgments for
Clarity and Fluency for each item by manipulating
a slider. The slider pointer was placed in the center
at the beginning of each trial. The position of the
slider selected by the subject mapped to an integer
value between 1 and 100. However, the scale was
not visible to participants who knew only that one
end of the scale corresponded to the worst possible
score and the opposite end to the best.

Eight native speakers of English were recruited
for this experiment from among post-graduate
students currently doing a Masters degree in a
linguistics-related subject at UCL, Sussex and
Brighton universities.

5.3 Preference judgement experiment

Our new experiment used our standardised pref-
erence strength sliders (bottom of Figure 2). To
accommodate all pairwise comparisons as well as
all test set items, we used a design of four 28
× 28 Latin Squares, and recruited 28 evaluators
from among students currently completing, or re-
cently having completed, a degree in a linguistics-
related subject at Oxford, KCL, UCL, Sussex and
Brighton universities. There were 3,136 trials in
this version of the experiment.

5.4 Results and comparative analysis

Table 4 shows the same measures as we reported
for the other two experiment pairs above. The
picture is somewhat similar in that the measures
have better values forPJE version except for the
inter-evaluator agreement (Kendall’s W) for Flu-
ency which is slightly higher for theRSE version.

For theTUNA dataset, we look at two Text factors.
Text2 refers to different sets of entities used in tri-
als; there are 15 different ones. Text1 refers to sets
of entities and their specific distribution over the
visual display grid in trials (see the figure in Sec-
tion 5.1); there are 112 different combinations of
entity set and grid locations.

The most striking aspect of the results in Table 4
is the effect of Evaluator in theRSEversion which
appears to account for more variability in the data
even than System (relative to other factors). In
fact, in the case of Adequacy, even Text2 causes
more variation than System. In contrast, in thePJE

version, by far the biggest cause of variability is
System (for both criteria), and the F ratios for Text
and Evaluators are not significant except for Eval-
uator on Fluency (weakly significant at .05).

On the face of it, the variation between evalua-
tors in theRSE version as evidenced by the F ra-
tio is worrying. However, Kendall’s W shows that
in terms of mean rank, evaluators actually agreed
similarly well on Fluency in bothRSE and PJE.
The F measure is based on mean scores whereas W
is based on mean score ranks, so there was more
variation in the absolute scores than in the ranks.

The reason is likely to be connected to the way
ratings were expressed by evaluators in theTUNA-
RSEexperiment: recall that evaluators had the task
of moving the pointer to the place on the slider
bar that they felt corresponded to the quality of
text being evaluated. As no numbers were visi-
ble, the only information evaluators had to go on
was which was the ‘worse’ end and which was the
‘better’ end of the slider. It seems that different
evaluators used this evaluation tool in very differ-
ent ways (accounting for the variation in absolute
scores), but were able to apply their way of using
the tool reasonably consistently to different texts
(so that they were able to achieve reasonably good
agreement with the other evaluators in terms of
relative scores).

6 Discussion

We have looked at a range of aspects of evalu-
ation experiments: the effect of the factors Sys-
tem, Text and Evaluator on evaluation scores; the
number of significant differences between systems
found; self-consistency; and inter-evaluator agree-
ment (as described by F ratios obtained in one-way
ANOVAs for Evaluator, as well as by Kendall’s W
measuring inter-evaluator agreement).
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The results are unambiguous as far as the
Clarity criterion (called Adequacy inTUNA) is
concerned: in all three experiment pairs, the
preference-strength judgement (PSE) version had
a greater effect of System, a smaller effect of
Text and Evaluator, more significant pairwise dif-
ferences, better inter-evaluator agreement, and
(where we were able to measure it) better self-
consistency.

The same is true for Readability inMETEO and
Fluency inTUNA, in the latter case except for W
which is slightly lower inTUNA-PJE than TUNA-
RSE. However, Readability inGREC-NEG bucks
the trend: here, all measures are worse in the
PJEversion than in theRSE version (although for
the W measures, the differences are small). Part
of the reason for this may be that inGREC-NEG

PJE each system was only compared to one sin-
gle other ‘system’, the (human-authored) original
Wikipedia texts.

If we see less effect of Clarity than of Fluency
in an experiment (as inGREC-NEG RSEandTUNA

RSE), then we might want to conclude that sys-
tems differed less in terms of Clarity than in terms
of Fluency. However, the real explanation may
be that evaluators simply found it harder to apply
the Clarity criterion than the Fluency criterion in
a given evaluation set-up. The fact that the differ-
ence in effect between Fluency and Clarity virtu-
ally disappears inGREC-NEG PJEmakes this the
more likely explanation at least for theGREC-NEG

evaluations.

Parametric statistics are more powerful than
non-parametric ones because of the strong as-
sumptions they make about the nature of the data.
Roughly speaking, they are more likely to uncover
significant differences. Where the assumptions are
violated, the risk is that significance is overesti-
mated (the likelihood that null hypotheses are in-
correctly rejected increases). One might consider
using a slider mapping to a continuous scale in-
stead of a multiple-choice rating form in order to
overcome this problem, but the evidence from the
TUNA RSE evaluation appears to be that this can
result in unacceptably large variation in how indi-
vidual evaluators apply the scale to assign absolute
scores.

What seems to make the difference in terms of
ease of application of evaluation criteria and re-
duction of undesirable effects is not the use of con-
tinuous scales (as e.g. implemented in slider bars),

but the comparative element, where pairs of sys-
tems are compared and one is selected as better in
terms of a given criterion than the other.

It makes sense intuitively that deciding which
of two texts is clearer should be an easier task than
deciding whether a system is a 5, 4, 3 or 1 in terms
of its clarity. PJEs enabled evaluators to apply the
Clarity criterion to determine ranks more consis-
tently in all three experiment pairs.

However, it was an open question whether eval-
uators would also be able to express thestrength
of their preference consistently. From the results
we report here it seems clear that this is indeed the
case: the System F ratios which look at absolute
scores (in thePJEs quantifying the strength of a
preference) are higher, and the Evaluator F ratios
lower, in all but one of the experiments.

While there were the same number of trials
in the two GREC-NEG evaluations, there were
2.5 times as many trials inMETEO-PJE than in
METEO-RSE, and 3.5 times as many trials in
TUNA-PJE than inTUNA-RSE. The increase in tri-
als is counter-balanced to some extent by the fact
that evaluators tend to give relative judgements
far more quickly than absolute judgements, but
clearly there is an increase in cost associated with
including all system pairings in aPJE. If this cost
grows unacceptably large, a subset of systems has
to be selected as reference systems.

7 Concluding Remarks

Our aim in the research presented in this paper
was to investigate how rating-scale experiments
compare to preference-strength judgement experi-
ments in the evaluation of automatically generated
language. We find that preference-strength judge-
ment evaluations generally have a greater rela-
tive effect of System (the factor actually under in-
vestigation), a smaller relative effect of Text and
Evaluator (whose effect should be small), a larger
number of significant pairwise differences be-
tween systems, better inter-evaluator agreement,
and (where we were able to measure it) better eval-
uator self-consistency.
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Abstract

This paper presents an easy-to-adapt,
discourse-aware framework that can be
utilized as the content selection compo-
nent of a generation system whose goal is
to deliver descriptive texts in several turns.
Our framework involves a novel use of a
graph-based ranking algorithm, to itera-
tively determine what content to convey to
a given request while taking into account
various considerations such as capturing a
priori importance of information, convey-
ing related information, avoiding redun-
dancy, and incorporating the effects of dis-
course history. We illustrate and evaluate
this framework in an accessibility system
for sight-impaired individuals.

1 Introduction

Content selection is the task responsible for deter-
mining what to convey in the output of a gener-
ation system at the current exchange (Reiter and
Dale, 1997). This very domain dependent task
is extremely important from the perspective of
users (Sripada et al., 2001) who have been ob-
served to be tolerant of realization problems as
long as the appropriate content is expressed. The
NLG community has proposed various content
selection approaches since early systems (Moore
and Paris, 1993; McKeown, 1985) which placed
emphasis on text structure and adapted planning
techniques or schemas to meet discourse goals.

This paper proposes a domain-independent
framework which can be incorporated as a content
selection component in a system whose goal is to
deliver descriptive or explanatory texts, such as the
ILEX (O’Donnell et al., 2001), KNIGHT (Lester
and Porter, 1997), and POLIBOX (Chiarcos and
Stede, 2004) systems. At the core of our frame-
work lies a novel use of a graph-based ranking al-

gorithm, which exploits discourse related consid-
erations in determining what content to convey in
response to a request for information. This frame-
work provides the ability to generate successive
history-aware texts and the flexibility to generate
different texts with different parameter settings.

One discourse consideration is the tenet that the
propositions selected for inclusion in a text should
be in some way related to one another. Thus,
the selection process should be influenced by the
relevanceof information to what has already been
selected for inclusion. Moreover,we argue that
if the information given in a proposition can be
deduced from the information provided by any
other proposition in the text, this would introduce
redundancyand should be avoided.

Many systems (such as MATCH(Walker et al.,
2004) and GEA (Carenini and Moore, 2006)) con-
tain a user model which is employed to adapt con-
tent selection to the user’s preferences (Reiter and
Dale, 1997). Our framework provides a facility
to model a stereotypical user by incorporating the
a priori importanceof propositions. This facility
can also be used to capture thepreferences of a
particular user.

In a dialogue system, utterances that are gen-
erated without exploiting the previous discourse
seem awkward and unnatural (Moore, 1993). Our
framework takes the previous discourse into ac-
count so as to omit recently communicated propo-
sitions and to determine when repetition of a pre-
viously communicated proposition is appropriate.

To our knowledge, our work is the first effort
utilizing a graph-based ranking algorithm for con-
tent selection, while taking into account what in-
formation preferably should and shouldn’t be con-
veyed together, the a priori importance of infor-
mation, and the discourse history. Our framework
is a domain-independent methodology containing
domain-dependent features that must be instanti-
ated when applying the methodology to a domain.
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Section 2 describes our domain-independent
methodology for determining the content of are-
sponse. Section 3 illustrates its application in an
accessibility system for sight-impaired individuals
and shows the generation flexibility provided by
this framework. Finally, Section 4 discusses the
results of user studies conducted to evaluate the
effectiveness of our methodology.

2 A Graph-based Content Selection
Framework

Our domain-independent framework can be ap-
plied to any domain where there is a set of proposi-
tions thatmightbe conveyed and where a bottom-
up strategy for content selection is appropriate. It
is particularly useful when the set of propositions
should be delivered a little at a time. For exam-
ple, the ILEX system (O’Donnell et al., 2001) uses
multiple descriptions to convey the available infor-
mation about a museum artifact, since the length
of the text that can be displayed on a page is lim-
ited. In order to use our framework, an application
developer should identify the set of propositions
that might be conveyed in the domain, specify the
relations between these propositions, and option-
ally assess a priori importance of the propositions.

Our framework uses a weighted undirected
graph (relation graph), where the propositions
are captured as vertices of thegraph and the
edges represent relations between these proposi-
tions. While the number and kinds of relations
represented is up to the developer, the frame-
work does require the use of one specific rela-
tion (Redundancy Relation) that is generalizable
to any descriptive domain.RedundancyRelation
must be specified between two propositionsif they
provide similar kinds of information or the infor-
mation provided by one of the propositions can
be deduced from the information provided by the
other. For example, consider applying the frame-
work to the ILEX domain. Since the proposition
that “this jewelry is produced by a single crafts-
man” can be deduced from the proposition that
“this jewelry is made by a British designer”, these
propositions should be connected with a Redun-
dancyRelation in the relationgraph.

There is at most one edge betweenany two ver-
tices and the weight of that edge represents how
important it is to convey the corresponding propo-
sitions in the same text (which we refer to as
the strength of the relation between these proposi-

tions). For example, suppose that once a museum
artifact is introduced in ILEX, it is more impor-
tant to convey its design style in the same descrip-
tion as opposed to where it is produced. In this
case, the weight of the edge between the proposi-
tions introducing the artifact and its style should
be higher than the weight of the edge between the
propositions introducing the artifact and its pro-
duction place.

The framework incorporates a stereotyp-
ical user model via an additional vertex
(priority vertex) in the relationgraph. The
priority vertex is connected to all other vertices
in the graph. The weight of the edgebetween
a vertex and the priorityvertex represents the a
priori importance of that vertex,which in turn
specifies the importance of the corresponding
proposition. For example, suppose that in the
ILEX domain an artifact has two features that
are connected to the proposition introducing the
artifact by the “feature-of” relation. The a priori
importance of one of these features over the
other can be specified by giving a higher weight
to the edge connecting this proposition to the
priority vertex than is given to the edge between
the other feature and the priorityvertex. This
captures a priori importance and makesit more
likely that the important feature will be included
in the artifact’s description.

2.1 Our Ranking Algorithm

With this graph-based setting, the most important
thing to say is the proposition which is most cen-
tral. Several centrality algorithms have been pro-
posed in the literature (Freeman, 1979; Navigli
and Lapata, 2007) for calculating the importance
scores of vertices in a graph. The well-known
PageRank centrality (Brin and Page, 1998) calcu-
lates the importance of a vertex by taking into ac-
count the importance of all other vertices and the
relation of vertices to one another. This metric has
been applied to various tasks such as word sense
disambiguation (Sinha and Mihalcea, 2007) and
text summarization (Erkan and Radev, 2004). We
adopted the weighted PageRank metric (Sinha and
Mihalcea, 2007) for our framework and therefore
compute the importance score of a vertex (Vx) as:

PR(V x) = (1− d) + d ∗

∑

(V x,V y)∈E

wyx∑
wyz

(V z ,V y)∈E

PR(V y)

wherewxy is the weight associatedwith the edge
between vertices (Vx) and (Vy), E is the set of all
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edges, and d is the damping factor, set to 0.85,
which is its usual setting.

Once the propositionsin a domain are captured
in a relationgraph with weights assigned to the
edges between them, the straightforward way of
identifying the propositions to be conveyed in the
generated text would be to calculate the impor-
tance of each vertex via the formula above and
then select the k vertices with the highest scores.
However, this straightforward application would
fail to address the discourse issues cited earlier.
Thus we select propositions incrementally, where
with each proposition selected, weights in the
graph are adjusted causing related propositions to
be highlighted and redundant information to be re-
pelled. Because our responses are delivered over
several turns, we also adjust weights between re-
sponses to reflect that discourse situation.

Our algorithm, shown in Figure 1, is run each
time a response text is to be generated. For each
new response, the algorithm begins by adjusting
the importance of the priorityvertex (making it
high) and clearing the list of selectedpropositions.
Step2 is the heart of the algorithm for generating a
single response. It incrementally selects proposi-
tions to include in the current response, and ad-
justs weights to reflect what has been selected.
In particular, in order to select a proposition, im-
portance scores are computed using the weighted
PageRank metric for all vertices corresponding to
propositions that have not yet been selected for in-
clusion in this response (Step2-a), and only the
proposition that receives the highest score is se-
lected (Step2-b). Then, adjustments are made to
achieve four goals toward taking discourse infor-
mation into account (Steps2-c thru2-g) before the
PageRank algorithm is run again to select the next
proposition. Steps3 and4 adjust weights to reflect
the completed response and to prepare for gener-
ating the next response.

Our first goal is to reflect the a priori impor-
tance of propositions in the selection process. For
this purpose, we always assign the highest (or
one of the highest) importance scores to the pri-
ority vertex among the other vertices (Steps1 and
2-g). This will make thepriority vertex as influen-
tial as any other neighbor ofa vertex when calcu-
lating its importance.

Our second goal is to select propositions that are
relevant to previously selected propositions, or in
terms of the graph-based notation, toattract the

selection of vertices that are connected to the se-
lected vertices. To achieve this, we increase the
importance of the vertices corresponding to se-
lected propositions so that the propositions related
to them have a higher probability of being chosen
as the next proposition to include (Step2-g).

Our third goal is to avoid selecting propositions
that preferably shouldn’t be communicated with
previously selected propositions if other related
propositions are available. To accomplish this, we
introduce the termrepellers to refer to the kinds
of relations between propositions that are dispre-
ferred over other relations once one of the propo-
sitions is selected for inclusion. Once a proposi-
tion is selected, we penalize the weights on the
edges between the corresponding vertex and other
vertices that are connected by a repeller (Step2-
d). We don’t provide any general repellers in the
framework, but rather this is left for the developer
familiar with the domain; any number (zero or
more) and kinds of relations could be identified as
repellers for a particular application domain. For
example, suppose that in the ILEX domain, some
artifacts (such as necklaces) have as features both
a set of design characteristics and the person who
found the artifact. Once the artifact is introduced,
it becomes more important to present the design
characteristics rather than the person who found
that artifact. This preference might be captured by
classifying the relation connecting the proposition
conveying the person who found it to the proposi-
tion introducing the artifact as arepeller.

Our fourth goal is to avoid redundancy by dis-
couraging the selection of propositions connected
by a RedundancyRelation to previously selected
propositions. Once a proposition is selected, we
identify the vertices(redundant to selected ver-
tices) which are connected to the selected ver-
tex by the RedundancyRelation (Step2-e). For
each redundantto selected vertex, we penalize the
weights on the edges of the vertex except the edge
connected to the priorityvertex (Step2-f) and
hence decrease the probability ofthat vertex being
chosen for inclusion in the same response.

We have so far described how the content of a
single response is constructed in our framework.
To capture a situation where the system is engaged
in a dialogue with the user and must generate addi-
tional responses for each subsequent user request,
we need to ensure that discourse flows naturally.
Thus, the ranking algorithm must take the previ-
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Figure 1: Our Ranking Algorithm for Content Selection.

ous discourse into account in order toidentify and
preferably select propositions that have not been
conveyed before and to determine when repetition
of a previously communicated proposition is ap-
propriate. So once a proposition is included in a
response, we have to reduce its ability to compete
for inclusion in subsequent responses. Thus once a
proposition is conveyed in a response, the weight
of the edge connecting the corresponding vertex
to the priority vertex is reduced (Step2-c in Fig-
ure 1). Once a response iscompleted, we penal-
ize the weights of the edges of each vertex that
has been selected for inclusion in the current re-
sponse via a penalty factor (if they aren’t already
adjusted) (Step3 in Figure 1). We use the same
penalty factor (which is used in Step2-d in Fig-
ure 1) on each edge so that all edges connected to
a selected vertex are penalized equally. However,
it isn’t enough just to penalize the edges of the ver-
tices corresponding to the communicated proposi-
tions. Even after the penalties are applied, a propo-
sition that has just been communicated might re-
ceive a higher importance score than an uncommu-
nicated proposition1. In order to allow all propo-
sitions to become important enough to be said at
some point, the algorithm increases the weights
of the edges of all other vertices in the graph if
they haven’t already been decreased (Step4 in Fig-
ure 1), thereby increasing their ability to compete
in subsequent responses. In the current implemen-
tation, the weight of an edge is increased via a
boost factor after a response if it is not connected
to a proposition included in that response. The

1We observed that it mighthappenif a vertex is connected
only to the priorityvertex.

boost factor ensures that all propositionswill even-
tually become important enough for inclusion.

3 Application in a Particular Domain

This section illustrates the application of our
framework to a particular domain and how our
framework facilitates flexible content selection.
Our example is content selection in the SIGHT
system (Elzer et al., 2007), whose goal is to pro-
vide visually impaired users with the knowledge
that one would gain from viewing information
graphics (such as bar charts) that appear in popu-
lar media. In the current implementation, SIGHT
constructs a brief initial summary (Demir et al.,
2008) that conveys the primary message of a bar
chart along with its salient features. We enhanced
the current SIGHT system to respond to user’s
follow-up requests for more information about the
graphic, where the request does not specify the
kind of information that is desired.

The first step in using our framework is deter-
mining the set of propositions that might be con-
veyed in this domain. In our earlier work (Demir
et al., 2008), we identified a set of propositions
that capture information that could be determined
by looking at a bar chart, and for each message
type defined in SIGHT, specified a subset of these
propositions that are related to this message type.
In our example, we use these propositions as can-
didates for inclusion in follow-up responses. Fig-
ure 2 presents a portion of the relationgraph,
where some of the identified propositions arerep-
resented as vertices.

The second step is optionally assessing the a
priori importance of each proposition. In user
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Figure 2: Subgraph of the Relationgraph for Increasing and Decreasing Trend Message Types.

studies (Demir et al., 2008), we asked subjects to
classify the propositions given for a message type
into one of three classes according to their impor-
tance for inclusion in the initial summary:essen-
tial, possible, andnot important. We leverage
this information as the a priori importance of ver-
tices in our graph representation. We define three
priority classes. For the propositions that were not
selected asessentialby any participant, we clas-
sify theedges connecting these propositions to the
priority vertex intoPossible class. For the propo-
sitions which wereselected asessentialby a single
participant, we classify the edges connecting them
to the priority vertex intoImportant class. The
edges of the remaining propositions areclassified
into Highly Important class. In this example in-
stantiation, we assigned different numeric scores
to these classes where HighlyImportant and Pos-
sible received the highest andlowest scores re-
spectively.

The third step requires specifying the relations
between every pair of related propositions and de-
termining the weights associated with these re-
lations in the relationgraph. First, we identi-
fied propositions which we decided should be
connectedby the RedundancyRelation (such as
the propositions conveying “theoverall amount of
change in the trend” and “the range of the trend”).
Next, we had to determine other relations and as-
sign relative weights. Instead of defining a unique
relation for each related pair, we defined three re-
lation classes, and assigned the relations between
related propositions to one of these classes:

∙ Period Relation: expresses a relation be-
tween two propositionsthat span the same
time period

∙ Entity Relation: expresses a relation be-
tween two propositionsif the entities in-
volved in the propositions overlap

∙ Contrast Relation: expresses a relation be-
tween two propositions if the information
provided by one of the propositions contrasts
with the information provided by the other

We determined that it was very common in
this domain to deliver contrasting propositions to-
gether (similar to other domains (Marcu, 1998))
and therefore we assigned the highest score to the
ContrastRelation class. For local focusing pur-
poses, it is desirable that propositions involving
common entities be delivered in the same response
and thus the EntityRelation class was given the
second highest score. On the other hand,two
propositions which only share the same period are
not very related and conveying such propositions
in the same response could cause the text to appear
“choppy”. We thus identified the PeriodRelation
class as a repeller and assigned thesecond low-
est score to relations in that class. Since we don’t
want redundancy in the generated text, the lowest
score was assigned to the RedundancyRelation
class. The next section showshow associating
particular weights with the priority and relation
classes changes the behavior of the framework.

In the domain of graphics, a collection of de-
scriptions of the targeted kind which would facil-
itate a learning based model isn’t available. How-
ever, the accessibility of a corpus in a new domain
would allow the identification of the propositions
along with their relations to each other and the de-
termination of what weighting scheme and adjust-
ment policy will produce the corpus within reason-
able bounds.
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3.1 Generating Flexible Responses

The behavior of our framework is dependent on a
number of design parameters such as the weights
associated with various relations, the identification
of repellers, the a priori importance of informa-
tion (if applicable), and the extent to which con-
veying redundant information should be avoided.
The framework allows the application developer
to adjust these factors resulting in the selection of
different content and the generation of different re-
sponses. For instance, in a very straightforward
setting where the same numeric score is assigned
to all relations, the a priori importance of infor-
mation would be the major determining factor in
the selection process. In this section, we will il-
lustrate our framework’s behavior in SIGHT with
three different scenarios. In each case, the user is
assumed to post two consecutive requests for ad-
ditional information about the graphic in Figure 3
after receiving its initial summary.

In our first scenario (which we refer to as “base-
setting”), the following values have been given to
various design parameters that must be specified in
order to run the ranking algorithm. 1) The weights
of the relations are set to the numeric scores shown
in the text labelledEdges at the bottom (right side)
of Figure 2. 2) The stopping criteriawhich speci-
fies the number of propositions selected forinclu-
sion in a follow-up response (Step2 in Figure 1)
is set to four. 3) The amount of decrease in the
weight of the edge between the priorityvertex and
the vertex selected for inclusion(Step2-c in Fig-
ure 1) is set to that edge’s original weight. Thus,
in our example, the weight of that edge is set to 0
once a proposition has been selected for inclusion.
4) The penalty and the redundancy penalty factors
which are used to penalize the edges of a selected
vertex and the vertices redundantto the selected
vertex (Steps2-d and3, and2-f in Figure 1) are
set to the quotient of the highest numeric score
initially assigned to a relation class divided by the
lowest numeric score initially assigned to a rela-
tion class. A penalized score for a relation class
is computed by dividing its initial score by the
penalty factor. The edges of a vertex are penalized
by assigning the penalized scores to these edges
based on the relations that they represent. This set-
ting guarantees that the weight of an edge which
represents the strongest relation cannot be penal-
ized to be lower than the score initially assigned
to the weakest relation. 5) The boost factorwhich

is used to favor theselection of previously uncon-
veyed propositions for inclusion in subsequent re-
sponses (Step4 in Figure 1) is set to the square
root of the penalty factor. Thus, the weights of
the edges connected to vertices of previously com-
municated propositions are restored to their initial
scores slowly.

Since in our example, the initial summary has
already been presented, we treat the propositions
conveyed in that summary (P1 and P5 in Figure 2)
as if they had been conveyed in a follow-up re-
sponse and penalize the edges of their correspond-
ing vertices (Steps2-c and3 in Figure 1). Thus,
before we invoke the algorithm to construct the
first follow-up response, the weights of edges of
the graph are as shown in Figure 2-A. Within this
base-setting, SIGHT generates the set of follow-up
responses shown in Figure 3A.

In our first scenario (base-setting), we assumed
that the user is capable of making mathematical
deductions such as inferring “the overall amount
of change in the trend” from “the range of the
trend”; thus we identified such propositions as
sharing a RedundancyRelation. Young read-
ers (such as fourth graders) might notfind these
propositions as redundant because they are lack-
ing in mathematical skills. In our second sce-
nario, we address this issue by setting the re-
dundancy penalty factor to 1 (Step 2-fin Fig-
ure 1) and thus eliminate the penalty on the Re-
dundancyRelation. Now, for the same graphic,
SIGHT generates, in turn, the second alternative
set of responses shown in Figure 3B. The re-
sponses for the two scenarios differ in the second
follow-up response. In the first scenario, a descrip-
tion of the smallest drop was included. However,
in the second scenario, this proposition is replaced
with the overall amount of change in the trend.
This proposition was excluded in the first sce-
nario because the redundancy penalty factor made
it drop in importance.

Our third scenario shows how altering the
weights assigned to relations may change the re-
sponses. Consider a situation where the Con-
trastRelation is given even higher importance by
doubling its score; this might occur ina univer-
sity course domain where courses on the same
general topic are contrasted. SIGHT would then
generate the third alternative set of follow-up re-
sponses shown in Figure 3C. The algorithm is
more strongly forced to group propositions that
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Figure 3: Initial Summary and Follow-up Responses.

are in a contrast relation (shownin bold), which
changes the ranking of these propositions.

4 Evaluation

To determine whether our framework selects ap-
propriate content within the context of an applica-
tion, and to assess the contribution of the discourse
related considerations to the selected content and
their impact on readers’ satisfaction, we conducted
two user studies. In both studies, the partici-
pants were told that the initial summary should
include the most important information about the
graphic and that the remaining pieces of informa-
tion should be conveyed via follow-up responses.
The participants were also told that the informa-
tion in the first response should be more important
than the information in subsequent responses.

Our goal in the first study was to evaluate the
effectiveness of our framework (base-setting) in
determining the content of follow-up responses in
SIGHT. To our knowledge, no one else has gener-

ated high-level descriptions of information graph-
ics, and therefore evaluation using implementa-
tions of existing content selection modules in the
domain of graphics as a baseline is not feasible.
Thus, we evaluated our framework by comparing
the content that it selects for inclusion in a follow-
up response for a particular graphic with the con-
tent chosen by human subjects for the same re-
sponse. Twenty one university students partici-
pated in the first study and each participant was
presented with the same four graphics. For each
graphic, the participants were first presented with
its initial summary and the set of propositions (18
different propositions) that were used to construct
the relationgraph in our framework. The partic-
ipants were then asked to selectthe four propo-
sitions that they thought were most important to
convey in the first follow-up response.

For each graphic, we ranked the propositions
with respect to the number of times that they were
selected by the participants and determined the po-
sition of each proposition selected by our frame-
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work for inclusion in the first follow-up response
with respect to this ranking. The propositionsse-
lected by our framework were ranked by the par-
ticipants as the1st, 2nd, 3rd, and 5thin the first
graphic, as the1st, 3rd, 4th, and 5thin the sec-
ond graphic, as the1st, 2nd, 3rd, and 6thin the
third graphic, and as the2nd, 3rd, 4th, and 6th
in the fourth graphic. Thus for every graph, three
of the four propositions selected by our frame-
work were also in the top four highly-rated propo-
sitions selected by the participants. Therefore,
this study demonstrated that our content selection
framework selects the most important information
for inclusion in a response at the current exchange.

We argued that simply running PageRank to se-
lect the highly-rated propositions is likely to lead
to text that does not cohere because it may con-
tain unrelated or redundant propositions, or fail
to communicate related propositions. Thus, our
approach iteratively runs PageRank and includes
discourse related factors in order to allow what
has been selected to influence the future selections
and consequently improve text coherence. To ver-
ify this argument, we conducted a second study
with four graphics and two different sets of follow-
up responses (each consisting of two consecutive
responses) generated for each graphic. We con-
structed the first set of responses(baseline) by
running PageRank to completion and selecting the
top eight highly-rated propositions, where the top
four propositions form the first response. The con-
tent of the second set of responses was identified
by our approach. Twelve university students (who
did not participate in the first study) were pre-
sented with these four graphics along with their
initial summaries. Each participant was also pre-
sented with the set of responses generated by our
approach in two graphics and the set of responses
generated by the baseline in other cases; the par-
ticipants were unaware of how the follow-up re-
sponses were generated. Overall, each set of re-
sponses was presented to six participants.

We asked the participants to evaluate the set
of responses in terms of their quality in convey-
ing additional information (from 1 to 5 with 5 be-
ing the best). We also asked each participant to
choose which set of responses (from among the
four sets of responses presented to them) best pro-
vides further information about the correspond-
ing graphic. The participants gave the set of re-
sponses generated by our approach an average rat-

ing of 4.33. The average participant rating for
the set of responses generated by the baseline was
3.96. In addition, the lowest score given to the
set of responses generated by our approach was
3, whereas the lowest score that the baseline re-
ceived was 2. We also observed that the set of re-
sponses generated by our approach was selected
as the best set by eight of the twelve participants.
Three of the remaining four participants selected
the set of responses generated by the baseline as
best (although they gave the same score to a set
of responses generated by our approach). In these
cases, the participants emphasized the wording
of the responses as the reason for their selection.
Thus this study demonstrated that the inclusion of
discourse related factors in our approach, in addi-
tion to the use of PageRank (which utilizes the a
priori importance of the propositions and their re-
lations to each other), contributes to text coherence
and improves readers’ satisfaction.

5 Conclusion

This paper has presented our implemented
domain-independent content selection framework,
which contains domain-dependent features that
must be instantiated when applying it to a particu-
lar domain. To our knowledge, our work is the first
to select appropriate content by using an incre-
mental graph-based ranking algorithm that takes
into account the tendency for some information to
seem related or redundant to other information, the
a priori importance of information, and what has
already been said in the previous discourse. Al-
though our framework requires a knowledge engi-
neering phase to port it to a new domain, it handles
discourse issues without requiring that the devel-
oper write code to address them. We have demon-
strated how our framework was incorporated in
an accessibility system whose goal is the genera-
tion of texts to describe information graphics. The
evaluation studies of our framework within that
accessibility system show its effectiveness in de-
termining the content of follow-up responses.
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Abstract

In this paper we present a reference gen-
eration model based on Reference Domain
Theory which gives a dynamic account of
reference. This reference model assumes
that each referring act both relies and up-
dates the reference context. We present a
formal definition of a reference domain, a
generation algorithm and its instantiation
in the GIVE challenge.

1 Introduction

Reference is a process in which participants interpret
and produce their referring expressions according to
the previous context. But as Stalnaker puts it: the
discourse context “is both the object on which speech
acts act and the source of the information relative to
which speech acts are interpreted” (Stalnaker, 1998).
To put it briefly, referring acts not only rely on the
context to produce a reference but also modify it.
This aspect is not taken into account in the classi-
cal generation algorithm by (Dale and Reiter, 1995).
Each referent is generated by discriminating it inside
a context. However, the construction and update of
this context is not adressed.

Further literature on reference generation partially
gives an account for the dynamic nature of the re-
ferring process. For example in (Krahmer and The-
une, 2002), each referring act increases the salience
of the referent such that further references can be
made according to a smaller context, namely the set
of objects whose salience is greater than the referent’s
salience. Reference Domain Theory (RDT) (Reboul,
1998; Salmon-Alt and Romary, 2001) goes a step fur-
ther by assuming that referring acts make salient the
context sets themselves. This theory addresses the
construction and update of the context sets, called
in this theory reference domains. The goal of a re-
ferring act is then to discriminate a referent inside

a reference domain but also a reference domain in
a set of reference domains that we call here referen-
tial space. Moreover each referring act presupposes
a given state of the referential space, and the ex-
plicit representation of these presuppositions as con-
straints on the suitable domain for interpretation or
generation allows the implementation of a reversible
reference module. We will focus here on generation.
Details about the interpretation side of RDT can be
found in (Salmon-Alt and Romary, 2001; Denis et
al., 2006).

However most of the previous work on RDT
does not address computational details. Although
(Salmon-Alt and Romary, 2000) provides a genera-
tion algorithm, the formal definition of a reference
domain and the explicit representation of the con-
straints are not provided. In this paper we show how
RDT can be used to generate referring expressions.
The context of our work is the GIVE challenge (By-
ron et al., 2007; Byron et al., 2009). This challenge
aims to evaluate instruction generation systems in a
situated setting. The goal is to provide instructions
to a player in a 3D maze in order to guide him to find
a hidden trophy. We are here interested with the re-
ferring aspect involved in GIVE: the player has to
push buttons to open doors or disable alarms, thus
the system has to generate referring expressions to
these buttons.

We first present in section 2 some definitions, then
in section 3 we detail a generic generation algorithm.
Section 4 shows a use case of RDT in the context of
the GIVE challenge and provides a detailed exam-
ple of the reference process. The presented model is
generic, but all the examples given throughout the
paper refer to the GIVE setting. Eventually, in sec-
tion 6 we conclude the paper by demonstrating the
success of RDT in an evaluation based on the GIVE
setting.
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2 Definitions

The referring process is a discrimination process
whose goal is to discriminate one or more individ-
uals in a context set. The discrimination can make
use of different sources of information. It can be a
semantic discrimination, for instance by uttering se-
mantic properties possessed by the referent to rule
out distractors, e.g. “the blue button”. It can be
a discrimination of the focus, that is to make use of
the current center of attention, e.g. “this button”
or “the other button”. The discrimination can also
rely on the previous referring acts, for instance when
uttering “Push a blue button. Yes this one”, where
”this one” would be unambiguously uttered in a con-
text of a red and a blue button thanks to the mention
of “a blue button”. A reference model has to take
into account these different ways to discriminate.

On the other hand, a reference model has also to
consider how objects are grouped together to form
the context sets. They can be constructed thanks to
similarity or proximity of objects (Thorisson, 1994),
by the gestures that are made (Landragin, 2006) or
by the discourse itself (Denis et al., 2006). We will
be limited to the dimension of semantic similarity in
this paper.

RDT claims that the context sets (reference do-
mains or RD) are structures that both gather indi-
viduals and discriminate them. A reference domain
is basically a set of objects that share some seman-
tic description N . A partition that discriminates the
elements is also attached to the domain. The parti-
tion is based on a differentiation criterion such that
two elements being discriminated with this criterion
are put in two different equivalency classes. For in-
stance, in a domain of two buttons, one blue and
one red, the two individuals share the same type and
are differentiated with the color. While each one is
“a button”, they can unambiguously be referred to
with “the blue button” and ”the red button” (or even
shorter ”blue”, ”red”).

Different elements of a domain may be more or less
focused/salient depending on the visual scene, or on
the previous discriminations. We are assuming that
the focus is defined as the most salient parts of the
partition of a domain and can thus be represented as
a subset of the partition. This is a binary state, that
is, a part is focused or not. While it removes the
possibility to have different degrees of focus inside a
domain, it would help modeling a preference to focus
similar objects together. We did not explore though
the empirical relevance of this hypothesis.

We assume that each domain could be said more
or less salient in a set of reference domains, called

a referential space or RS. The referential space is a
storage for the domains that have been created so
far. We consider here it is unique and shared. In the
GIVE setting, the RS is actually not shared because
the player does not know the maze a priori while the
system knows it completely. But we assume that the
RS is limited to the current room where the player is
standing. Each time the player enters a new room,
the RS is refreshed and a new one is built. We then
suppose that the player is able to access the objects
by walking around, and hence that the RS is shared,
removing problems related to asymmetry.

The referential space provides a traversal order for
the reference domains it contains. The most salient
RD are tested first. While it would be interesting
to model visual salience in the GIVE setting (Lan-
dragin, 2006), we are limited to equate salience and
recency. Thus, each domain will be associated to a
number indicating how recently it has been selected.
The way the salience or the whole RS is affected by
the discrimination process is described in section 3.2.
We now provide a formal definition of a reference do-
main and a referential space building algorithm.

2.1 Reference domains

We assume that 〈E, V 〉 is an environment composed
of E, the universe of all objects and V , the set
of ground predicates that hold in the environment.
Props is a set of unary predicates names such as blue,
red, left, or right. Types is a set of types of unary
predicates such as color, or position. We distinguish
two disjoint subsets of Types, Typespers the persis-
tent types, that are all the properties that describe
permanently the objects, and Typestrans the tran-
sient types, that are all the properties that change
across time. val is the function val : Types→ 2Props

which maps a type on the predicates names, e.g.

val(color) = {blue, red, green, yellow}

A reference domain D is a tuple

〈GD, SD, σD, (c, P, F )〉

where:

• GD ⊆ E is the set of objects of the domain,
called the ground of the domain.

• SD ⊆ Props is the semantic description of the
domain, such that ∀p ∈ SD,∀x ∈ GD, p(x) ∈ V ,
that is, SD is a description satisfied for all the
elements of the ground.

• σD ∈ N is the salience of the domain

And (c, P, F ) is a partition structure where:
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• c ∈ Types is a differentiation criterion

• P is the partition generated by c, that is, if we
define the equivalence relation

Rc(x, y) ≡ ∀p ∈ val(c), p(x) ∈ V ⇔ p(y) ∈ V

then P = GD/Rc, i.e. P is the quotient set of
GD by Rc.

• F ⊆ P is the focus of P .

For instance, a domain composed of two buttons,
b1 a blue button and b2 a red button, with a salience
equal to 3, where b1 and b2 are differentiated using
the color, and where b1 is in focus, would be noted
as:

D =〈{b1, b2}, {button}, 3,

(color, {{b1}, {b2}}, {{b1}})〉

2.2 Referential space

The referential space RS is the set of existing do-
mains. In the GIVE context, we assumed that it is
both shared and refreshed each time the player enters
a room. The initial construction of the RS consists
in grouping all the objects of the room that are sim-
ilar inside new reference domains. The RS can be
viewed as a tree-like structure whose nodes are RD.
The root node is a RD whose ground is all objects of
the room. For a node domain D, and for each part
of its partition which is not a singleton, there exists
a child domain which discriminates the elements of
the part. In other words, if a domain does not dis-
criminate some individuals of its ground there exists
another domain which does. Formally, the RS has to
respect the following proposition where PD denotes
the partition of D.

∀D ∈ RS,∀P ∈ PD,

|P | > 1⇒ ∃D′ ∈ RS;GD′ = P ∧ |PD′ | > 1

In order to make sure that all the individuals could
be discriminated, and thus focused, we introduce the
default partition structure of a set X, which is a par-
tition structure where the criterion is the identifier
of objects and that contains then only singletons, we
note def(X) the default partition of a set X, that is
def(X) = (id, X/Rid, ∅).

To build initially the RS, the grouping algorithm
(figure 1) is the following: it takes a list of types T
(T0 means the head, and T1..n the tail) which corre-
sponds to different properties to group the objects.
We are here only using the permanent properties of

objects, that is in GIVE their type and their color,
ordered arbitrarly. It takes also an input domain
which has a default partition. It then tries to parti-
tion the ground of this domain with the first prop-
erty. If this property does not partition the ground,
the next property is tested. If this property parti-
tions the ground, a new domain is created for each
non-singleton part of the partition, and the algo-
rithm tries to partition it with the next property,
so on recursively. We note sh(X, c) the set of prop-
erties of the type c that are shared by all elements of
X: sh(X, c) = {p|p ∈ val(c),∀x ∈ X; p(x) ∈ V }.

This partitioning algorithm is slightly different
from the partitioning algorithm called IApart found
in (Gatt and van Deemter, 2007). First, it only par-
titions a set of objects using one unique property,
whereas in IApart the same set of objects can be
partitioned several times. And second, while IApart

“destroys” the ground that is partitioned, our par-
titioning algorithm maintains both the ground and
the partition attached to the domain.

1: RS ← RS ∪ {D}
2: if T 6= ∅ then
3: P ← GD/RT0

4: if |P | = 1 then
5: SD ← SD ∪ sh(GD, T0)
6: createPartitions(D, T1..n, RS)
7: else
8: set (T0, P, ∅) as D’s partition structure
9: for all X ∈ P such that |X| > 1 do

10: D′ ← 〈X, SD ∪ sh(X, T0), σD,def(X)〉
11: createPartitions(D′, T1..n, RS)
12: end for
13: end if
14: end if

Figure 1: createPartitions(D, T , RS)

3 Referring

In this section we detail the generation algorithm
in RDT. It implements a dynamic view of referring
whereby each referring act updates the current ref-
erential space. This incremental update of the refer-
ential space proceeds in three steps. First, a domain
containing the referent is found. Then this domain
is used to match a so called underspecified domain
(Salmon-Alt and Romary, 2001). Third, the input
RS is restructured relative to the selected reference
domain.

The approach enables the implementation of a
type B reversible reference module (Klarner, 2005),
that is a module in which both directions share the
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Expression U(N, t) matches D iff ∃(c, P, F ) ∈ D;

this one F = {{t}} ∧msd(D)

this N F = {{t}} ∧ t ∈ NI

the N t ∈ NI ∧ {t} ∈ P ∧ ∀X∈P, X 6={t}⇒X∩NI =∅
the other one F 6= ∅ ∧ P \ F = {{t}} ∧msd(D)

the other N F 6= ∅ ∧ P \ F = {{t}} ∧ GD ⊆ NI

another one F 6= ∅ ∧ {t} ∈ P \ F ∧msd(D)

another N F 6= ∅ ∧ {t} ∈ P \ F ∧ GD ⊆ NI

a N t ∈ NI ∧ t ∈ GD

Table 1: Underspecified domains for each type of
referring expression

same resources, namely a set of underspecified do-
mains. In interpretation, the goal is to check for
each existing domain if it matches the underspeci-
fied domain obtained from the referring expression.
In generation, the idea is the opposite, that is, to
check from an existing domain and a referent, which
underspecified domain matches them.

We first introduce the different types of underspec-
ified domains. We then present the overall referring
algorithm and the process steering the continuous
update of the referential space.

3.1 Underspecified domains

An underspecified domain (UD) represents a par-
tially specified reference domain corresponding to the
constraints carried by a referring act. We will say
that an underspecified domain matches a reference
domain if all the constraints of the UD are satis-
fied for the reference domain. There may be con-
straints on the ground of the domain, its salience
or the existence of a particular partition structure.
Table 1 summarizes most of the types of under-
specified domains described in (Salmon-Alt and Ro-
mary, 2000; Salmon-Alt and Romary, 2001). Each
underspecified domain is noted U(N, t), where t is
the intended referent and N ⊆ Props is a seman-
tic description. We will note NI the set of ob-
jects that have the semantic description N that is
NI = {x|x ∈ E,∀p ∈ N, p(x) ∈ V }. We assume
there is for each description N a given wording, and
we will write for instance “the N” to denote a defi-
nite RE where N has to be replaced by the wording
of N . The notation msd(D) stands for most salient
description, that is, there is no more salient domain
than D with a different description. This is equiva-
lent to @D′ ∈ RS;σD′ ≥ σD ∧ SD′ 6= SD.

The indefinite “a N” can always be generated but
may be ambiguous. The only constraint placed on a
domain by the corresponding UD is that it contains
an element of type N. For example, the domain D1 =
〈{b1, b2, b3}, {button}, 0, (color, {{b1, b2}, {b3}}, ∅)〉

does not differentiate b1 from b2, the only way we
could access to b1 would be by uttering “a blue
button”.

The definite expression “the N” requires that the
target forms a semantically disjoint part in the ref-
erence domain partition. For example, in the above
domain D1, “the red button” can be used to refer to
b3.

Like the definite and indefinite, the demonstrative
“this N” requires that the referent is of type N (be-
longs to NI), but also requires the existence of a fo-
cused partition containing exactly the referent. For
example, if a domain of blue buttons contains a par-
tition structure such that P = {{b1}, {b2}}, it is pos-
sible to refer to b1 given that F = {{b1}} by uttering
“this blue button”, but it would not be the case if
F = {{b1}, {b2}}.

Alternative phrases such as “another/the other N”
both require that there is already something in focus
which is not the referent. Definite alternative phrases
require that the unfocused part of the partition con-
tains exactly the target referent while indefinites only
require that the unfocused part contains the referent.
For example, if there is a domain of three blue but-
tons b1, b2, b3 with a partition structure such that
F = {{b2}}, it is possible to use the indefinite “an-
other blue button” to refer to b1 while it would not be
possible to use the definite “the other blue button”.

One-anaphora of the form “this/another/the other
one” can be generated only if the description of the
domain in which the referent has to be discriminated
is already salient, in other words that msd(D) is true.
For example, if the most salient domain in RS is a
domain of blue buttons, it would not be possible to
utter “this one” to refer to a red button inside a less
salient domain.

3.2 Generation algorithm

The referring algorithm (figure 2) proceeds in three
steps as follows.

The first step (line 1–2) determines in which refer-
ence domain, referring will be processed and thereby,
which description will be used for instantiating the
underspecified domains. The selected RD is the most
salient RD with the smallest ground containing the
target referent. If there are several such RD, an
arbitrary one is picked. If the selected domain is
D = 〈GD, SD, σD, (c, P, F )〉, then the description S
used to instantiate the underspecified domain is the
conjunction of the properties in the description SD

with the value of the differentiation criterion used
to create the partition namely, properties of val(c)
true of the referent (line 2). If the criterion is the
identifier, it is ignored in S. For instance, if there is

Sixth International Natural Language Generation Conference (INLG 2010)

30



a domain of buttons with a partition on color, the
description might be {button, blue}.

In the second step, the algorithm iterates through
the underspecified domains instantiated with S and
selects the first that matches. The order in which
underspecified domains are tested is particularly im-
portant. We use (Gundel et al., 1993) Givenness hi-
erarchy and ordered the UDs based on the cognitive
status of the corresponding referent. We extended
the hierarchy to include alternative NPs: “this one”
> “this N” > “the N” > “the other one” > “the
other N” > “another one” > “another N” > “a N”.

In the third step, the referential space is restruc-
tured by either creating a new domain or increasing
the salience of an existing domain (Figure 3). The
goal of this restructuring step is to be able to re-
strict the further focus to a smaller domain. For
instance, when dealing with red buttons we want
to avoid focusing the blue buttons. The function
first gathers all objects of D that have the persis-
tent part of description S (Gp and Sp), and if there
is already a domain composed by these objects, its
salience is increased such that it is the most salient
(line 4). If there is no such domain, a new most
salient domain is created with these objects and a
default partition. Transient properties are not taken
into account to regroup the objects because it would
restrict too much further focus. For instance, limit-
ing the restructuring to persistent properties avoids
sequences like “Push the button on the right. Yeah
this one”.

For example in a domain D containing a button
b1 and a chair c1,

D =〈{b1, c1}, ∅, 0,

(objType, {{b1}, {c1}}, ∅)〉

a reference to b1 could lead to the generation of
the expression “the button”, the restructuring makes
sure to create a new domain whose ground is only
{b1}. Therefore, we avoid producing unecessary ref-
erence to the chair such as “Not this chair! Look for
the button” (see section 4).

3.3 Dealing with plurals

The plurals treatment is quite similar to the singu-
lar cases, but we need to do two modifications to
be able to generate plurals. The first modification
is about the underspecified domains. Whereas we
had individuals, here we want to generate an RE to
a set of targets T = {t1..tn}. The UDs can eas-
ily be modified by just replacing every occurrence
of {t} by T (and t ∈ NI by T ⊆ NI). With this
modification, we can only generate plurals for sets of

1: D ← most salient/specific domain containing t
2: S ← SD ∪ {p|p ∈ val(c), p(t) ∈ V }
3: for all U(S, t) sorted by Givenness do
4: if U(S, t) matches D then
5: restructure(D, S, RS)
6: return U(S, t)
7: end if
8: end for
9: return failure

Figure 2: generate(t, RS)

1: Sp ← {p|p ∈ S, val−1(p) ∈ Typespers}
2: Gp ← {x|x ∈ GD,∀p ∈ Sp, p(x) ∈ V }
3: if ∃D′ ∈ RS;GD′ = Gp then
4: σD′ ← maxσ(RS) + 1
5: else
6: D′ ← 〈Gp, Sp,maxσ(RS) + 1,def(Gp)〉
7: RS ← RS ∪ {D′}
8: end if

Figure 3: restructure(D, S, RS)

objects that are parts of an existing partition. Imag-
ine we have GD = {b1, b2, b3, b4}, and a partition
P = {{b1, b2}, {b3, b4}} then it is not possible to refer
to {b2, b3} using a demonstrative because they can-
not be focused together. It may be possible to adapt
the UD to consider

⋃
F instead of F , that is for in-

stance instead of F = {T} we would require that⋃
F = T . But this possibility and its side-effects

have not been yet explored.
The second modification is related to the gener-

ation algorithm and the description used to build
the underspecified domains. Instead of retrieving the
properties of the differentiation criterion for a single
target we need to make sure that the properties are
true for all the targets, that is (line 2), we need to
have S ← SD ∪ {p|p ∈ val(c),∀t ∈ T, p(t) ∈ V }.

4 Generation in the GIVE challenge

We present here how the generation module has been
instantiated in the second edition of the GIVE chal-
lenge (Byron et al., 2007).

First, each time the player enters a new room,
the partition algorithm is called on an initial domain
Dr = 〈Gr, ∅, 0,def(Gr)〉, with Gr ⊆ E the set of all
objects in the room, and the list of GIVE persistent
types, that is objType, the type of objects, and color.

We then use the above referring algorithm in two
ways. First, it is used to produce a first mention us-
ing only persistent properties and without updating
the focus. Second, it is used to produce a series of

Sixth International Natural Language Generation Conference (INLG 2010)

31



additional subsequent mentions whose function is to
guide the player search. In this second step, tran-
sient spatial properties are used and the visual focus
is continuously updated.

4.1 First mention

The referring algorithm just described (cf. Figure 2)
takes as input the current referential space RS, gen-
erates a referring expression for the target referent
t and outputs a push instruction of the form “Push
”+v(generate(t, RS)) where v is the verbalization
function. Note that the referential space may con-
tain domains with focused partitions coming from
previous references to other objects, and therefore is
not limited to producing definite or indefinite NPs.

4.2 Subsequent mentions

All the subsequent mentions assume that the first
mention has been performed but has not succeeded
yet in identifying the referent. They are all based on
focus and potentially on transient properties. The
focus is defined as the set of visible objects. The al-
gorithm (figure 4) first updates the focus of the parti-
tion of the most salient/specific domain D containing
the target t. Then the rest of the algorithm gener-
ates different instructions depending on whether the
target is or is not focused.

The lines 7–8 refine the focus using relative spa-
tial properties of objects in their domain. It first
computes these new properties hpos and vpos for all
objects in

⋃
F , and adds them in V . The refinement

is made by calling the partition function (algorithm
1) on a new domain DF = 〈GF , SD, σD+1, def(GF )〉,
using [hpos,vpos]. The salience of DF is just higher
than the salience of D such that DF is preferred
over D when generating. This refinement allows
producing expressions like “the blue button on the
right”. Because these properties are transient, they
are erased from V after the generation and all the
domains and partitions that may have been created
using them including DF are also erased.

Other lines produce expressions if the referent is
not in focus. If there is nothing in focus, it produces
“Look for X” where X is an RE for the referent. If
there is something in focus which is not the referent,
it first produces “Not X” where X is an RE designat-
ing what is in focus, then “Look for X” where X is an
RE for the referent. Note that this is the only place
where plurals can be generated (see section 3.3).

5 Detailed example

We present here a detailed example of the behavior
of the reference module in the GIVE setting (Table
2). We assume that the player U enters a room with

1: D ← most salient/specific domain containing t
2: F ← focus of the visible objects in D
3: GF ←

⋃
F

4: if t ∈ GF then
5: if |GF | > 1 then
6: computePositions(GF )
7: DF ← 〈GF , SD, σD + 1,def(GF )〉
8: createPartitions(DF , [hpos,vpos], RS)
9: end if

10: return ’Yeah!’+v(generate(t, RS))+’ !’
11: else
12: if |GF | = 0 then
13: return ’Look for ’+v(generate(t, RS))
14: else
15: return ’Not ’+v(generate(GF , RS))+’ !

Look for ’+v(generate(t, RS))+’ !’
16: end if
17: end if

Figure 4: Algorithm to instruct the search for a ref-
erent

state of U utterance of S
Push a blue button (b1)

see(b2) Not this one! Look for the other one!
see(b1,b2) Yeah! The blue button on the right!
see(b1) Yeah! This one!
push(b1)

Push the red button (b3)
see(b3) Yeah! This one!
push(b3)

Push the other blue button (b2)

Table 2: Utterances produced by the system S

three buttons, two blue buttons, b1 and b2 and a red
button b3.

5.1 Initializing the referential space
As soon as the player enters the room, the partition
algorithm is called on the initial domain:

D0 = 〈Gr, ∅, 0, def(Gr)〉

with Gr = {b1, b2, b3}. The result is the RS :

D0 =〈{b1, b2, b3}, {button}, 0,

(color, {{b1, b2}, {b3}}, ∅)〉
D1 =〈{b1, b2}, {button, blue}, 0,

(id, {{b1}, {b2}}, ∅)〉

We will note the RS by grouping the domains that
have the same salience and indicating the salience
of a set of domains in subscript. That is, after the
construction, the RS is: {{D0, D1}0}.
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5.2 “Push a blue button”

The system is first required to refer to b1. As all the
domains all are equally salient, the algorithm tries to
pick the most specific domain containing b1, and it
finds D1. The description used to refer to b1 is the
description of the domain SD1 = {button, blue} and
the value for the criterion which is the identifier and
is then ignored. Inside D1 it then tries to refer to
b1 by iterating through the underspecified domains
to find the first one that matches D1. Because there
is no focus at this moment, the first found UD that
matches is “a N”. It then performs restructuration
of the RS, by trying to build a new subdomain of
D1. However, because there are only blue buttons
in D1, no subdomain is created and the salience of
D1 is increased. Eventually, the expression is verbal-
ized and “Push a blue button” is uttered. After this
reference, the RS is then {{D1}1, {D0}0}.

5.3 “Not this one! Look for the other one!”

Before the subsequent mentions to b1 are made, the
focus of the most salient/specific domain containing
b1 is updated. We assume first that only b2 is visible,
thus D1 becomes:

D1 =〈{b1, b2}, {button, blue}, 1,

(id, {{b1}, {b2}}, {{b2}})〉

According to the algorithm in figure 4, a reference
to b2 has to be made first “Not b2!”. Underspeci-
fied domains are iterated and the first that matches
is “this one” considering that {blue, button} is the
most salient description and b2 is in focus. No sub-
domain is created when restructuring the RS, only
the salience of D1 is increased. The uttered expres-
sion is then “Not this one!”. As for the reference
to b1, the reference is still made in D1 and the first
UD that matches is “the other one”. No restructur-
ing apart from increasing salience is performed and
the returned expression is eventually “Look for the
other one!”. So, after referring to b2 and b1, the RS
is {{D1}3, {D0}0}.

5.4 “The blue button on the right”

We enjoined the player to turn around to search for
b1. We assume here that he did so and now can see
both b1 and b2. Before any reference can take place,
the focus of D1 is updated:

D1 =〈{b1, b2}, {button, blue}, 3,

(id, {{b1}, {b2}}, {{b1}, {b2}})〉

However, the focus can no more discriminate both
buttons, and a refinement with the position has to be
performed according to the algorithm 4. We assume
that b1 is on the right while b2 is on the left. Positions
are computed and new ground predicates are added
to V : {right(b1), left(b2)}. A new domain D2 with a
ground equal to the focus of D1, that is {b1, b2}, is
built and used as input for the partition algorithm.
It is partitioned along the horizontal position (hpos),
and then added to the RS, that is:

D2 =〈{b1, b2}, {button, blue}, 4,

(hpos, {{b1}, {b2}}, ∅)〉

Before the reference to b1, the RS is then
{{D2}4, {D1}3, {D0}0}. A new reference to b1 is
then made, but as D2 is more salient than D1 it
is preferred for the reference. The first UD that
matches is the definite “the N” built with the de-
scription {button, blue, right}, and “the blue button
on the right” is uttered. However, because D2 was
built with transient properties, it is erased from the
RS and is recreated before each reference unless the
player changes its visual focus.

5.5 “Yeah! This one!”

Now we assume that the player turned around again
and only sees now b1. The most salient/specific do-
main containing b1 is D1 and its focus is updated:

D1 =〈{b1, b2}, {button, blue}, 3,

(id, {{b1}, {b2}}, {{b1}})〉

The first matching UD is the demonstrative one-
anaphora “this one”, no restructuring takes place ex-
cept the increased salience of D1 and “Yeah! This
one!” is produced. The RS is thus {{D1}4, {D0}0}.

5.6 “Push the red button”

We assume that given all these referring expressions,
the player is at last able to push b1. A new reference
has to be made, this time to b3, the red button. The
most salient/specific domain containing b3 is actually
D0. In D0, the first matching underspecified domain
is the definite “the N”. The restructuring leads this
time to create a new most salient domain D3 com-
posed only of b3 (because it is the only red button):

D3 =〈{b3}, {button, red}, 5,

(id, {{b3}}, ∅)

The further reference to objects will thus avoid re-
ferring to something else than red buttons (see sec-
tion 3.2). The RS is then {{D3}5, {D1}4, {D0}0}.
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5.7 “Yeah! This one!”

Provided that D3 is now the most salient/specific
container of b3, b3 can be focalized in the default
partition of D3, resulting in:

D3 =〈{b3}, {button, red}, 5,

(id, {{b3}}, {{b3}})〉

The first matching UD is then “this one”, the re-
structuring just increases the salience of D3 and the
system utters eventually “Yeah! This one!”. The
RS is then {{D3}6, {D1}4, {D0}0}. Note that, even
if the player would turn around and see b1 or b2 in
the same time than b3, D3 being the current most
salient/specific domain, b1 or b2 would not be fo-
cused.

5.8 “Push the other blue button”

We now have to refer to the last button b2. The
most salient/specific domain containing b2 is D1,
however D1 contains already a focus to b1. Thus,
the first matching UD is “the other N”. Note that
we only considered visual focus, therefore the alter-
native anaphora “the other” does not refer to b2 be-
cause we already mentioned b1 but only because it
is the last object the player saw in D1. By chance,
in the GIVE setting, the visual focus corresponds
to the linguistic focus and thus uttering “Push the
other blue button” sounds natural. It would be more
complex to handle a setting with both the linguistic
and the visual focus, but we think that the RDT is
well-equipped to resolve this issue.

6 Evaluation

We evaluated the RDT generation model by compar-
ing its performances with another system also com-
peting in the GIVE challenge but based on a clas-
sical approach on (Dale and Haddock, 1991) that is
restricted to generating definite and indefinite NPs.
We designed a special evaluation world to test several
reference cases, and for both approaches, we mea-
sured the average time from the moment of uttering
a first mention designating a button to the moment
of completion, that is when the button is success-
fully pushed. We also measured the average number
of instructions that were provided in the meantime.
The evaluation has been conducted with 30 subjects
resulting in 20 valid games. The results show that
the RDT performs better than the classical strategy,
both for the average completion time (8.8 seconds
versus 12.5 seconds) and for the number of instruc-
tions (6.4 versus 9.3). We conjecture that the good

results of RDT can be explained by the lower cog-
nitive load resulting from the use of demonstrative
NPs and one-anaphoras.

7 Other works and extensions

While some RE generation models focus on the side
of generating the description itself (Dale and Re-
iter, 1995; Krahmer et al., 2003), we tried to focus
more on the side of generating the determiner. While
works such as (Poesio et al., 1999) also generates the
determiner, they rely on statistical learning of this
determiner. On the contrary we did so by represent-
ing logically the constraints carried by a referring ex-
pressions on the context of its interpretation. How-
ever, the presented model has several limits. First,
as (Landragin and Romary, 2003) describe, there is
no one-to-one relation between the referring expres-
sions and the referring modes. In order to tackle this
problem we can associate a set of UD to a referring
expression. We only need then to add an additional
loop on the different UDs for a given type of referring
expression. The second extension is the possibility
to have several partitions. It is also possible to it-
erate over the set of partitions of a domain, but we
then need to consider the salience of each partition.
In addition, the restructuring has to be amended to
increase the salience of the partition in which a gen-
eration is made.

8 Conclusions

We presented a reference generation algorithm based
on Reference Domain Theory. The main improve-
ment of this algorithm over existing approaches is
the construction and update of a set of local con-
texts called a referential space. Each local context
(reference domain) can be used as a context for re-
ferring. The dynamic aspect of the reference process
consists both in the continuous update of the ref-
erence domains and in the update of the referential
space. Thus, the presented algorithm can generate a
variety of referring expressions ranging from definite,
indefinite to demonstrative, alternative phrases, one-
anaphora and plurals. The instantiation in the GIVE
challenge was a baptism for the generation algorithm
and the GIVE setting offered us a good opportunity
to test the serial nature of the reference process. It
enabled us to evaluate the RDT approach and proved
that it is successful.

We would like to thank Luciana Benotti, Claire
Gardent, and the people participating to the GIVE
challenge at the LORIA for their help during the
model development. We also would like to thank the
anonymous reviewers for their precious insights.
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Abstract

We present a novel approach to natural lan-
guage generation (NLG) that applies hierar-
chical reinforcement learning to text genera-
tion in the wayfinding domain. Our approach
aims to optimise the integration of NLG tasks
that are inherently different in nature, such
as decisions of content selection, text struc-
ture, user modelling, referring expression gen-
eration (REG), and surface realisation. It
also aims to capture existing interdependen-
cies between these areas. We apply hierar-
chical reinforcement learning to learn a gen-
eration policy that captures these interdepen-
dencies, and that can be transferred to other
NLG tasks. Our experimental results—in a
simulated environment—show that the learnt
wayfinding policy outperforms a baseline pol-
icy that takes reasonable actions but without
optimization.

1 Introduction

Automatic text generation involves a number of sub-
tasks. (Reiter and Dale, 1997) list the following as
core tasks of a complete NLG system: content se-
lection, discourse planning, sentence planning, sen-
tence aggregation, lexicalisation, referring expres-
sion generation and linguistic realisation. However,
decisions made for each of these core tasks are not
independent of each other. The value of one gen-
eration task can change the conditions of others,
as evidenced by studies in corpus linguistics, and
it can therefore be undesirable to treat them all as
isolated modules. In this paper, we focus on inter-
related decision making in the areas of content se-
lection, choice of text structure, referring expression

and surface form. Concretely, we generate route in-
structions that are tailored specifically towards dif-
ferent user types as well as different environmental
features. In addition, we aim to balance the degree
of variation and alignment in texts and produce lex-
ical and syntactic patterns of co-occurrence that re-
semble those of human texts of the same domain.
Evidence for the importance of this is provided by
(Halliday and Hasan, 1976) who note the way that
lexical cohesive ties contribute to text coherence as
well as by the theory of interactive alignment. Ac-
cording to (Pickering and Garrod, 2004) we would
expect significant traces of lexical and syntactic self-
alignment in texts.

Approaches to NLG in the past have been ei-
ther rule-based (Reiter and Dale, 1997) or statisti-
cal (Langkilde and Knight, 1998). However, the for-
mer relies on a large number of hand-crafted rules,
which makes it infeasible for controlling a large
number of interrelated variables. The latter typi-
cally requires training on a large corpus of the do-
main. While these approaches may be better suitable
for larger domains, for limited domains such as our
own, we propose to overcome these drawbacks by
applying Reinforcement Learning (RL)—with a hi-
erarchical approach. Previous work that has used RL
for NLG includes (Janarthanam and Lemon, 2009)
who employed it for alignment of referring expres-
sions based on user models. Also, (Lemon, 2008;
Rieser and Lemon, 2009) used RL for optimising
information presentation styles for search results.
While both approaches displayed significant effects
of adaptation, they focused on a single area of opti-
misation. For larger problems, however, such as the
one we are aiming to solve, flat RL will not be appli-
cable due to the large state space. We therefore sug-
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gest to divide the problem into a number of subprob-
lems and apply hierarchical reinforcement learning
(HRL) (Barto and Mahadevan, 2003) to solve it.

We describe our problem in more detail in Sec-
tion 2, our proposed HRL architecture in Sections
3 and 4 and present some results in Section 5. We
show that our learnt policies outperform a baseline
that does not adapt to contextual features.

2 Generation tasks

Our experiments are all drawn from an indoor
navigation dialogue system which provides users
with route instructions in a university building and
is described in (Cuayáhuitl et al., 2010). We aim
to optimise generation within the areas ofcontent
selection, text structure, referring expression gener-
ation andsurface realisation.

Content Selection Content selection decisions
are subject to different user models. We distin-
guish users who are familiar with the navigation
environment and users who are not. In this way,
we can provide different routes for these users
corresponding to their particular information need.
Specifically, we provide more detail for unfamiliar
than familiar users by adding any or several of
the following: (a) landmarks at decision points,
(b) landmarks lying on long route segments, (c)
specifications of distance.

Text Structure Depending on the type of user
and the length of the route, we choose among three
different text generation strategies to ease the cogni-
tive load of the user. Examples of all strategies are
displayed in Table 1. All three types resulted from
an analysis of a corpus of 24 human-written driving
route instructions. We consider the first type (se-
quential) most appropriate for long or medium-long
routes and both types of user. The second type (tem-
poral) is appropriate for unfamiliar users and routes
of short or medium length. It divides the route into
an explicit sequence of consecutive actions. The
third type (schematic) is used in the remaining cases.

Referring Expression Generation We dis-
tinguish three types of referring expressions:
common names, familiar namesand descriptions.

In this way, entities can be named according to
the users’ prior knowledge. For example, one
and the same room can be called either ‘the
student union room’, ‘room A3530’ or ‘the room
right at the corner beside the entrance to the terrace’.

Surface Realisation For surface realisation, we
aim to generate texts that display a natural balance
of (self-)alignment and variation. While it is a rule
of writing that texts should typically contain varia-
tion of surface forms in order not to appear repetitive
and stylistically poor, there is evidence that humans
also get influenced by self-alignment processes dur-
ing language production. Specifically, (Garrod and
Anderson, 1987; Pickering and Garrod, 2004) ar-
gue that the same mental representations are used
during language production and comprehension, so
that alignment occurs regardless of whether the last
utterance was made by another person or by the
speaker him- or herself (for experimental evidence
see (Branigan et al., 2000; Bock, 1986)). We can
therefore hypothesise that coherent texts will, be-
sides variation, also display a certain degree of self-
alignment. In order to determine a proper balance
of alignment and variation, we computed the degree
of lexical repetition from our corpus of 24 human
route descriptions. This analysis was based on (Hirst
and St-Onge, 1998) who retrieve lexical chains from
texts by identifying a number of relations between
lexical items. We focus here exclusively on Hirst
& St-Onge’s ‘extra-strong’ relations, since these can
be computed from shallow properties of texts and do
not require a large corpus of the target domain. In
order to make a fair comparison between the human
texts and our own, we used a part-of-speech (POS)
tagger (Toutanova and Manning, 2000)1 to extract
those grammatical categories that we aim to control
within our framework, i.e. nouns, verbs, preposi-
tions, adjectives and adverbs. Based on these cat-
egories, we compute the proportion of tokens that
are members in lexical chains, the ‘alignment score’
(AS), according to the following equation:

AS =
Lexical tokens in chains
Total number of tokens

× 100. (1)

We obtained an average alignment score of 43.3%
for 24 human route instructions. In contrast, the

1http://nlp.stanford.edu/software/tagger.shtml
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Table 1:Different text generation strategies for the same underlying route.

Type 1: Sequential Type 2: Temporal Type 3: Schematic

Turn around, and go straightFirst, turn around. Second, - Turn around.
to the glass door in front of go straight to the glass door- Go straight until the glass door in front
you. Turn right, then follow in front of you. Third, turn of you. (20 m)
the corridor until the lift. It right. Fourth, follow the - Turn right
will be on your left-hand corridor until the lift. It will - Follow the corridor until the lift. (20 m)
side. be on your left-hand side. - It will be on your left-hand side.

same number of instructions generated by Google
Maps yielded 78.7%, i.e. an almost double amount
of repetition. We will therefore train our agent
to generate texts with an about medium alignment
score.

3 Hierarchical Reinforcement Learning
for NLG

The idea of text generation as an optimization
problem is as follows: given a set of genera-
tion states, a set of actions, and an objective
reward function, an optimal generation strategy
maximizes the objective function by choosing the
actions leading to the highest reward for every
reached state. Such states describe the system’s
knowledge about the generation task (e.g. con-
tent selection, text structure, REG, surface realiza-
tion). The action set describes the system’s ca-
pabilities (e.g. expandsequentialaggregation, ex-
pandschematicaggregation, expand lexical items,
etc.). The reward function assigns a numeric value
for each taken action. In this way, text generation
can be seen as a finite sequence of states, actions
and rewards{s0, a0, r1, s1, a1, ..., rt−1, st}, where
the goalis to find an optimal strategy automatically.
To do that we use hierarchical reinforcement learn-
ing in order to optimize a hierarchy of text genera-
tion policies rather than a single policy.

The hierarchy of RL agents consists ofL lev-
els andN models per level, denoted asM = M i

j ,
wherej ∈ {0, ...,N − 1} and i ∈ {0, ..., L − 1}.
Each agent of the hierarchy is defined as a Semi-
Markov Decision Process (SMDP) consisting of a
4-tuple< Si

j, A
i
j , T

i
j , R

i
j >. Si

j is a set of states,Ai
j

is a set of actions, andT i
j is a transition function that

determines the next states′ from the current state
s and the performed actiona with a probability of

P (s′|s, a). Ri
j(s

′, τ |s, a) is a reward function that
specifies the reward that an agent receives for taking
an actiona in states at timeτ . Since SMDPs allow
for temporal abstraction, that is, actions may take a
variable number of time steps to complete, the ran-
dom variableτ represents this number of time steps.
Actions can be either primitive or composite. The
former yield single rewards, the latter (executed us-
ing a stack mechanism) correspond to SMDPs and
yield cumulative discounted rewards. The goal of
each SMDP is to find an optional policyπ∗ that max-
imises the reward for each visited state, according to

π∗i
j(s) = arg max

a∈A
Q∗i

j(s, a). (2)

whereQi
j(s, a) specifies the expected cumulative re-

ward for executing actiona in states and then fol-
lowing π∗. For learning a generation policy, we
use hierarchical Q-Learning (HSMQ) (Dietterich,
1999). The dynamics of SMDPs are as follows:
when an SMDP terminates its execution, it is popped
off the stack of models to execute, and control is
transferred to the next available SMDP in the stack,
and so on until popping off the root SMDP. An
SMDP terminates when it reaches one of its termi-
nal states. This algorithm is executed until the Q-
values of the root agent stabilize. The hierarchical
decomposition allows to find context-independent
policies with the advantages of policy reuse and fa-
cilitation for state-action abstraction. This hierarchi-
cal approach has been applied successfully to dia-
logue strategy learning (Cuayahuitl et al., 2010).

4 Experimental Setting

4.1 Hierarchy of SMDPs

The hierarchy consists of 15 agents. It is depicted
in Figure 1. The root agent is responsible for deter-
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Figure 1: Hierarchy of agents for learning adaptive text generation strategies in the wayfinding domain

miningaroute instruction type for a navigation situ-
ation. Wedistinguish turning, passing, locating, go-
ing and following instructions. It also chooses a text
generation strategy and the information structure of
the clause (i.e., marked or unmarked theme (Hall-
iday and Matthiessen, 2004)). Leaf agents are re-
sponsible for expanding constituents in which varia-
tion or alignment can occur, e.g. the choice of verb
or prepositional phrase.

4.2 State and action sets

We distinguish three kinds of state representations,
displayed in Table 2. The first (M0

10 andM1
0 ) en-

codes information on the spatial environment and
user type so that texts can be tailored towards these
variables. These variables play a major part in our
simulated environment (Section 5.1). The second
representation (M1

1 - M1
5 andM2

3 ) controls sentence
structure and ensures that all required constituents
for a message have been realised. The third (all re-
maining models) encodes variants of linguistic sur-
face structure and represents the degree of alignment
of all variants. We address the way that these align-
ment values are computed in Section 4.4. Actions
can be either primitive or composite. Whereas the
former expand a logical form directly, the latter cor-
respond to SMDPs at different levels of the hierar-
chy. All parent agents have both types of actions,
only the leaf agents have exclusively primitive ac-
tions. The set of primitive actions is displayed in Ta-
ble 2, all composite actions, corresponding to mod-
els, are shown in Figure 1. The average number of
state-action pairs for a model is|S × A| = 77786.
While in the present work, the action set was de-

termined manually, future work can aim at learning
hierarchies of SMDPs automatically from data.

4.3 Prior Knowledge

Agents contain prior knowledge of two sorts. First,
the root agents and agents at the first level of the hi-
erarchy contain prior probabilities of executing cer-
tain actions. For example, given an unfamiliar user
and a long route, modelM1

0 , text strategy, is initi-
ated with a higher probability of choosing a sequen-
tial text strategy than a schematic or temporal strat-
egy. Second, leaf agents of the hierarchy are initi-
ated with values of a hand-crafted language model.
These values indicate the probabilities of occurrence
of the different surface forms of the leaf agents listed
in Table 2. Both types of prior probabilities are used
by the reward functions described below.

4.4 Reward functions

We use two types of reward function, both of which
are directly motivated by the principles we stated in
Section 2. The first addresses interaction length (the
shorter the better) and the choice of actions tailored
towards the user model and spatial environment.

R =







0 for reaching the goal state
-10 for an already invoked subtask

p(a) otherwise
(3)

p(a) corresponds to the probability of the last ac-
tion given the current state, described above as prior
knowledge. The second reward function addresses
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Table 2:State and action sets for learning adaptive text generation strategies in the wayfinding domain

Model State Variables Action Set

M0
0 text strategy (FV), infostructure (FV), instruction (FV), expandtext strategy (M1

0 ), turning (M2

3 ),

slot in focus(0=action, 1=landmark), usertype(0=unfamiliar, going (M2

1 ), passing (M2

5 ), following (M2

2 ),

1=familiar) subtasktermination(0=continue, 1=halt) locating instr.(M2

4 ), expandunmarkedtheme

M1
0 end(0=continue, 1=halt), textstrategy (FV), routelength expandschematicaggregation, expandsequen-

(0=short, 1=medium, 2=long), usertype(0=unfam., 1=fam.) ce aggregation, expandtemporalaggregation

M1
1 going vp (FV), limit (FV), SV expandgoing vp (M2

0 ), expandlimit

M1
2 following vp (FV), SV, limit (FV) expandfollowing vp (M2

1 ), expandlimit

M1
3 turning location (FV), turningvp (FV), expandturning vp (M3

2 ), expandturning loc.,

SV, turningdirection (FV) expandturning direction (M3

4 )

M1
4 np locatum (FV), locatingvp (FV), expandnp locatum, expandlocating vp (M2

5 ),

staticdirection (FV), SV expandstaticdir. (M2

6 )

M1
5 np locatum (FV), passingvp (FV), SV, staticdirection (FV) expandpass.vp (M2

6 ), expandstaticdir. (M2

6 )

M2
0 vp go straightahead, vpgo straight, vpmove straightahead, Actions correspond to expansions of

vp walk straightahead, vpwalk straight (all AS) lexemes

M2
1 vp follow, vp go over, vpwalk down, vpgo down, Actions correspond to expansions of

vp go up, vp walk up, vp walk over (all AS) lexemes

M2
2 vp walk, vp veer , vphang, vpbear (all AS), vpgo, vp head, Actions correspond to expansions of

vp turn (all AS) lexemes

M2
3 identifiability(0=not id.,1=id.), usertype(0=un-, expandrelatumid., expandrelatum, not id.,

fam.,1=fam,, relatumidentifiability (FV), relatumname (FV) expanddescriptive, expandcommonname

M2
4 pp nonphoric, ppnonphorichandedness, Actions correspond to expansions of

pp nonphoricposs, ppphoric ppnonphoricside (all AS) lexemes

M2
5 vp be, vpbe locatedat, vp get to, vp see (all AS) Actions correspond to expansions of lexemes

M2
6 directionon, directionposs, directionto (all AS) Actions correspond to expansions of lexemes

M2
7 vp move past, vppass, vppassby, vp walk past (all AS) Actions correspond to expansions of lexemes

(FV = filling status): 0=unfilled, 1=filled. (SV = shared variables): the variables npactor (FV), relatum (FV),

sentence (FV) and informationneed (0=low, 1=high) are shared by several subagents; the same applies to their

corresponding expansion actions. (AS = alignment score): 0=unaligned, 1=low AS, 2=medium AS, 3=high AS.

the tradeoff between alignment and variation:

R =







0 for reaching the goal state
p(a) for medium alignment
-0.1 otherwise

(4)

Whilst the former reward function is used by the root
and modelsM1

0 - M1
5 andM2

2 , the latter is used by
modelsM2

0 - M2
1 andM2

3 - M2
7 . It rewards the agent

for a medium alignment score, which corresponds
to the score of typical human texts we computed
in Section 2. The alignment status of a constituent
is computed by the Constituent Alignment Score
(CAS) as follows, where MA stands for ‘medium

alignment’.

CAS(a) =
Count of occurrences(a)

Occurences ofa without MA
(5)

From this score, we can determine the degree of
alignment of a constituent by assigning ‘no align-
ment’ for a constituent with a score of less than
0.25, ‘low alignment’ for a score between 0.25 and
0.5, ‘medium alignment’ for a score between 0.5 and
0.75 and ‘high alignment’ above. On the whole thus,
the agent’s task consists of finding a balance be-
tween choosing the most probable action given the
language model and choosing an action that aligns
with previous utterances.
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5 Experiments and Results

5.1 Simulated Environment

The simulated environment encodes information on
the current user type (un-/familiar with the environ-
ment) and corresponding information need (low or
high), the length of the current route (short, medium-
long, long), the next action to perform (turn, go
straight, follow a path, pass a landmark or take note
of a salient landmark) and the current focus of at-
tention (the action to be performed or some salient
landmark nearby). Thus, there are five different state
variables with altogether 120 combinations, sam-
pled from a uniform distribution. This simple form
of stochastic behaviour is used in our simulated en-
vironment. Future work can consider inducing a
learning environment from data.

5.2 Comparison of learnt and baseline policies

In order to test our framework, we designed a sim-
ulated environment that simulates different naviga-
tional situations, routes of different lengths and dif-
ferent user types. We trained our HRL agent for
10.000 episodes with the following learning param-
eters: the step-size parameterα was initiated with1
and then reduced over time byα = 1

1+t
, t being the

time step. The discount rate parameterγ was0.99
and the probability of random actionǫ was0.01 (see
(Sutton and Barto, 1998) for details on these param-
eters). Figure 2 compares the learnt behaviour of
our agent with a baseline (averaged over 10 runs)
that chooses actions at random in modelsM1

0 and
M2

0 - M2
7 (i.e., the baseline does not adapt its text

strategy to user type or route length and neither per-
forms adaptation of referring expressions or align-
ment score). The user study reported in (Cuayáhuitl
et al., 2010) provided users with instruction using
this baseline generation behaviour. The fact that
users had a user satisfaction score of 90% indicates
that this is a sensible baseline, producing intelligi-
ble instructions. We can observe that after a certain
number of episodes, the performance of the trained
agent begins to stabilise and it consistently outper-
forms the baseline.

6 Example of generation

As an example, Figure 3 shows in detail the genera-
tion steps involved in producing the clause ‘Follow
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Figure 2: Comparison of learnt and baseline behaviour in
the generation of route descriptions

the corridor until the copyroom’ for an unfamiliar
user and aroute of medium length. Generation starts
with the root agent in state (0,0,0,0,0,0), which in-
dicates that textstrategy, infostructure and instruc-
tion are unfilled slots, the slotin focus of the sen-
tence is an action, the status of subtasktermination
is ‘continue’ and the usertype is unfamiliar. After
the primitive action expandunmarkedtheme was
executed, the state is updated to (0,1,0,0,0,0), in-
dicating the filled slot. Next, the composite action
text strategy is executed, corresponding to model
M1

0 . The initial state (1,0,0) indicates a route
of medium length, an unfilled textstrategy slot
and an unfamiliar user. After the primitive ac-
tion expandsequentialtext was chosen, the ter-
minal state is reached and control is returned to
the root agent. Here, the next action is follow-
ing instruction corresponding to modelM1

2 . The
initial state (0,1,0,0,0,0) here indicates unfilled slots
for following vp, np actor, sentence, path, limit
and relatum, as well as a high informationneed
of the current user. The required constituents
are expanded in turn. First, the primitive actions
expandlimit, expandnp actor, expands and ex-
pandpath cause their respective slots in the state
representation to be filled. Next, the composite ac-
tion expandrelatum is executed with an initial state
(0,1,0,0) representing an identifiable landmark, un-
filled slots for a determiner and a referring expres-
sion for the landmark and an unfamiliar user. Two
primitive actions, expandrelatumidentifiable and
expandrelatumcommonname, cause the agent to
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reach its terminal state. The generated referring ex-
pression thus treats the referenced entity as either
known or easily recoverable. Finally, modelM2

1

executes the composite action expandfollowing vp,
which is initialised with a number of variables cor-
responding to the alignment status of different verb
forms. Since this is the first time this agent is called,
none of them shows traces of alignment (i.e., all val-
ues are 0). Execution of the primitive action ex-
pandfollowing vp causes the respective slot to be
updated and the agent to terminate. After this sub-
task, modelM1

2 has also reached its terminal state
and control is returned to the root agent.

As a final step towards surface generation, all cho-
sen actions are transformed into an SPL (Kasper,
1989). The type ‘following instruction’ leads to the
initialisation of a semantically underspecified scaf-
fold of an SPL, all other actions serve to supplement
this scaffold to preselect specific syntactic structures
or lexical items. For example, the choice of ‘ex-
pandfollowing vp’ leads to the lexical item ‘fol-
low’ being inserted. Similarly, the choice of ‘ex-
pandpath’ leads to the insertion of ‘the corridor’
into theSPL to indicate the path the user should fol-
low. ‘expandlimit’, in combination with the choice
of referring expression, leads to the insertion of the
PP ‘until the copy room’. For generation of more
than one instruction, aggregation has to take place.
This is done by iterating over all instructions of a
text and inserting them into a larger SPL that re-
alises the aggregation. Finally, the constructed SPL
is passed to the KPML surface generator (Bateman,
1997) for string realisation.

7 Discussion

We have argued in this paper that HRL is an es-
pecially suited framework for generating texts that
are adaptive to different users, to environmental fea-
tures and properties of surface realisation such as
alignment and variation. While the former tasks ap-
pear intuitively likely to contribute to users’ com-
prehension of texts, it is often not recognised that
the latter task can have the same effect. Differing
surface forms of identical concepts in texts without
motivation can lead to user confusion and deterio-
rate task success. This is supported by Clark’s ‘prin-
ciple of contrast’ (Clark, 1987), according to which

new expressions are only introduced into an interac-
tion when the speaker wishes to contrast them with
other entities already present in the discourse. Si-
miliarly, a study by (Clark and Wilkes-Gibbs, 1986)
showed that interlocutors tend to align their referring
expressions and thereby achieve more efficient and
successful dialogues. We tackled the integration of
different NLG tasks by applying HRL and presented
results, which showed to be promising. As an al-
ternative to RL, other machine learning approaches
may be conceivable. However, supervised learning
requires a large amount of training data, which may
not always be available, and may also produce un-
predictable behaviour in cases where a user deviates
from the behaviour covered by the corpus (Levin
et al., 2000). Both arguments are directly trans-
ferable to NLG. If an agent is able to act only on
grounds of what it has observed in a training cor-
pus, it will not be able to react flexibly to new state
representations. Moreover, it has been argued that
a corpus for NLG cannot be regarded as an equiv-
alent gold standard to the ones of other domains of
NLP (Belz and Reiter, 2006; Scott and Moore, 2006;
Viethen and Dale, 2006). The fact that an expres-
sion for a semantic concept does not appear in a cor-
pus does not mean that it is an unsuited or impos-
sible expression. Another alternative to pure RL is
to apply semi-learnt behaviour, which can be help-
ful for tasks with very large state-action spaces. In
this way, the state-action space is reduced to only
sensible state-action pairs by providing the agent
with prior knowledge of the domain. All remain-
ing behaviour continues to be learnt. (Cuayáhuitl,
2009) suggests such an approach for learning dia-
logue strategies, but again the principle is transfer-
able to NLG. While there is room for exploration
of different RL methods, it is clear that neither tra-
ditional rule-based accounts of generation, norn-
gram-based generators can achieve the same flexible
generation behaviour given a large, and partially un-
known, number of state variables. Since state spaces
are typically very large, specifying rules for each
single condition is at best impractical. Especially for
tasks such as achieving a balanced alignment score,
as we have shown in this paper, decisions depend on
very fine-grained textual cues such as patterns of co-
occurrence which are hard to pin down accurately
by hand. On the other hand, statistical approaches
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Figure 3:Example of generation for the clause ‘Follow the corridor until the copy room’. This example shows decision
making for a single instruction, adaptation and alignment occurs over longer sequences of text.

to generation that are based onn-grams focus on the
frequency of constructions in a corpus without tak-
ing contextual variables such as user type or environ-
mental properties into account. Further, they share
the problem of supervised learning approaches dis-
cussed above, namely, that it can act only on grounds
of what it has observed in the past, and are not well
able to adapt to novel situations. For a more de-
tailed account of statistical and trainable approaches
to NLG as well as their advantages and drawbacks,
see (Lemon, 2008).

8 Conclusion

We presented a novel approach to text generation
that applies hierarchical reinforcement learning to
optimise the following interrelated NLG tasks: con-
tent selection, choice of text structure, referring ex-

pressions and surface structure. Generation deci-
sions in these areas were learnt based on three differ-
ent variables: the type of user, the properties of the
spatial environment and the proportion of alignment
and variation in texts. Based on a simulated envi-
ronment, we compared the results of different poli-
cies and demonstrated that the learnt policy outper-
forms a baseline that chooses actions without taking
contextual variables into account. Future work can
transfer our approach to different domains of appli-
cation or to other NLG tasks. In addition, our pre-
liminary simulation results should be confirmed in
an evaluation study with real users.
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Cuayáhuitl, H., Dethlefs, N., Richter, K.-F., Tenbrink, T.,
and Bateman, J. (2010). A dialogue system for indoor
wayfinding using text-based natural language.In-
ternational Journal of Computational Linguistics and
Applications, ISSN 0976-0962.

Cuayahuitl, H., Renals, S., Lemon, O., and Shimodaira,
H. (2010). Evaluation of a hierarchical reinforcement
learning spoken dialogue system.Computer Speech
and Language, 24(2):395–429.

Dietterich, T. G. (1999). Hierarchical reinforcement
learning with the maxq value function decomposition.
Journal of Artificial Intelligence Research, 13:227–
303.

Garrod, S. and Anderson, A. (1987). Saying What You
Mean in Dialogue: A Study in conceptual and seman-
tic co-ordination.Cognition, 27.

Halliday, M. A. K. and Hasan, R. (1976).Cohesion in
English. Longman, London.

Halliday, M. A. K. and Matthiessen, C. M. I. M. (2004).
An Introduction to Functional Grammar. Edward
Arnold, London, 3rd edition.

Hirst, G. and St-Onge, D. (1998). Lexical chains as rep-
resentations of context for the detection and correction
of malapropisms. In Fellbaum, C., editor,WordNet:
An Electronic Database and Some of its Applications,
pages 305–332. MIT Press.

Janarthanam, S. and Lemon, O. (2009). Learning lexi-
cal alignment policies for generating referring expres-
sions in spoken dialogue systems. InENLG ’09: Pro-
ceedings of the 12th European Workshop on Natural

Language Generation, pages 74–81, Morristown, NJ,
USA.

Kasper, R. (1989). SPL: A Sentence Plan Language for
text generation. Technical report, USC/ISI.

Langkilde, I. and Knight, K. (1998). Generation that ex-
ploits corpus-based statistical knowledge. InACL-36:
Proceedings of the 36th Annual Meeting of the As-
sociation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics,
pages 704–710.

Lemon, O. (2008). Adaptive Natural Language Gener-
ation in Dialogue using Reinforcement Learning. In
SemDial.

Levin, E., Pieraccini, R., and Eckert, W. (2000). A
stochastic model of computer-human interaction for
learning dialogue strategies.IEEE Transactions on
Speech and Audio Processing, 8.

Pickering, M. J. and Garrod, S. (2004). Toward a mecha-
nistc psychology of dialog.Behavioral and Brain Sci-
ences, 27.

Reiter, E. and Dale, R. (1997). Building applied natural
language generation systems.Natural Language En-
gineering, 3(1):57–87.

Rieser, V. and Lemon, O. (2009). Natural language gen-
eration as planning under uncertainty for spoken dia-
logue systems. InEACL ’09: Proceedings of the 12th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics, pages 683–691,
Morristown, NJ, USA.

Scott, D. and Moore, J. (2006). An NLG evaluation com-
petition? eight reasons to be cautious. Technical re-
port.

Sutton, R. S. and Barto, A. G. (1998).Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, USA.

Toutanova, K. and Manning, C. D. (2000). Enriching the
knowledge sources used in a maximum entropy part-
of-speech tagger. InProceedings of the 2000 Joint
SIGDAT conference on Empirical methods in natural
language processing and very large corpora, pages
63–70, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Viethen, J. and Dale, R. (2006). Towards the evaluation
of referring expression generation. InIn Proceedings
of the 4th Australiasian Language Technology Work-
shop, pages 115–122.

Sixth International Natural Language Generation Conference (INLG 2010)

45



	
  

Sixth International Natural Language Generation Conference (INLG 2010)

46



Tense and Aspect Assignment in Narrative Discourse

David K. Elson and Kathleen R. McKeown
Department of Computer Science

Columbia University
{delson,kathy}@cs.columbia.edu

Abstract

We describe a method for assigning English
tense and aspect in a system that realizes sur-
face text for symbolically encoded narratives. Our
testbed is an encoding interface in which proposi-
tions that are attached to a timeline must be real-
ized from several temporal viewpoints. This in-
volves a mapping from a semantic encoding of
time to a set of tense/aspect permutations. The
encoding tool realizes each permutation to give
a readable, precise description of the narrative so
that users can check whether they have correctly
encoded actions and statives in the formal repre-
sentation. Our method selects tenses and aspects
for individual event intervals as well as subinter-
vals (with multiple reference points), quoted and
unquoted speech (which reassign the temporal fo-
cus) and modal events such as conditionals.

1 Introduction

Generation systems that communicate knowledge
about time must select tense and aspect carefully
in their surface realizations. An incorrect assign-
ment can give the erroneous impression that a con-
tinuous action has ended, or that a previous state
is the current reality. In this paper, we consider
English tense and aspect in the generation of nar-
rative discourse, where statives and actions occur
over connected intervals.

We describe two contributions: first, a general
application of theories of tense, aspect and inter-
val logic to a generation context in which we map
temporal relationships to specific tense/aspect se-
lections. Second, we describe an implementation
of this approach in an interactive environment with
a basic sentence planner and realizer. The first re-
sult does not depend on the second.

The purpose of the system is to allow users who
are naı̈ve to linguistics and knowledge representa-

tion to create semantic encodings of short stories.
To do this, they construct propositions (predicate-
argument structures) through a graphical, menu-
based interface, and assign them to intervals on a
timeline. Figure 1 shows a session in which the
user is encoding a fable of Aesop. The top-right
panel shows the original fable, and the left-hand
panel shows a graphical timeline with buttons for
constructing new propositions at certain intervals.
The left-hand and bottom-right panels contain au-
tomatically generated text of the encoded story, as
the system understands it, from different points of
view. Users rely on these realizations to check that
they have assigned the formal connections cor-
rectly. The tenses and aspects of these sentences
are a key component of this feedback. We describe
the general purpose of the system, its data model,
and the encoding methodology in a separate paper
(Elson and McKeown, 2010).

The paper is organized as follows: After dis-
cussing related work in Section 2, we describe our
method for selecting tense and aspect for single
events in Section 3. Section 4 follows with more
complex cases involving multiple events and shifts
in temporal focus. We then discuss the results.

2 Related Work

There has been intense interest in the interpre-
tation of tense and aspect into a formal under-
standing of the ordering and duration of events.
This work has been in both linguistics (Dowty,
1979; Nerbonne, 1986; Vlach, 1993) and natu-
ral language understanding. Early systems inves-
tigated rule-based approaches to parsing the du-
rations and orderings of events from the tenses
and aspects of their verbs (Hinrichs, 1987; Web-
ber, 1987; Song and Cohen, 1988; Passonneau,
1988). Allen (1984) and Steedman (1995) focus
on distinguishing between achievements (when an
event culminates in a result, such as John builds
a house) and processes (such as walking). More
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Figure 1: Screenshot of our story encoding interface.

recent work has centered on markup languages
for complex temporal information (Mani, 2004)
and corpus-based (statistical) models for predict-
ing temporal relationships on unseen text (Mani et
al., 2006; Lapata and Lascarides, 2006).

Our annotation interface required a simple re-
alizer that could be easily integrated into an in-
teractive, online encoding tool. We found that
developing a custom realizer as a module to
our Java-based system was preferable to inte-
grating a large, general purpose system such as
KPML/Nigel (Matthiessen and Bateman, 1991) or
FUF/SURGE (Elhadad and Robin, 1996). These
realizers, along with RealPro (Lavoie and Ram-
bow, 1997), accept tense as a parameter, but do
not calculate it from a semantic representation of
overlapping time intervals such as ours (though the
Nigel grammar can calculate tense from speech,
event, and reference time orderings, discussed be-
low). The statistically trained FERGUS (Chen et
al., 2002) contrasts with our rule-based approach.

Dorr and Gaasterland (1995) and Grote (1998)
focus on generating temporal connectives, such as
before, based on the relative times and durations of
two events; Gagnon and Lapalme (1996) focus on
temporal adverbials (e.g., when to insert a known
time of day for an event). By comparison, we ex-
tend our approach to cover direct/indirect speech
and the subjunctive/conditional forms, which they
do not report implementing. While our work fo-
cuses on English, Yang and Bateman (2009) de-
scribe a recent system for generating Chinese as-
pect expressions based on a time interval represen-
tation, using KPML as their surface realizer.

Several other projects run tangential to our in-

teractive narrative encoding project. Callaway
and Lester’s STORYBOOK (2002) aims to im-
prove fluency and discourse cohesion in realiz-
ing formally encoded narratives; Ligozat and Zock
(1992) allow users to interactively construct sen-
tences in various temporal scenarios through a
graphical interface.

3 Expressing single events

3.1 Temporal knowledge

The propositions that we aim to realize take the
form of a predicate, one or more arguments, zero
or more attached modifiers (either a negation op-
erator or an adverbial, which is itself a proposi-
tion), and an assignment in time. Each argument
is assigned a semantic role (such as Agent or Ex-
periencer), and may include nouns (such as char-
acters) or other propositions. In our implemented
system, the set of predicates available to the an-
notator is adapted from the VerbNet (Kingsbury
and Palmer, 2002) and WordNet (Fellbaum, 1998)
linguistic databanks. These provide both durative
actions and statives (Dowty, 1979); we will refer
to both as events as they occur over intervals. For
example, here are an action and a stative:

walk(Mary, store, 2, 6) (1)

hungry(Julia, 1,∞) (2)

The latter two arguments in (1) refer to time
states in a totally ordered sequence; Mary starts
walking to the store at state 2 and finishes walking
at state 6. (2) begins at state 1, but is unbounded
(Julia never ceases being hungry). While this pa-
per does not address the use of reference times
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(such as equating a state to 6:00 or yesterday), this
is an area of ongoing work.

(1) and (2), depending on the situation, can be
realized in several aspects and tenses. We adapt
and extend Reichenbach’s (1947) famous system
of symbols for distinguishing between simple and
progressive aspect. Reichenbach identifies three
points that define the temporal position of the
event: the event time E, the speech time S, and
a reference time R which may or may not be in-
dicated by a temporal adverbial. The total order-
ing between these times dictates the appropriate
aspect. For example, the simple past John laughed
has the relation S > E. R = E because there is
no separate reference time involved. The past per-
fect John had laughed [by the end of the play] has
the relation E < R < S, in that it describe “the
past of the past”, with the nearer “past” being R
(the end of the play). R can be seen as the tempo-
ral focus of the sentence.

As Reichenbach does not address events with
intervals, we redefine E as the transition (E1..E2)
attached to the proposition (for example, (2,6)
for Mary’s walk). This definition deliberately as-
sumes that no event ever occurs over a single “in-
stant” of time. The perception of an instantaneous
event, when it is needed, is instead created by di-
lating R into a sufficiently large interval to contain
the entire event, as in Dowty (1979).

We also distinguish between two generation
modes: realizing the story as a complete discourse
(narration mode), and describing the content of a
single state or interval (snapshot mode). Our sys-
tem supports both modes differently. Like most
literary fiction, in discourse mode we realize the
story as if all events occur before the speech time
S. (We shall see that this does not preclude the use
of the future tense in all cases.) In snapshot mode,
speech time is concurrent with reference time so
that the same events are realized as though they
are happening “now.” The system uses this mode
to allow annotators to inspect and edit what occurs
at any point in the story. In Figure 1, for instance,
the lion’s watching of the bull is realized as both
a present, continuing event in snapshot mode (the
lion continues to watch the bull) and narrated as a
past, continuing event (the lion was watching the
bull). In both cases, we aim to precisely trans-
late the propositions and their temporal relation-
ships into text, even if the results are not elegant
rhetoric, so that annotators can see how they have

Diagram Relations Perspective

E 1 

R 

E 2 

R < E1 Before

E 1 

R 

E 2 
R = E1

R < E2

Begin

E 1 

R 

E 2 
E1 < R
R < E2

During

E 1 

R 

E 2 
R = E2

R > E1

Finish

E 1 

R 

E 2 
R > E2 After

Table 1: Perspective assignment for viewing an
event from a reference state.

formally encoded the story. In the remainder of
this section, we describe our method for assigning
tenses and aspects to propositions such as these.

3.2 Reference state

In both snapshot and narration modes, we often
need to render the events that occur at some ref-
erence state R. We would like to know, for in-
stance, what is happening now, or what happened
at 6:00 yesterday evening. The tense and aspect
depend on the perspective of the reference state
on the event, which can be bounded or unbounded.
The two-step process for this scenario is to deter-
mine the correct perspective, then pick the tense
and aspect class that best communicates it.

We define the set of possible perspec-
tives to follow Allen (1983), who describes
seven relationships between two intervals: be-
fore/after, meets/met by, overlaps/overlapped by,
starts/started by, during/contains, finishes/finished
by, and equals. Not all of these map to a relation-
ship between a single reference point and an event
interval. Table 1 maps each possible interaction
between E and R to a perspective, for both
bounded and unbounded events, including the
defining relationships for each interaction. A dia-
mond for E1 indicates at or before, i.e., the event
is either anteriorly unbounded (E1 = −∞) or
beginning at a state prior to R and E2. Similarly,
a diamond for E2 indicates at or after.

Once the perspective is determined, covering
Reichenbach’s E and R, speech time S is deter-
mined by the generation mode. Following the
guidelines of Reichenbach and Dowty, we then as-
sign a tense for each perspective/speech time per-
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Perspective Generation mode English tense System’s construction Example
After Future Speech Past perfect had {PAST PARTICIPLE} She had walked.

Present Speech Present perfect has/have {PAST PARTICIPLE} She has walked.
Past Speech Future perfect will have {PAST PARTICIPLE} She will have walked.
Modal Infinitive to have {PAST PARTICIPLE} To have walked.

Finish Future Speech “Finished” stopped {PROGRESSIVE} She stopped walking.
Present Speech “Finishes” stops {PROGRESSIVE} She stops walking.
Past Speech “Will finish” will stop {PROGRESSIVE} She will stop walking.
Modal Infinitive to stop {PROGRESSIVE} To stop walking.

During Future Speech Past progressive was/were {PROGRESSIVE} She was walking.
Present Speech Present pro-

gressive
am/is/are {PROGRESSIVE} She is walking.

Past Speech Future progres-
sive

will be {PROGRESSIVE} She will be walking.

Modal Infinitive to be {PROGRESSIVE} To be walking.
During-
After

Future Speech Past perfect
progressive

had been {PROGRESSIVE} She had been walking.

Present Speech Present perfect
progressive

has/have been {PROGRESSIVE} She has been walking.

Past Speech Future perfect
progressive

will have been {PROGRESSIVE} She will have been
walking.

Modal Infinitive to has/have been {PROGRESSIVE} To have been walking.
Begin Future Speech “Began” began {INFINITIVE} She began to walk.

Present Speech “Begins” begins {INFINITIVE} She begins to walk.
Past Speech “Will begin” will begin {INFINITIVE} She begins to walk.
Modal Infinitive to begin {PROGRESSIVE} To begin walking.

Contains Future Speech Simple past {SIMPLE PAST} She walked.
Present Speech Simple present {SIMPLE PRESENT} She walks.
Past speech Simple future will {INFINITIVE} She will walk.
Modal Infinitive {INFINITIVE} To walk.

Before Future Speech “Posterior” was/were going {INFINITIVE} She was going to walk.
Present Speech Future am/is/are going {INFINITIVE} She is going to walk.
Past Speech Future-of-

future
will be going {INFINITIVE} She will be going to

walk.
Modal Infinitive to be going {INFINITIVE} To be going to walk.

Table 2: Tense/aspect assignment and realizer constructions for describing an action event from a partic-
ular perspective and speech time. “Progressive” means “present participle.”

mutation in Table 2. Not all permutations map to
actual English tenses. Narration mode is shown as
Future Speech, in that S is in the future with re-
spect to all events in the timeline. (This is the case
even if E is unbounded, with E2 = ∞.) Snapshot
mode is realized as Present Speech, in that R = S.
The fourth column indicates a syntactic construc-
tion with which our system realizes the permuta-
tion. Each is a sequence of tokens that are either
cue words (began, stopped, etc.) or conjugations
of the predicate’s verb. These constructions em-
phasize precision over fluency.

As we have noted, theorists have distinguished
between “statives” that are descriptive (John was
hungry), “achievement” actions that culminate in
a state change (John built the house) and “activi-
ties” that are more continuous and divisible (John
read a book for an hour) (Dowty, 1979). Prior
work in temporal connectives has taken advantage
of lexical information to determine the correct sit-
uation and assign aspect appropriately (Moens and

Steedman, 1988; Dorr and Gaasterland, 1995). In
our case, we only distinguish between actions and
statives, based on information from WordNet and
VerbNet. We use a separate table for statives; it is
similar to Table 2, except the constructions replace
verb conjugations with insertions of be, been, be-
ing, was, were, felt, and so on (with the latter ap-
plying to affective states). We do not currently
distinguish between achievements and activities in
selecting tense and aspect, except that the anno-
tator is tasked with “manually” indicating a new
state when an event culminates in one (e.g., The
house was complete). Recognizing an achieve-
ment action can benefit lexical choice (better to
say John finished building the house than John
stopped) and content selection for the discourse as
a whole (the house’s completion is implied by fin-
ished and does not need to be stated).

To continue our running examples, suppose
propositions (1) and (2) were viewed as a snap-
shot from state R = 2. Table 1 indicates Begin
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Diagram Relations Perspective

E 2 

R 2 

E 1 

R 1 

E 2 

R 2 

E 1 

R 1 

R1 ≥ E2 After

E 2 

R 2 

E 1 

R 1 

R1 > E1

E2 > R1

R2 > E2

Finish

E 2 

R 2 

E 1 

R 1 

E 2 

R 2 

E 1 

R 1 

R1 ≤ E1

R2 ≥ E2

Contains

E 2 

R 2 

E 1 

R 1 

E1 < R1

E2 > R2

During

E 2 

R 2 

E 1 

R 1 

R1 < E1

R2 > E1

E2 > R2

Begin

E 2 

R 2 

E 1 

R 1 

E 2 

R 2 

E 1 

R 1 

E1 ≥ R2 Before

Table 3: Perspective assignment for describing an
event from an assigned perspective.

to be the perspective for (1), since E1 = R, and
Table 2 calls for a “new” tense we have named Be-
gins that means “begins at the present time.” When
this tense’s construction is inserted into the over-
all syntax for walk(Agent, Destination), which we
derive from the VerbNet frame for walk, the result
is Mary begins to walk to the store; similarly, (2)
is realized as Julia is hungry via the During per-
spective. Narration mode uses past-tense verbs.

3.3 Reference interval

Just as events occur over intervals, rather than sin-
gle points in time, so too can Reichenbach’s R.
One may need to express what occurred when “Ju-
lia entered the room” (a non-instantaneous action)
or “yesterday evening.” Our system allows anno-
tators to view intervals in snapshot mode to get a
sense of what happens over a certain time span.

The semantics of reference intervals have been
studied as extensions to Reichenbach’s point ap-
proach. Dowty (1979, p.152), for example, posits
that the progressive fits only if the reference in-
terval is completely contained within the event in-
terval. Following this, we construct an alternate
lookup table (Table 3) for assigning the perspec-

Diagram Relations Perspective

E 2 

R 2 

E2 > R2

E1 = −∞
R1 = −∞

During (a priori)

E 2 

R 2 

R2 > E2

E1 = −∞
R1 = −∞

After

E 1 

R 1 

R1 > E1

E2 = ∞
R2 = ∞

Contains

E 1 

R 1 

E1 > R1

E2 = ∞
R2 = ∞

Before

Table 4: Perspective assignment if event and ref-
erence intervals are unbounded in like directions.

tive of an event from a reference interval. Table
2 then applies in the same manner. In snapshot
mode, the speech time S also occurs over an inter-
val (namely, R), and Present Speech is still used.
In narration mode, S is assumed to be a point fol-
lowing all event and reference intervals. In our
running example, narrating the interval (1,7) re-
sults in Mary walked to the store and Julia began
to be hungry, using the Contains and Begin per-
spectives respectively.

The notion of an unbounded reference interval,
while unusual, corresponds to a typical perspec-
tive if the event is either bounded or unbounded
in the opposite direction. These scenarios are il-
lustrated in Table 3. Less intuitive are the cases
where event and reference intervals are unbounded
in the same direction. Perspective assignments for
these instances are described in Table 4 and em-
phasize the bounded end of R. These situations
occur rarely in this generation context.

3.4 Event Subintervals

Events are not always referred to in their entirety.
We may wish to refer to the beginning, middle or
end of an event, no matter when it occurs with re-
spect to reference time. This invokes a second ref-
erence point (Comrie, 1985, p.128) in the same
interval, delimiting a subinterval. Consider John
searches for his glasses versus John continues to
search for his glasses– both indicate an ongoing
process, but the latter implies a subinterval during
which time, we are expected to know, John was
already looking for his glasses.

Our handling of subintervals falls along four
alternatives that depend on the interval E1..E2,
the reference R and the subinterval E′

1..E
′
2 of E,

where E′
1 ≥ E1 and E′

2 ≤ E2.
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1. During-After. If E′ is not a final subinter-
val of E (E′

2 < E2), and R = E′
2 or R is a

subinterval of E that is met by E′ (R1 = E′
2),

the perspective of E′ is defined as During-
After. In Table 2, this invokes the perfect-
progressive tense. For example, viewing ex-
ample (1) with E′ = (2, 4) from R = 4 in
narration mode (Future Speech) would yield
Mary had been walking to the store.

2. Start. Otherwise, if E′ is an initial subin-
terval of E (E′

1 = E1 and E′
2 < E2), the

perspective is defined as Start. These rows
are omitted from Table 2 for space reasons,
but the construction for this case reassigns the
perspective to that between R and E′. Our
realizer reassigns the verb predicate to begin
(or become for statives) with a plan to render
its only argument, the previous proposition,
in the infinitive tense. For example, narrating
(2) with E′ =(1,2) from R = 3 would yield
Julia had become hungry.

3. Continue. Otherwise, and similarly, if E
strictly contains E′ (E′

1 > E1 and E′
2 < E2),

we assign the perspective Continue. To real-
ize this, we reassign the perspective to that
between R and E′, and reassign the verb
predicate to continue (or was still for statives)
with a plan to render its only argument, the
original proposition, in the infinitive.

4. End. Otherwise, if E′ is a final subinterval
of E (E′

1 > E1 and E′
2 = E2), we assign the

perspective End. To realize this, we reassign
the perspective to that between R and E′, and
reassign the verb predicate to stop (or finish
for cumulative achievements). Similarly, the
predicate’s argument is the original proposi-
tion rendered in the infinitive.

4 Alternate timelines and modalities

This section covers more complex situations in-
volving alternate timelines– the feature of our rep-
resentation by which a proposition in the main
timeline can refer to a second frame of time. Other
models of time have supported similar encapsula-
tions (Crouch and Pulman, 1993; Mani and Puste-
jovsky, 2004). The alternate timeline can contain
references to actual events or modal events (imag-
ined, obligated, desired, planned, etc.) in the past
the future with respect to its point of attachment on

E speech 

R′ 

R 

 E hunger 

E′ buy 

E′ hunger 

reality 

alternate 

S 

Figure 2: Schematic of a speech act attaching to
a alternate timeline with a hypothetical action. R′

and Espeech are attachment points.

the main timeline. This is primarily used in prac-
tice for modeling dialogue acts, but it can also be
used to place real events at uncertain time states
in the past (e.g., the present perfect is used in a
reference story being encoded).

4.1 Reassigning Temporal Focus

Ogihara (1995) describes dialogue acts involving
changes in temporal focus as “double-access sen-
tences.” We now consider a method for planning
such sentences in such a way that the refocusing of
time– the reassignment of R into a new context–
is clear, even if it means changing tense and as-
pect mid-sentence. Suppose Mary were to de-
clare that she would buy some eggs because of
Julia’s hunger, but before she returned from the
store, Julia filled up on snacks. If this speech
act is described by a character later in the story,
we need to carefully separate what is known to
Mary at the time of her speech from what is later
known at R by the teller of the episode. Mary
sees her purchase of eggs as a possible future, even
though it may have already happened by the point
of retelling, and Mary does not know that Julia’s
hunger is to end before long.

Following Hornstein’s treatment of these sce-
narios (Hornstein, 1990), we attach R′, the ref-
erence time for Mary’s statement (in an alternate
timeline), to Espeech, the event of her speaking (in
the main timeline). The act of buying eggs is a hy-
pothetical event E′

buy that falls after R′ on the al-
ternate (modal) timeline. S is not reassigned here.

Figure 2 shows both timelines for this example.
The main timeline is shown on top; Mary’s speech
act is below. The attachment point on the main
timeline is, in this case, the speech event Espeech;
the attachment point on an alternate timeline is al-
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ways R′. The placement of R, the main refer-
ence point, is not affected by the alternate time-
line. Real events, such as Julia’s hunger, can be
invoked in the alternate timeline (as drawn with a
vertical line from Ehunger to an E′

hunger without
an E′

2 known to Mary) but they must preserve their
order from the main timeline.

The tense assignment for the event intervals in
the alternate timeline then proceeds as normal,
with R′ substituting for R. The hypothetical “buy”
event is seen in Before perspective, but past tense
(Future Speech), giving the “posterior” (future-of-
a-past) tense. Julia’s hunger is seen as During as
per Table 1. Further, we assert that connectives
such as Because do not alter R (or in this situation,
R′), and that the E′

buy is connected to E′
hunger

with a causality edge. (Annotators can indicate
connectives between events for causality, motiva-
tion and other features of narrative cohesion.)

The result is: Mary had said that she
was going to buy eggs because Julia was hungry.
The subordinate clause following that sees E′

buy

in the future, and E′
hunger as ongoing rather than

in the past. It is appropriately ambiguous in both
the symbolic and rendered forms whether E′

buy oc-
curs at all, and if so, whether it occurs before, dur-
ing or after R. A discourse planner would have
the responsibility of pointing out Mary’s mistaken
assumption about the duration of Julia’s hunger.

We assign tense and aspect for quoted speech
differently than for unquoted speech. Instead of
holding S fixed, S′ is assigned to R′ at the attach-
ment point of the alternate timeline (the “present
time” for the speech act). If future hypothetical
events are present, they invoke the Past Speech
constructions in Table 2 that have not been used
by either narration or snapshot mode. The content
of the quoted speech then operates totally indepen-
dently of the speech action, since both R′ and S′

are detached: Mary said/says/was saying, “I am
going to buy eggs because Julia is hungry.”

The focus of the sentence can be reassigned
subsequently to deeper nested timelines as neces-
sary (attaching an E′ to R′′, and so on). Although
the above example uses subordinate clauses, we
can use this nesting technique to construct com-
posite tenses such as those enumerated by Halli-
day (1976). To this end, we conjugate the Modal
Infinitive construction for each alternate timeline.
Halliday’s complex form “present in past in future
in past in future,” for instance (as in will have been

going to have been taken), can be generated with
four timelines in a chain that invoke, in order and
with Past Speech, the After, Before, After and Dur-
ing perspectives. There are four Rs, all but the
main one attached to a previous E.

4.2 Subjunctives and Conditionals

We finally consider tense and aspect in the case of
subjunctive and conditional statements (if-thens),
which appear in alternate timelines. The relation-
ship between an if clause and a then clause is not
the same as the relationship between two clauses
joined by because or when. The then clause– or
set of clauses– is predicated on the truth of the if
clause. As linguists have noted (Hornstein, 1990,
p.74), the if clause serves as an adverbial modi-
fier, which has the effect of moving forward the
reference point to the last of the if event intervals
(provided that the if refers to a hypothetical fu-
ture). Consider the example: If John were to fly
to Tokyo, he would have booked a hotel. A correct
model would place E′

book before E′
fly on the alter-

nate timeline, with E′
fly as the if. Since were to fly

is a hypothetical future, R′ < E′
fly. During gen-

eration, we set R′ to E′
fly after rendering If John

were to fly to Tokyo, because we begin to assume
that this event transpired. If R′ is left unchanged,
it may be erroneously left before E′

book: Then he
would be going to book a hotel.

Our encoding interface allows users to mark one
or more events in an alternate timeline as if events.
If at least one event is marked, all if events are ren-
dered in the subjunctive mood, and the remainder
are rendered in the conditional. For the if clauses
that follow R′, S′ and R′ itself are reassigned to
the interval for each clause in turn. R′ and S′ then
remain at the latest if interval (if it is after the origi-
nal R′) for purposes of rendering the then clauses.
In our surface realizer, auxiliary words were and
would are combined with the Modal Infinitive con-
structions in Table 2 for events during or following
the original attachment point.

As an example, consider an alternate timeline
with two statives whose start and end points are the
same: Julia is hungry and Julia is unhappy. The
former is marked if. Semantically, we are saying
that hungry(Julia)→unhappy(Julia).
If R′ were within these intervals, the rendering
would be: If Julia is hungry, then she is unhappy
(Contains/Present Speech for both clauses). If
R′ were prior to these intervals, the rendering
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would be: If Julia were to be hungry, then
she would be unhappy. This reassigns R′ to
Ehungry, using were as a futurative and would
to indicate a conditional. Because R′ and S′ are
set to Ehungry, the perspective on both clauses
remains Contains/Present Speech. Finally, if both
intervals are before R′, describing Julia’s previous
emotional states, we avoid shifting R′ and S′

backward: If Julia had been hungry, then she had
been unhappy (After perspective, Future Speech
for both statives).

The algorithm is the same for event intervals.
Take (1) and a prior event where Mary runs out of
eggs:

runOut(Mary, eggs, 0, 1) (3)

Suppose they are in an alternate timeline with
attachment point 0′ and (1) marked if. We be-
gin by realizing Mary’s walk as an if clause: If
Mary were to walk to the store. We reassign R′

to Ewalk, (2,6), which diverts the perception of
(3) from Begins to After: She would have run out
of eggs. Conversely, suppose the conditional re-
lationship were reversed, with (3) as the only if
action. If the attachment point is 3′, we realize (3)
first in the After perspective, as R′ does not shift
backward: If Mary had run out of eggs. The re-
mainder is rendered from the During perspective:
She would be walking to the store. Note that in
casual conversation, we might expect a speaker at
R = 3 to use the past simple: If Mary ran out
of eggs, she would be walking to the store. In this
case, the speaker is attaching the alternate timeline
at a reference interval that subsumes (3), invoking
the Contains perspective by casting a net around
the past. We ask our annotators to select the best
attachment point manually; automatically making
this choice is beyond the scope of this paper.

5 Discussion

As we mentioned earlier, we are describing two
separate methods with a modular relationship to
one another. The first is an abstract mapping from
a conceptual representation of time in a narrative,
including interval and modal logic, to a set of 11
perspectives, including the 7 listed in Table 2 and
the 4 introduced in Section 3.4. These 11 are
crossed with three scenarios for speech time to
give a total of 33 tense/aspect permutations. We
also use an infinitive form for each perspective.
One may take these results and map them from

other time representations with similar specifica-
tions.

The second result is a set of syntactic construc-
tions for realizing these tenses at the surface level
in our story encoding interface. Our focus here,
as we have noted, is not fluency, but a surface-
level rendering that reflects the relationships (and,
at times, the ambiguities) present in the concep-
tual encoding. We consider changes in modality,
such as an indicative reading as opposed to a con-
ditional or subjunctive reading, to be at the level
of the realizer and not another class of tenses.

We have run a collection project with our en-
coding interface and can report success in the
tool’s usability (Elson and McKeown, 2009). Two
annotators each encoded 20 fables into the for-
mal representation, with their only exposure to the
semantic encodings being through the reference
text generator (as in Figure 1). Both annotators
became comfortable with the tool after a period
of training; in surveys that they completed after
each task, they gave Likert-scale usability scores
of 4.25 and 4.30 (averaged over 20 tasks, with
5 meaning “easiest to use”). These scores are
not specific to the generation component, but they
suggest that annotators could derive satisfactory
tenses from their semantic structures. The most
frequently cited deficiency in the model in terms
of time was the inability to assign reference times
to states and intervals (such as the next morning).

6 Conclusion and Future Work

It has always been the goal in surface realization
to generate sentences from a purely semantic rep-
resentation. Our approach to the generation of
tense and aspect from temporal intervals takes us
closer to that goal. We have applied prior work in
linguistics and interval theory and tested our ap-
proach in an interactive narrative encoding tool.
Our method handles reference intervals and event
intervals, bounded or unbounded, and extends into
subintervals, modal events, conditionals, and di-
rect and indirect speech where the temporal focus
shifts.

In the future, we will investigate the limitations
of the current model, including temporal adver-
bials (which explain the relationship between two
events), reference times, habitual events, achieve-
ments, and discourse-level issues such as prevent-
ing ambiguity as to whether adjacent sentences oc-
cur sequentially (Nerbonne, 1986; Vlach, 1993).
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Abstract

This paper investigates the relationship be-
tween the results of an extrinsic, task-
based evaluation of an NLG system and
various metrics measuring both surface
and deep semantic textual properties, in-
cluding relevance. The latter rely heav-
ily on domain knowledge. We show that
they correlate systematically with some
measures of performance. The core ar-
gument of this paper is that more domain
knowledge-based metrics shed more light
on the relationship between deep semantic
properties of a text and task performance.

1 Introduction

Evaluation methodology in NLG has generated a
lot of interest. Some recent work suggested that
the relationship between various intrinsic and ex-
trinsic evaluation methods (Spärck-Jones and Gal-
liers, 1996) is not straightforward (Reiter and
Belz, 2009; Gatt and Belz, to appear), leading to
some arguments for more domain-specific intrin-
sic metrics (Foster, 2008). One reason why these
issues are important is that reliable intrinsic eval-
uation metrics that correlate with performance in
an extrinsic, task-based setting can inform system
development. Indeed, this is often the stated pur-
pose of evaluation metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin and Hovy, 2003),
which were originally characterised as evaluation
‘understudies’.

In this paper we take up these questions in the
context of a knowledge-based NLG system, BT-45
(Portet et al., 2009), which summarises medical
data for decision support purposes in a Neona-
tal Intensive Care Unit (NICU). Our extrinsic
data comes from an experiment involving com-
plex medical decision making based on automati-
cally generated and human-authored texts (van der

Meulen et al., 2009). This gives us the oppor-
tunity to directly compare the textual character-
istics of generated and human-written summaries
and their relationship to decision-making perfor-
mance. The present work uses data from an ear-
lier study (Gatt and Portet, 2009), which presented
some preliminary results along these lines for the
system in question. We extend this work in a num-
ber of ways. Our principal aim is to test the va-
lidity not only of general-purpose metrics which
measure surface properties of text, but also of met-
rics which make use of domain knowledge, in the
sense that they attempt to relate the ‘deep seman-
tics’ of the texts to extrinsic factors, based on an
ontology for the BT-45 domain.

After an overview of related work in section 2,
the BT-45 system, its domain ontology and the ex-
trinsic evaluation are described in section 3. The
ontology plays an important role in the evaluation
metrics presented in Section 5. Finally, the eval-
uation of the methods is presented in Section 6,
before discussing and concluding in Section 7.

2 Related Work

In NLG evaluation, extrinsic, task-based methods
play a significant role (Reiter et al., 2003; Karasi-
mos and Isard, 2004; Stock et al., 2007). De-
pending on the study design, these studies often
leave open the question of precisely which as-
pects of a system (and of the text it generates)
contribute to success or failure. Intrinsic NLG

evaluations often involve ratings of text quality
or responses to questionnaires (Lester and Porter,
1997; Callaway and Lester, 2002; Foster, 2008),
with some studies using post-editing by human ex-
perts (Reiter et al., 2005). Automatically com-
puted metrics exploiting corpora, such as BLEU,
NIST and ROUGE, have mainly been used in eval-
uations of the coverage and quality of morphosyn-
tactic realisers (Langkilde-Geary, 2002; Callaway,
2003), though they have recently also been used
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for subtasks such as Referring Expression Gener-
ation (Gatt and Belz, to appear) as well as end-to-
end weather forecasting systems (Reiter and Belz,
2009). The widespread use of these metrics in
NLP partly rests on the fact that they are quick
and cheap, but there is controversy about their re-
liability both in MT (Calliston-Burch et al., 2006)
and summarisation (Dorr et al., 2005; Liu and Liu,
2008). As noted in Section 1, similar questions
have been raised in NLG. One of the problems
associated with these metrics is that they rely on
the notion of a ‘gold standard’, which is not al-
ways precisely definable given multiple solutions
to the same generation, summarisation or transla-
tion task. These observations underlie recent de-
velopments in Summarisation evaluation such as
the Pyramid method (Nenkova and Passonneau,
2004), which in addition also emphasises content
overlap with a set of reference summaries, rather
than n-gram matches.

It is interesting to note that, with some excep-
tions (Foster, 2008), most of the methodologi-
cal studies on intrinsic evaluation cited here have
focused on ‘generic’ metrics (corpus-based au-
tomatic measures being foremost among them),
none of which use domain knowledge to quantify
those aspects of a text related to its content. There
is some work in Summarisation that suggests that
incorporating more knowledge improves results.
For example, Yoo and Song (Yoo et al., 2007)
used the Medical Subject Headings (MeSH) to
construct graphs representing the high-level con-
tent of documents, which are then used to clus-
ter documents by topic, each cluster being used to
produce a summary. In (Plaza et al., 2009), the
authors have proposed a summarisation method
based on WordNet concepts and showed that this
higher level representation improves the summari-
sation task.

The principal aim of this paper is to develop
metrics with which to compare texts using domain
knowledge – in the form of the ontology used in
the BT-45 system – and to correlate results to hu-
man decision-making performance. The resulting
metrics focus on aspects of content, structure and
relevance that are shown to correlate meaningfully
with task performance, in contrast to other, more
surface-oriented ones (such as ROUGE).

3 The BT-45 System

BT-45(Portet et al., 2009) was designed to gen-

erate a textual summary of 45 minutes of patient
data in a Neonatal Intensive Care Unit (NICU), of
the kind shown in Figure 1(a). The corresponding
summary for the same data shown in Figure 1(b)
is a two-step consensus summary written by two
expert neonatologists. These two summaries cor-
respond to two of the conditions in the task-based
evaluation experiment described below.

In BT-45, summaries such as Figure 1(a) were
generated from raw input data consisting of (a)
physiological signals measured using sensors for
various parameters (such as heart rate); and (b)
discrete events logged by medical staff (e.g. drug
administration). The system was based on a
pipeline architecture which extends the standard
NLG tasks such as document planning and mi-
croplanning with preliminary stages for data anal-
ysis and reasoning. The texts generated were de-
scriptive, that is, they kept interpretation to a min-
imum (for example, the system did not make di-
agnoses). Nor were they generated with a bias to-
wards specific problems or actions that could be
considered desirable for a clinician to take in a par-
ticular context.

Every stage of the generation process made use
of a domain-specific ontology of around 550 con-
cepts, an excerpt of which is shown in Figure 1(c).
The ontology classified objects of type EVENT

and ENTITY into several subtypes; for example,
a DRUG ADMINISTRATION is an INTERVENTION,
which means it involves an agent and a patient.
The ontology functioned as a repository of declar-
ative knowledge, on the basis of which produc-
tion rules were defined to support reasoning in or-
der to make abstractions and to identify relations
(such as causality) between events detected in the
data based on their ontological class and their spe-
cific properties. In addition to the standard IS-A

links, the ontology contains functional relation-
ships which connect events to concepts represent-
ing physiological systems (such as the respiratory
or cardiovascular systems); these are referred to as
functional concepts. For example, in Figure 1(c), a
FEED event is linked to NUTRITION, meaning that
it is primarily relevant to the nutritional system.
These links were included in the ontology follow-
ing consultation with a senior neonatal consultant
after the development of BT-45 was completed.
Their inclusion was motivated by the knowledge-
based evaluation metrics developed for the pur-
poses of the present study, and discussed further
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Over the next 38 minutes T1 stayed at around

37.4.

By 13:33 TcPO2 had rapidly decreased to 2.7.

Previously HR had increased to 173.

By 13:35 there had been 2 successive desatura-

tions down to 56. Previously T2 had increased

to 35.5.

By 13:40 SaO2 had rapidly decreased to 79.

(a) BT-45 summary

At the start of the monitoring period: HR

baseline is 145-155, oxygen saturation is

99%, pO2 = 4.9 and CO2 = 10.3 Mean BP is

37-47; T1 and T2 are 37.3degC and 34.6degC

respectively.

At 13:33 there is a desaturation to 59%, which

is accompanied by a drop in pO2 to 1.3 and

a decrease in HR to 122. The blood pressure

rises toward the end of this episode to 49. These

parameters return to their baselines by 13:37.

(b) Human summary (c) Ontology excerpt

Figure 1: Excerpts from Human and BT-45 summaries, and ontology example.

in Section 5.
The task-based experiment to evaluate BT-45

was conducted off-ward and involved a group of
35 clinicians, who were exposed to 24 scenarios,
each covering approximately 45 minutes of patient
data, together with a short introductory text which
gave some background about the patient. The pa-
tient data was then presented in one of three condi-
tions: graphically using a time-series plot, and tex-
tually in the form of a consensus summary written
by human experts (H; Figure 1(b)) and one gener-
ated automatically by BT-45(C; Figure 1(a)). Like
the BT-45 texts, the H texts did not give interpre-
tations or diagnoses and every effort was made not
to bias a reader in favour of certain courses of ac-
tion. A Latin Square design was used to ensure
that each scenario was shown to an equal number
of participants in each condition, while no partici-
pant saw the same scenario in more than one con-
dition.

For each scenario, the task was to select one
or more appropriate clinical actions from a prede-
fined set of 18, one of which was ‘no action’. Se-
lections had to be made within three minutes, after
which the scenario timed out. The same choice of
18 actions was given in each scenario s, but for
each one, two neonatal experts identified the sub-
sets of appropriate (APs), inappropriate/potentially
harmful (INAPs) and neutral actions. One of the
appropriate actions was also deemed to be the ‘tar-
get’, that is, the most important action to take.
In three scenarios, the ‘target’ was ‘no action’.
For each participant p and scenario s, the perfor-
mance score P p

s was based on the proportion PAPs

of actions selected out of APs, and the proportion

PINAPs selected out of the set of inappropriate ac-
tions INAPs: P p

s = PAPs − PINAPs ∈ [−1, 1].

Overall, decision making in the H condition was
better (Ps = .45SD=.10) than either C (Ps =
.41SD=.13) or G (Ps = .40SD=.15). No sig-
nificant difference was found between the latter
two, but the H texts were significantly better than
the C texts, as revealed in a by-subjects ANOVA

(F (1, 31) = 5.266, p < 0.05). We also performed
a post-hoc analysis, comparing the proportions of
appropriate actions selected, PAP and that of inap-
propriate actions PINAP in the H and C conditions
across scenarios. In addition, we computed a dif-
ferent score SPAP, defined as the proportion of ap-
propriate actions selected by a participant within
a scenario out of the total number of actions se-
lected (effectively a measure of ‘precision’). A
comparison between means for these three scores
obtained across scenarios showed no significant
differences.

In the analysis reported in Section 6, we com-
pare our textual metrics to both the global score
P as well as to these three other performance in-
dicators. In various follow-up analyses (van der
Meulen et al., 2009; Reiter et al., 2008), it was
found that the three scenarios in which the tar-
get action was ‘no action’ may have misled some
participants, insofar as this option was included
among a set of other actions, some of which were
themselves deemed appropriate or at least neutral
(in the sense that they could be carried out without
harming the patient). We shall therefore exclude
these scenarios from our analyses.
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<P>
At 14:15 hours

<EVENT TYPE="HEEL_PRICK" ID="e11">
a heel prick is done.
</EVENT>

<EVENT TYPE="TREND" SOURCE="HR" DIRECTION="increasing" ID="e12">
The HR increases
</EVENT>

at this point and for 7 minutes from the start of this procedure

<EVENT CARDINALITY="3" SOURCE="SaO2" TYPE="ARTIFACT" ID="e13">
there is a lot of artefact in the oxygen saturation trace.
</EVENT>

</P>

<TREL ARG0="e11" ARG1="TIMESTAMP" RELATION="at" />
<TREL ARG0="e12" ARG1="e11" RELATION="starts" />
<TREL ARG0="e13" ARG1="e11" RELATION="starts" />

(a) Annotation (b) Normalised tree

Figure 2: Fragment of an annotated summary and normalised tree representation.

4 Corpus Annotation

For this study, we annotated the H and C texts
from our experiment using the ontology, in or-
der to make both their semantic content and struc-
ture explicit. Figure 2(a) shows an excerpt from
an annotated text. Every paragraph of the text is
marked up explicitly. All segments of the text cor-
responding to an ontology EVENT are marked up
with a TYPE (the name of the concept in the on-
tology) and other properties, such as DIRECTION

and SOURCE in the case of trends in physiolog-
ical parameters. The CARDINALITY attribute is
used to indicate that a single text segment abstracts
over several occurrences in the data; for example,
the statement about artefacts in the example corre-
sponds to three such episodes in the data.

In addition to events, the markup also includes
separate nodes for all the temporal (TREL) and
discourse (DREL) relations which are explicitly
mentioned in the text, typically using adverbial or
prepositional phrases or verbs of causality. Ev-
ery TREL and DREL points to two arguments and
has a RELATION attribute. In the case of a TREL,
the value is one of the temporal relations de-
fined by (Allen, 1983). For DRELs, values were
restricted to CAUSE and CONTRAST (Mann and
S.Thompson, 1988). One of the arguments of a
TREL can be a timestamp, rather than an event.
This is the case for the first sentence in the frag-
ment, where event e11 is specified as having oc-
curred at a specific time (at 14:15). By contrast,
r4 is a relation between e11 and e12, where
the RELATION is STARTS, indicating that the text

specifies that e11 is used by the author as the an-
chor point to specify the start of e12, as reflected
by the expression at this point.

The markup provided the basis on which many
of the metrics described in the following section
were computed. Based on the annotation, we
used a normalised structural representation of the
texts as shown in Figure 2(b), consisting of PARA-
GRAPH (P) nodes which subsume events and rela-
tions. Relations dominate their event arguments.
For example, the starts TREL holding between
e12 and e11 is represented by a STARTS node
subsuming the two events. In case an event is
dominated by more than one relation (for exam-
ple, it is temporally related to two events, as e11
is in Figure 2(a), we maintain the tree structure by
creating two copies of the event, which are sub-
sumed by the two relations. Thus, the normalised
tree representation is a ‘compiled out’ version of
the graph representing all events and their rela-
tions. The tree representation is better suited to
our needs, given the complexity of comparing two
graphs.

5 Metrics

The evaluation metrics used to score texts written
by domain experts and those generated by the BT-
45 system fall into three main classes, described
below.

Semantic content and structure To compare
both the content and the structure of texts, we used
three measures. The first quantifies the number
of EVENT nodes in an annotated text, defined as
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∑
e∈E c, where E is the set of events mentioned,

and c is the value of the CARDINALITY attribute
of an event e ∈ E. Similarly, we computed the
number of temporal (TREL) and discourse (DREL)
relations mentioned in a text. We also used the
Tree Edit Distance metric to compute the distance
between the tree representations of the H and C
texts (see Figure 2(b)). This measure computes
the minimum number of node insertions, dele-
tions and substitutions required to transform one
tree into another and therefore takes into account
not only the content (events and relations) but
also its structural arrangement in the text. The
edit distance between two trees is computed using
the standard Levenshtein edit distance algorithm,
computed over a string that represents the preorder
traversal of the two trees, using a cost of 1 for in-
sertions and deletions, and 2 for substitutions.

N-gram overlap As a measure of n-gram over-
lap, we use ROUGE-n, which measures simple
n−gram overlap (in the present paper we use
n = 4). We also use ROUGE-SU, in which over-
lap is computed using skip-bigrams while also ac-
counting for unigrams that a text has in common
with its reference (in order to avoid bias against
texts which share several unigrams but few skip
bigrams).

Domain-dependent relevance metrics The
metrics described so far make use of domain
knowledge only to the extent that this is reflected
in the textual markup. We now consider a family
of metrics which are much more heavily reliant
on domain-specific knowledge structures and
reasoning. In our domain, the relevance of a
text in a given experimental scenario s can be
defined in terms of whether the events it mentions
have some relationship to the appropriate clinical
actions (APs). We attempt to model some aspects
of this using a weighting strategy and reasoning
rules.

Recall from Section 3 that fc’s represent the
various physiological systems to which an event
or action can be related. Therefore, each event e
mentioned in a text can be related to a set of pos-
sible actions using the functional concepts fc(e)
to which that event is linked in the ontology. Let
Es,t be the set of events mentioned in text t for
scenario s. An event e ∈ Es,t references an action
a iff FC(e) ∩ FC(a) 6= ∅. Our hypothesis is that
an appropriate action is more likely to be taken if

there are events which reference it in the text – that
is, if the text mentions things which are directly or
indirectly relevant to the action. For instance, if a
text mentions events related to the RESPIRATION

fc, a clinician might be more likely to make a de-
cision to manage a patient’s ventilation support.
It is worth emphasising that, since both the BT-
45 and human-authored texts were descriptive and
were not written or generated with the appropriate
actions in mind, the hypothesis that the relevance
of the content to the appropriate actions might in-
crease the likelihood of these actions being chosen
is far from a foregone conclusion.

Part of the novelty in this way of quantifying
relevance lies in its use of the knowledge (i.e. the
ontology) that is already available to the system,
rather than asking human experts to rate the rele-
vance of a text, a time-consuming process which
could be subject to experts’ personal biases. How-
ever, this way of conceptualising relevance gener-
ates links to too many actions for one event. It is
often the case that an event, through its association
with a functional concept, references more than
one action, but not all of these are appropriate.
For example, a change in oxygen saturation can
be related to RESPIRATION, which itself is related
to several respiration-related actions in a scenario,
only some of which are appropriate. Clearly, rele-
vance depends not only on a physiological connec-
tion between an event and a phsiological system
(functional concept), but also on the context, that
is, the other events and their relative importance
in a given scenario. Another factor that needs to
be taken into account is the overall probability of
an action. Some actions are performed routinely,
while others tend to be associated with emergen-
cies (e.g. a nappy change is much more frequent
over all than resuscitating a patient). This means
that some actions – even appropriate ones – may
have been less likely to be selected even though
they were referenced by the text and were appro-
priate.

We prune unwarranted connections between
events and actions by taking into account (a) a pa-
tient’s current status (described in the text and in
the background information given to experimental
participants); (b) the fact that some actions have
much higher prior probabilities than others be-
cause they are performed more routinely; (c) the
fact that some events may be more important than
others (e.g. resuscitation is much more important
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than a nappy change). Based on this, we define the
weight of an action a as follows:

Wa =

P
e∈E

Pr(a)∗e.importanceP
a∈Ae

Pr(a)P
e∈E e.importance

(1)

Where E is the set of events in the text, Ae the
set of actions related to event e, e.importance ∈
N+ the importance of the event e and Pr(a) the
prior probability of action a. All weights are nor-
malised so that the following inequalities hold:

X
a∈Ae

Pr(a) ∗ e.importanceP
a∈Ae

Pr(a)
= e.importance (2)

X
a∈A

Wa = 1 (3)

where A is the set of all possible actions. The idea
is that an event e makes some contribution (pos-
sibly 0) to the relevance of some actions Ae, and
the total weight of the event is distributed among
all actions related to it using (a) the prior probabil-
ity Pr(a) of each action (the most frequent action
will have more weight) and (b) the importance of
the event. At the end of the process each action
would be assigned a score representing the accu-
mulated weights of the events, which is then nor-
malised, so that

∑
a∈A Wa = 1.

The prior probability in the equation is meant
to reflect our earlier observation that clinical ac-
tions differ in the frequency with which they are
performed and this may bias their selection. Pri-
ors were computed using maximum likelihood es-
timates from a large database containing exhaus-
tive annotations of clinical actions recorded by an
on-site research nurse over a period of 4 months in
a NICU, which contains a total of 43,889 records
of actions (Hunter et al., 2003).

The importance value in equation (1) is meant
to reflect the fact that events in the text do not
attract the attention of a reader to the same ex-
tent, since they do not have the same degree
of ‘severity’ or ‘surprise’. We operationalise
this by identifying the superconcepts in the on-
tology (PATHOLOGICAL-FUNCTION, DISORDER,
SURGICAL-INTERVENTION, etc.) which could be
thought of as representing ‘drastic’ occurrences.
To these we added the concept of a TREND which
corresponds to a change in a physiological param-
eter (such as an increase in heart rate), based on the
rationale that the primary aim of NICU staff is to
keep a patient stable, so that any physiological in-
stability warrants an intervention. The importance

of events subsumed by these superconcepts was
then set to be three times that of ‘normal’ events.

Finally, we apply knowledge-based rules to
prune the number of actions Ae related to an event
e. As an example, a decision to intubate a baby
depends not only on events in the text which ref-
erence this action, but also on whether the baby is
already intubated. This can be assessed by check-
ing whether s/he is on CMV (a type of ventila-
tion which is only used after intubation). The rule
is represented as INTUBATE → ¬on(baby, CMV).
Although such rules are extremely rough, they do
help to prune inconsistencies.

Two scores were computed for both human
and computer texts using equation (1). RELs,t

is the sum of weights of actions referenced in
a text t for scenario s which are appropriate:
RELs,t =

∑
a∈Aap

Wa. Conversely, IRRELs,t

quantifies the weights of actions referenced in t
for scenario s which are inappropriate: IRRELs,t =∑

a∈Ainap
Wa.

6 Results

In what follows, we report two-tailed Pearson’s r
correlations to compare our metrics to the three
performance measures discussed in Section 3: P ,
the global performance score; PAPP and PINAPP, the
proportion of appropriate (resp. inappropriate) ac-
tions selected from the subsets of in/appropriate
(resp. inappropriate) actions in a scenario; and
SPAPP, the proportion of appropriate actions se-
lected by a participant out of the set of actions se-
lected. The last three are included because they
shed light more directly on the extent to which
experimental participants chose correctly or incor-
rectly. In case a metric measures similarity or dif-
ference between texts, the correlation reported is
with the difference between the H scores and the C
scores. Where relevant, we also report correlations
with the absolute mean performance scores within
the H and/or C conditions. Correlations exclude
the three scenarios which had ‘no action’ as the
target appropriate action, though where relevant,
we will indicate whether the correlations change
when these scenarios are also included.

6.1 Content and Structure

Overall, the C texts mentioned significantly fewer
events than the H texts (t20 = 2.44, p = .05),
and also mentioned fewer temporal and discourse
relations explicitly (t20 = 3.70, p < .05). In
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P (H-C) PAPP (H-C) SPAPP (H-C) PINAP (H-C)
Events (H-C) .43♦ .42♣ .02 -.09
Relations (H-C) .34 .30 0 -.15
Tree Edit .36 .33 .09 -.14

Table 1: Correlations between performance differences and content/structure measures. ♦significant at
p = .05; ♣approaches significance at p = .06

the case of the H texts, the number of events
and relations did not correlate significantly with
any of the performance scores. In the case of
the C texts, the number of relations mentioned
was significantly negatively correlated to PINAP

(r = −.49, p < .05), and positively correlated
to SPAPP (r = .7, p < .001). This suggests
that temporal and discourse relations made texts
more understandable and resulted in more appro-
priate actions being taken. More unexpectedly, the
number of events mentioned was negatively cor-
related to PAPP (r = −.53, p < .05) and to P
(r = −.5, p < .05). This may have been due to the
C texts mentioning a number of events that were
relatively unimportant and/or irrelevant to the ap-
propriate actions.

Table 1 displays correlations between perfor-
mance differences between H and C, and differ-
ences in number of events and relations, as well
as Tree Edit Distance. The positive correlation
between the number of events mentioned and P
suggests that a larger amount of content in the
H texts is partially responsible for the difference
in decision-making accuracy by experimental par-
ticipants. This is further supported by the fact
that the correlation with the difference in PAPP ap-
proaches significance. It is worth noting that none
of these correlations are significant when means
from the three ‘no action’ scenarios are included
in the computation. This further supports our ear-
lier conclusion that these three scenarios are out-
liers. Somewhat surprisingly, Tree Edit Distance
does not correlate significantly with any of the per-
formance differences, though the correlations go
in the expected directions (positive in the case of
P , SPAPP and PAPP, negative in the case of PINAP).
This may be due to the high variance in the Edit
Distance scores (mean: 66.5; SD: 34.8).

Overall, these results show that differences in
both content and structure made the H texts supe-
rior and human texts did a much better job at ex-
plicitly relating events or situating them in time,
which is crucial for comprehension and correct
decision-making. This point has previously been

Absolute Scores (C) Differences (H-C)
P PAP PINAP SPAP P PAP PINAP SPAP

R-4 .33 .38 .2 -.03 -.19 -.2 -.01 -.1
R-SU -.03 -.02 .05 -.31 .04 .01 -.1 .13

Table 2: Correlations between ROUGE and perfor-
mance scores in the C condition. ♦significant at
p = .05.

made in relation to the same data on the basis of a
qualitative study (Reiter et al., 2008).

6.2 N-gram Overlap

Correlations with ROUGE-4 and ROUGE-SU are
shown in Table 2 both for absolute performance
scores on the C texts, and for the differences be-
tween H and C. This is because ROUGE can be
interpreted in two ways: on the one hand, it mea-
sures the ‘quality’ of C texts relative to the ref-
erence human texts; on the other it also indicates
similarity between C and H.

There are no significant correlations between
ROUGE and any of our performance measures. Al-
though this leaves open the question of whether a
different set of performance measures, or a differ-
ent experiment, would evince a more systematic
covariation, the results suggest that it is not sur-
face similarity (to the extent that this is measured
by ROUGE) that is contributing to better decision
making. It is however worth noting that some cor-
relations with ROUGE-4, namely those involving
P and PAPP, do turn out significant when the ‘no
action’ scenarios are included. This turns out to
be solely due to one of the ‘no action’ scenar-
ios, which had a much higher ROUGE-4 score than
the others, possibly because the corresponding hu-
man text was comparatively brief and the number
of events mentioned in the two texts was roughly
equal (11 for the C text, 12 for the H text).

6.3 Knowledge Based Relevance Metrics

Finally, we compare our knowledge-based mea-
sures of the relevance of the content to appropri-
ate actions (REL) and to inappropriate actions (IR-
REL). The correlations between each measure and
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Human (H) BT-45 (C)
P PAP PINAP SPAP P PAP PINAP SPAP

REL .14 .11 -.14 .60♦ .33 .24 -.49♦ .7♦

IRREL -.25 -.22 .1 -.56♦ -.34 -.26 .43 -.62♦

Table 3: Correlations between knowledge-based relevance scores and absolute performance scores in the
C and H conditions. ♦significant at p ≤ .05.

the absolute performance scores in each condition
are displayed in Table 3.

The absolute scores in Table 3 show that both
REL and IRREL are significantly correlated to
SPAPP, the proportion of appropriate actions out
of the actions selected by participants. The cor-
relations are in the expected direction: there is a
strong tendency for participants to choose more
appropriate actions when REL is high, and the re-
verse is true for IRREL. In the case of the C texts,
there is also a negative correlation (as expected)
between REL and PINAP, though this is the only
one that reaches significance with this variable. It
therefore appears that the knowledge-based rele-
vance measures evince a meaningful relationship
with at least some of the more ‘direct’ measures of
performance (those assessing the relative prefer-
ence of participants for appropriate actions based
on a textual summary), though not with the global
preference score P . One possible reason for the
low correlations with the latter is that the two mea-
sures attempt to quantify directly the relevance of
the content units in a text to in/appropriate courses
of action; hence, they have a more direct relation-
ship to measures of proportions of the courses of
actions chosen.

7 Discussion and Conclusions

We conclude this paper with some observations
about the relative merit of different measures of
textual characteristics. ‘Standard’, surface-based
measures such as (ROUGE) do not display any sys-
tematic relationship with our extrinsic measures
of performance, recalling similar observations in
the NLG literature (Gatt and Belz, to appear) and
in MT and Summarisation (Calliston-Burch et al.,
2006; Dorr et al., 2005). Some authors have also
reported that ROUGE does not correlate well with
human judgements of NLG texts (Reiter and Belz,
2009). On the other hand, we do find some evi-
dence that the amount of content in texts, and the
extent to which they explicitly relate content el-
ements temporally and rhetorically, may impact
decision-making. The significant correlations ob-

served between the number of relations in a text
and the extrinsic measures are worth emphasis-
ing, as they suggest a significant role not only for
content, but also rhetorical and temporal structure,
something that many metrics do not take into ac-
count.

Perhaps the most important contribution of this
paper has been to emphasise knowledge-based as-
pects of textual evaluation, not only by measur-
ing content units and structure, but also by de-
veloping a motivated relevance metric, the cru-
cial assumption being that the utility of a sum-
mary is contingent on its managing to convey in-
formation that will motivate a reader to take the
‘right’ course of action. The strong correlations
between the relevance measures and the extent to
which people chose the correct actions (or more
accurately, chose more correct actions) vindicates
this assumption.

Some of the correlations which turned out not to
be significant may be due to ‘noise’ in the data, in
particular, high variance in the performance scores
(as suggested by the standard deviations for P
given in Section 3). They therefore do not war-
rant the conclusion that no relationship exists be-
tween a particular measure and extrinsic task per-
formance; nevertheless, where other studies have
noted similar gaps, the trends in question may be
systematic and general. This, however, can only
be ascertained in further follow-up studies.

This paper has investigated the relationship be-
tween a number of intrinsic measures of text qual-
ity and decision-making performance based on an
external task. Emphasis was placed on metrics
that quantify aspects of semantics, relevance and
structure. We have also compared generated texts
to their human-authored counterparts to identify
differences which can motivate further system im-
provements. Future work will focus on further ex-
ploring metrics that reflect the relevance of a text,
as well as the role of temporal and discourse struc-
ture in conveying the intended meaning.
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Abstract

We present the situated reference genera-
tion module of a hybrid human-robot in-
teraction system that collaborates with a
human user in assembling target objects
from a wooden toy construction set. The
system contains a sub-symbolic goal in-
ference system which is able to detect the
goals and errors of humans by analysing
their verbal and non-verbal behaviour. The
dialogue manager and reference genera-
tion components then use situated refer-
ences to explain the errors to the human
users and provide solution strategies. We
describe a user study comparing the results
from subjects who heard constant refer-
ences to those who heard references gener-
ated by an adaptive process. There was no
difference in the objective results across
the two groups, but the subjects in the
adaptive condition gave higher subjective
ratings to the robot’s abilities as a conver-
sational partner. An analysis of the objec-
tive and subjective results found that the
main predictors of subjective user satisfac-
tion were the user’s performance at the as-
sembly task and the number of times they
had to ask for instructions to be repeated.

1 Introduction

When two humans jointly carry out a mutual task
for which both know the plan—for example, as-
sembling a new shelf—it frequently happens that
one makes an error, and the other has to assist
and to explain what the error was and how it can
be solved. Humans are skilled at spotting errors
committed by another, as well as errors which
they made themselves. Recent neurological stud-
ies have shown that error monitoring—i.e., ob-
serving the errors made by oneself or by others—

plays an important role in joint activity. For ex-
ample, Bekkering et al. (2009) have demonstrated
that humans show the same brain activation pat-
terns when they make an error themselves and
when they observe someone else making an error.

In this paper, we describe a human-robot inter-
action (HRI) system that is able both to analyse
the actions and the utterances of a human part-
ner to determine if the human made an error in
the assembly plan, and to explain to the human
what went wrong and what to do to solve the prob-
lem. This robot combines approaches from sub-
symbolic processing and symbolic reasoning in a
hybrid architecture based on that described in Fos-
ter et al. (2008b).

During the construction process, it is frequently
necessary to refer to an object which is being used
to assemble the finished product, choosing an un-
ambigious reference to distinguish the object from
the others available. The classic reference gen-
eration algorithm, on which most subsequent im-
plementations are based, is the incremental algo-
rithm of Dale and Reiter (1995), which selects
a set of attributes of a target object to single it
out from a set of distractor objects. In real-world
tasks, the speaker and hearer often have more con-
text in common than just the knowledge of object
attributes, and several extensions have been pro-
posed, dealing with visual and discourse salience
(Kelleher and Kruijff, 2006) and the ability to pro-
duce multimodal references including actions such
as pointing (van der Sluis, 2005; Kranstedt and
Wachsmuth, 2005).

Foster et al. (2008a) noted another type of mul-
timodal reference which is particularly useful in
embodied, task-based contexts: haptic-ostensive
reference, in which an object is referred to as it
is being manipulated by the speaker. Manipulat-
ing an object, which must be done in any case as
part of the task, also makes an object more salient
and therefore affords linguistic references that in-
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Figure 1: The dialogue robot

dicate the increased accessibility of the referent.
This type of reference is similar to the placing-for
actions noted by Clark (1996).

An initial approach for generating referring ex-
pressions that make use of haptic-ostensive refer-
ence was described in (Foster et al., 2009a). With
this system, a study was conducted comparing the
new reference strategy to the basic Dale and Reiter
incremental algorithm. Naı̈ve users reported that it
was significantly easier to understand the instruc-
tions given by the robot when it used references
generated by the more sophisticated algorithm. In
this paper, we perform a similar experiment, but
making use of a more capable human-robot in-
teraction system and a more complete process for
generating situated references.

2 Hybrid Human-Robot Dialogue
System

The experiment described in this paper makes use
of a hybrid human-robot dialogue system which
supports multimodal human-robot collaboration
on a joint construction task. The robot (Figure 1)
has a pair of manipulator arms with grippers,
mounted in a position to resemble human arms,
and an animatronic talking head (van Breemen,
2005) capable of producing facial expressions,
rigid head motion, and lip-synchronised synthe-
sised speech. The subject and the robot work to-
gether to assemble wooden construction toys on
a common workspace, coordinating their actions

through speech (English or German), gestures, and
facial expressions.

The robot can pick up and move objects in the
workspace and perform simple assembly tasks. In
the scenario considered here, both of the partici-
pants know the assembly plan and jointly execute
it. The robot assists the human, explains necessary
assembly steps in case the human makes an error,
and offers pieces as required. The workspace is di-
vided into two areas—one belonging to the robot
and one to the human—to make joint action nec-
essary for task success.

The system has components which use both
sub-symbolic and symbolic processing. It in-
cludes a goal inference module based on dynamic
neural fields (Erlhagen and Bicho, 2006; Bicho
et al., 2009), which selects the robot’s next actions
based on the human user’s actions and utterances.
Given a particular assembly plan and the knowl-
edge of which objects the user has picked up, this
module can determine when the user has made
an error. The system also incorporates a dialogue
manager based on the TrindiKit dialogue manage-
ment toolkit (Larsson and Traum, 2000), which
implements the information-state based approach
to dialogue management. This unique combina-
tion of abilities means that when the robot detects
that its human partner has made an error—for ex-
ample, picking up or requesting an assembly piece
that is not needed in the current step of the building
plan—it can explain to the human what the error
was and what can be done to correct the mistake—
for example by picking up or indicating the correct
assembly piece.

Messages from all of the system’s input chan-
nels (speech, object recognition, and gesture
recognition) are processed and combined by a
multimodal fusion component based on (Giuliani
and Knoll, 2008), which is the link between the
symbolic and the sub-symbolic parts of the sys-
tem. The fusion component then communicates
with the goal inference module, which calculates
the next action instructions for the robot and also
determines if the user made an error. From there,
fusion combines the information from goal infer-
ence with the input data and sends unified hy-
potheses to the dialogue manager.

When it receives the fusion hypotheses, the dia-
logue manager uses the dialogue history and the
physical and task context to choose a response.
It then sends a high-level specification of the de-
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1. System First we will build a windmill.

2. User Okay.

3. User {picks up a yellow cube, unnecessary piece for a
windmill}

4. System You don’t need a yellow cube to build a windmill.

5. System To build a windmill, you first need to build a
tower.

6. System [picking up and holding out red cube] To build
the tower, insert the green bolt through the end of this
red cube and screw it into the blue cube.

7. User [takes cube, performs action] Okay.

Figure 2: Sample human-robot dialogue, showing
adaptively-generated situated references

sired response to the output planner, which in turn
sends commands to each output channel: linguis-
tic content (including multimodal referring ex-
pressions), facial expressions and gaze behaviours
of the talking head, and actions of the robot ma-
nipulators. The linguistic outputs are realised us-
ing the OpenCCG surface realiser (White, 2006).

3 Reference Generation

In this system, two strategies were implemented
for generating references to objects in the world:
a constant version that uses only the basic incre-
mental algorithm (Dale and Reiter, 1995) to se-
lect properties, and an adaptive version that uses
more of the physical, dialogue and task context
to help select the references. The constant sys-
tem can produce a definite or indefinite reference,
and the most appropriate combination of attributes
according to the incremental algorithm. The adap-
tive system also generates pronominal and deictic
references, and introduces the concept of multiple
types of distractor sets depending on context.

Figure 2 shows a fragment of a sample interac-
tion in which the user picks up an incorrect piece:
the robot detects the error and describes the correct
assembly procedure. The underlined references
show the range of output produced by the adap-
tive reference generation module; for the constant
system, the references would all have been “the
red cube”. The algorithms used by the adaptive
reference generation module are described below.

3.1 Reference Algorithm

The module stores a history of the referring ex-
pressions spoken by both the system and the user,
and uses these together with distractor sets to se-
lect referring expressions. In this domain there are
two types of objects which we need to refer to:
concrete objects in the world (everything which is
on the table, or in the robot’s or user’s hand), and
objects which do not yet exist, but are in the pro-
cess of being created. For non-existent objects we
do not build a distractor set, but simply use the
name of the object. In all other cases, we use one
of three types of distractor set:

• all the pieces needed to build a target object;

• all the objects referred to since the last men-
tion of this object; or

• all the concrete objects in the world.

The first type of set is used if the object under
consideration (OUC) is a negative reference to a
piece in context of the creation of a target object.
In all other cases, the second type is used if the
OUC has been mentioned before and the third type
if it has not.

When choosing a referring expression, we first
process the distractor set, comparing the proper-
ties of the OUC with the properties of all distrac-
tors. If a distractor has a different type from the
OUC, it is removed from the distractor set. With
all other properties, if the distractor has a different
value from the OUC, it is removed from the dis-
tractor set, and the OUC’s property value is added
to the list of properties to use.

We then choose the type of referring expression.
We first look for a previous reference (PR) to the
OUC, and if one exists, determine whether it was
in focus. Depending on the case, we use one of the
following reference strategies.

No PR If the OUC does not yet exist or we are
making a negative reference, we use an indef-
inite article. If the robot is holding the OUC,
we use a deictic reference. If the OUC does
exist and there are no distractors, we use a
definite; if there are distractors we use an in-
definite.

PR was focal If the PR was within the same turn,
we choose a pronoun for our next reference.
If it was in focus but in a previous turn, if
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the robot is holding the OUC we use a deictic
reference, and if the robot is not holding it,
we use a pronoun.

PR was not focal If the robot is holding the
OUC, we make a deictic reference. Other-
wise, if the PR was a pronoun, definite, or de-
ictic, we use a definite article. If the PR was
indefinite and there are no distractors, we use
a definite article, if there are distractors, we
use an indefinite article.

If there are any properties in the list, and the
reference chosen is not a pronoun, we add them.

3.2 Examples of the Reference Algorithm
We will illustrate the reference-selection strategy
with two cases from the dialogue in Figure 2.

Utterance 4 “a yellow cube”
This object is going to be referred to in a negative
context as part of a windmill under construction,
so the distractor set is the set of objects needed to
make a windmill: {red cube, blue cube, small slat,
small slat, green bolt, red bolt}.

We select the properties to use in describing the
object under consideration, processing the distrac-
tor set. We first remove all objects which do not
share the same type as our object under considera-
tion, which leaves {red cube, blue cube}. We then
compare the other attributes of our new object with
the remaining distractors - in this case “colour”.
Since neither cube shares the colour “yellow” with
the target object, both are removed from the dis-
tractor set, and “yellow” is added to the list of
properties to use.

There is no previous reference to this object,
and since we are making a negative reference,
we automatically choose an indefinite article. We
therefore select the reference “a yellow cube”.

Utterance 6 “it” (a green bolt)
This object has been referred to before, earlier in
the same utterance, so the distractor set is all the
references between the earlier one and this one—
{red cube}. Since this object has a different type
from the bolt we want to describe, the distractor
set is now empty, and nothing is added to the list
of properties to use.

There is a previous definite reference to the ob-
ject in the same utterance: “the green bolt”. This
reference was focal, so we are free to use a pro-
noun if appropriate. Since the previous reference

was definite, and the object being referred to does
exist, we choose to use a pronoun. We therefore
select the reference “it”.

4 Experiment Design

In the context of the HRI system, a constant refer-
ence strategy is sufficient in that it makes it possi-
ble for the robot’s partner to know which item is
needed. On the other hand, while the varied forms
produced by the more complex mechanism can in-
crease the naturalness of the system output, they
may actually be insufficient if they are not used
in appropriate current circumstances—for exam-
ple, “this cube” is not a particularly helpful refer-
ence if a user has no way to tell which “this” is.
As a consequence, the system for generating such
references must be sensitive to the current state
of joint actions and—in effect—of joint attention.
The difference between the two systems is a test of
the adaptive version’s ability to adjust expressions
to pertinent circumstances. It is known that peo-
ple respond well to reduced expressions like “this
cube” or “it” when another person uses them ap-
propriately (Bard et al., 2008); we need to see if
the robot system can also achieve the benefits that
situated reference could provide.

To address this question, the human-robot di-
alogue system was evaluated through a user study
in which subjects interacted with the complete sys-
tem. Using a between-subjects design, this study
compared the two reference strategies, measuring
the users’ subjective reactions to the system along
with their overall performance in the interaction.
Based on the findings from the user evaluation de-
scribed in (Foster et al., 2009a)—in which the pri-
mary effect of varying the reference strategy was
on the users’ subjective opinion of the robot—the
main prediction for this study was as follows:

• Subjects who interact with a system using
adaptive references will rate the quality of
the robot’s conversation more highly than the
subjects who hear constant references.

We made no specific prediction regarding the
effect of reference strategy on any of the objec-
tive measures: based on the results of the user
evaluation mentioned above, there is no reason to
expect an effect either way. Note that—as men-
tioned above—if the adaptive version makes in-
correct choices, that may have a negative impact
on users’ ability to understand the system’s gener-
ated references. For this reason, even a finding of
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(a) Windmill (b) Railway signal

Figure 3: Target objects for the experiment

no objective difference would demonstrate that the
adaptive references did not harm the users’ ability
to interact with the system, as long as it was ac-
companied by the predicted improvement in sub-
jective judgements.

4.1 Subjects

41 subjects (33 male) took part in this experiment.
The mean age of the subjects was 24.5, with a min-
imum of 19 and a maximum of 42. Of the subjects
who indicated an area of study, the two most com-
mon areas were Mathematics (14 subjects) and In-
formatics (also 14 subjects). On a scale of 1 to 5,
subjects gave a mean assessment of their knowl-
edge of computers at 4.1, of speech-recognition
systems at 2.0, and of human-robot systems at 1.7.
Subjects were compensated for their participation
in the experiment.

4.2 Scenario

This study used a between-subjects design with
one independent variable: each subject interacted
either with a system that used a constant strategy
to generate referring expressions (19 subjects), or
else with a system that used an adaptive strategy
(22 subjects).1

Each subject built two objects in collaboration
with the system, always in the same order. The
first target object was the windmill (Figure 3a);
after the windmill was completed, the robot and
human then built a railway signal (Figure 3b). For
both target objects, the user was given a building
plan (on paper). To induce an error, both of the
plans given to the subjects instructed them to use
an incorrect piece: a yellow cube instead of a red
cube for the windmill, and a long (seven-hole) slat
instead of a medium (five-hole) slat for the rail-

1The results of an additional three subjects in the constant-
reference condition could not be analysed due to technical
difficulties.

way signal. The subjects were told that the plan
contained an error and that the robot would cor-
rect them when necessary, but did not know the
nature of the error.

When the human picked up or requested an in-
correct piece during the interaction, the system de-
tected the error and explained to the human what
to do in order to assemble the target object cor-
rectly. When the robot explained the error and
when it handed over the pieces, it used referring
expressions that were generated using the constant
strategy for half of the subjects, and the adaptive
strategy for the other half of the subjects.

4.3 Experimental Set-up and Procedure

The participants stood in front of the table facing
the robot, equipped with a headset microphone for
speech recognition. The pieces required for the
target object—plus a set of additional pieces in or-
der to make the reference task more complex—
were placed on the table, using the same layout
for every participant. The layout was chosen to
ensure that there would be points in the interaction
where the subjects had to ask the robot for build-
ing pieces from the robot’s workspace, as well as
situations in which the robot automatically handed
over the pieces. Along with the building plan men-
tioned above, the subjects were given a table with
the names of the pieces they could build the ob-
jects with.

4.4 Data Acquisition

At the end of a trial, the subject responded to
a usability questionnaire consisting of 39 items,
which fell into four main categories: Intelligence
of the robot (13 items), Task ease and task suc-
cess (12 items), Feelings of the user (8 items),
and Conversation quality (6 items). The items on
the questionnaire were based on those used in the
user evaluation described in (Foster et al., 2009b),
but were adapted for the scenario and research
questions of the current study. The questionnaire
was presented using software that let the subjects
choose values between 1 and 100 with a slider. In
addition to the questionnaire, the trials were also
video-taped, and the system log files from all tri-
als were kept for further analysis.

5 Results

We analysed the data resulting from this study in
three different ways. First, the subjects’ responses
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Table 1: Overall usability results

Constant Adaptive M-W
Intell. 79.0 (15.6) 74.9 (12.7) p = 0.19, n.s.
Task 72.7 (10.4) 71.1 (8.3) p = 0.69, n.s.
Feeling 66.9 (15.9) 66.8 (14.2) p = 0.51, n.s.
Conv. 66.1 (13.6) 75.2 (10.7) p = 0.036, sig.
Overall 72.1 (11.2) 71.8 (9.1) p = 0.68, n.s.

to the questionnaire items were compared to de-
termine if there was a difference between the re-
sponses given by the two groups. A range of sum-
mary objective measures were also gathered from
the log files and videos—these included the dura-
tion of the interaction measured both in seconds
and in system turns, the subjects’ success at build-
ing each of the target objects, the number of times
that the robot had to explain the construction plan
to the user, and the number of times that the users
asked the system to repeat its instructions. Finally,
we compared the results on the subjective and ob-
jective measures to determine which of the objec-
tive factors had the largest influence on subjective
user satisfaction.

5.1 Subjective Measures

The subjects in this study gave a generally positive
assessment of their interactions with the system on
the questionnaire—with a mean overall satisfac-
tion score of 72.0 out of 100—and rated the per-
ceived intelligence of the robot particularly highly
(overall mean of 76.8). Table 1 shows the mean
results from the two groups of subjects for each
category on the user-satisfaction questionnaire, in
all cases on a scale from 0–100 (with the scores
for negatively-posed questions inverted).

To test the effect of reference strategy on the
usability-questionnaire responses, we performed a
Mann-Whitney test comparing the distribution of
responses from the two groups of subjects on the
overall results, as well as on each sub-category of
questions. For most categories, there was no sig-
nificant difference between the responses of the
two groups, with p values ranging from 0.19 to
0.69 (as shown in Table 1). The only category
where a significant difference was found was on
the questionnaire items that asked the subjects to
assess the robot’s quality as a conversational part-
ner; for those items, the mean score from sub-
jects who heard the adaptive references was sig-
nificantly higher (p < 0.05) than the mean score
from the subjects who heard references generated
by the constant reference module. Of the six ques-

Table 2: Objective results (all differences n.s.)

Measure Constant Adaptive M-W
Duration (s.) 404.3 (62.8) 410.5 (94.6) p = 0.90
Duration (turns) 29.8 (5.02) 31.2 (5.57) p = 0.44
Rep requests 0.26 (0.45) 0.32 (0.78) p = 0.68
Explanations 2.21 (0.63) 2.41 (0.80) p = 0.44
Successful trials 1.58 (0.61) 1.55 (0.74) p = 0.93

tions that were related to the conversation quality,
the most significant impact was on the two ques-
tions which assessed the subjects’ understanding
of what they were able to do at various points dur-
ing the interaction.

5.2 Objective Measures

Based on the log files and video recordings, we
computed a range of objective measures. These
measures were divided into three classes, based
on those used in the PARADISE dialogue-system
evaluation framework (Walker et al., 2000):

• Two dialogue efficiency measures: the mean
duration of the interaction as measured both
in seconds and in system turns;

• Two dialogue quality measures: the number
of times that the robot gave explanations, and
the number of times that the user asked for
instructions to be repeated; and

• One task success measure: how many of the
(two) target objects were constructed as in-
tended (i.e., as shown in Figure 3).

For each of these measures, we tested whether the
difference in reference strategy had a significant
effect, again via a Mann-Whitney test. Table 2 il-
lustrates the results on these objective measures,
divided by the reference strategy.

The results from the two groups of subjects
were very similar on all of these measures: on
average, the experiment took 404 seconds (nearly
seven minutes) to complete with the constant strat-
egy and 410 seconds with the adaptive, the mean
number of system turns was close to 30 in both
cases, just over one-quarter of all subjects asked
for instructions to be repeated, the robot gave just
over two explanations per trial, and about three-
quarters of all target objects (i.e. 1.5 out of 2)
were correctly built. The Mann-Whitney test con-
firms that none of the differences between the two
groups even came close to significance on any of
the objective measures.
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5.3 Comparing Objective and Subjective
Measures

In the preceding sections, we presented results on
a number of objective and subjective measures.
While the subjects generally rated their experi-
ence of using the system positively, there was
some degree of variation, most of which could not
be attributed to the difference in reference strat-
egy. Also, the results on the objective measures
varied widely across the subjects, but again were
not generally affected by the reference strategy.
In this section, we examine the relationship be-
tween these two classes of measures in order to
determine which of the objective measures had the
largest effect on users’ subjective reactions to the
HRI system.

Being able to predict subjective user satisfac-
tion from more easily-measured objective proper-
ties can be very useful for developers of interac-
tive systems: in addition to making it possible to
evaluate systems based on automatically available
data without the need for extensive experiments
with users, such a performance function can also
be used in an online, incremental manner to adapt
system behaviour to avoid entering a state that is
likely to reduce user satisfaction (Litman and Pan,
2002), or can be used as a reward function in a
reinforcement-learning scenario (Walker, 2000).

We employed the procedure used in the PAR-
ADISE evaluation framework (Walker et al.,
2000) to explore the relationship between the sub-
jective and objective factors. The PARADISE
model uses stepwise multiple linear regression to
predict subjective user satisfaction based on mea-
sures representing the performance dimensions of
task success, dialogue quality, and dialogue effi-
ciency, resulting in a predictor function of the fol-
lowing form:

Satisfaction =
n

∑
i=1

wi ∗N (mi)

The mi terms represent the value of each measure,
while the N function transforms each measure
into a normal distribution using z-score normali-
sation. Stepwise linear regression produces coef-
ficients (wi) describing the relative contribution of
each predictor to the user satisfaction. If a predic-
tor does not contribute significantly, its wi value is
zero after the stepwise process.

Table 3 shows the predictor functions that were
derived for each of the classes of subjective mea-

sures in this study, using all of the objective mea-
sures from Table 2 as initial factors. The R2 col-
umn indicates the percentage of the variance in the
target measure that is explained by the predictor
function, while the Significance column gives sig-
nificance values for each term in the function.

In general, the two factors with the biggest in-
fluence on user satisfaction were the number of
repetition requests (which had a uniformly neg-
ative effect on user satisfaction), and the num-
ber of target objects correctly built by the user
(which generally had a positive effect). Aside
from the questions on user feelings, the R2 values
are generally in line with those found in previous
PARADISE evaluations of other dialogue systems
(Walker et al., 2000; Litman and Pan, 2002), and
in fact are much higher than those found in a pre-
vious similar study (Foster et al., 2009b).

6 Discussion

The subjective responses on the relevant items
from the usability questionnaire suggest that
the subjects perceived the robot to be a bet-
ter conversational partner if it used contextually
varied, situationally-appropriate referring expres-
sions than if it always used a baseline, constant
strategy; this supports the main prediction for this
study. The result also agrees with the findings of
a previous study (Foster et al., 2009a)—this sys-
tem did not incorporate goal inference and had a
less-sophisticated reference strategy, but the main
effect of changing reference strategy was also on
the users’ subjective opinions of the robot’s inter-
active ability. These studies together support the
current effort in the natural-language generation
community to devise more sophisticated reference
generation algorithms.

On the other hand, there was no significant dif-
ference between the two groups on any of the
objective measures: the dialogue efficiency, dia-
logue quality, and task success were nearly iden-
tical across the two groups of subjects. A de-
tailed analysis of the subjects’ gaze and object-
manipulation behaviour immediately after various
forms of generated references from the robot also
failed to find any significant differences between
the various reference types. These overall results
are not particularly surprising: studies of human-
human dialogue in a similar joint construction task
(Bard et al., In prep.) have demonstrated that the
collaborators preserve quality of construction in
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Table 3: PARADISE predictor functions for each category on the usability questionnaire

Measure Function R2 Significance
Intelligence 76.8+7.00∗N (Correct)−5.51∗N (Repeats) 0.39 Correct: p < 0.001,

Repeats: p < 0.005
Task 72.4+3.54∗N (Correct)−3.45∗N (Repeats)−2.17∗N (Explain) 0.43 Correct: p < 0.005,

Repeats: p < 0.01,
Explain: p≈ 0.10

Feeling 66.9−6.54∗N (Repeats)+4.28∗N (Seconds) 0.09 Repeats: p < 0.05,
Seconds: p≈ 0.12

Conversation 71.0+5.28∗N (Correct)−3.08∗N (Repeats) 0.20 Correct: p < 0.01,
Repeats: p≈ 0.10

Overall 72.0+4.80∗N (Correct)−4.27∗N (Repeats) 0.40 Correct: p < 0.001,
Repeats: p < 0.005

all cases, though circumstances may dictate what
strategies they use to do this. Combined with the
subjective findings, this lack of an objective effect
suggests that the references generated by the adap-
tive strategy were both sufficient and more natural
than those generated by the constant strategy.

The analysis of the relationship between the
subjective and objective measures analysis has
also confirmed and extended the findings from a
similar analysis (Foster et al., 2009b). In that
study, the main contributors to user satisfaction
were user repetition requests (negative), task suc-
cess, and dialogue length (both positive). In the
current study, the primary factors were similar,
although dialogue length was less prominent as
a factor and task success was more prominent.
These findings are generally intuitive: subjects
who are able to complete the joint construction
task are clearly having more successful interac-
tions than those who are not able to complete the
task, while subjects who need to ask for instruc-
tions to be repeated are equally clearly not hav-
ing successful interactions. The findings add ev-
idence that, in this sort of task-based, embodied
dialogue system, users enjoy the experience more
when they are able to complete the task success-
fully and are able to understand the spoken contri-
butions of their partner, and also suggest that de-
signers should concentrate on these aspects of the
interaction when designing the system.

7 Conclusions

We have presented the reference generation mod-
ule of a hybrid human-robot interaction system
that combines a goal-inference component based
on sub-symbolic dynamic neural fields with a
natural-language interface based on more tradi-
tional symbolic techniques. This combination of
approaches results in a system that is able to work

together with a human partner on a mutual con-
struction task, interpreting its partner’s verbal and
non-verbal behaviour and responding appropri-
ately to unexpected actions (errors) of the partner.

We have then described a user evaluation of this
system, concentrating on the impact of different
techniques for generating situated references in
the context of the robot’s corrective feedback. The
results of this study indicate that using an adaptive
strategy to generate the references significantly in-
creases the users’ opinion of the robot as a con-
versational partner, without having any effect on
any of the other measures. This result agrees with
the findings of the system evaluation described in
(Foster et al., 2009a), and adds evidence that so-
phisticated generation techniques are able to im-
prove users’ experiences with interactive systems.

An analysis of the relationship between the ob-
jective and subjective measures found that the
main contributors to user satisfaction were the
users’ task performance (which had a positive ef-
fect on most measures of satisfaction), and the
number of times the users had to ask for instruc-
tions to be repeated (which had a generally neg-
ative effect). Again, these results agree with the
findings of a previous study (Foster et al., 2009b),
and also suggest priorities for designers of this
type of task-based interactive system.
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Abstract 

In this paper, we propose a general way of con-

structing an NLG system that permits the system-

atic exploration of the effects of particular system 

choices on output quality. We call a system devel-

oped according to this model a Programmable In-

strumented Generator (PIG). Although a PIG could 

be designed and implemented from scratch, it is 

likely that researchers would also want to create 

PIGs based on existing systems. We therefore pro-

pose an approach to “instrumenting” an NLG sys-

tem so as to make it PIG-like. To experiment with 

the idea, we have produced code to support the 

“instrumenting” of any NLG system written in 

Java. We report on initial experiments with “in-

strumenting” two existing systems and attempting 

to “tune” them to produce text satisfying complex 

stylistic constraints. 

1 Introduction 

Existing NLG systems are often fairly impenetra-

ble pieces of code. It is hard to see what an NLG 

system is doing and usually impossible to drive it 

in any way other than what was originally envis-

aged. This is particularly unfortunate if the system 

is supposed to produce text satisfying complex sty-

listic requirements. Even when an NLG system 

actually performs very well, it is hard to see why 

this is or how particular generator decisions pro-

duce the overall effects. We propose a way of 

building systems that will permit more systematic 

exploration of decisions and their consequences, as 

well as better exploitation of machine learning to 

make these decisions better. We call a system built 

in this way a Programmable Instrumented Genera-

tor (PIG). As an initial exploration of the PIG idea, 

we have developed a general way of partially in-

strumenting any NLG system written in Java and 

have carried out two short experiments with exist-

ing NLG systems. 

2 Controlling an NLG System: Examples 

NLG systems are frequently required to produce 

output that conforms to particular stylistic guide-

lines. Often conformance can only be tested at the 

end of the NLG pipeline, when a whole number of 

complex strategic and tactical decisions have been 

made, resulting in a complete text. A number of 

recent pieces of work have begun to address the 

question of how to tune systems in order to make 

the decisions that lead to the most stylistically pre-

ferred outputs. 
 

Paiva and Evans (2005) (henceforth PE) investi-

gate controlling generator decisions for achieving 

stylistic goals, e.g. choices between: 

 

The patient takes the two gram dose of the pa-

tient’s medicine twice a day. 

 

and 

 

The dose of the patient’s medicine is taken 

twice a day. It is two grams. 

 

In this case, a stylistic goal of the system is ex-

pressed as goal values for features SSi,  where each 

SSi  expresses something that can be measured in 

the output text, e.g. counting the number of pro-

nouns or passives. The system learns to control the 

number of times specific binary generator deci-
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Figure 1: Example PERSONAGE rule 

sions are made (GDj), where these decisions in-

volve things like whether to split the input into 2 

sentences or whether to generate an N PP clause. A 

process of offline training is first used to establish 

correspondences between counts of generator deci-

sions and the values of the stylistic features. This 

works by running the system with multiple outputs 

(making decisions in many possible ways) and 

keeping track of both the counts of the decisions 

and also the values of the stylistic features 

achieved. From this data the system then learns 

correlations between these: 

 

 

 

 

To actually generate a text given stylistic goals SSi, 

the system then uses an online control regime. At 

each choice point, it considers making GDj versus 

not GDj. For each of these two, it estimates all the 

SSi that will be obtained for the complete text, us-

ing the learned equations. It prefers the choice that 

minimises the sum of absolute differences between 

these and the goal SSi, but is prepared to backtrack 

if necessary (best-first search). 

 

Mairesse and Walker (2008) (henceforth MW) use 

a different method for tuning their NLG system 

(“PERSONAGE”), whose objective is to produce 

texts in the styles of writers with different person-

ality types. In this case, the system performance 

depends on 67 parameters, e.g. REPETITIONS 

(whether to repeat existing propositions), PERIOD 

(leave two sentences connected just with “.”, rather 

than any other connective) and NEGATION (ne-

gate a verb and replace it by its antonym). For 

MW, offline training involves having the program 

generate a set of outputs with random values for all 

the parameters. Human judges estimate values for 

the “big five” personality traits (e.g. extroversion, 

neuroticism) for each output. Machine learning is 

then used to generate rules to predict how the pa-

rameter values depend on the big five numbers. 

For instance, Figure 1 shows the rule predicting the 

STUTTERING parameter. 

 

Once these rules are learned, online control to pro-

duce text according to a given personality (speci-

fied by numerical values for the big five traits) 

uses the learned models to set the parameters, 

which then determine NLG system behaviour. 

Human judges indeed recognise these personalities 

in the texts. 

3 Towards a PIG 

Looking at the previous two examples, one can 

detect some common features which could be used 

in other situations: 

• An NLG system able to generate random (or 

all possible) outputs 

• Outputs which can be evaluated (by human or 

machine) 

• The logging of key NLG parameters/choices 

• Learning of connections between parameters 

and output quality 

 

j

j

j
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This then being used to drive the system to achieve 

specific goals more efficiently than before. 

 

PE and MW both constructed special NLG systems 

for their work. One reason for this was that both 

wanted to ensure that the underlying NLG system 

allowed the kinds of stylistic variation that would 

be relevant for their applications. But also, in order 

to be able to track the choices made by a generator, 

Paiva and Evans had to implement a new system 

that kept an explicit record of choices made. This 

new system also had to be able to organise the 

search through choices according to a best-first 

search (it was possibly the first NLG system to be 

driven in this way). The only possibility for them 

was to implement a new special purpose generator 

for their domain with the desired control character-

istics.  

 

NLG systems are not usually immediately suitable 

for tuning of this kind because they make choices 

that are not exposed for external inspection. Also 

the way in which choices are made and the overall 

search strategy is usually hardwired in a way that 

prevents easy changing. It seems plausible that the 

approaches of PE and MW would work to some 

extent for any NLG system that can tell you about 

its choices/ parameter settings, and for any stylistic 

goal whose success can be measured in the text. 

Morever, these two are not the only ways one 

might train/guide an NLG system from such in-

formation (for instance, Hovy’s (1990) notion of 

“monitoring” would be an alternative way of using 

learned rules to drive the choices of an NLG sys-

tem). It would be revealing if one could easily 

compare different control regimes in a single ap-

plication (e.g. monitoring for PE’s task or best-first 

search for MW’s), but this is currently difficult 

because the different systems already have particu-

lar control built in. 

 

This discussion motivates the idea of developing a 

general methodology for the development of NLG 

systems that permits the systematic exploration of 

learning and control possibilities. We call a system 

built in such a way a Programmable Instrumented 

Generator (PIG).
1
  A PIG would be an NLG sys-

                                                           
1 If one had a sufficiently expressive PIG then perhaps one 

could train it for any testable stylistic goals – a kind of “uni-

versal” NLG system? 

tem that implements standard NLG algorithms and 

competences but which is organised in a way that 

permits inspection and reuse. It would be instru-

mented, in that one would be able to track the 

choices made in generating a text or texts, in order 

to tune the performance. It would also be pro-

grammable in that it would be possible to drive the 

system in different ways according to a learned (or 

otherwise determined) “policy”, e.g. to: 

 

• Generate all solutions (overgeneration) 

• Generate solutions with some choices 

fixed/constrained 

• Generate solutions with user control of some 

decisions 

• Generate solutions using an in-built choice 

mechanism 

• Generate solutions according to some global 

search strategy (e.g. monitoring, best-first 

search) 

4 Using a PIG 

A general way of using a PIG is shown in Figure 2. 

A PIG interacts with a (conceptually) separate 

processing component, which we call the “oracle”. 

This applies a policy to make choices for the gen-

erator and receives evaluations of generated texts. 

It logs the choices made and (using machine learn-

ing) can use this information to influence the pol-

icy.  

 
There are two main modes in which the PIG can be 

run, though mixtures are also possible. In (offline) 

training mode, the system is run on multiple inputs 

and uses random or exhaustive search to sample 

the space of generatable texts. The choices made 

Figure 2: Using a PIG 
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are logged, as is the quality of the outputs gener-

ated. In (online) execution mode, the PIG is run as 

a normal generator, running on a single input and 

making choices according to a learned policy. 

 

To support this, the PIG itself needs minimally to 

support provide external access to the following 

function: 
 

generate(input:InputSpec) returns text:String 

 

which produces a text, from a given input specifi-

cation. On the other hand, the Oracle needs to pro-

vide external access to at least the following (used 

by the PIG): 

 
choice(question:String, suggestion:int,  
       possibilities:ListOfString, state:String) 
returns decision:int  or RESTART 

 
outcome(state:String, value:Float) (no return value)  
 

where question represents a choice to be made 

(with possible answers possibilities), suggestion 

is the index of a suggested choice and decision is 

the index of the choice made. state is a representa-

tion of generator state, in some standard format 

(e.g. ARFF (Hall et al 2009)) and outcome (giving 

the final state and the text quality) is called as the 

last action of generating a text. RESTART is a 

special value that by convention causes the system 

to return to a state where it can be asked to gener-

ate another text. 

 

To support the above, the PIG needs to maintain 

some representation of program state. Also the ora-

cle needs to implement a training/testing algorithm 

that involves providing the PIG with example in-

puts, restarting the PIG on the current or a new 

example, implementing a policy, logging results 

and possibly interacting with a user. 

 

The above model of how to use a PIG is partly mo-

tivated by existing approaches to monitoring and 

testing complex electronic equipment. Testing is 

often carried out by attaching “automatic test 

equipment” to the unit under test. This automatic 

test equipment is akin to our “oracle” in that it 

drives the unit through special test sequences and 

automatically records what is going on. 

 
 

5 The PIG panel 

There is a practical question of how best to build 

PIGs and what resources there might be to support 

this. Given their concern with explicit representa-

tion of choices, NLG models based on Systemic 

Grammar (Bateman 1997) might well be promising 

as a general framework here. But in reality, NLG 

systems are built using many different theoretical 

approaches, and most decisions are hard-coded in a 

conventional programming language. In order to 

investigate the PIG concept further, therefore, we 

have developed a general way of “instrumenting” 

in a limited way any NLG system written in Java 

(giving rise to a PIGlet). We have also imple-

mented a general enough oracle for some initial 

experiments to be made with a couple of PIGlets. 

This experimental work is in line with the API 

given above but implemented in a way specific to 

the Java language.  

 

In order to instrument the client generator, one has 

to identify places where interesting choices are 

made. This is obviously best done by someone 

with knowledge of the system. There are a number 

of ways to do this, but the simplest basically re-

places a construct of the form: 

 
if (<condition>) <action> 

 

by 

 
if (Oracle.condRec(<name>,<condition>)) <action> 

 

where <name> is a string naming this particular 

choice. This allows the oracle to intervene when 

the choice is made, but possibly taking into ac-

count the suggested answer (<condition>). 

 

The implemented oracle (the “PIG panel”) sup-

ports a kind of “single stepping” of the generator 

(between successive choices), manual control of 

choices and restarting. It has built in policies which 

include random generation, following the choices 

suggested by the PIGlet, systematic generation of 

all possibilities (depth-first) and SARSA, a kind of 

reinforcement learning (Sutton and Barto 1998). It 

provides simple statistics about the evaluations of 

the texts generated using the current policy and a 

user interface (Figure 3). 
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For the oracle to be able to control the PIGlet, it 

needs to be provided with a “connector” which 

represents it through a standard API (specifying 

how to generate a text, how to evaluate a text, what 

examples can be used, etc.). This also includes a 

specification of how to derive the “state” informa-

tion about the generator which is logged for ma-

chine learning process. State information can 

include the number of times particular choices are 

made (as in PE), the most recent choices made and 

other generator-specific parameters which are 

communicated to the oracle (as in MW). 
 

Finally the PIGlet and oracle are linked via a “har-

ness” which specifies the basic mode of operation 

(essentially training vs execution). 
 

In the following sections, we describe two tentative 

experiments which produced PIGlets from existing 

NLG systems and investigated the use of the PIG 

panel to support training of the system. It is impor-

tant to note that for these systems the instrument-

ing was done by someone (the author) with limited 

knowledge of the underlying NLG system and with 

a notion of text quality different from that used by 

the original system. Also, in both cases the limited 

availability of example data meant that testing had 

to be performed on the training data (and so any 

positive results may be partly due to overfitting). 
 

6 Experiment 1: Matching human texts 

For this experiment, we took an NLG system that 

produces pollen forecasts and was written by Ross 

Turner (Turner et al 2006). Turner collected 68 

examples of pollen prediction data for Scotland 

(each consisting of 6 small integers and a charac-

terisation of the previous trend) with human-

written forecasts, which we took as both our train-

ing and test data. We evaluated text quality by 

similarity to the human text, as measured by the 

Meteor metric (Lavie and Denkowski 2009). Note 

that the human forecasters had access to more 

background knowledge than the system, and so this 

is not a task that the system would be expected to 

do particularly well on. 

 

The notion of program “state” that the oracle 

logged took the form of the 6 input values, together 

with the values of 7 choices made by the system 

(relating to the inclusion of trend information, 

thresholds for the words “high” and “low”, 

whether to segment the data and whether to include 

hay fever information).  

 

The system was trained by generating about 10000 

random texts (making random decisions for ran-

domly selected examples). For each, the numerical 

outcome (Meteor score) and state information was 

recorded. The half of the resulting data with high-

est outcomes was extracted and used to predict 

rules for the 7 choices, given the 6 input parame-

ters (we used Weka (Hall et al 2009) with the JRip 

algorithm). The resulting rules were transcribed 

into a specific “policy” (Java class) for the oracle. 

 

Applied to the 68 examples, trying random genera-

tion for 3 times on each, the system obtained an 

average Meteor score of 0.265. Following the 

original system’s suggestions produced an average 

score of 0.279. Following the learned policy, the 

system also obtained an average of 0.279. The dif-

ference between the learned behaviour and random 

generation is significant (p =0.002) according to a t 

test. 

7 Experiment 2: Text length control 

A challenging stylistic requirement for NLG is that 

of producing a text satisfying precise length re-

quirements (Reiter 2000). For this experiment, we 

took the EleonPlus NLG system developed by 

Hien Nguyen. This combines the existing Eleon 

user interface for domain authoring (Bilidas et al 

2007) with a new NLG system that incorporates 

the SimpleNLG realiser (Gatt and Reiter 2009). 

Figure 3: PIG Panel interface 
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The system was used for a simple domain of texts 

about university buildings. The data used was the 

authored information about 7 university buildings 

and associated objects. We evaluated texts using a 

simple (character) length criterion, where the ideal 

text was 250 characters, with a steeply increasing 

penalty for texts longer than this and a slowly in-

creasing penalty for texts that are shorter. 

 

The notion of “state” that was logged took account 

of the depth of the traversal of the domain data, the 

maximum number of facts per sentence and an ag-

gregation decision. 

 

Following the previous successful demonstration 

of reinforcement learning for NLG decisions (Rie-

ser and Lemon 2006), we decided to use the 

SARSA approach (though without function ap-

proximation) for the training. This involves re-

warding individual states for their (direct or 

indirect) influence on outcome quality as the sys-

tem actually performs. The policy is a mixture of 

random exploration and the choosing of the cur-

rently most promising states, according to the 

value of a numerical parameter ε. 

 

Running the system on the 7 examples with 3 ran-

dom generations for each produced an average text 

quality of -2514. We tried a SARSA training re-

gime with 3000 random examples at ε=0.1, fol-

lowed by 2000 random examples at ε=0.001. 

Following this, we looked at performance on the 7 

examples with ε=0. The average text quality was -

149. This was exactly the same quality as that 

achieved by following the original NLG system’s 

policy. Even though there is a large difference in 

average quality between random generation and 

the learned policy, this is, however, not statistically 

significant (p = 0.12) because of the small number 

of examples and large variation between text quali-

ties. 

8 Conclusions and Further Work 

Each of our initial experiments was carried out by 

a single person in less than a week of work, (which 

included some concurrent development of the PIG 

panel software and some initial exploration of the 

underlying NLG system). This shows that it is rela-

tively quick (even with limited knowledge of the 

original NLG system) for someone to instrument 

an existing NLG system and to begin to investigate 

ways of optimizing its performance (perhaps with 

different goals than it was originally built for). 

This result is probably more important than the 

particular results achieved (though it is promising 

that some are statistically significant).  

 

Further work on the general software could focus 

on the issue of the visualization of choices. Here it 

might be interesting to impose a Systemic network 

description on the interdependencies between 

choices, even when the underlying system is built 

with quite a different methodology. 
 

More important, however, is to develop a better 

understanding of what sorts of behaviour in an 

NLG system can be exposed to machine learning 

to optimize the satisfaction of what kinds of stylis-

tic goals. Also we need to develop methodologies 

for systematically exploring the possibilities, in 

terms of the characterization of NLG system state 

and the types of learning that are attempted. It is to 

be hoped that software of the kind we have devel-

oped here will help to make these tasks easier. 

 

Finally, this paper has described the development 

and use of PIGs mainly from the point of view of 

making the best of NLG systems rather like what 

we already have. The separation of logic and con-

trol supported by the PIG architecture could 

change the way we think about NLG systems in 

the first place. For instance, a PIG could easily be 

made to overgenerate (in the manner, for instance, 

of HALOGEN (Langkilde-Geary 2003)), in the 

confidence that an oracle could later be devised 

that appropriately weeded out non-productive 

paths. 
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Abstract

The semantic web is a general vision
for supporting knowledge-based process-
ing across the WWW and its successors.
As such, semantic web technology has po-
tential to support the exchange and pro-
cessing of complex NLG data. This pa-
per discusses one particular approach to
data sharing and exchange that was de-
veloped for NLG – the RAGS framework.
This was developed independently of the
semantic web. RAGS was relatively com-
plex and involved a number of idiosyn-
cratic features. However, we present a ra-
tional reconstruction of RAGS in terms of
semantic web concepts, which yields a rel-
atively simple approach that can exploit
semantic web technology directly. Given
that RAGS was motivated by the concerns
of the NLG community, it is perhaps re-
markable that its aspirations seem to fit so
well with semantic web technology.

1 Introduction

The semantic web is a vision of a future world
wide web where content, rather than being primar-
ily in the form of unanalysed natural language, is
machine accessible (Antoniou and van Harmelen,
2004). This could bring a number of advantages
compared to the present web, in terms, for instance
of the precision of web search mechanisms and the
extent to which web resources can be brought to-
gether automatically for solving complex process-
ing problems.

From the point of view of NLG, the seman-
tic web offers a vision of a situation where re-
sources can be formally described and composed,
and where it is possible to live with the variety of
different approaches and views of the world which
characterise the users of the web. Given the het-

erogeneous nature of NLG, it seems worth con-
sidering whether there might be some useful ideas
here for NLG.

The foundation of the semantic web is the idea
of replacing formatting-oriented languages such as
HTML by varieties of XML which can capture the
structure of content explicitly. Markup of linguis-
tic resources (text corpora, transcribed dialogues,
etc.) via XML is now standard in NLP, but very
often each use of XML is unique and hard to rec-
oncile with any other use. The semantic web goes
beyond this in proposing a more abstract basic lan-
guage and allowing explicit representation of what
things in it mean. For the semantic web, RDF
(Klyne and Carroll, 2003), which is built on top of
XML, represents a common language for express-
ing content as a “semantic network” of triples, and
ontology languages, such as OWL (McGuinness
and van Harmelen, 2004), allow the expression
of constraints and principles which partially con-
strain possible interpretations of the symbols used
in the RDF. These ontologies are statements that
themselves can be inspected and modified. They
can provide the basis for different people to ex-
press their assumptions, agreements and disagree-
ments, and to synthesise complex data from mul-
tiple sources.

2 RAGS

RAGS (“Reference Architecture for Generation
Systems”) was an attempt to exploit previous ideas
about common features between NLG systems
in order to propose a reference architecture that
would help researchers to share, modularise and
evaluate NLG systems and their components. In
practice, the project found that there was less
agreement than expected among NLG researchers
on the modules of an NLG system or the order of
their running. On the other hand, there was rea-
sonable agreement (at an abstract level) about the
kinds of data that an NLG system needs to repre-
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Figure 1: RAGS

sent, in passing from some original non-linguistic
input to a fully-formed linguistic description as its
output. Figure 1 summarises RAGS and how it
was intended to be used. The following descrip-
tion simplifies/ rationalises in a number of ways;
more information about RAGS can be found in
(Mellish et al., 2006) and (Cahill et al., 2001).

RAGS provides abstract type definitions for 6
different types of data representations: concep-
tual, rhetorical, document, semantic, syntactic and
“quote”. As an example, here are the definitions
associated with document representations (which
describe the parts of a document and aspects of
their logical formatting).

DocRep = DocAttr ×DocRepSeq

DocRepSeq = DocRep∗

DocAttr = (DocFeat→ DocAtom)

DocFeat, DocAtom ∈ Primitives

These type definitions express the types in terms
of set theory (using constructions such as union,
Cartesian product, subset and function), where
the “primitive” types correspond to basic sets
that have to be defined in a theory-specific way.
Thus a document representation (DocRep) has
two components, a DocAttr and a DocRepSeq.
A DocRepSeq is a sequence of zero or more
DocReps, which represent the document structure
of the parts of the document. A DocAttr is a

function from DocFeats to DocAtoms. The for-
mer can be thought of as a set of names of “fea-
tures” for parts of documents (e.g. text level, in-
dentation) and the latter as a set of values for these
(e.g. “Clause”, 3). However the sets DocFeat
and DocAtom are left unspecified in the RAGS
formalisation. The idea is that researchers will not
necessarily agree how to instantiate these primi-
tives. Clusters of researchers may agree on stan-
dard possibilities for these sets and this will help
them to share data (but even researchers not able
to agree on the primitive sets will be able to under-
stand one anothers’ data to some extent). When
two NLG modules need to exchange data, they
need to refer to an agreed instantiation of the prim-
itive types in order to share fully.

Although it gives some examples, RAGS does
not specify any particular formats in which data
should be represented in different programming
languages and used by NLG modules – poten-
tially, arbitrary “native formats” could be used,
as long as they can be viewed as “implementa-
tions” of the abstract type definitions. Further
conditions are, however, imposed by requiring a
correspondance between native formats and repre-
sentations in a “reference implementation” called
the Objects and Arrows (OA) model. This pro-
vides answers to further questions, such as what
partially-specified data representations are possi-
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ble, where re-entrancy can occur and how data
representations of different types can be mixed.
The OA model represents data as directed graphs,
whose nodes represent typed pieces of data and
whose edges represent relations. The possible le-
gal states of an OA representation are formally de-
fined, in a way that resembles the way that infor-
mation states in a unification grammar can be char-
acterised (Shieber, 1986). Each node in the graph
is labelled with a type, e.g. DocRep, DocAtom.
Each node is assumed to have a unique identifier
and for primitive types a node can also have a sub-
type, a theory-dependent elaboration that applies
to this particular data object (e.g. a DocAtom
could have the subtype 3). Some edges in the
graph indicate “local arrows”, which describe the
parts of complex datastructures. For instance,
edges labelled el indicate elements of unordered
structures, and arrows labelled el-1, el-2 etc. indi-
cate components of ordered structures. Edges can
also represent “non-local arrows” which describe
relationships between representations at different
levels. Non-local arrows allow data representa-
tions at different levels to be mixed into a single
graph.

Representations in the Objects and Arrows
model can be mapped to an XML interchange rep-
resentation. The correspondance between native
formats and the OA model can then be used to map
between native data representations and XML (in
both directions). Modules can communicate via
agreed native formats or, if this is undesirable, via
the XML representation.

3 Some Problems with RAGS

Some of the problems with RAGS, which have im-
peded its uptake, include:

• Complexity and lack of tools – RAGS was a
proposal with a unique shape and takes some
time to understand fully. It ploughs its own
distinctive furrow. Because it was developed
in a project with limited resources, there are
limited tools provided for, for instance, dis-
playing RAGS structures, supporting differ-
ent programming languages and styles and
automatic consistency checking. This means
that engaging with RAGS involves initially
a significant amount of low-level program-
ming, with benefits only to be seen at some
time in the future.

• Idiosyncratic use of XML – RAGS had to ad-
dress the problem of expressing a graph in a
serialised form, where there can be multiple,
but different, serialisations of the same graph.
It did this in its own way, which means that it
is hard to exploit general tools which address
this problem in other areas.

• Inclarity about how to “buy-in” to limited de-
grees - there is no defined mechanism for di-
viding generally agreed from non-agreed el-
ements of a RAGS representation or for ex-
pressing or referring to an “agreed instantia-
tion”.

4 Recasting RAGS data in terms of RDF

The first step in recasting RAGS in semantic web
terms is to exploit the fact that it is the OA model
(rather than the abstract type definitions) that is the
basis of data communication, since this model ex-
presses more concrete requirements on the form of
the data. Therefore initially we concentrate on the
OA model and its XML serialisation.

RDF is a data model that fits OA graphs very
well. It provides a way of creating “seman-
tic networks” with sets of object-attribute-value
triples. Objects and attributes are “resources”,
which are associated with Universal Resource
Identifiers (URIs), and values are either resources
or basic data items (“literals”, e.g. strings or in-
tegers). Resources have types, indicated by the
RDF type attribute. The idea of an RDF resource
maps nicely to a RAGS object, and the idea of an
RDF attribute maps nicely to a RAGS arrow.

URIs provide a natural way to allow reen-
trancy to be represented and at the same time per-
mit unambiguous references to external objects
in the way that RAGS intended should be pos-
sible. The XML namespace mechanism allows
complex IDs to be abbreviated by names of the
form Prefix:N, where Prefix is an abbrevi-
ation for the place where the name N is defined
and N is the basic name (sometimes the prefix can
be inferred from context and can be missed out).
Thus, for instance, if the prefix rags is defined
to stand for the start of a URI identifying RAGS
then rags:DocRep identifies the type DocRep
defined by RAGS, as distinct from any other defi-
nition anyone might have.

It follows from the preceding discussion that in-
stances of the RAGS abstract types can be mapped
naturally to RDF resources with the abstract type
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as the value for the RDF attribute type. Arrows
can be mapped into RDF attributes, and so it re-
ally only remains to have a convention for the rep-
resentation of “subtype” information in RAGS. In
this paper, we will assume that instances of primi-
tive types can have a value for the attribute sub.

RDF can be serialised in XML in a number of
ways (which in fact are closely related to the pos-
sible XML serialisations of RAGS).

To summarise, using RDF rather than RAGS
XML introduces negligable extra complexity but
has a number of advantages:

• Because it is a standard use of XML, it means
that generic software tools can be used with
it. Existing tools, for instance, support read-
ing and writing RDF from different program-
ming languages, visualising RDF structures
(see Figure 4) and consistency checking.

• Because it comes with a universal way of
naming concepts, it means that it is possi-
ble for different RAGS resources to be un-
ambiguous and reference one another.

5 Formalising the RAGS types using
ontologies

RDF gives us a more standard way to interpret the
OA model and to serialise OA instance informa-
tion in XML. However, on its own it does not en-
force data representations to be consistent with the
intent of the abstract type definitions. For instance,
it does not prevent an element of a DocRepSeq
being something other than a DocRep.

For RAGS, an XML DTD provided constraints
on what could appear in the XML serialisation, but
DTDs are not very expressive and the RAGS DTD
had to be quite loose in order to allow partial rep-
resentations. The modern way to define the terms
that appear in a use of RDF, and what constraints
there are on their use, is to define an ontology us-
ing a language like RDFS (Brickley and Guha,
2003) or OWL (McGuinness and van Harmelen,
2004). An ontology can be thought of as a set of
logical axioms that limits possible interpretations
of the terms. This could be used to show, for in-
stance, that a given set of instance data is inconsis-
tent with an ontology, or that further logical conse-
quences follow from it. There are various versions
of the web ontology language OWL. In this paper,
we use OWL DL, which is based on a description

logic, and we will use standard description logic
notation in this paper.

Description logics allow one to make statements
about the terms (names of concepts and roles) used
in some knowledge representation. In our case,
a concept corresponds to a RAGS type (imple-
mented by an RDF resource linked to from in-
dividuals by a type attribute) and a role cor-
responds to a RAGS arrow (implemented by an
RDF attribute). Complex names of concepts can
be built from simple names using particular con-
structors. For instance, if α and β are two con-
cept names (simple concept names or more com-
plex expressions made from them) and ρ is a role
name, then, the following are also concept names:

αt β - names the concept of everything
which is α or β

αu β - names the concept of everything
which is α and β

∃ρ.α - names the concept of everything
which has a value for ρ which is an
instance of concept α

∀ρ.α - names the concept of everything
which only has values for ρ which
are instances of concept α

=n ρ - names the concept of everything
with exactly n different values of ρ

Constructors can be nested, so that, for instance,
C1 u ∃r.C2 is a possible concept name, assuming
that C1 and C2 are simple concept names and r is
a role name.

For an ontology, one then writes logical axioms
stating relationships between simple or complex
concept names, e.g.

α1 v α2 - states that α1 names a more
specific concept than α2

α1 ≡ α2 - states that α1 names the same
concept as α2

disjoint({α1, . . . αn}) - states that
α1, . . . αn are disjoint concepts (no
pair can have a common instance).

ρ1 vr ρ2 - states that ρ1 names a sub-
property of ρ2

domain(ρ, α) - states that ρ can only
apply to things satisfying concept α

range(ρ, α) - states that values of ρ
must satisfy concept α

functional(ρ) - states that ρ is a func-
tional role
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Figure 2: Using Multiple Ontologies in RAGS

For more information on the formal basis of de-
scription logics and their relevance for ontologies,
see (Horrocks, 2005).

For RAGS, a number of advantages follow from
adopting DLs as the basis for formalising data rep-
resentations:

Modularity. A given set of instance data may re-
late to more than one ontology which ex-
presses constraints on it. One ontology is
said to import another if it inherits the con-
straints that the other provides. The standard
(monotonic) logic approach applies, in that
one can choose to describe the world in terms
of any consistent set of axioms. Ontologies
package up sets of axioms into bundles that
one might decide to include or not include in
one’s own model of the world. Ontologies for
different purposes can be built by different
people but used together in an eclectic way.
This formalises the idea of “variable buy-in”
in RAGS.

Openness. Also corresponding to the usual ap-
proach with logic, the semantics of OWL
makes no closed world assumption. Thus a
statement cannot be inconsistent purely by
failing to specify something. This means that
it is only necessary to describe the proper-
ties of complete datastructures in an ontol-
ogy. Partial descriptions of data will be not
be inconsistent by virtue of their partiality.
Only having to describe complete datastruc-

tures makes the specification job much sim-
pler. In a similar way, the semantics of OWL
makes no unique names assumption. Thus
individuals with different names are not nec-
essarily distinct. This means that it is gen-
erally possible to make a given description
more specific by specifying the identity of
two individuals (unless inconsistency arises
through, for instance, the individuals having
incompatible types). This is another require-
ment if one wishes the power to add further
information to partial representations.

Software tools. As with RDF, use of OWL DL
opens up the possibility of exploiting generic
tools developed elsewhere, for instance rea-
soners and facilities to translate RAGS con-
cepts into programming language structures.

6 The RAGS Ontologies

It is convenient to modularise what RAGS requires
as well-formedness constraints as a set of ontolo-
gies. This allows us to formalise what it means to
“buy-in” to one or more parts of RAGS. It simply
means importing one or more of the RAGS ontolo-
gies (in addition to one’s own) and making use of
some of the terms defined in them. We now outline
one possible version of the core RAGS ontologies.

Figure 2 shows the way that the RAGS ontolo-
gies are intended to be used. A dataset in general
makes use of concepts defined in the core RAGS
ontologies (the “upper ontology” and the “NLG
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Figure 3: The RAGS “NLG ontology”

ontology”)1 and also theory-dependent elabora-
tions defined in separate ontologies (which may
correspond one-to-one to the different levels, as
shown, but need not do so necessarily). These
elaborations are not (initially) provided by RAGS
but may arise from arbitrary research subcom-
munities. Logically, the dataset is simple de-
scribed/constrained by the union of the axioms
coming from the ontologies it makes use of. In
general, different datasets will make consistent
references to the concepts in the core RAGS
ontologies, but they may make use of different
theory-dependent elaborations.

The basis of RAGS is a very neutral theory
about datatypes (and how they can be encoded in
XML). This is in fact independent of the fact that
RAGS is intended for NLG - at this level, RAGS
could be used to describe data in other domains, or
NLG-oriented data that is not covered by RAGS. It
therefore makes sense to think of this as a separa-
ble part of the theory, the “upper ontology”. At the
top level, datastructures (instances of Object)
belong to one of the concepts Ordered, Set
and Primitive. Ordered structures are divided

1These are both available in full from
http://www.abdn.ac.uk/∼csc248/ontologies/

up in terms of the number of components (con-
cepts Arity-1, Arity-2 etc) and whether they
are Tuples or Sequences. For convenience,
union types such as Arity-atleast-2 are
also defined.

The RAGS NLG ontology (see Figure 3 for
an overview) contains the main substance of the
RAGS type definitions. As the figure shows,
it introduces a number of new concepts as sub-
concepts of the upper ontology concepts. For
instance, DocRepSeq, RhetRepSeq, Adj
and Scoping are introduced as subconcepts
of SpecificSequence (these concepts cor-
respond to types used in RAGS at the doc-
ument, rhetorical, syntactic and semantic lev-
els). Not shown in the diagram is the type of
roles, Functional that includes all arguments
of RAGS functional objects2. The set of type
definitions describing a level of representation in
RAGS translates quite directly into a set of axioms
in this ontology. For instance, the following is the
encoding of the type definitions for document rep-

2Whereas in RAGS a functional type (e.g. DocAttr)
is represented as an unordered set of (ordered) pairs of the
form <function argument,function value>, here we can sim-
ply implement the function arguments as RDF attributes and
omit the functional types.
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Figure 4: Visualisation of example Document Representation

resentations. First of all, it is necessary to specify
that aDocRep is a tuple with arity 1 (theDocAttr
is not needed), and that its component must have a
specific type:

DocRep v Tuple uArity-1
DocRep v (∀el-1.DocRepSeq)

The next few axioms do a similar job for
DocRepSeq, a kind of sequence:

DocRepSeq v SpecificSequence
DocRepSeq v (∀n-el.DocRep)

Finally, a high level role DocFeat is introduced,
whose subroles will correspond to particular docu-
ment features like Indentation. The domain and
range of such roles are constrained via constraints
on DocFeat:

DocFeat vr Functional
domain(DocFeat,DocRep)
range(DocFeat,DocAtom)

7 Other Ontologies and RAGS

As stated above, in general one produces special-
isations of the RAGS framework by creating new
ontologies that:

• Introduce specialisations of the RAGS prim-
itive concepts (and perhaps new roles that in-
stances of these can have).

• Introduce subroles of the RAGS functional
roles.

• Add new axioms that specialise existing
RAGS requirements, involving the core con-
cepts and roles and/or the newly introduced
ones.

An example of this might be an example ontol-
ogy that instantiates a simple theory of document
structure, following (Power et al., 2003). Given
the notion of document structure introduced in
section 2 and formalised in section 6, it is really
only necessary to specify the “features” of pieces
of document structure (DocFeat) and their “val-
ues” (DocAtom). The former are modelled as
roles and the latter in terms of concepts. First we
introduce the basic types of values:

DocAtom ≡ (Position t Indentation t
Level t Connective)

disjoint({(Position, Indentation, Level,
Connective})

Positions in the text could be modelled by objects
whose sub values are positive integers (there is a
standard (RDFS) datatype for these). The follow-
ing axioms capture this and the characteristics of
the role hasPosition:

Position v (∀sub.xsd : positiveInteger)
hasPosition vr DocFeat
range(hasPosition, Position)
functional(hasPosition)

For text levels, on the other hand, there is a fixed
set of possible values. These are introduced as dis-
joint concepts. In addition, the role hasLevel is
introduced:

Level ≡ (ChaptertParagraphtSectiont
Text-Clause t Text-Phrase t
Text-Sentence)

disjoint({Chapter, Paragraph, Section,
Text-Clause, Text-Phrase, Text-Sentence})

hasLevel vr DocFeat
range(hasLevel, Level)
functional(hasLevel)

Figure 4 shows an example DocRep (labelled
“d12”) described by this ontology, as visualised
by the RDF-Gravity tool developed by Salzburg
Research. It consists of aDocRepSeq (“d6”) with
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two DocRep components (“d0” and “d13”). The
indentations of “d12” and “d0” are not known, but
they are constrained to be the same.

It is easy to think of examples of other (ex-
isting or potential) ontologies that could provide
theories of the RAGS primitive types. For in-
stance, WordNet (Miller, 1995) or the Generalised
Upper Model (Bateman et al., 1995) could be
used to bring in a theory of semantic predicates
(SemPred). An ontology of rhetorical relations
(RhetRel) could be built based on RST, and so
on.

Ontologies can use the expressive power of
OWL to make relatively complex statements.
For instance, the following could be used in an
RST ontology to capture the concept of nucleus-
satellite relations and the constraint that a rhetori-
cal representation with such a relation (as its first
component) has exactly two subspans (recorded in
the second component):

NS v RhetRel
(RhetRep u ∃el-1.NS) v (∃el-2.Arity-2)

8 Relation to Other Work

Reworking RAGS to use semantic web technology
relates to two main strands of previous work: work
on XML-based markup of linguistic resources and
work on linguistic ontologies.

The trouble with applying existing annotation
methods (e.g. the Text Encoding Initiative) to
NLG is that they presuppose the existence of a
linear text to start with, whereas in NLG one is
forced to represent more abstract structures before
coming up with the actual text. A recent proposal
from Linguistics for a linguistic ontology for the
semantic web (Farrar and Langendoen, 2003) is
again based around making annotations to exist-
ing text. Research is only just beginning to es-
cape from a “time-based” mode of annotation, for
instance by using “stand-off” annotations to indi-
cate layout (Bateman et al., 2002). In addition,
most annotation schemes are partial (only describe
certain aspects of the text) and non-structured (as-
sign simple labels to portions of text). For NLG,
one needs a way of representing all the informa-
tion that is needed for generating a text, and this
usually has complex internal structure.

Linguistic ontologies are ontologies developed
to describe linguistic concepts. Although ontolo-
gies are used in a number of NLP projects (e.g.
(Estival et al., 2004)), the ontologies used are usu-
ally ontologies of the application domain rather

than the linguistic structures of natural languages.
The development of ontologies to describe aspects
of natural languages is comparatively rare. The
WordNet ontologies are a widely used resource
describing the repertoire of word senses of nat-
ural languages, but these concentrate on individ-
ual words rather than larger linguistic structures.
More relevant to NLG is work on various versions
of the Generalised Upper Model (Bateman et al.,
1995), which outlines aspects of meaning relevant
to making NLG decisions. This has been used to
help translate domain knowledge in a number of
NLG systems (Aguado et al., 1998).

In summary, existing approaches to using on-
tologies or XML for natural language related pur-
poses are not adequate to describe the datastruc-
tures needed for NLG. Semantic web technology
applied to specifications with the complexity of
those generated by RAGS might, however, be able
to fill this gap.

9 The Semantic Web for NLG tasks

In the above, we have made a case for the use of
semantic web technology to aid inter-operability
and sharing of resources for NLG. This was jus-
tified largely by the fact that the most significant
NLG “standardisation” effort so far, RAGS, can
be straightfowardly recast in semantic web terms,
bringing distinct advantages. Even if RAGS itself
is not taken forward in its current form, this sug-
gests that further developments of the idea could
bear fruit in semantic web terms.

The semantic web is certainly not a panacea for
all the problems of NLG, and indeed there are as-
pects of the technology that are still at an early
stage of development. For instance, the problems
of matching/ reconciling alternative ontologies are
many and complex. Some researchers even dis-
pute the viability of the general approach. On the
other hand, the semantic web community is con-
cerned with a number of problems that are also
very relevant to NLG. Fundamentally, the seman-
tic web is about sharing and exploiting distributed
computational resources in an open community
where many different goals, viewpoints and the-
ories are represented. This is something that NLG
also seeks to do in a number of ways. The seman-
tic web movement has considerable momentum.
There are more of them than us. Let’s see what we
can get from it.
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Abstract

This paper discusses the basic structures
necessary for the generation of reference
to objects in a visual scene. We construct
a study designed to elicit naturalistic re-
ferring expressions to relatively complex
objects, and find aspects of reference that
have not been accounted for in work on
Referring Expression Generation (REG).
This includes reference to object parts,
size comparisons without crisp measure-
ments, and the use of analogies. By draw-
ing on research in cognitive science, neu-
rophysiology, and psycholinguistics, we
begin developing the input structure and
background knowledge necessary for an
algorithm capable of generating the kinds
of reference we observe.

1 Introduction

One of the dominating tasks in Natural Language
Generation (NLG) is the generation of expressions
to pick out a referent. In recent years there has
been increased interest in generating referential
expressions that arenatural, e.g., like those pro-
duced by people. Although research on the gener-
ation of referring expressions has examined differ-
ent aspects of how people generate reference, there
has been surprisingly little research on how people
refer to objects in a real-world setting. This paper
addresses this issue, and we begin formulating the
requirements for an REG algorithm that refers to
visible three-dimensional objects in the real world.

Reference to objects in a visual domain pro-
vides a straightforward extension of the sorts of
reference REG research already tends to consider.
Toy examples outline reference to objects, peo-
ple, and animals that are perceptually available
before the speaker begins generating an utterance
(Dale and Reiter, 1995; Krahmer et al., 2003; van

Deemter et al., 2006; Areces et al., 2008). Exam-
ple referents may be referred to by their color, size,
type (“dog” or “cup”), whether or not they have a
beard, etc.

Typically, the reference process proceeds by
comparing the properties of the referent with the
properties of all the other items in the set. The
final expression roughly conforms to the Gricean
maxims (Grice, 1975).

However, when the goal is to generate natural
reference, this framework is too simple. The form
reference takes is profoundly affected by modality,
task, and audience (Chapanis et al., 1977; Cohen,
1984; Clark and Wilkes-Gibbs, 1986), and even
when these aspects are controlled, different people
will refer differently to the same object (Mitchell,
2008). In light of this, we isolate one kind of nat-
ural reference and begin building the algorithmic
framework necessary to generate the observed lan-
guage.

Psycholinguistic research has examined refer-
ence in a variety of settings, which may inform
research on natural REG, but it is not always clear
how to extend this work to a computational model.
This is true in part because these studies favor an
analysis of reference in the context of collabora-
tion; reference is embedded within language, and
language is often a joint activity. However, most
research on referring expression generation sup-
poses a solitary generating agent.1 This tacitly
assumes that reference will be taking place in a
monologue setting, rather than a dialogue or group
setting. Indeed, the goal of most REG algorithms
is to produce uniquely distinguishing, one-shot re-
ferring expressions.

Studies on natural reference usually use a
two person (speaker-listener) communication task
(e.g., Flavell et al., 1968; Krauss and Glucksberg,
1969; Ford and Olson, 1975). This research has

1A notableexception is Heeman and Hirst (1995).
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shown that reference is more accurate and efficient
when it incorporates things like gesture and gaze
(Clark and Krych, 2004). There is a trade-off in
effort between initiating a noun phrase and refash-
ioning it so that both speakers understand the ref-
erent (Clark and Wilkes-Gibbs, 1986), and speak-
ers communicate to form lexical pacts on how
to refer to an object (Sacks and Schegloff, 1979;
Brennan and Clark, 1996). Mutual understanding
of referents is achieved in part by referring within
a subset of potential referents (Clark et al., 1983;
Beun and Cremers, 1998). A few studies have
compared monologue to dialogue reference, and
have shown that monologue references tend to be
harder for a later listener to disambiguate (Clark
and Krych, 2004) and that subsequent references
tend to be longer than those in dialogues (Krauss
and Weinheimer, 1967).

Aiming to generate natural reference in a mono-
logue setting raises questions about what an algo-
rithm should use to produce utterances like those
produced by people. In a monologue setting, the
speaker (or algorithm) gets no feedback from the
listener; the speaker’s reference is not tied to in-
teractions with other participants. The speaker
is therefore in a difficult position, attempting to
clearly convey a referent without being able to
check if the reference is understood along the way.

Recent studies that have focused on monologue
reference do so rather explicitly, which may af-
fect participant responses. These studies utilize
2D graphical depictions of simple 3D objects (van
Deemter et al., 2006; Viethen and Dale, 2008),
where a small set of properties can be used to dis-
tinguish one item from another. The expressions
are elicited in isolation, typed and then submitted,
which may hide some of the underlying referen-
tial processes. None of these studies utilize actual
objects. It is therefore difficult to use these data
to draw conclusions about how reference works in
naturalistic settings. It is unclear if these experi-
mental settings are natural enough, i.e., if they get
at reference as it may occur every day.

The study in this paper attempts to bring out in-
formation about reference in a number of ways.
First, we conduct the study in-person, using real-
world objects. This design invites referential phe-
nomena that may not have been previously ob-
served in simpler domains. Second, the refer-
ring expressions are produced orally. This allows
us access to reference as it is generated, without

the participants revising and so potentially obscur-
ing information about their reference. Third, we
use a relatively complicated task, where partici-
pants must explain how to use pieces to put to-
gether a picture of a face. The fact that we are
looking at reference is not made explicit, which
lessens any experimental effects caused by sub-
jects guessing the purpose of the study. This ap-
proach also situates reference within a larger task,
which may draw out aspects of reference not usu-
ally seen in experiments that elicit reference in iso-
lation. Fourth, the objects used display a variety
of different features: texture, material, color, size
along several dimensions, etc. This brings the data
set closer to objects that people interact with every
day. A monologue setting offers a picture of the
phenomena at play during a single individual’s re-
ferring expression generation.

The referring expressions gathered in this study
exhibit several aspects of reference that have not
yet been addressed in REG. This includes (1) part-
whole modularity; (2) size comparisons across
three dimensions; and (3) analogies. Work in cog-
nitive sciences suggests that these phenomena are
interrelated, and may be possible to represent in a
computational framework. This research also of-
fers connections to further aspects of natural refer-
ence that were not directly observed in the study,
but will need to be accounted for in future work on
naturalistic referring expression generation. Us-
ing these ideas, we begin formulating the struc-
tures that an REG algorithm would need in order
to produce reference to real-world objects in a vi-
sual setting.

Approaching REG in this way allows us to tie
research in the generation of referring expressions
to computational models of visual perception and
cognitively-motivated computer vision. Moving in
this direction offers the prospect of eventually de-
veloping an application for the generation of nat-
ural reference to objects automatically recognized
by a computer vision system.

In the next section, we describe our study. In
Section 3, we analyze the results and discuss what
they tell us about natural reference. In Section 4,
we draw on our results and cognitive models of ob-
ject recognition to begin building the framework
for a referring expression algorithm that generates
naturalistic reference to objects in a visual scene.
In Section 5, we offer concluding remarks and out-
line areas for further study.
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Figure 1: Object Board.

2 Method

2.1 Subjects

The subjects were 20 residents of Aberdeen, Scot-
land, and included undergraduates, graduates, and
professionals. All were native speakers of English,
had normal or corrected vision, and had no other
known visual issues (such as color-blindness).
Subjects were paid for their participation. Two
recordings were left out of the analysis: one par-
ticipant’s session was not fully recorded due to a
software error, and one participant did not pick out
many objects in each face and so was not included.
The final set of participants included 18 people, 10
female and 8 male.

2.2 Materials

A board was prepared with 51 craft objects. The
objects were chosen from various craft sets, and
included pom-poms, pipe-cleaners, beads, and
feathers (see Table 1). The motley group of objects
had different colors, textures, shapes, patterns, and
were made of different materials. Similar objects
were grouped together on the board, with a label
placed underneath. This was done to control the
head noun used in each reference. The objects
were used to make up 5 different craft “face” pic-
tures. Subjects sat at a desk facing the board and
the stack of pictures. A picture of the board is
shown in Figure 1.

Subjects were recorded on a head-mounted mi-
crophone, which fed directly into a laptop placed
on the left of the desk. The open-source audio-

recording program Audacity (Mazzoni, 2010) was
used to record the audio signal and export it to
wave format.

2.3 Procedure

Subjects were told to give instructions on how to
construct each face using the craft supplies on the
board. They were instructed to be clear enough for
a listener to be able to reconstruct each face with-
out the pictures, with only the board items in front
of them. A pilot study revealed that such open-
ended instructions left some subjects spending an
inordinate amount of time on the exact placement
of each piece, and so in the current study sub-
jects were told that each face should take “a cou-
ple” minutes, and that the instructions should be
as clear as possible for a listener to use the same
objects in reconstructing the pictures without be-
ing “overly concerned” with the details of exactly
how each piece is angled in relation to the other.

Subjects were first given a practice face to de-
scribe. This face was the same face for all subjects.
They were then allowed to voice any concerns or
ask questions, but the experimenter only repeated
portions of the original instructions; no new infor-
mation was given. The subject could then proceed
to the next four faces, which were in a random or-
der for each subject. A transcript of a single face
from a session is provided in Figure 2.

2.4 Analysis

The recordings of each monologue were tran-
scribed, including disfluencies, and each face sec-
tion (“eyes”, “chin”, etc.) was marked. First refer-
ence to items on the board were annotated with
their corresponding item numbers, yielding 722
references.2 Initial references to single objects
were extracted, creating a final data set with 505
references to single objects.

3 Results

Each reference was annotated in terms of the prop-
erties used to pick out the referent. For exam-
ple, “the red feather” was annotated as contain-
ing the<ATTRIBUTE:value> pairs<COLOR:red,
TYPE:feather>. Discerning properties from the
modifiers used in reference is generally straight-
forward, and all of the references produced may
be partially deconstructed using such properties.

2This corpus is available at
http://www.csd.abdn.ac.uk/˜mitchema/craftcorpus.
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14 foam shapes 2 large red hearts 2 small red hearts 2 small neon green hearts
2 small blue hearts 1 small green heart 1 green triangle 1 red circle
1 red square 1 red rectangle 1 white rectangle
11 beads 4 large round wooden beads 2 small white plastic beads 2 brown patterned beads
1 gold patterned bead 1 shiny gold patterned heart 1 red patterned heart
9 pom poms 2 big green pom-poms 2 small neon green pom-poms 2 small silver pom-poms
1 small metallic green pom-pom 1 large white pom-pom 1 medium white pom-pom
8 pipe cleaners 1 gold pipe-cleaner 1 gold pipe-cleaner in half 1 silver pipe-cleaner
1 circular neon yellow soft pipe-cleaner 1 neon orange puffy pipe-cleaner 1 grey puffy pipe-cleaner
1 purple/yellow striped pipe-cleaner 1 brown/grey striped pipe-cleaner
5 feathers 2 purple feathers 2 red feathers 1 yellow feather
3 ribbons 1 gold sequined wavy ribbon 1 silver wavy ribbon 1 small silver wavy ribbon
1 star 1 gold star

Table 1: Board items.

<CHIN> Okay so this face again um this face has um uh
for thechin, it uses (10a gold pipe-cleaner in a V shape)
where the bottom of the V is the chin.</CHIN>

<MOUTH> The mouth is made up of (9a purple feather).
And the mouth is slightly squint, um as if the the person
is smiling or even smirking. So this this smile is almost
off to one side.</MOUTH>

<NOSE> The nose is uh (5a wooden bead, a medium-
sized wooden bead with a hole in the center). </NOSE>
<EYES> And the eyes are made of (2,3white pom-poms),
em just uh em evenly spaced in the center of the face.
</EYES>
<FOREHEAD> Em it’s see the person’s em top of the per-
son’s head is made out of (1another, thicker pipe-cleaner
that’s uh a grey color, it’s kind of uh a knotted blue-type
pipe-cleaner). So that that acts as the top of the person’s
head.</FOREHEAD>
<HAIR> And down the side of the person’s face, there are
(7,8 two ribbons) on each side. (7,8And those are silver
ribbons). Um and they just hang down the side of the face
and they join up the the grey pipe-cleaner and the top um
of the person’s head to the to the chin and then hang down
either side of the chin.</HAIR>

<EARS> And the person’s ears are made up of (4,6two
beads, which are um love-heart-shaped beads), where the
points of the love-hearts are facing outwards. And those
are just placed um around same em same em horizontal
line as the nose of the person’s face is.</EARS>

Figure 2: Excerpt Transcript.

Using sets of properties to distinguish referents
is nothing new in REG. Algorithms for the genera-
tion of referring expressions commonly use this as
a starting point, proposing that properties are orga-
nized in some linear order (Dale and Reiter, 1995)
or weighted order (Krahmer et al., 2003) as input.
However, we find evidence that more is at play. A
breakdown of our findings is listed in Table 2.

3.1 Spatial Reference

In addition to properties that pick out referents,
throughout the data we see reference to objects
as they exist in space. Size is compared across
different dimensions of different objects, and ref-
erence is made to different parts of the objects,

picking out pieces within the whole. These two
phenomena – relative size comparisons and part-
whole modularity – point to an underlying spatial
object representation that may be utilized during
reference.

3.1.1 Relative Size Comparisons

A total of 122 (24.2%) references mention size
with a vague modifier (e.g., “big”, “wide”). This
includes comparative (e.g, “larger”) and superla-
tive (e.g., “largest”) size modifiers, which occur 40
(7.9%) times in the data set. Examples are given
below.

(1) “the bigger pom-pom”

(2) “the green largest pom-pom”

(3) “the smallest long ribbon”

(4) “the large orange pipe-cleaner”

Of the references that mention size, 35 (6.9%)
use a vague modifier that applies to one or two di-
mensions. This includes modifiers for height (“the
short silver ribbon”), width (“quite a fat rectan-
gle”), and depth (“the thick grey pipe-cleaner”).
87 (17.2%) use a modifier that applies to the over-
all size of the object (e.g., “big” or “small”). Table
3 lists these values. Crisp measurements (such as
“1 centimeter”) occur only twice (0.4%), with both
produced by the same participant.

Comparative/Superlative: 40 (7.9%)
Base: 82 (16.2%)
Height/Width/Depth: 35 (6.9%)
Overall size: 87 (17.2%)

Table 3: Size Modifier Breakdown.
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Part-whole modularity Relative size Analogies
“a green pom-pom. . . “a red foam-piece. . . “a natural-looking piece

with the tinsel on the outside” which is more square of pipe-cleaner, it looks
“your gold twisty ribbon. . . in shape rather than a bit like a rope”

with sequins on it” the longer rectangle” “a pipe-cleaner that
“a wooden bead. . . “the grey pipe-cleaner. . . looks a bit like. . .

with a hole in the center” which is the thicker one. . . a fluffy caterpillar”
“one of the green pom-poms. . . “the slightly larger one” “the silver ribbon

with the sort of strands “the smaller silver ribbon” that’s almost like
coming out from it.” “the short silver ribbon” a big S shape.”

“the silver ribbon. . . with the chainmail “quite a fat rectangle” “a. . . pipe-cleaner
detail down through the middle of it.” “thick grey pipe-cleaner” that looks like tinsel.”

11 References 122 References 16 References

Table 2: Examples of Observed Reference.

Participants produce such modifiers without
sizes or measurements explicitly given; with an
input of a visual object presentation, the output
includes size modifiers. Such data suggests that
natural reference in a visual domain utilizes pro-
cesses comparing the length, width, and height of
a target object with other objects in the set. Indeed,
5 references (1.0%) in our data set include explicit
comparison with the size of other objects.

(5) “a red foam-piece. . . which is more square in
shape rather than the longer rectangle”

(6) “the grey pipe-cleaner. . . which is the thicker
one. . . of the selection”

(7) “the shorter of the two silver ribbons”

(8) “the longer one of the ribbons”

(9) “the longer of the two silver ribbons”

In Example (5), height and width across two
different objects are compared, distinguishing a
square from a rectangle. In (6) “thicker” marks
the referent as having a larger circumference than
other items of the same type. (7) (8) and (9) com-
pare the height of the target referent to the height
of similar items.

The use of size modifiers in a domain without
specified measurements suggests that when peo-
ple refer to an object in a visual domain, they
are sensitive to its size and structure within a di-
mensional, real-world space. Without access to
crisp measurements, people compare relative size
across different objects, and this is reflected in the
expressions they generate. These comparisons are
not only limited to overall size, but include size
in each dimension. This suggests that objects’
structures within a real-world space are relevant
to REG in a visual domain.

3.1.2 Part-Whole Modularity

The role that a spatial object understanding has
within reference is further detailed by utterances
that pick out the target object by mentioning an ob-
ject part. 11 utterances (2.2%) in our data include
mention of an object part within reference to the
whole object. This is spread across participants,
such that half of the participants make reference
to an object part at least once.

(10) “a green pom-pom, which is with the tinsel
on the outside”

(11) “your gold twisty ribbon...with sequins on
it”

(12) “a wooden bead...with a hole in the center”

In (10), pieces of tinsel are isolated from the
whole object and specified as being on the outside.
In (11), smaller pieces that lay on top of the ribbon
are picked out. And in (12), a hole within the bead
is isolated.

The use of part-whole modularity suggests an
understanding that parts of the object take up their
own space within the object. An object is not only
viewed as a whole during reference, but parts in,
on, and around it may be considered as well. For
an REG algorithm to generate these kinds of ref-
erences, it must be provided with a representation
that details the structure of each object.

3.2 ANALOGIES

The data from this study also provide information
on what can be expected from a knowledge base
in an algorithm that aims to generate naturalistic
reference. Reference is made 16 times (3.2%) to
objects not on the board, where the intended refer-
ent is compared against something it islike. Some
examples are given below.
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(13) “a gold. . . pipe-cleaner. . . completely
straight, like a ruler”

(14) “a natural-looking piece of pipe-cleaner, it
looks a bit like a rope”

(15) “a pipe-cleaner that looks a bit like. . . a
fluffy caterpillar. . . ”

In (13), a participant makes reference to a
SHAPE property of an object not on the board. In
(14) and (15), participants refer to objects that may
share a variety of properties with the referent, but
are also not on the board.

Reference to these other items do not pick out
single objects, but types of objects (e.g., an object
type, not token). They correspond to some pro-
totypical idea of an object with properties similar
to those of the referent. Work by Rosch (1975)
has examined this tendency, introducing the idea
of prototype theory, which proposes that there may
be some central, ‘prototypical’ notions of items. A
knowledge base with stored prototypes could be
utilized by an REG algorithm to compare the tar-
get referent to item prototypes. Such representa-
tions would help guide the generation of reference
to items not in the scene, but similar to the target
referent.

4 Discussion

We have discussed several different aspects of ref-
erence in a study where referring expressions are
elicited for objects in a spatial, visual scene. Ref-
erence in this domain draws on object forms as
they exist in a three-dimensional space and uti-
lizes background knowledge to describe referents
by analogy to items outside of the scene. This
is undoubtedly not an exhaustive account of the
phenomena at play in such a domain, but offers
some initial conclusions that may be drawn from
exploratory work of this kind.

Before continuing with the discussion, it is
worthwhile to consider whether some of our data
might be seen as going beyond reference. Perhaps
the participants are doing something else, which
could be called describing. How to draw the line
between a distinguishing reference and a descrip-
tion, and whether such a line can be drawn at all, is
an interesting question. If the two are clearly dis-
tinct, then both are interesting to NLG research.
If the two are one in the same, then this sheds
some light on how REG algorithms should treat

reference. We leave a more detailed discussion of
this for future work, but note recent psycholinguis-
tic work suggesting that referring establishes (1)
an individual as the referent; (2) a conceptualiza-
tion or perspective on that individual (Clark and
Bangerter, 2004). Schematically, referring = indi-
cating + describing.

We now turn to a discussion of how the ob-
served phenomena may be best represented in an
REG algorithm. We propose that an algorithm ca-
pable of generating natural reference to objects in
a visual scene should utilize (1) a spatial object
representation; (2) a non-spatial feature-based rep-
resentation; and (3) a knowledge base of object
prototypes.

4.1 Spatial and Visual Properties

It is perhaps unsurprising to find reference that ex-
hibits spatial knowledge in a study where objects
are presented in three-dimensional space. Hu-
man behavior is anchored in space, and spatial in-
formation is essential for our ability to navigate
the world we live in. However, referring expres-
sion generation algorithms geared towards spa-
tial representations have oversimplified this ten-
dency, keeping objects within the realm of two-
dimensions and only looking at the spatial rela-
tions between objects.

For example, Funakoshi et al. (2004) and Gatt
(2006) focus on how objects should be clustered
together to form groups. This utilizes some of
the spatial information between objects, but does
not address the spatial, three-dimensional nature
of objects themselves. Rather, objects exist as en-
tities that may be grouped with other entities in a
set or singled out as individual objects; they do not
have their own spatial characteristics. Similarly,
one of the strengths of the Graph-Based Algorithm
(Krahmer et al., 2003) is its ability to generate ex-
pressions that involve relations between objects,
and these include spatial ones (“next to”, “on top
of”, etc.). In all these approaches, however, ob-
jects are essentially one-dimensional, represented
as individual nodes.

Work that does look at the spatial information
of different objects is provided by Kelleher et al.
(2005). In this approach, the overall volume of
each object is calculated to assign salience rank-
ings, which then allow the Incremental Algorithm
(Dale and Reiter, 1995) to produce otherwise “un-
derspecified” reference. The spatial properties of

Sixth International Natural Language Generation Conference (INLG 2010)

100



the objects are kept relatively simple. They are
not used in constructing the referring expression,
but one aspect of the object’s three-dimensional
shape (volume) affects the referring expression’s
final form. To the authors’ knowledge, the cur-
rent work is the first to suggest that objects them-
selves should have their spatial properties repre-
sented during reference.

Research in cognitive modelling supports the
idea that we attend to the spatial properties of ob-
jects when we view them (Blaser et al., 2000), and
that we have purely spatial attentional mechanisms
operating alongside non-spatial, feature-based at-
tentional mechanisms (Treue and Trujillo, 1999).
These feature-based attentional mechanisms pick
out properties commonly utilized in REG, such as
texture, orientation, and color. They also pick out
edges and corners, contrast, and brightness. Spa-
tial attentional mechanisms provide information
about where the non-spatial features are located in
relation to one another, size, and the spatial inter-
relations between component parts.

Applying these findings to our study, an REG
algorithm that generates natural reference should
utilize a visual, feature-based representation of ob-
jects alongside a structural, spatial representation
of objects. A feature-based representation is al-
ready common to REG, and could be represented
as a series of<ATTRIBUTE:value> pairs. A spa-
tial representation is necessary to define how the
object is situated within a dimensional space, pro-
viding information about the relative distances be-
tween object components, edges, and corners.

With such information provided by a spatial
representation, the generation of part-whole ex-
pressions, such as “the pom-pom with the tinsel on
the outside”, is possible. This also allows for the
generation of size modifiers (“big”, “small”) with-
out the need for crisp measurements, for example,
by comparing the difference in overall height of
the target object with other objects in the scene, or
against a stored prototype (discussed below). Rel-
ative size comparisons across different dimensions
would also be possible, used to generate size mod-
ifiers such as “wide” and “thick” that refer to one
dimensional axis.

4.2 Analogies

A feature-based and a spatial representation may
also play a role in analogies. When we use analo-
gies, as in “the pipe-cleaner that looks like a cater-

pillar”, we use world knowledge about items that
are not themselves visible. Such an expression
draws on similarity that does not link the referent
with a particular object, but with a general type of
object: the pipe-cleaner is caterpillar-like.

To generate these kinds of expressions, an REG
algorithm would first need a knowledge base with
prototypes listing prototypical values of attributes.
For example, a banana prototype might have a pro-
totypicalCOLOR of yellow. With prototypes in the
knowledge base, the REG algorithm would need
to calculate similarity of a target referent to other
known items. This would allow a piece of yellow
cloth, for example, to be described as being the
color of a banana.

Implementing such similarity measures in an
REG algorithm will be challenging. One difficulty
is that prototype values may be different depend-
ing on what is known about an item; a prototypical
unripe banana may be green, or a prototypical rot-
ten banana brown. Another difficulty will be in
determining when a referent is similarenoughto
a prototype to warrant an analogy. Additional re-
search is needed to explore how these properties
can be reasoned about.

4.3 Further Implications

A knowledge base containing prototypes opens up
the possibility of generating many other kinds of
natural references. In particular, such knowledge
would allow the algorithm to compute which prop-
erties a given kind of referent may be expected
to have, and which properties may be unexpected.
Unexpected properties may therefore stand out as
particularly salient.

For example, a dog missing a leg may be de-
scribed as a “three-legged dog” because the pro-
totypical dog has four legs. We believe that this
perspective, which hinges on the unexpectedness
of a property, suggests a new approach to at-
tribute selection. Unlike the Incremental Algo-
rithm, the Preference Order that determines the or-
der in which attributes are examined would not be
fixed, but would depend on the nature of the refer-
ent and what is known about it.

Approaching REG in this way follows work in
cognitive science and neurophysiology that sug-
gests that expectations about objects’ visual and
spatial characteristics are derived from stored rep-
resentations of object ‘prototypes’ in the infe-
rior temporal lobe of the brain (Logothetis and
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- A spatial representation (depicting size, inter-
relations between component parts)
- A non-spatial, propositional representation
(describing color, texture, orientation, etc.)
- A knowledge base with stored prototypical ob-
ject propositional and spatial representations

Table 4: Requirements for an REG algorithm that
generates natural reference to visual objects.

Sheinberg, 1996; Riesenhuber and Poggio, 2000;
Palmeri and Gauthier, 2004). Most formal theo-
ries of object perception posit some sort ofcate-
gory activation system(Kosslyn, 1994), a system
that matches input properties of objects to those
of stored prototypes, which then helps guide ex-
pectations about objects in a top-down fashion.3

This appears to be a neurological correlate of the
knowledge base we propose to underlie analogies.

Such a system contains information about pro-
totypical objects’ component parts and where they
are placed relative to one another, as well as rele-
vant values for material, color, etc. This suggests
that the spatial and non-spatial feature-based rep-
resentations proposed for visible objects could be
used to represent prototype objects as well. In-
deed, how we view and refer to objects appears to
be influenced by the interaction of these structures:
Expectations about an object’s spatial properties
guide our attention towards expected object parts
and non-spatial, feature-based properties through-
out the scene (Kosslyn, 1994; Itti and Koch, 2001).
This affects the kinds of things we are most likely
to generate language about (Itti and Arbib, 2005).

We can now outline some general requirements
for an algorithm capable of generating naturalis-
tic reference to objects in a visual scene: Input to
such an algorithm should include a feature-based
representation, which we will call apropositional
representation, with values for color, texture, etc.,
and aspatial representation, with symbolic infor-
mation about objects’ size and the spatial relation-
ships between components. A system that gener-
ates naturalistic reference must also use a knowl-
edge base storing information about object proto-
types, which may be represented in terms of their
own propositional/spatial representations.

3Note thatthis is not the only proposed matching structure
in the brain – anexemplar activation systemmatches input to
stored exemplars.

5 Conclusions and Future Work

We have explored the interaction between view-
ing objects in a three-dimensional, spatial domain
and referring expression generation. This has led
us to propose structures that may be used to con-
nect vision in a spatial modality to naturalistic ref-
erence. The proposed structures include a spatial
representation, a propositional representation, and
a knowledge base with representations for object
prototypes. Using structures that define the propo-
sitional and spatial content of objects fits well with
work in psycholinguistics, cognitive science and
neurophysiology, and may provide the basis to
generate a variety of natural-sounding references
from a system that recognizes objects.

It is important to note that any naturalistic ex-
perimental design limits the kinds of conclusions
that can be drawn about reference. A study that
elicits reference to objects in a visual scene pro-
vides insight into reference to objects in a visual
scene; these conclusions cannot easily be extended
to reference to other kinds of phenomena, such as
reference to people in a novel. We therefore make
no claims about reference as a whole in this paper;
generalizations from this research can provide hy-
potheses for further testing in different modalities
and with different sorts of referents.

Our data leave open many areas for further
study, and we hope to address these in future work.
Experiments designed specifically to elicit relative
size modifiers, reference to object components,
and reference to objects that arelike other things
would help further detail the form our proposed
structures take.

What is clear from our data is that both a spa-
tial understanding and a non-spatial feature-based
understanding appear to play a role in reference
to objects in a visual scene, and further, refer-
ence in such a setting is bolstered by a knowl-
edge base with stored prototypical object repre-
sentations. Utilizing structures representative of
these phenomena, we may be able to extend ob-
ject recognition research into object reference re-
search, generating natural-sounding reference in
everyday settings.

Acknowledgements

Thanks to Advaith Siddarthan for thought-
provoking discussions and to the anonymous re-
viewers for useful suggestions.

Sixth International Natural Language Generation Conference (INLG 2010)

102



References

Carlos Areces, Alexander Koller, and Kristina Strieg-
nitz. 2008. Referring expressions as formulas of
description logic. Proceedings of the Fifth Inter-
national Natural Language Generation Conference,
pages 42–29.

Robbert-Jan Beun and Anita H. M. Cremers. 1998.
Object reference in a shared domain of conversation.
Pragmatics and Cognition, 6:121–52.

Erik Blaser, Zenon W. Pylyshyn, and Alex O. Hol-
combe. 2000. Tracking an object through feature
space.Nature, 408:196–199.

Susan E. Brennan and Herbert H. Clark. 1996. Con-
ceptual pacts and lexical choice in conversation.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 22:1482–93.

Alphonse Chapanis, Robert N. Parrish, Robert B.
Ochsman, and Gerald D. Weeks. 1977. Studies
in interactive communication: II. the effects of four
communication modes on the linguistic performance
of teams during cooperative problem solving.Hu-
man Factors, 19:101–125.

Herbert H. Clark and Adrian Bangerter. 2004. Chang-
ing ideas about reference. In Ira A. Noveck and Dan
Sperber, editors,Experimental pragmatics, pages
25–49. Palgrave Macmillan, Basingstoke, England.

Herbert H. Clark and Meredyth A. Krych. 2004.
Speaking while monitoring addressees for under-
standing.Journal of Memory and Language, 50:62–
81.

Herbert H. Clark and Deanna Wilkes-Gibbs. 1986. Re-
ferring as a collaborative process.Cognition, 22:1–
39.

Herbert H. Clark, Robert Schreuder, and Samuel But-
trick. 1983. Common ground and the understand-
ing of demonstrative reference.Journal of Verbal
Learning and Verbal Behavior, 22:1–39.

Philip R. Cohen. 1984. The pragmatics of referring
and the modality of communication.Computational
Linguistics, 10(2):97–146.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the gricean maxims in the gener-
ation of referring expressions.Cognitive Science,
18:233–263.

J. H. Flavell, P. T. Botkin, D. L. Fry Jr., J. W. Wright,
and P. E. Jarvice. 1968.The Development of Role-
Taking and Communication Skills in Children. John
Wiley, New York.

William Ford and David Olson. 1975. The elaboration
of the noun phrase in children’s description of ob-
jects. The Journal of Experimental Child Psychol-
ogy, 19:371–382.

Kotaro Funakoshi, Satoru Watanabe, Naoko Kuriyama,
and Takenobu Tokunaga. 2004. Generating refer-
ring expressions using perceptual groups. InPro-
ceedings of the 3rd International Conference on Nat-
ural Language Generation, pages 51–60.

Albert Gatt. 2006. Structuring knowledge for refer-
ence generation: A clustering algorithm.Proceed-
ings of the 11th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL-06), pages 321–328.

Paul H. Grice. 1975. Logic and conversation.Syntax
and Semantics, 3:41–58.

Peter A. Heeman and Graeme Hirst. 1995. Collabo-
rating on referring expressions.Computational Lin-
guistics, 21.

Laurent Itti and Michael A. Arbib. 2005. Attention and
the minimal subscene. In Michael A. Arbib, editor,
Action to Language via the Mirror Neuron System.
Cambridge University Press.

Laurent Itti and Christof Koch. 2001. Computational
modelling of visual attention.Nature Reviews Neu-
roscience.

J. Kelleher, F. Costello, and J. van Genabith. 2005.
Dynamically structuring, updating and interrelating
representations of visual and linguistic discourse
context.Artificial Intelligence, 167:62–102.

Stephen M. Kosslyn. 1994.Image and Brain: The
Resolution of the Imagery Debate. MIT Press, Cam-
bridge, MA.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
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Abstract

In this paper we present a complete sys-
tem for automatically generating natural
language abstracts of meeting conversa-
tions. This system is comprised of com-
ponents relating to interpretation of the
meeting documents according to a meet-
ing ontology, transformation or content
selection from that source representation
to a summary representation, and gener-
ation of new summary text. In a forma-
tive user study, we compare this approach
to gold-standard human abstracts and ex-
tracts to gauge the usefulness of the dif-
ferent summary types for browsing meet-
ing conversations. We find that our auto-
matically generated summaries are ranked
significantly higher than human-selected
extracts on coherence and usability crite-
ria. More generally, users demonstrate a
strong preference for abstract-style sum-
maries over extracts.

1 Introduction

The most common solution to the task of summa-
rizing spoken and written data is sentence (or ut-
terance) extraction, where binary sentence classi-
fication yields a cut-and-paste summary compris-
ing informative sentences from the document con-
catenated in a new, condensed document. Such
extractive approaches have dominated the field of
automatic summarization for decades, in large part
because extractive systems do not require a natu-
ral language generation (NLG) component since
the summary sentences are simply lifted from the
source document.

Extrinsic evaluations have shown that, while ex-
tractive summaries may be less coherent than hu-
man abstracts, users still find them to be valuable
tools for browsing documents (He et al., 1999;
McKeown et al., 2005; Murray et al., 2009). How-
ever, these previous evaluations also illustrate that

concise abstracts are generally preferred by users
and lead to higher objective task scores. A weak-
ness of typical extractive summaries is that the end
user does not know why the extracted sentences
are important; exploring the original sentence con-
text may be the only way to resolve this uncer-
tainty. And if the input source document consists
of noisy, unstructured text such as ungrammatical,
disfluent multi-party speech, then the resultant ex-
tract is likely to be noisy and unstructured as well.

Herein we describe a complete and fully auto-
matic system for generating abstract summaries
of meeting conversations. Our abstractor maps
input sentences to a meeting ontology, generates
messages that abstract over multiple sentences,
selects the most informative messages, and ulti-
mately generates new text to describe these rele-
vant messages at a high level. We conduct a user
study where participants must browse a meeting
conversation within a very constrained timeframe,
having a summary at their disposal. We compare
our automatic abstracts with human abstracts and
extracts and find that our abstract summaries sig-
nificantly outperform extracts in terms of coher-
ence and usability according to human ratings. In
general, users rate abstract-style summaries much
more highly than extracts for these conversations.

2 Related Research

Automatic summarizaton has been described as
consisting of interpretation, transformation and
generation (Jones, 1999). Popular approaches to
text extraction essentially collapse interpretation
and transformation into one step, with genera-
tion either being ignored or consisting of post-
processing techniques such as sentence compres-
sion (Knight and Marcu, 2000; Clarke and Lapata,
2006) or sentence merging (Barzilay and McKe-
own, 2005). In contrast, in this work we clearly
separate interpretation from transformation and in-
corporate an NLG component to generate new text
to describe meeting conversations.

While extraction remains the most common ap-
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proach to text summarization, one application in
which abstractive summarization is widely used is
data-to-text generation. Summarization is critical
for data-to-text generation because the amount of
collected data may be massive. Examples of such
applications include the summarization of inten-
sive care unit data in the medical domain (Portet
et al., 2009) and data from gas turbine sensors (Yu
et al., 2007). Our approach is similar except that
our input is text data in the form of conversations.
We otherwise utilize a very similar architecture of
pattern recognition, pattern abstraction, pattern
selection and summary generation.

Kleinbauer et al. (2007) carry out topic-based
meeting abstraction. Our systems differ in two
major respects: their summarization process uses
human gold-standard annotations of topic seg-
ments, topic labels and content items from the on-
tology, while our summarizer is fully automatic;
secondly, the ontology they used is specific not
just to meetings but to the AMI scenario meetings
(Carletta et al., 2005), while our ontology applies
to conversations in general, allowing our approach
to be extended to emails, blogs, etc.

In this work we conduct a user study where par-
ticipants use summaries to browse meeting tran-
scripts. Some previous work has compared ex-
tracts and abstracts for the task of a decision au-
dit (Murray et al., 2009) , finding that human ab-
stracts are a challenging gold-standard in terms
of enabling participants to work quickly and cor-
rectly identify the relevant information. For that
task, automatic extracts and the semi-automatic
abstracts of Kleinbauer et al. (2007) were found
to be competitive with one another in terms of
user satisfaction and resultant task scores. Other
research on comparing extracts and abstracts has
found that an automatic abstractor outperforms a
generic extractor in the domains of technical ar-
ticles (Saggion and Lapalme, 2002) and evalua-
tive reviews (Carenini and Cheung, 2008), and that
human-written abstracts were rated best overall.

3 Interpretation - Ontology Mapping

Source document interpretation in our system re-
lies on a general conversation ontology. The on-
tology is written in OWL/RDF and contains upper-
level classes such as Participant, Entity, Utterance,
and DialogueAct. When additional information is
available about participant roles in a given domain,
Participant subclasses such as ProjectManager can

be utilized. Object properties connect instances of
ontology classes; for example, the following entry
in the ontology states that the object property has-
Speaker has an instance of Utterance as its domain
and an instance of Participant as its range.
<owl:ObjectProperty rdf:about="#hasSpeaker">
<rdfs:range rdf:resource="#Participant"/>
<rdfs:domain rdf:resource="#Utterance"/>

</owl:ObjectProperty>

The DialogueAct class has subclasses cor-
responding to a variety of sentence-level phe-
nomena: decisions, actions, problems, positive-
subjective sentences, negative-subjective sen-
tences and general extractive sentences (important
sentences that may not match the other categories).
Utterance instances are connected to DialogueAct
subclasses through an object property hasDAType.
A single utterance may correspond to more than
one DialogueAct; for example, it may represent
both a positive-subjective sentence and a decision.

Our current definition of Entity instances is
simple. The entities in a conversation are noun
phrases with mid-range document frequency. This
is similar to the definition of concept proposed by
Xie et al. (2009), where n-grams are weighted
by tf.idf scores, except that we use noun phrases
rather than any n-grams because we want to refer
to the entities in the generated text. We use mid-
range document frequency instead of idf (Church
and Gale, 1995), where the entities occur in be-
tween 10% and 90% of the documents in the col-
lection. We do not currently attempt coreference
resolution for entities; recent work has investi-
gated coreference resolution for multi-party dia-
logues (Muller, 2007; Gupta et al., 2007), but the
challenge of resolution on such noisy data is high-
lighted by low accuracy (e.g. F-measure of 21.21)
compared with using well-formed text.

We map sentences to our ontology classes by
building numerous supervised classifiers trained
on labeled decision sentences, action sentences,
etc. A general extractive classifier is also trained
on sentences simply labeled as important. We give
a specific example of the ontology mapping using
the following excerpt from the AMI corpus, with
entities italicized and resulting sentence classifica-
tions shown in bold:

• A: And you two are going to work together
on a prototype using modelling clay. [action]
• A: You’ll get specific instructions from your

personal coach. [action]
• C: Cool. [positive-subjective]
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• A: Um did we decide on a chip? [decision]
• A: Let’s go with a simple chip. [decision,

positive-subjective]

The ontology is populated by adding all of
the sentence entities as instances of the Entity
class, all of the participants as instances of the
Participant class (or its subclasses such as Pro-
jectManager when these are represented), and all
of the utterances as instances of Utterance with
their associated hasDAType properties indicating
the utterance-level phenomena of interest. Here
we show a sample Utterance instance:
<Utterance rdf:about="#ES2014a.B.dact.37">
<hasSpeaker rdf:resource="#IndustrialDesigner"/>
<hasDAType rdf:resource="#PositiveSubjective"/>
<begTime>456.58</begTime>
<endTime>458.832</endTime>
</Utterance>

3.1 Feature Set

The interpretation component as just described re-
lies on supervised classifiers for the detection of
items such as decisions, actions, and problems.
This component uses general features that are ap-
plicable to any conversation domain. The first set
of features we use for this ontology mapping are
features relating to conversational structure. They
include sentence length, sentence position in the
conversation and in the current turn, pause-style
features, lexical cohesion, centroid scores, and
features that measure how terms cluster between
conversation participants and conversation turns.

While these features have been found to work
well for generic extractive summarization (Murray
and Carenini, 2008), we use additional features
for capturing the more specific sentence-level phe-
nomena of this research. These include character
trigrams, word bigrams, part-of-speech bigrams,
word pairs, part-of-speech pairs, and varying in-
stantiation n-grams, described in more detail in
(Murray et al., 2010). After removing features
that occur fewer than five times, we end up with
218,957 total features.

3.2 Message Generation

Rather than merely classifying individual sen-
tences as decisions, action items, and so on, we
also aim to detect larger patterns – or messages
– within the meeting. For example, a given par-
ticipant may repeatedly make positive comments
about an entity throughout the meeting, or may
give contrasting opinions of an entity. In or-
der to determine which messages are essential for

summarizing meetings, three human judges con-
ducted a detailed analysis of four development
set meetings. They first independently examined
previously-written human abstracts for the meet-
ings to identify which messages were present in
the summaries. In the second step, the judges met
together to decide on a final message set. This
resulted in a set of messages common to all the
meetings and agreed upon by all the judges. The
messages that our summarizer will automatically
generate are defined as follows:

• OpeningMessage and ClosingMessage: Briefly de-
scribes opening/closing of the meeting

• RepeatedPositiveMessage and RepeatedNegativeMes-
sage: Describes a participant making positive/negative
statements about a giv en entity

• ActionItemsMessage: Indicates that a participant has
action items relating to some entity

• DecisionMessage: Indicates that a participant was in-
volved in a decision-making process regarding some
entity

• ProblemMessage: Indicates that a participant repeat-
edly discussed problems or issues about some entity

• GeneralDiscussionMessage: Indicates that a partici-
pant repeatedly discussed a given entity

Message generation takes as input the ontology
mapping described in the previous section, and
outputs a set of messages for a particular meeting.
This is done by identifying pairs of Participants
and Entities that repeatedly co-occur with the var-
ious sentence-level predictions. For example, if
the project manager repeatedly discusses the inter-
face using utterances that are classified as positive-
subjective, a RepeatedPositiveMessage is gener-
ated for that Participant-Entity pair. Messages are
generated in a similar fashion for all other mes-
sage types except for the opening and closing mes-
sages. These latter two messages are created sim-
ply by identifying which participants were most
active in the introductory and concluding portions
of the meeting and generating messages that de-
scribe that participant opening or closing the meet-
ing.

Messages types are defined within the OWL on-
tology, and the ontology is populated with mes-
sage instances for each meeting. The following
message describes the Marketing Expert making
a decision concerning the television, and lists the
relevant sentences contained by that decision mes-
sage.
<DecisionMessage rdf:about="#dec9">
<messageSource rdf:resource="#MarketingExpert"/>
<messageTarget rdf:resource="#television"/>
<containsUtterance rdf:resource="#ES2014a.D.dact.55"/>
<containsUtterance rdf:resource="#ES2014a.D.dact.63"/>
</DecisionMessage>
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4 Transformation - ILP Content
Selection for Messages

Having detected all the messages for a given meet-
ing conversation, we now turn to the task of
transforming the source representation to a sum-
mary representation, which involves identifying
the most informative messages for which we will
generate text. We choose an integer linear pro-
gramming (ILP) approach to message selection.
ILP has previously been used for sentence selec-
tion in an extractive framework. Xie et al. (2009)
used ILP to create a summary by maximizing a
global objective function combining sentence and
entity weights. Our method is similar except that
we are selecting messages based on optimizing
an objective function combining message and sen-
tence weights:

maximize (1−λ)∗
∑

i

wisi +λ∗
∑
j

ujmj (1)

subject to
∑

i

lisi < L (2)

where wi is the score for sentence i, uj is the
score for message j, si is a binary variable in-
dicating whether sentence i is selected, mj is a
binary variable indicating whether message j is
selected, li is the length of sentence i and L is
the desired summary length. The λ term is used
to balance sentence and message weights. Our
sentence weight wi is the sum of all the poste-
rior probabilities for sentence i derived from the
various sentence-level classifiers. In other words,
sentences are weighted highly if they correspond
to multiple object properties in the ontology. To
continue the example from Section 3, the sen-
tence Let’s go with the simple chip will be highly
weighted because it represents both a decision and
a positive-subjective opinion. The message score
uj is the number of sentences contained by the
message j. For instance, the DecisionMessage
at the end of Section 3.2 contains two sentences.
We can create a higher level of abstraction in our
summaries if we select messages which contain
numerous utterances. Similar to how sentences
and concepts are combined in the previous ILP ex-
traction approach (Xie et al., 2009; Gillick et al.,
2009), messages and sentences are tied together by
two additional constraints:

∑
j

mjoij ≥ si ∀i (3)

mjoij ≤ si ∀ij (4)

where oij is the occurence of sentence i in mes-
sage j. These constraints state that a sentence can
only be selected if it occurs in a message that is
selected, and that a message can only be selected
if all of its sentences have also been selected.

For these initial experiments, λ is set to 0.5. The
summary length L is set to 15% of the conver-
sation word count. Note that this is a constraint
on the length of the selected utterances; we ad-
ditionally place a length constraint on the gener-
ated summary described in the following section.
The reason for both types of length constraint is to
avoid creating an abstract that is linked to a great
many conversation utterances but is very brief and
likely to be vague and uninformative.

5 Summary Generation

The generation component of our system fol-
lows the standard pipeline architecture (Reiter and
Dale, 2000), comprised of a text planner, a micro-
planner and a realizer. We describe each of these
in turn.

5.1 Text Planning

The input to the document planner is an ontol-
ogy which contains the selected messages from
the content selection stage. We take a top-
down, schema-based approach to document plan-
ning (Reiter and Dale, 2000). This method is ef-
fective for summaries with a canonical structure,
as is the case with meetings. There are three high-
level schemas invoked in order: opening mes-
sages, body messages, and closing messages. For
the body of the summary, messages are retrieved
from the ontology using SPARQL, an SQL-style
query language for ontologies, and are clustered
according to entities. Entities are temporally or-
dered according to their average timestamp in the
meeting. In the overall document plan tree struc-
ture, the body plan is comprised of document sub-
plans for each entity, and the document sub-plan
for each entity is comprised of document sub-
plans for each message type. The output of the
document planner is a tree structure with messages
as its leaves and document plans for its internal
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nodes. Our text planner is implemented within the
Jena semantic web programming framework1.

5.2 Microplanning
The microplanner takes the document plan as in-
put and performs two operations: aggregation and
generation of referring expressions.

5.2.1 Aggregation
There are several possibilities for aggregation in
this domain, such as aggregating over participants,
entities and message types. The analysis of our
four development set meetings revealed that ag-
gregation over meeting participants is quite com-
mon in human abstracts, so our system supports
such aggregation. This involves combining mes-
sages that differ in participants but share a com-
mon entity and message type; for example, if there
are two RepeatedPositiveMessage instances about
the user interface, one with the project manager
as the source and one with the industrial designer
as the source, a single RepeatedPositiveMessage
instance is created that contains two sources. We
do not aggregate over entities for the sole reason
that the text planner already clustered messages
according to entity. The entity clustering is in-
tended to give the summary a more coherent struc-
ture but has the effect of prohibiting aggregation
over entities.

5.2.2 Referring Expressions
To reduce redundancy in our generated abstracts,
we generate alternative referring expressions when
a participant or an entity is mentioned multiple
times in sequence. For participants, this means
the generation of a personal pronoun. For entities,
rather than referring repeatedly to, e.g., the remote
control, we generate expressions such as that issue
or this matter.

5.3 Realization
The text realizer takes the output of the microplan-
ner and generates a textual summary of a meet-
ing. This is accomplished by first associating ele-
ments of the ontology with linguistic annotations.
For example, participants are associated with a
noun phrase denoting their role, such as the project
manager. Since entities were defined simply as
noun phrases with mid-frequency IDF scores, an
entity instance is associated with that noun phrase.
Messages themselves are associated with verbs,

1to be made publicly available upon publicaton

subject templates and object templates. For exam-
ple, instances of DecisionMessage are associated
with the verb make, have a subject template set to
the noun phrase of the message source, and have
an object template [NP a decision PP [concern-
ing ]] where the object of the prepositional
phrase is the noun phrase associated with the mes-
sage target.

To give a concrete example, consider the fol-
lowing decision message:
<DecisionMessage rdf:about="#dec9">
<rdf:type rdf:resource="&owl;Thing"/>
<hasVerb>make</hasVerb>
<hasCompl>a decision</hasCompl>
<messageSource rdf:resource="#MarketingExpert"/>
<messageSource rdf:resource="#ProjectManager"/>
<messageTarget rdf:resource="#television"/>
<containsUtterance rdf:resource="#ES2014a.D.dact.55"/>
<containsUtterance rdf:resource="#ES2014a.D.dact.63"/>
</DecisionMessage>

There are two message sources,
ProjectManager and MarketingExpert,
and one message target, television. The
subjects of the message are set to be the noun
phrases associated with the marketing expert and
the project manager, while the object template is
filled with the noun phrase the television. This
message is realized as The project manager and
the marketing expert made a decision about the
television.

For our realizer we use simpleNLG2. We tra-
verse the document plan output by the microplan-
ner and generate a sentence for each message leaf.
A new paragraph is created when both the message
type and target of the current message are different
than the message type and target for the previous
message.

6 Task-Based User Study

We carried out a formative user study in order to
inform this early work on automatic conversation
abstraction. This task required participants to re-
view meeting conversations within a short time-
frame, having a summary at their disposal. We
compared human abstracts and extracts with our
automatically generated abstracts. The interpre-
tation component and a preliminary version of
the transformation component have already been
tested in previous work (Murray et al., 2010). The
sentence-level classifiers were found to perform
well according to the area under the receiver op-
erator characteristic (AUROC) metric, which eva-
lutes the true-positive/false-positive ratio as the

2http://www.csd.abdn.ac.uk/˜ereiter/simplenlg/
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posterior threshold is varied, with scores ranging
from 0.76 for subjective sentences to 0.92 for ac-
tion item sentences. In the following, we focus
on the formative evaluation of the complete sys-
tem. We first describe the corpus we used, then
the materials, participants and procedure. Finally
we discuss the study results.

6.1 AMI Meeting Corpus
For our meeting summarization experiments, we
use the scenario portion of the AMI corpus (Car-
letta et al., 2005), where groups of four partici-
pants take part in a series of four meetings and
play roles within a fictitious company. There are
140 of these meetings in total. For the sum-
mary annotation, annotators wrote abstract sum-
maries of each meeting and extracted sentences
that best conveyed or supported the information
in the abstracts. The human-authored abstracts
each contain a general abstract summary and three
subsections for “decisions,” “actions” and “prob-
lems” from the meeting. A many-to-many map-
ping between transcript sentences and sentences
from the human abstract was obtained for each an-
notator. Approximately 13% of the total transcript
sentences are ultimately labeled as extracted sen-
tences. A sentence is considered a decision item
if it is linked to the decision portion of the ab-
stract, and action and problem sentences are de-
rived similarly. We additionally use subjectivity
and polarity annotations for the AMI corpus (Wil-
son, 2008).

6.2 Materials, Participants and Procedures
We selected five AMI meetings for this user study,
with each stage of the four-stage AMI scenario
represented. The meetings average approximately
500 sentences each. We included the follow-
ing three types of summaries for each meeting:
(EH) gold-standard human extracts, (AH) gold-
standard human abstracts described in Section
6.1, and (AA) the automatic abstracts output by
our abstractor. All three conditions feature man-
ual transcriptions of the conversation. Each sum-
mary contains links to the sentences in the meet-
ing transcript. For extracts, this is a one-to-one
mapping. For the two abstract conditions, this can
be a many-to-many mapping between abstract sen-
tences and transcript sentences.

Participants were given instructions to browse
each meeting in order to understand the gist of
the meeting, taking no longer than 15 minutes per

meeting. They were asked to consider the sce-
nario in which they were a company employee
who wanted to quickly review a previous meet-
ing by using a browsing interface designed for this
task. Figure 1 shows the browsing interface for
meeting IS1001d with an automatically generated
abstract on the left-hand side and the transcript on
the right. In the screenshot, the user has clicked
the abstract sentence The industrial designer made
a decision on the cost and has been linked to a
transcript utterance, highlighted in yellow, which
reads Also for the cost, we should only put one bat-
tery in it. Notice that this output is not entirely cor-
rect, as the decision pertained to the battery, which
impacted the cost. This sentence was generated
because the entity cost appeared in several deci-
sion sentences.

The time constraint meant that it was not fea-
sible to simply read the entire transcript straight
through. Participants were free to adopt whatever
browsing strategy suited them, including skim-
ming the transcript and using the summary as they
saw fit. Upon finishing their review of each meet-
ing, participants were asked to rate their level of
agreement or disagreement on several Likert-style
statements relating to the difficulty of the task and
the usefulness of the summary. There were six
statements to be evaluated on a 1-5 scale, with
1 indicating strong disagreement and 5 indicating
strong agreement:

• Q1: I understood the overall content of the discussion.
• Q2: It required a lot of effort to review the meeting in

the allotted time.
• Q3: The summary was coherent and readable.
• Q4: The information in the summary was relevant.
• Q5: The summary was useful for navigating the dis-

cussion.
• Q6: The summary was missing relevant information.

Participants were also asked if there was any-
thing they would have liked to have seen in the
summary, and whether they had any general com-
ments on the summary.

We recruited 19 participants in total, with each
receiving financial reimbursement for their partic-
ipation. Each participant saw one summary per
meeting and rated every summary condition dur-
ing the experiment. We varied the order of the
meetings and summary conditions. With 19 sub-
jects, three summary conditions and six Likert
statements, we collected a total of 342 user judg-
ments. To ensure fair comparison between the
three summary types, we limit summary length to
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Figure 1: Summary Interface

be equal to the length of the human abstract for
each meeting. This ranges from approximately
190 to 350 words per meeting summary.

6.2.1 Results and Discussion
Participants took approximately 12 minutes on av-
erage to review each meeting, slightly shorter than
the maximum allotted fifteen minutes.

Figure 2 shows the average ratings for each
summary condition on each Likert statement. For
Q1, which concerns general comprehension of
the meeting discussion, condition AH (human
abstracts) is rated significantly higher than EH
(human extracts) and AA (automatic abstracts)
(p=0.0016 and p=0.0119 according to t-test, re-
spectively). However, for the other statement that
addresses the overall task, Q2, AA is rated best
overall. Note that for Q2 a lower score is better.
While there are no significantly differences on this
criterion, it is a compelling finding that automatic
abstracts can greatly reduce the effort required for
reviewing the meeting, at a level comparable to
human abstracts.

Q3 concerns coherence and readability. Condi-
tion AH is significantly better than both EH and
AA (p<0.0001 and p=0.0321). Our condition AA
is also significantly better than the extractive con-
dition EH (p=0.0196). In the introduction we men-
tioned that a potential weakness of extractive sum-
maries is that coherence and readability decrease
when sentences are removed from their original
contexts, and that extracts of noisy, unstructured
source documents will tend to be noisy and un-

structured as well. These ratings confirm that ex-
tracts are not rated well on coherence and readabil-
ity.

Q4 concerns the perceived relevance of the
summary. Condition AH is again significantly bet-
ter than EH and AH (both p<0.0001). AA is rated
substantially higher than EH on summary rele-
vance, but not at a significant level.

Q5 is a key question because it directly ad-
dresses the issue of summary usability for such a
task. Condition AH is significantly better than EH
and AA (both p<0.0001), but we also find that AA
is significantly better than EH (p=0.0476). Ex-
tracts have an average score of only 2.37 out of
5, compared with 3.21 and 4.63 for automatic and
human abstracts, respectively. For quickly review-
ing a meeting conversation, abstracts are much
more useful than extracts.

Q6 indicates whether the summaries were miss-
ing any relevant information. As with Q2, a lower
score is better. Condition AH is significantly bet-
ter than EH and AA (p<0.0001 and p=0.0179),
while AA is better than EH with marginal signif-
icance (p=0.0778). This indicates that our auto-
matic abstracts were better at containing all the
relevant information than were human-selected
extracts.

All participants gave written answers to the
open-ended questions, yielding insights into the
strengths and weaknesses of the different sum-
mary types. Regarding the automatic abstracts
(AA), the most common criticisms were that the
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summaries are too vague (e.g. “more concrete
would help”) and that the phrasing can be repet-
itive. There is a potential many-to-many map-
ping between abstract sentences and transcript
sentences, and some participants felt that it was
unnecessarily redundant to be linked to the same
transcript sentence more than once (e.g. “quite a
few repetitive citations”). Several participants felt
that the sentences regarding positive-subjective
and negative-subjective opinions were overstated
and that the actual opinions were either more sub-
tle or neutral. One participant wrote that these sen-
tences constituted “a lot of bias in the summary.”
On the positive side, several participants consid-
ered the links between abstract sentences and tran-
script sentences to be very helpful, e.g. “it re-
ally linked to the transcript well” and “I like how
the summary has links connected to the transcript.
Easier to follow-up on the meeting w/ the aid of
the summary.” One participant particularly liked
the subjectivity-oriented sentences: “Lifting some
of the positive/negative from the discussion into
the summary can mean the discussion does not
even need to be included to get understanding.”

The written comments on the extractive condi-
tion (EH) were almost wholly negative. Many par-
ticipants felt that the extracts did not even con-
stitute a summary or that a cut-and-paste from
the transcript does not make a sufficient summary
(e.g. “The summary was not helpful @ all be-
cause it’s just cut from the transcript”, “All copy
and paste not a summary”, “Not very clear sum-
mary - looked like the transcript”, and “No ef-
fort was made in the summary to put things into
context”). Interestingly, several participants criti-

cized the extracts for not containing the most im-
portant sentences from the transcript despite these
being human-selected extracts, demonstrating that
a good summary is a subjective matter.

The comments on human abstracts (AH) were
generally very positive, e.g. “easy to follow”, “it
was good, clear”, and “I could’ve just read the
summary and still understood the bulk of the meet-
ing’s content.” The most frequent negative criti-
cisms were that the abstract sentences sometimes
contained too many links to the transcript (“mas-
sive amount of links look daunting”), and that the
summaries were sometimes too vague (“perhaps
some points from the discussion can be included,
instead of just having topic outlines”, “[want] spe-
cific details”). It is interesting to observe that this
latter criticism is shared between human abstracts
and our automatic abstracts. When generalizing
over the source document, details are sometimes
sacrificed.

7 Conclusion

We have presented a system for automatically gen-
erating abstracts of meeting conversations. This
summarizer relies on first mapping sentences to
a conversation ontology representing phenomena
such as decisions, action items and sentiment, then
identifying message patterns that abstract over
multiple sentences. We select the most informa-
tive messages through an ILP optimization ap-
proach, aggregate messages, and finally generate
text describing all of the selected messages. A
formative user study shows that, overall, our auto-
matic abstractive summaries rate very well in com-
parison with human extracts, particularly regard-
ing readability, coherence and usefulness. The
automatic abstracts are also significantly better in
terms of containing all of the relevant information
(Q6), and it is impressive that an automatic ab-
stractor substantially outperforms human-selected
content on such a metric. In future work we aim
to bridge the performance gap between automatic
and human abstracts by identifying more specific
messages and reducing redundancy in the sentence
mapping. We plan to improve the NLG output by
introducing more linguistic variety and better text
structuring. We are also investigating the impact
of ASR transcripts on abstracts and extracts, with
encouraging early results.
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Abstract

The generation of referring expressions
(GRE), an important subtask of Natural
Language Generation (NLG) is to gener-
ate phrases that uniquely identify domain
entities. Until recently, many GRE algo-
rithms were developed using only simple
formalisms, which were taylor made for
the task. Following the fast development
of ontology-based systems, reinterpreta-
tions of GRE in terms of description logic
(DL) have recently started to be studied.
However, the expressive power of these
DL-based algorithms is still limited, not
exceeding that of older GRE approaches.
In this paper, we propose a DL-based ap-
proach to GRE that exploits the full power
of OWL2. Unlike existing approaches, the
potential of reasoning in GRE is explored.

1 GRE and KR: the story so far

Generation of Referring Expressions (GRE) is the
subtask of Natural Language Generation (NLG)
that focuses on identifying objects in natural lan-
guage. For example, Fig.1 depicts the relations
between several women, dogs and cats. In such
a scenario, a GRE algorithm might identify d1 as
“the dog that loves a cat”, singling out d1 from
the five other objects in the domain. Reference
has long been a key issue in theoretical linguis-
tics and psycholinguistics, and GRE is a crucial
component of almost every practical NLG sys-
tem. In the years following seminal publications
such as (Dale and Reiter, 1995), GRE has be-
come one of the most intensively studied areas of
NLG, with links to many other areas of Cogni-
tive Science. After plan-based contributions (e.g.,
(Appelt, 1985)), recent work increasingly stresses
the human-likeness of the expressions generated
in simple situations, culminating in two evalua-

tion campaigns in which dozens of GRE algo-
rithms were compared to human-generated ex-
pressions (Belz and Gatt, 2008; Gatt et al., 2009).

Figure 1: An example in which edges from women
to dogs denote feed relations, from dogs to cats
denote love relations.

Traditional GRE algorithms are usually based
on very elementary, custom-made, forms of
Knowledge Representation (KR), which allow
little else than atomic facts (with negation of
atomic facts left implicit), often using a simple
〈Attribute : V alue〉 format, e.g 〈Type : Dog〉.
This is justifiable as long as the properties ex-
pressed by these algorithms are simple one-place
predicates (e.g., being a dog), but when logically
more complex descriptions are involved, the po-
tential advantages of “serious” KR become over-
whelming. (This point will become clearer in later
sections.) This realisation is now motivating a
modest new line of research which stresses logi-
cal and computational issues, asking what proper-
ties a KR framework needs to make it suitable to
generate all the referring expressions that people
can produce (and to generate them in reasonable
time). In this new line of work, which is proceed-
ing in tandem with the more empirically oriented
work mentioned above, issues of human-likeness
are temporarily put on the backburner. These and
other empirical issues will be brought to bear once
it is better understood what types of KR system are
best suitable for GRE, and what is the best way to
pursue GRE in them.
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A few proposals have started to combine GRE
with KR. Following on from work based on la-
belled directed graphs (cf. (Krahmer et al., 2003))
– a well-understood mathematical formalism that
offers no reasoning support – (Croitoru and van
Deemter, 2007) analysed GRE as a projection
problem in Conceptual Graphs. More recently,
(Areces et al., 2008) analysed GRE as a problem in
Description Logic (DL), a formalism which, like
Conceptual Graphs, is specifically designed for
representing and reasoning with potentially com-
plex information. The idea is to produce a for-
mula such as Dog u ∃love.Cat (the set of dogs
intersected with the set of objects that love at least
one cat); this is, of course, a successful reference
if there exists exactly one dog who loves at least
one cat. This approach forms the starting point for
the present paper, which aims to show that when a
principled, logic based approach is chosen, it be-
comes possible to refer to objects which no exist-
ing approach to GRE (including that of Areces et
al.) has been able to refer to. To do this, we de-
viate substantially from these earlier approaches.
For example, while Areces et al. use one finite in-
terpretation for model checking, we consider arbi-
trary (possibly infinite) interpretations, hence rea-
soning support becomes necessary.

We shall follow many researchers in focussing
on the semantic core of the GRE problem: we
shall generate descriptions of semantic content,
leaving the decision of what words to use for ex-
pressing this content (e.g., ‘the ancient dog’, or
‘the dog which is old’) to later stages in the NLG
pipeline. Furthermore, we assume that all domain
objects are equally salient (Krahmer and Theune,
2002). As explained above, we do not consider
here the important matter of the naturalness or ef-
ficacy of the descriptions generated. We shall be
content producing uniquely referring expressions
whenever such expressions are possible, leaving
the choice of the optimal referring expression in
each given situation for later.

In what follows, we start by explaining how DL
has been applied in GRE before (Sec. 2) , point-
ing out the limitations of existing work. In Sec.3
we discuss which kinds of additional expressivity
are required and how they can be achieved through
modern DL. In Sec.4 we present a generic algo-
rithm to compute these expressive REs. Sec.5
concludes the paper by comparing its aims and
achievements with current practise in GRE.

2 DL for GRE

2.1 Description Logics
Description Logic (DLs) come in different
flavours, based on decidable fragments of first-
order logic. A DL-based KB represents the
domain with descriptions of concepts, relations,
and their instances. DLs underpin the Web On-
tology Language (OWL), whose latest version,
OWL2 (Motik et al., 2008), is based on DL
SROIQ (Horrocks et al., 2006).

An SROIQ ontology Σ usually consists of a
TBox T and an ABox A. T contains a set of con-
cept inclusion axioms of the formC v D, relation
inclusion axioms such as R v S (the relation R is
contained in the relation S), R1 ◦ . . . ◦ Rn v S,
and possibly more complex information, such as
the fact that a particular relation is functional, or
symmetric; A contains axioms about individuals,
e.g. a : C (a is an instance of C), (a, b) : R (a has
an R relation with b).

Given a set of atomic concepts, the entire set
of concepts expressible by SROIQ is defined re-
cursively. First, all atomic concepts are concepts.
Furthermore, if C and D are concepts, then so are
> | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C | ≤
nR.C | ≥ nR.C | ∃R.Self | {a1, . . . , an},
where > is the top concept, ⊥ the bottom con-
cept, n a non-negative integer number, ∃R.Self
the self-restriction ((i.e., the set of those x such
that (x, x) : R holds)), ai individual names and
R a relation which can either be an atomic rela-
tion or the inverse of another relation (R−). We
call a set of individual names {a1, . . . , an} a nom-
inal, and use CN , RN and IN to denote the set
of atomic concept names, relation names and indi-
vidual names, respectively.

An interpretation I is a pair 〈∆I , �I〉 where ∆I

is a non-empty set and �I is a function that maps
atomic concept A to AI ⊆ ∆I , atomic role r to
rI ⊆ ∆I × ∆I and individual a to aI ∈ ∆I .
The interpretation of complex concepts and ax-
ioms can be defined inductively based on their se-
mantics, e.g. (C uD)I = CI ∩DI , etc.
I is a model of Σ, written I |= Σ, iff all the ax-

ioms in Σ are satisfied in I. It should be noted
that one Σ can have multiple models. For ex-
ample when T = ∅,A = {a : A t B}, there
can be a model I1 s.t. ∆I1 = {a}, aI1 =
a,AI1 = {a}, BI1 = ∅, and another model I2

s.t. ∆I2 = {a}, aI2 = a,BI2 = {a}, AI2 = ∅.
In other words, the world is open. For details, see
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(Horrocks et al., 2006).

The possibly multiple models indicate that an
ontology is describing an open world. In GRE,
researchers usually impose a closed world. From
the DL point of view, people can (partially) close
the ontology with a DBox D (Seylan et al., 2009),
which is syntactically similar to the ABox, except
that D contains only atomic formulas. Further-
more, every concept or relation appearing in D
is closed. Its extension is exactly defined by the
contents of D, i.e. if D 6|= a : A then a : ¬A,
thus is the same in all the models. The concepts
and relations not appearing in D can still remain
open. DL reasoning can be exploited to infer
implicit information from ontologies. For exam-
ple, given T = {Dog v ∃feed−.Woman} (ev-
ery dog is fed by some woman) and A = {d1 :
Dog,w1 : Woman}, we know that there must be
some Woman who feeds d1. When the domain
is closed as D = A we can further infer that this
Woman is w1 although there is no explicit rela-
tion between w1 and d1. Note that the domain ∆I

in an interpretation ofD is not fixed, but it includes
all the DBox individuals.

However, closing ontologies by means of the
DBox can restrict the usage of implicit knowledge
(from T ). More precisely, the interpretations of
the concepts and relations appearing inD are fixed
therefore no implicit knowledge can be inferred.
To address this issue, we introduce the notion of
NBox to support Negation as Failure (NAF): Un-
der NAF, an ontology is a triple O = (T ,A,N ),
where T is a TBox, A an ABox and N is a subset
of CNorRN . We callN an NBox. NAF requires
that O satisfy the following conditions:

1. Let x ∈ IN and A ∈ N uCN . Then
(T ,A) 6|= x : A implies O |= x : ¬A.
2. Let x, y ∈ IN and r ∈ N u RN .
Then (T ,A) 6|= (x, y) : r implies O |=
(x, y) : ¬r.

Like the DBox approach, the NBox N defines
conditions in which “unknown” should be treated
as “failure”. But, instead of hard-coding this, it
specifies a vocabulary on which such treatment
should be applied. Different from the DBox ap-
proach, inferences on this NAF vocabulary is still
possible. An example of inferring implicit knowl-
edge with NAF will be shown in later sections.

2.2 Background Assumptions
When applying DL to GRE, people usually im-
pose the following assumptions.

• Individual names are not used in REs. For
example, “the Woman who feeds d1” would
be invalid, because d1 is a name. Names are
typically outlawed in GRE because, in many
applications, many objects do not have names
that readers/hearers would be familiar with.

• Closed World Assumption (CWA): GRE re-
searchers usually assume a closed world,
without defining what this means. As ex-
plained above, DL allows different interpre-
tations of the CWA. Our solution does not de-
pend on a specific definition of CWA. In what
follows, however, we use NAF to illustrate
our idea. Furthermore, the domain is usually
considered to be finite and consists of only
individuals appearing in A.

• Unique Name Assumption (UNA): Different
names denote different individuals. If, for
example, w1 and w2 may potentially be the
same woman, then we can not distinguish one
from the other.

We follow these assumptions when discussing ex-
isting works and presenting our approach. In ad-
dition, we consider the entire KB, including A,
T and N . It is also worth mentioning that, in
the syntax of SROIQ, negation of relations are
not allowed in concept expressions, e.g. you can-
not compose a concept ∃¬feed.Dog. However,
if feed ∈ N , then we can interpret (¬feed)I =
∆I ×∆I \ feedI . In the rest of the paper, we use
this as syntactic sugar.

2.3 Motivation: DL Reasoning and GRE
Every DL concept can be interpreted as a set. If
the KB allows one to prove that this set is a sin-
gleton then the concept is a referring expression.
It is this idea (Gardent and Striegnitz, 2007) that
(Areces et al., 2008) explored. In doing so, they
say little about the TBox, appearing to consider
only the ABox, which contains only axioms about
instances of atomic concepts and relations. For ex-
ample, the domain in Fig.1 can be described as

KB1: T1 = ∅, A1 = {w1 : Woman,
w2 : Woman, d1 : Dog, d2 : Dog,
c1 : Cat, c2 : Cat, (w1, d1) : feed,
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(w2, d1) : feed, (w2, d2) : feed,
(d1, c1) : love}

Assuming that this represents a Closed World,
Areces et al. propose an algorithm that is able
to generate descriptions by partitioning the do-
main.1 More precisely, the algorithm first finds
out which objects are describable through increas-
ingly large conjunctions of (possibly negated)
atomic concepts, then tries to extend these con-
junctions with complex concepts of the form
(¬)∃R1.Concept, then with concepts of the form
(¬)∃R2.(Concept u (¬)∃R1.Concept), and so
on. At each stage, only those concepts that have
been acceptable through earlier stages are used.
Consider, for instance, KB1 above. Regardless of
what the intended referent is, the algorithm starts
partitioning the domain stage by stage as follows.
Each stage makes use of all previous stages. Dur-
ing stage (3), e.g., the object w2 could only be
identified because d2 was identified in stage (2):

1. Dog = {d1, d2},
¬Dog uWoman = {w1, w2},
¬Dog u ¬Woman = {c1, c2}.

2. Dog u ∃love.(¬Dog u ¬Woman) = {d1},
Dogu¬∃love.(¬Dogu¬Woman) = {d2}.

3. (¬Dog u Woman) u ∃feed.(Dog u
¬∃love.(¬Dog u ¬Woman)) = {w2},
(¬Dog u Woman) u ¬∃feed.(Dog u
¬∃love.(¬Dog u ¬Woman)) = {w1}.

As before, we disregard the important question
of the quality of the descriptions generated, other
than whether they do or do not identify a given
referent uniquely. Other aspects of quality depend
in part on details, such as the question in which
order atomic concepts are combined during phase
(1), and analogously during later phases.

However this approach does not extend the ex-
pressive power of GRE. This is not because of
some specific lapse on the part of the authors: it
seems to have escaped the GRE community as a
whole that relations can enter REs in a variety of
alternative ways.

Furthermore, the above algorithm considers
only the ABox, therefore background information

1Areces et al. (Areces et al., 2008) consider several DL
fragments (e.g., ALC and EL). Which referring expressions
are expressible, in their framework, depends on which DL
fragment is chosen. Existential quantification, however, is
the only quantifier that was used, and inverse relations are
not considered.

will not be used. It follows that the domain al-
ways has a fixed single interpretation/model. Con-
sequently the algorithm essentially uses model-
checking, rather than full reasoning. We will
show that when background information is in-
volved, reasoning has to be taken into account.
For example, suppose we extend Fig.1 with back-
ground (i.e., TBox) knowledge saying that one
should always feed any animal loved by an ani-
mal whom one is feeding, while also adding a love
edge (Fig.2) between d2 and c2:

Figure 2: An extended example of Fig.1. Edges
from women to cats denote feed relations.
Dashed edges denote implicit relations.

If we close the domain with NAF, the ontology
can be described as follows:

KB2: T2 = {feed ◦ love v feed},
A2 = A1 ∪ {(d2, c2) : love}, N2 =
{Dog,Woman, feed, love}

The TBox axiom enables the inference of implicit
facts: the facts (w1, c2) : feed, (w2, c1) : feed,
and (w2, c2) : feed can be inferred using DL rea-
soning under the above NBox N2. Axioms of this
kind allow a much more natural, insightful and
concise representation of information than would
otherwise be possible.

Continuing to focus on the materialised KB2,
we note another limitation of existing works: if
only existential quantifiers are used then some ob-
jects are unidentifiable (i.e., it is not possible to
distinguish them uniquely). These objects would
become identifiable if other quantifiers and inverse
relations were allowed. For example,

• The cat which is fed by at least 2 women =
Catu ≥ 2feed−.Woman = {c1},

• The woman feeding only those fed by at
least 2 women = Woman u ∀feed. ≥
2.feed−.Woman = {w1},

• The woman who feeds all the dogs = {w2}.

It thus raises the question: which quantifiers
would it be natural to use in GRE, and how might
DL realise them?
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3 Beyond Existential Descriptions

In this section, we show how more expressive DLs
can make objects referable that were previously
unreferable. This will amount to a substantial re-
formulation which allows the approach based on
DL reasoning to move well beyond other GRE al-
gorithms in its expressive power.

3.1 Expressing Quantifiers in OWL2
Because the proposal in (Areces et al., 2008) uses
only existential quantification, it fails to identify
any individual in Fig.2. Before filling this gap,
we pause to ask what level of expressivity ought
to be achieved. In doing so, we make use of
a conceptual apparatus developed in an area of
formal semantics and mathematical logic known
as the theory of Generalized Quantifiers (GQ),
where quantifiers other than all and some are stud-
ied (Mostowski, 1957). The most general format
for REs that involves a relation R is, informally,
the N1 who R Q N2’s, where N1 and N2
denote sets, R denotes a relation, and Q a gener-
alized quantifier. (Thus for example the women
who feed SOME dogs.) An expression of this
form is a unique identifying expression if it corre-
sponds to exactly one domain element. Using a
set-theoretic notation, this means that the follow-
ing set has a cardinality of 1:

{y ∈ N1 : Qx ∈ N2 | Ryx}

where Q is a generalized quantifier. For example,
if Q is the existential quantifier, while N1 denotes
the set of women, N2 the set of dogs, and R the
relation of feeding, then this says that the number
of women who feed SOME dog is one. If Q is the
quantifier at least two, then it says that the num-
ber of women who feed at least two dogs is one.
It will be convenient to write the formula above
in the standard GQ format where quantifiers are
cast as relations between sets of domain objects
A,B. Using the universal quantifier as an exam-
ple, instead of writing ∀x ∈ A | x ∈ B, we write
∀(AB). Thus, the formula above is written

{y ∈ N1 : Q(N2{z : Ryz)}}.

Instantiating this as before, we get {y ∈Woman :
∃(Dog{z : Feed yz)}}, or “women who feed a
dog”, where Q is ∃, A = Dog and B = {z :
Feed yz} for some y.

Mathematically characterising the class of all
quantifiers that can be expressed in referring

expressions is a complex research programme
to which we do not intend to contribute here,
partly because this class includes quantifiers that
are computationally problematic; for example, a
quantifiers such as most (in the sense of more than
50%), which is not first-order expressible, as is
well known.

To make transparent which quantifiers are ex-
pressible in the logic that we are using, let us think
of quantifiers in terms of simple quantitative con-
straints on the sizes of the sets A∩B, A−B, and
B−A, as is often done in GQ theory, asking what
types of constraints can be expressed in referring
expressions based on SROIQ. The findings are
summarised in Tab.1. OWL2 can express any of
the following types of descriptions, plus disjunc-
tions and conjunctions of anything it can express.

Table 1: Expressing GQ in DL
QAB DL

1 ≥ nN2{z : Ryz} y :≥ nR.N2
2 ≥ nN2¬{z : Ryz} y :≥ n¬R.N2
3 ≥ n¬N2{z : Ryz} y :≥ nR.¬N2
4 ≥ n¬N2¬{z : Ryz} y :≥ n¬R.¬N2
5 ≤ nN2{z : Ryz} y :≤ nR.N2
6 ≤ nN2¬{z : Ryz} y :≤ n¬R.N2
7 ≤ n¬N2{z : Ryz} y :≤ nR.¬N2
8 ≤ n¬N2¬{z : Ryz} y :≤ n¬R.¬N2

When n = 1, for example, type 1 becomes
∃R.N2, i.e. the existential quantifier. When n = 0
type 7 becomes ∀R.N2, i.e. the quantifier only.
When n = 0 type 6 becomes ∀¬R.¬N2, i.e. the
quantifier all. In types 2, 4, 6 and 8, negation of
a relation is used. This is not directly supported
in SROIQ but, as we indicated earlier, given
R ∈ N , ¬R can be used in concepts.

Together, this allows the expression of a de-
scription such as “women who feed at least one
but at most 7 dogs”, by conjoining type 1 (with
n = 1) with type 5 (with n = 7). Using nega-
tion, it can say “women who do not feed all dogs
and who feed at least one non-dog” (Woman u
¬∀¬Feed.¬Dog u ∃Feed.¬Dog). In addition
to Tab.1, SROIQ can even represent reflexive
relation such as “the dog who loves itself” by
Dogu∃love.Self , which was regarded infeasible
in (Gardent and Striegnitz, 2007).

Comparing the quantifiers that become express-
ible through OWL2’s apparatus with classes of
quantifiers studied in the theory of GQ, it is clear
that OWL2 is highly expressive: it does not only
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include quantifiers expressible in the binary tree
of numbers, e.g. (van Benthem, 1986) – which is
generally regarded as highly general – but much
else besides. Even wider classes of referring ex-
pressions can certainly be conceived, but these are
not likely to have overwhelming practical utility in
today’s NLG applications.

4 Generating SROIQ-enabled REs

In this section, we present an algorithm that com-
putes the descriptions discussed in sect.3. A GRE
algorithm should have the following behaviour: if
an entity is distinguishable from all the others, the
algorithm should find a unique description; oth-
erwise, the algorithm should say there exists no
unique description. In this paper, we follow Are-
ces et al.’s strategy of generating REs for all ob-
jects simultaneously, but we apply it to a much
larger search space, because many more constructs
are taken into account.

4.1 GROWL: an algorithm for Generating
Referring expressions using OWL-2.

In this section we show how the ideas of pre-
vious sections can be implemented. To do this,
we sketch an algorithm scheme called GROWL.
GROWL applies a generate-and-test strategy that
composes increasingly complicated descriptions
and uses DL reasoning to test whether a de-
scription denotes a singleton w.r.t. the KB. To
avoid considering unnecessarily complicated de-
scriptions, the algorithm makes use of the (syntac-
tic) depth of a description, defined as follows:

Definition 1 (Depth) Given a description d, its
depth |d| is calculated as follows:

1. |d| = 1 for d := >|⊥|A|¬A, where A is
atomic.

2. |d u d′| = |d t d′| = max(|d|, |d′|) + 1.

3. |∃r.d| = |∀r.d| = | ≤ nr.d| = | ≥ nr.d| =
| = nr.d| = |d|+ 1.

Different descriptions can mean the same of
course, e.g. ¬∀R.A ≡ ∃R.¬A. We do not know
which syntactic variant should be used but focus,
for simplicity, on generating their unique negated
normal form (NNF). The NNF of a formula φ
can be obtained by pushing all the ¬ inward un-
til only before atomic concepts (including > and
⊥), atomic relations, nominals or self restrictions

(e.g. ∃r.Self ). Without loss of generality, in what
follows we assume all the formulas are in their
NNF. To avoid confusion, the NNF of negation
of a formula φ is denoted by ~φ instead of ¬φ.
For example ~(A t B) = ¬A u ¬B if A and B
are atomic. Obviously, ~(~A) = A, ~(~R) = R,
(R−)− = R, and (~R)− =~R−. The use of NNF
substantially reduces the redundancies generated
by the algorithm. For example, we won’t generate
both ¬∀R.A and ∃R.¬A but only the later.

Given an ontology Σ, we initialise GROWL
with the following sets:

1. The relation name set RN is the minimal set
satisfying:

• if R is an atomic relation in Σ, then R ∈
RN ;

• if R ∈ RN , then ~R ∈ RN ;
• if R ∈ RN , then R− ∈ RN ;

2. The concept name set CN is the minimal set
satisfying:

• > ∈ CN ;
• if A is an atomic concept in Σ, then A ∈
CN ;

• if R ∈ RN , then ∃R.Self ∈ CN ;
• if A ∈ CN , then ~A ∈ CN ;

3. The natural number set N contains
1, 2, . . . , n where n is the number of
individuals in Σ.

4. The construct set S contains all the con-
structs supported by a particular language.
For SROIQ, S = {¬,u,t,∃,∀,≤,≥,=}.
We assume here that nominals are disallowed
(cf. sect.2).

Algorithm GROWL:
Construct− description(Σ, CN,RN,N, S)
INPUT: Σ, CN,RN,N, S
OUTPUT: Description Queue D

1: D := ∅
2: for e ∈ CN do
3: D := Add(D, e)
4: for d = fetch(D) do
5: for each s ∈ S do
6: if s = u or s = t then
7: for each d′ ∈ D do
8: D := Add(D, d s d′)
9: if s = ∃ or s = ∀ then
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10: for each r ∈ RN do
11: D := Add(D, s r.d)
12: if s =≤ or s =≥ or s is = then
13: for each r ∈ RN , each k ∈ N do
14: D := Add(D, s k r.d)
15: return D

Algorithm ADD:Add(D, e)
INPUT: D, e
OUTPUT: (Extended) Description Queue D

1: for d ∈ D do
2: if |d| < |e| and d vΣ e then
3: return D
4: else if |d| = |e| and d vΣ e and e u ¬d is

satisfiable then
5: return D
6: if e is satisfiable in Σ then
7: D := D ∪ {e}
8: return D

GROWL takes an ontology Σ as its input and
output a queue D of descriptions by adding in-
creasingly complex concepts e to D, using the
function Add(D, e), which is implemented as the
algorithm ADD. Because of the centrality of ADD
we start by explaining how this function works.

In the simple algorithm we are proposing in this
paper – which represents only one amongst many
possibilities – addition is governed by the heuris-
tic that more complex descriptions should have
smaller extensions. To this end, a candidate de-
scription e is compared with each existing descrip-
tion d ∈ D. Step 2 ensures that if there exists a
simpler description d (|d| < |e|) whose extension
is no larger than e (d vΣ e), then e is not added
into D (because the role of e can be taken by the
simpler description d). Similarly, step 4 ensures
that if there exists d with same depth (|d| = |e|)
but smaller extension (d vΣ e and e u ¬d is satis-
fiable), then e should not be added into D. The
subsumption checking in Step 2 and 4, and the
instance retrieval in Step 6, must be realised by
DL reasoning, in which TBox, ABox and NBox
must all be taken into account. ADD guaran-
tees that when the complexity of descriptions in-
creases, their extensions are getting smaller.

We now turn to the main algorithm, GROWL. In
Step 1 of this algorithm,D is initialised to ∅. Steps
2 to 3 add all satisfiable elements of CN to D.
From Steps 4 to 14, we recursively “process” ele-

ments ofD one by one, by which we mean that the
constructors in S are employed to combine these
elements with other elements of D (e.g., an ele-
ment is intersected with all other elements, and so
on). We use fetch(D) to retrieve the first unpro-
cessed element of D. New elements are added to
the end of D. Thus D is a first-come-first-served
queue (note that processed elements are not re-
moved from D).

To see in more detail how elements of D are
processed, consider Steps 5-14 once again. For
each element d of D, Step 5 uses a construct s to
extend it:

1. If s is u or t, in Step 7 and 8, we extend d
with each element ofD and add new descrip-
tions to D.

2. If s is ∃ or ∀, in Step 10 and 11, we extend
d with all relations of RN and add new de-
scriptions to D. In Areces et el.’s work, ∀ is
also available when using ¬ and ∃ together,
however due to their algorithm they can never
generates descriptions like ∀r.A.

3. If s is ≤,≥ or =, in Step 13 and 14, we ex-
tend d with all relations in RN and all num-
bers in N , and add new descriptions to D.

Because the = construct can be equivalently
substituted by the combination of≤,≥ and u
constructs (= kr.d is semantically equivalent
to ≥ kr.du ≤ kr.d), it is a modelling choice
to use either ≤,≥, or only =, or all of them.
In this algorithm we use them all.

Because we compute only the NNF and we
disallow the use of individual identifiers, nega-
tion ¬ appears only in front of atomic concept
names. For this reason, processing does not con-
sider s = ¬. Note that GROWL leaves some
important issues open. In particular, the or-
der in which constructs, relations, integers and
conjuncts/disjuncts are chosen is left unspecified.
Note that D,RN,N, S are all assumed to be fi-
nite, hence Steps 5 to 14 terminate for a given
d ∈ D. Because Steps 5 to 14 generate descrip-
tions whose depth increases with one constructor
at a time, there are finitely many d ∈ D such that
|d| = n (for a given n).

GROWL extends the algorithm presented by
Areces et al. The example in Fig.2 shows that
many referring expressions generated by our algo-
rithm cannot be generated by our predecessors; in
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fact, some objects that are not referable for them
are referable by GROWL. For example, if we ap-
ply the algorithm to the KB in Fig.2, a possible
solution is as follows:

1. {w1} = Womanu∃¬feed.Cat, the woman
that does not feed all cats.

2. {w2} =≤ 0¬feed.Cat , the woman that
feeds all cats.

3. {d1} = Dogu ≤ 0¬feed−.Woman, the
dog that is fed by all women.

4. {d2} = Dog u ∃¬feed−.Woman, the dog
that is not fed by all women.

5. {c1} = Catu ≤ 0¬feed−.Woman, the cat
that is fed by all women.

6. {c2} = Cat u ∃¬feed−.Woman, the cat
that is not fed by all women.

It is worth reiterating here that our algorithm fo-
cusses on finding uniquely referring expressions,
leaving aside which of all the possible ways in
which an object can be referred to is “best”. For
this reason, empirical validation of our algorithm
– a very sizable enterprise in itself, which should
probably be based on descriptions elicited by hu-
man speakers – is not yet in order.

4.2 Discussion

Let us revisit the basic assumptions of Sec.2.2, to
see what can be achieved if they are abandoned.

1. In natural language, people do using names,
e.g. “the husband of Marie Curie”. To allow
REs of this kind, we can extend our Algo-
rithm A-1 by including singleton classes such
as {Maria Curie} in CN .

2. Traditional GRE approaches have always as-
sumed a single model with complete knowl-
edge. Without this assumption, our approach
can still find interesting REs. For example,
if a man’s nationality is unknown, but he is
known to be the Chinese or Japanese, we can
refer to him/her as Chinese t Japanese.
However, models should be finite to guaran-
tee that N is finite.

3. Individuals with multiple names. DL im-
poses the UNA by explicitly asserting the

inequality of each two individuals. With-
out UNA, reasoning can still infer some re-
sults, e.g. {Woman uMan v ⊥, David :
Man,May : Woman} |= David 6= May.
Thus we can refer to David as “the man” if
the domain is closed.

5 Widening the remit of GRE

This paper has shown some of the benefits that
arise when the power of KR is brought to bear
on an important problem in NLG, namely the gen-
eration of referring expressions (GRE). We have
done this by using DL as a representation and
reasoning formalism, extending previous work in
GRE in two ways. First, we have extended GRE
by allowing the generation of REs that involve
quantifiers other than ∃. By relating our algo-
rithm to the theory of Generalised Quantifiers, we
were able to formally characterise the set of quan-
tifiers supported by our algorithm, making exact
how much expressive power we have gained. Sec-
ondly, we have demonstrated the benefits of im-
plicit knowledge through inferences that exploit
TBox-information, thereby allowing facts to be
represented more efficiently and elegantly, and al-
lowing GRE to tap into kinds of generic (as op-
posed to atomic) knowledge that it had so far left
aside, except for hints in (Gardent and Striegnitz,
2007) and in (Croitoru and van Deemter, 2007).
Thirdly, we have allowed GRE to utilise incom-
plete knowledge, as when we refer to someone as
“the man of Japanese or Chinese nationality”.

Current work on reference is overwhelmingly
characterised by an emphasis on empirical accu-
racy, often focussing on very simple referring ex-
pressions, which are constituted by conjunctions
of 1-place relations (as in “the grey poodle”), and
asking which of these conjunctions are most likely
to be used by human speakers (or which of these
would be most useful to a human hearer). The
present work stresses different concerns: we have
focussed on questions of expressive power, fo-
cussing on relatively complex descriptions, asking
what referring expressions are possible when re-
lations between domain objects are used. We be-
lieve that, at the present stage of work in GRE, it
is of crucial importance to gain insight into ques-
tions of this kind, since this will tell us what types
of reference are possible in principle. Once such
insight, we hope to explore how the newly gained
expressive power can be put to practical use.
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Abstract
We present a framework for reformulat-
ing sentences by applying transfer rules
on a typed dependency representation. We
specify a list of operations that the frame-
work needs to support and argue that
typed dependency structures are currently
the most suitable formalism for complex
lexico-syntactic paraphrasing. We demon-
strate our approach by reformulating sen-
tences expressing the discourse relation of
causation using four lexico-syntactic dis-
course markers – “cause” as a verb and
as a noun, “because” as a conjunction and
“because of” as a preposition.

1 Introduction

There are many reasons why a writer might want
to choose one formulation of a discourse relation
over another; for example, maintaining thread of
discourse, avoiding shifts in focus and issues of
salience and end weight. There are also reasons to
use different formulations for different audiences;
for example, to account for differences in reading
skills and domain knowledge. In recent work, Sid-
dharthan and Katsos (2010) demonstrated through
psycholinguistic experiments that domain experts
and lay readers show significant differences in
which formulations of causation they find accept-
able. They further showed that the most appropri-
ate formulation depends both on the domain ex-
pertise of the user and the propositional content
of the sentence, and that these preferences can
be learnt in a supervised machine learning frame-
work. That work, as does much of the related
comprehension and literacy literature, used man-
ually reformulated sentences. In this paper, we
present an approach to automate such complex re-
formulation. We consider the four lexico-syntactic
discourse markers for causation studied by Sid-
dharthan and Katsos (2010); consider 1a.–d. be-
low (from their corpus, but simplified to aid pre-
sentation):

(1) a. An incendiary device caused the explosion.
[A-CAUSE-B]

b. The explosion occurred because of an incen-
diary device. [B-BECAUSEOF-A]

c. The explosion occurred because there was an
incendiary device. [B-BECAUSE-A]

d. The cause of the explosion was an incendiary
device. [CAUSEOF-B-A]

These differ in terms of the lexico-syntactic prop-
erties of the discourse marker (shown in bold
font). Indeed the discourse markers here are verbs,
prepositions, conjunctions and nouns. As a conse-
quence, the propositional content is expressed ei-
ther as a clause or a noun phrase (“The explosion
occurred” vs “the explosion”, etc.). Additionally,
the order of presentation of propositional content
can be varied to give four more lexico-syntactic
paraphrases:

(1) e. The explosion was caused by an incendiary
device. [B-CAUSEBY-A]

f. Because of an incendiary device, the explo-
sion occurred. [BECAUSEOF-A-B]

g. Because there was an incendiary device, the
explosion occurred. [BECAUSE-A-B]

h. An incendiary device was the cause of the ex-
plosion. [A-CAUSEOF-B]

It is clear that some formulations of a given
propositional content can be more felicitous than
others; for example, 1e. seems preferable to 1g.
However, for different propositional content, other
formulations might be more felicitous. While dis-
course level choices based on information order-
ing play a role in choosing a formulation, Sid-
dharthan and Katsos (2010) demonstrate that some
de-contextualised information orderings within a
sentence are deemed unacceptable by some cate-
gories of readers. This has implications for text
regeneration tasks that try to reformulate texts for
different audiences; for instance, simplifying lan-
guage for low reading ages or summarising tech-
nical writing for lay readers. In short, considera-
tions of discourse coherence should not introduce
sentence-level unacceptability in regenerated text.

We focus on causal relations for many reasons.
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For the purpose of this paper, our main reason is
that the 8 formulations selected are different in-
formation orderings of 4 different lexico-syntactic
constructs. Thus, we explore a broad range of con-
structions and are confident that the framework we
develop covers the range of operations required for
text regeneration in general. Of less relevance to
this paper, but equally important to our broad goals
of reformulating technical writing for lay readers,
causal relations are pervasive in science writing
and are integral to how humans conceptualise the
world. We have a particular interest in scientific
writing – reformulating such texts for lay audi-
ences is a highly relevant task today and many
news agencies perform this service; e.g., Reuters
Health summarises medical literature for lay audi-
ences and BBC online has a Science/Nature sec-
tion that reports on science. These services rely
either on press releases by scientists and universi-
ties or on specialist scientific reporters, thus lim-
iting coverage of a growing volume of scientific
literature in a digital economy.

In Section 2, we relate our research to the exist-
ing linguistic and computational literature. Then
in Section 3, we compare three different linguistic
representations with respect to their suitability for
lexico-syntactic reformulation. We found typed
dependency structures to be the most promising
and present an evaluation in Section 4.

2 Related Work
2.1 Discourse Connectives and Comprehension
Previous work has shown that when texts have
been manually rewritten to make the language
more accessible (L’Allier, 1980), or to make the
content more transparent (Beck et al., 1991), stu-
dents’ reading comprehension shows significant
improvements. An example of a revision choice
that might be applied differentially depending on
the literacy skills of the reader involves connec-
tives such as because. Connectives that permit
pre-posed adverbial clauses have been found to
be difficult for third to fifth grade readers, even
when the order of mention coincides with the
causal (and temporal) order (Anderson and Davi-
son, 1988); this experimental result is consistent
with the observed order of emergence of connec-
tives in children’s narratives (Levy, 2003).

Thus the b) version of the following example
would be preferred for children who can grasp
causation, but who have not yet become comfort-
able with alternative clause orders (example from
Anderson and Davison (1988), p. 35):

(2) a. Because Mexico allowed slavery, many Amer-
icans and their slaves moved to Mexico during
that time.

b. Many Americans and their slaves moved to
Mexico during that time, because Mexico al-
lowed slavery.

Such studies show that comprehension can be
improved by reformulating text for readers with
low reading skills (Linderholm et al., 2000; Beck
et al., 1991) and for readers with low levels of do-
main expertise (Noordman and Vonk, 1992). Fur-
ther, specific information orderings were found to
be facilitatory by Anderson and Davison (1988).
All these studies suggest that the automatic lexico-
syntactic reformulation of causation can benefit
various categories of readers.

2.2 Connectives and Text (Re)Generation
Much of the work regarding (re)generation of text
based on discourse connectives aims to simplify
text in certain ways, to make it more accessible
to particular classes of readers. The PSET project
(Carroll et al., 1998) considered simplifying news
reports for aphasics. The PSET project focused
mainly on lexical simplification (replacing diffi-
cult words with easier ones), but there has been
work on syntactic simplification and, in particu-
lar, the way syntactic rewrites interact with dis-
course structure and text cohesion (Siddharthan,
2006). These were restricted to string substitution
and sentence splitting based on pattern matching
over chunked text. Our work aims to extend these
strands of research by allowing for more sophis-
ticated insertion, deletion and substitution oper-
ations that can involve substantial reorganisation
and modification of content within a sentence.

Elsewhere, there has been interest in paraphras-
ing, including the replacement of words (espe-
cially verbs) with their dictionary definitions (Kaji
et al., 2002) and the replacement of idiomatic or
otherwise troublesome expressions with simpler
ones. The emphasis has been on automatically
learning paraphrases from comparable or aligned
corpora (Barzilay and Lee, 2003; Ibrahim et al.,
2003). The text simplification and paraphrasing
literature does not address paraphrasing that re-
quires syntactic alterations such as those in Exam-
ple 1 or the question of appropriateness of differ-
ent formulations of a discourse relation.

Some natural language generation systems in-
corporate results from psycholinguistic studies to
make principled choices between alternative for-
mulations. For example, SkillSum (Williams and
Reiter, 2008) and ICONOCLAST (Power et al.,
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2003) are two contemporary generation systems
that allow for specifying aspects of style such as
choice of discourse marker, clause order, repeti-
tion and sentence and paragraph lengths in the
form of constraints that can be optimised. How-
ever, to date, these systems do not consider syn-
tactic reformulations of the type we are interested
in. Our research is directly relevant to such gen-
eration systems as it can help such systems make
decisions in a principled manner.

Williams et al. (2003) examined the impact of
discourse level choices on readability in the do-
main of reporting the results of literacy assessment
tests, using the results of the test to control both
the content and the realisation of the generated re-
port. Our research aims to facilitate the transfer of
such user-driven generation research to text regen-
eration areas.

2.3 Sentence Compression

Sentence compression is a research area that aims
to shorten sentences for the purpose of summaris-
ing the main content. There are similarities be-
tween our interest in reformulation and existing
work in sentence compression. Sentence com-
pression has usually been addressed in a gener-
ative framework, where transformation rules are
learnt from parsed corpora of sentences aligned
with manually compressed versions. The com-
pression rules learnt are therefore tree-tree trans-
formations (Knight and Marcu, 2000; Galley and
McKeown, 2007; Riezler et al., 2003) of some va-
riety. These approaches focus on deletion oper-
ations, mostly performed low down in the parse
tree to remove modifiers. Further they make as-
sumptions about isomorphism between the aligned
tree, which means they cannot be readily applied
to more complex reformulation operations such
as insertion and reordering that are essential to
perform reformulations such as those in Example
1. Cohn and Lapata (2009) provide an approach
based on Synchronous Tree Substitution Grammar
(STSG) that in principle can handle the range of
reformulation operations. However, given their fo-
cus on sentence compression, they restricted them-
selves to local transformations near the bottom of
the parse tree. In this paper, we explore whether
this framework could prove useful to more in-
volved reformulation tasks. Our experience (see
Section 3.2) suggests that parse trees are the wrong
representation for learning complex transforma-
tion rules and that dependency structures are more
suited for complex lexico-syntactic reformulation.

3 Regeneration using Transfer Rules

We experimented with three representations –
phrasal parse trees, typed dependencies and Min-
imal Recursion Semantics (MRS). In this section,
we first describe our data, and then report our ex-
perience with performing text reformulation using
these representations.

3.1 Data
We use the corpus described in Siddharthan and
Katsos (2010). This corpus contains examples of
complex lexico-syntactic reformulations such as
those in Example 1a–f; each example consists of
8 formulations, 7 of which are manual reformu-
lations. The corpus contains 144 such examples
from three genres, giving 1152 sentences in to-
tal. The manual reformulation is formulaic and
Example 1 is indicative of the process. To make
a clause out of a noun phrase, either the copula or
the verb “occur” is introduced, based on a subjec-
tive judgement of whether this is an event or a con-
tinuous phenomenon. Conversely, to create a noun
phrase from a clause, a possessive and gerund are
used; for example (from Siddharthan and Katsos
(2010)):

(3) a. Irwin had triumphed because he was so good
a man.

b. The cause of Irwin’s having triumphed was his
being so good a man.

The corpus contains equal numbers of sentences
from three different genres: PubMed Abstracts1

(technical writing from the Biomedical domain),
and articles from the British National Corpus2

tagged as World News or Natural Science (popular
science writing in the mainstream media).

3.2 Reformulation using Phrasal Parse Trees
As described above, we have access to a cor-
pus that contains aligned sentences for each pair
of types (a type is a combination of a discourse
marker and an information order; thus we have 8
types). In principle it should be easy to learn trans-
fer rules between parse trees of aligned sentences.
Figure 1 shows parse trees ( using the RASP parser
(Briscoe et al., 2006)) for the active and the pas-
sive voice with “cause” as a verb. A transfer rule
is derived by aligning nodes between two parse
trees so that the rule only contains the differences
in structure between the trees. In the represen-
tation in Figure 1, the variable ??X0[NP] maps

1PubMed URL: http://www.ncbi.nlm.nih.gov/pubmed/
2The British National Corpus, version 3 (BNC XML Edi-

tion). 2007. http://www.natcorp.ox.ac.uk
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The explosion was caused by an incendiary device.
(S

(NP (AT The) (NN1 explosion))
(VP (VBDZ be+ed)

(VP (VVN cause+ed)
(PP (II by)

(NP (AT1 an) (JJ incendiary) (NN1 device))))))

An incendiary device caused the explosion.
(S

(NP (AT1 An) (JJ incendiary) (NN1 device))
(VP (VVD cause+ed)

(NP (AT the) (NN1 explosion))))

Derived Rule:
(S

(??X0[NP])
(VP (VBZ be+s)

(VP(VVN cause+ed) (PP(II by+) (??X1[NP])))))

↓
(S

(??X1[NP])
(VP (VVZ cause+s) (??X0[NP])))

Figure 1: Example of a transfer rule derived from
two parse trees.

onto any node (subtree) with label NP. RASP per-
forms a morphological analysis of words (shown
as lemma+suffix in the figure). Thus such rules
can be used to account for changes in morphology,
as in example 3a.–b. above.

In practise however, the parse tree representa-
tion is too dependent on the grammar rules em-
ployed by the parser. For instance, the parse tree
for the sentence:

The explosion was presumed to be caused by an
incendiary device.
(S

(NP (AT The) (NN1 explosion))
(VP (VBDZ be+ed)

(VP (VVN presume+ed)
(VP (TO to)

(VP (VB0 be)
(VP (VVN cause+ed)

(PP (II by) (NP (AT1 an)
(JJ incendiary) (NN1 device)))))))))

looks very different and does not match the rule
in figure 1. With longer sentences, further prob-
lems arise when similar strings are parsed differ-
ently in the two aligned sentences (for example,
different PP attachment) – these lead to very com-
plicated rules, often with more than 20 variables.
We split our data into development/training (96 in-
stances of passive to active) and test sets (48 in-
stances of passive). Using the top parse for each
sentence, we derived 92 rules, including the one
shown in Figure 1. However, coverage of these
rules over the test corpus was poor (less than 10%
recall). By learning rules using the top 20 parses
for each sentence rather than just the top parse,

we could improve coverage to around 70%, but
this involved the acquisition of over 4000 differ-
ent rules – just to change voice. The situation was
even worse for reformulations that change syntac-
tic categories, such as “because” to “cause”, and
we obtained more than 20,000 rules that still gave
us a coverage of only around 15% for the test set.

We concluded that this was not a sensible rep-
resentation for general text reformulation. In other
words, while substitution grammars for parse trees
have been shown to be useful for sentence com-
pression tasks (e.g., Cohn and Lapata (2009)), they
are less useful for more complex lexico-syntactic
reformulation tasks.

3.3 Reformulation using MRS
Another option is to use a bi-directional grammar
and perform the transforms at a semantic level. We
now briefly discuss the use of Minimal Recursion
Semantics (MRS) as a representation for transfer
rules. Consider a very short example for ease of
illustration:

Tom ate because of his hunger.

This can be analysed by a deep grammar to give
a compositional semantic representation which
captures the information that is available from the
syntax and inflectional morphology. We show this
sentence below in the Minimal Recursion Seman-
tics (MRS) (Copestake et al., 2005) representation,
as produced by the English Resource Grammar
(ERG3) (Flickinger, 2000), but considerably sim-
plified for ease of exposition and to save space:
named(x5,Tom), _eat_v_1(e2,x5),
_because_of(e2,x11), poss(x11,x16),
pron(x16), _hunger_n(x11)

The main part of the MRS structure is a
list of elementary predications (EPs), which
may have predicates derived from lexemes (e.g.,
_eat_v_1; these are indicated by the leading
underscore) or supplied by the grammar (e.g.,
poss). The ERG treats because of as a multiword
expression and assigns it a semantics comparable
to a preposition. Paraphrase rules map between se-
mantic representations; for our application, a pos-
sible rule is the following:
_because_of(e,x), P(e,y) <->

_cause_v_1(e10,x,y,l1), l1:P(e,y)

Here ‘P’ is to be understood as a general predi-
cate. The left hand side of the rule will match the
preposition-like ‘because of’ relation when it has
an event as an argument, where the event is the

3Available at http://www.delph-in.net.
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characteristic event of an underspecified verbal EP.
The right hand side indicates that the ‘because of’
can be substituted by a verbal relation correspond-
ing to cause, with the verbal EP being a scopal
argument. This rule matches the MRS above and
maps it to the following (with P=_eat_v_1):
named(x5,Tom), l1:_eat_v_1(e2,x5),
_cause_v_1(e10,x11,x5,l1), poss(x11,x16),
pron(x16), _hunger_n(x11), x5 aeq x16

This can be input to the realiser, giving:

His hunger caused Tom to eat.

Writing transfer rules is intuitive and easy in
MRS. Further, the use of a bi-directional grammar
for generation ensures that the generated sentence
is grammatical. An infrastructure of writing para-
phrase rules exists in this framework and semantic
transfer has also been explored for machine trans-
lation (e.g., Copestake et al. (1995)).

The problem we encountered, however, is that
bidirectional grammars such as the ERG fail to
parse ill-formed input and will also fail to anal-
yse some well-formed input because of limitations
in coverage of unusual constructions. Although
the DELPH-IN parsing technology allows for un-
known words, missing lexical items can also cause
parse failure and even more problems for gener-
ation. The ERG gives an acceptable parse ‘out
of the box’ for only around 50-60% of sentences
from scientific papers. Further, the generator can
get slow and memory intensive for long sentences
and many of our sentences are around 30 words
long. Much of this processing effort during gen-
eration is redundant as the input sentence can be
used to narrow down generation choices, but as of
now, the infrastructure does not exist to support
this. Thus, while using a bi-directional grammar
and semantic transfer might indeed be the most in-
tuitive approach to complex lexico-syntactic refor-
mulation, it is not quite feasible yet.

3.4 Reformulation using Typed Dependencies
Having had mixed success with transforming
phrasal parse trees and semantic representations,
we turned our attention to typed dependency struc-
tures. We used the RASP toolkit (Briscoe et al.,
2006) for finding grammatical relations (GRs) be-
tween words in the text. GRs are triplets con-
sisting of a relation-type and arguments and also
encode morphology (stem + suffix), word posi-
tion (after colon) and part-of-speech (after under-
score); GRs produced for the sentence:

The explosion was caused by an incendiary device.

are:
(|ncsubj| |cause+ed:4 VVN| |explosion:2 NN1| )
(|aux| |cause+ed:4 VVN| |be+ed:3 VBDZ|)
(|passive| |cause+ed:4 VVN|)
(|iobj| |cause+ed:4 VVN| |by:5 II|)
(|dobj| |by:5 II| |device:8 NN1|)
(|det| |device:8 NN1| |an:6 AT1|)
(|ncmod| |device:8 NN1| |incendiary:7 JJ|)
(|det| |explosion:2 NN1| |the:1 AT|)

This representation shares aspects of phrasal
parse trees and MRS. Note that the sets of de-
pendencies (such as those above) represent a tree.4

While phrase structure trees such as those in Sec-
tion 3.2 represent the nesting of constituents with
the actual words at the leaf nodes, dependency
trees have words at every node:

cause+ed:4
XXXXXX��
������

explosion:2

the:1

be+ed:3 by:5

device:8
b
bb

"
""

an:6 incendiary:7

To generate from a dependency tree, we need
to know the order in which to process nodes - in
general tree traversal will be “inorder”; i.e, left
subtrees will be processed before the root and
right subtrees after. These are generation deci-
sions that would usually be guided by the type
of dependency and statistical preferences for word
and phrase order. However, we can simply use the
word positions (1–8) from the original sentence.

While typed dependencies share characteris-
tics with parse trees, the flat structure repre-
sents dependencies between words, and we can
write transformation rules for this representation
in fairly compact form. For instance, a transfor-
mation rule to convert the above to active voice
would require five deletions and two insertions:

1. Match and Delete:
(a) (|passive| |??X0|)
(b) (|iobj| |??X0| |??X1(by II)|)
(c) (|dobj| |??X1| |??X2|)
(d) (|ncsubj| |??X0| |??X3| )
(e) (|aux| |??X0| |??X4|)

2. Insert:
(a) (|ncsubj| |??X0| |??X2| )
(b) (|dobj| |??X0| |??X3|)

4In fact, the GR scheme is only ‘almost’ acyclic. There
are a small number of (predictable) relations that introduce
cycles; for instance, dependencies between the head of a rel-
ative clause and the verb in the relative clause are represented
as both a clausal modifier relation (cmod head verb) and an
object relation (obj verb head). To resolve this, we use a fixed
set of rules to remove these cycles from the dependency graph
and ensure a tree structure.
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Thus far, the rule looks very similar to rules
written for MRS: one list of predicates is replaced
by another. Applying this transformation to the
GR set above creates a new dependency tree:

cause+ed:4
PPPP
����

device:8
b
bb

"
""

an:6 incendiary:7

explosion:2

the:1

However, unlike the case with MRS, where a
statistical generator decides issues of morphology
and ordering, we have to specify the consequences
of the rule application for generation. Note that
we can no longer rely on the original word or-
der to determine the order in which to traverse
the tree for generation. Thus our transformation
rules, in addition to Deletion and Insertion oper-
ations, also need to provide rules for tree traver-
sal order. These only need to be provided for
nodes where the transform has reordered subtrees
(“??X0”, which instantiates to “cause+ed:4” in the
trees). Our rule would thus include:

3. Traversal Order Specifications:

(a) Node ??X0: [??X2, ??X0, ??X3]

This states that for node ??X0, the traversal or-
der should be subtree ??X2 followed by current
node ??X0 followed by subtree ??X3. Using this
specification would allow us to traverse the tree
using the original word order for nodes with no
order specification, and the specified order where
a specification exist. In the above instance, this
would lead us to generate:

An incendiary device caused the explosion.

Our transfer rule is still incomplete and there
is one further issue that needs to be addressed –
operations to be performed on nodes rather than
relations. There are two node-level operations that
might be required for sentence reformulation:

1. Lexical substitution: In our example above,
we still need to ensure number agreement for the
verb “cause” (??X0). By changing voice, ??X0
now has to agree with ??X2 rather than ??X3. Fur-
ther the tense of ??X0 was encoded in the auxiliary
verb ??X4 that has been deleted from the GRs. We
thus need the transfer rule to encode the lexical
substitution required for node ??X0:

4. Lexical substitution:
(a) Node ??X0: IF (??X4 is Present Tense) THEN {

IF (??X2 is Plural) THEN {SET ??X0:SUFFIX
=“”} ELSE {SET ??X0:SUFFIX =“s”} }

Other lexical substitutions are easier to spec-
ify; for instance to reformulate “John ran be-
cause David shouted.” as “David’s shouting
caused John to run”, the following lexical substi-
tution rule is required for node ??Xn representing
“shout” that replaces its suffix “ed” with “ing”:

Lexical substitution: Node ??Xn: Suffix=“ing”

2. Node deletion: This is an operation that re-
moves a node from the tree. Any subtrees are
moved to the parent node. If a root node is deleted,
one of the children adopts the rest. By default, the
right-most child takes the rest as dependents, but
we allow the rule to specify the new parent. In
the above example, we want to remove the nodes
??X1(“by”) and ??X4 (“was”) (note that deleting
a relation does not necessarily remove a node –
there might be other nodes connected to ??X1 or
??X4). We would like to move these to the node
??X0 (“cause”):

5. Node Deletion:
(a) Node ??X1: Target=??X0
(b) Node ??X4: Target=??X0

Node deletion is easily implemented using
search and replace on sets of GRs. It is central
to reformulations that alter syntactic categories of
discourse markers; for instance, to reformulate
“The cause of X is Y” as “Y causes X”, we need
to delete the verb “is” and move its dependents to
the new verb “causes”.

To summarise, we propose a framework for
lexico-syntactic reformulation based on typed de-
pendency structures and have discussed the form
of a transformation. We now specify the structure
of transfer rules and tree nodes more formally.

Specification for Transfer Rules
Our proposal is based on applying transfer rules to
lists of grammatical relations (GRs). Our transfer
rules take the form of five lists:

1. CONTEXT: Transform only proceeds if this list of GRs
can be unified with the input GRs.

2. DELETE: List of GRs to delete from input.

3. INSERT: List of GRs to insert into input.

4. ORDERING: List of nodes with subtree order specified

5. NODE-OPERATIONS: List of lexical substitutions
and deletion operations on nodes.

For the reformulations in this paper, the CON-
TEXT and DELETE lists are one and the same, but
one can imagine reformulation tasks where extra
context needs to be specified to determine whether
reformulation is appropriate. The first three lists
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correspond to the CONTEXT, INPUT and OUT-
PUT lists used to specify transform in the MRS
framework. However, because we do not use a for-
mal grammar for generation, we need two further
lists that capture changes in morphology or con-
stituent ordering. The list ORDERING is used to
traverse the dependency tree constructed from the
transformed GRs. Again, the lexical substitution
lists are prescriptions for generation. We restrict
our lexical substitutions to change of suffix and
part of speech (for instance, “X is a frequent cause
of Y” to “X frequently causes Y”), but in general
this can be an arbitrary string substitution (for in-
stance, “X and Y are two causes of Z” to “X and
Y both cause Z”).

In this paper, we have tried to do away with a
generator altogether by encoding generation deci-
sions within the transfer rule. A case can be made,
particularly for the issue of agreement, for such
issues to be handled by a generator. This would
make the transfer rules simpler to write, and easier
to learn automatically in a supervised setting.

Specification for Dependency Tree
Applying a transfer rule specified above results in
a new set of GRs. To generate a sentence, we need
to create a dependency tree from these GRs. As
described earlier, a dependency tree needs to be
traversed “inorder” to generate a sentence. This
means that at each node, the order in which to
visit the daughters and the current node needs to
be specified. To enable this, we propose that each
node in the tree have the following features:

1. VALUE: stem, suffix and part-of-speech of the word;

2. PARENT: parent node;

3. CHILDREN: list of daughters;

4. ORDER: list specifying order in which to visit children
and current node.

The parent node is required for DELETE oper-
ations and to find the root of the tree (node with
no parent). Further, if there is more than one node
with no parent, the GRs do not form a tree and
generation will result in multiple fragments.

The dependency tree is constructed using the
following algorithm:

1. For each word in the list of GRs:
(a) Create a Node and instantiate the VALUE field.

2. For each GR (relation word1 word2):
(a) If GR is one that introduces a cycle, remove it

from list, else add the node created for word2 to
the CHILDREN list of node for word1 and set
PARENT of word 2 to word1.

3. After Step 2, the tree is created. Now for each Node:

(a) If an ORDERING specification is introduced for
this node by the transformation rule, copy that
list to the ORDER field, else add the daughter
nodes to the ORDER list in increasing order of
word position.

The reformulated sentence is generated by
traversing the tree “inorder”, outputting the word
at each node visited (the stem, suffix and part-
of-speech tag are fed to the RASP morphological
generator, which returns the correct word).

4 Evaluating Transformation Rules
In this paper we have proposed a framework for
complex lexico-syntactic reformulations. We want
to evaluate our framework for (a) how easy it is to
write transformation rules, (b) how many are re-
quired for intuitive lexico-syntactic reformulations
and (c) how robust the transformation is to parsing
errors. With this intended purpose, we evaluate
hand-written transformation rules that have been
developed looking at one third of the corpus (48
sentences) and tested on the remaining two thirds
(96 sentences). We report results using:

• Recall: The proportion of sentences in the test set for
which a transform was performed; i.e., (a) the DELETE
pattern matched the input GRs and (b) there was ex-
actly one root node in the transformed GRs resulting in
exactly one sentence being output

• Precision: The proportion of transformed sentence
that were accurate; i.e., grammatical with (a) cor-
rect verb agreement and inflexion and (b) modi-
fiers/complements appearing in acceptable orders.

Note that we are merely evaluating the frame-
work and not evaluating the utility of these trans-
formations for text simplification – that would re-
quire an evaluation using test subjects drawn from
our intended users. Table 1 provides some exam-
ples of accurate and inaccurate transformations.

The rule for converting passives to actives de-
scribed in Section 3.4 already achieves a recall
of 42% and precision of 83%. Writing 6 addi-
tional rules to handle reduced relative clauses (1a-
b, Table 1) etc., we could boost recall to 71% with
precision dropping marginally to 82%. We hand-
crafted rules to implement three other reformula-
tions. These were selected based on results from
the Siddharthan and Katsos (2010) study that sug-
gested:

1. cause as a noun (either information ordering), passive
voice, “because of” and “because a, b” formulations
(versions b,d,e,f,g and h in Example 1, Section 1) are
dispreferred by lay readers. Moreover, these are com-
mon constructs in scientific writing.

2. cause as a verb in active voice and “b because a” are
the most preferred formulations for lay readers.
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Accurate Transformations
1a. Apart from occasional problems of ensemble caused by the complex rhythms of the outer movements, the orchestra gave

an animated and committed reading of the work. [B-CAUSEBY-A→A-CAUSE-B]
b. Apart from occasional problems of ensemble the complex rhythms of the outer movements caused, the orchestra gave an

animated and committed reading of the work.
2a. Because of transvection, the expression of a gene can be sensitive to the proximity of a homolog.

[BEC-OF-A-B→A-CAUSE-B]
b. Transvection can cause the expression of a gene to be sensitive to the proximity of a homolog.

3a. Because each myosin is expressed in Drosophila indirect flight muscle, in the absence of other myosin isoforms, this
allows for muscle mechanical and whole organism locomotion assays. [BEC-A-B→B-BEC-A]

b. In the absence of other myosin isoforms, this allows for muscle mechanical and whole organism locomotion assays
because each myosin is expressed in Drosophila indirect flight muscle.

4a. Almost certainly, however, the underlying cause of the war was the problem of Aquitaine. [CAUSEOF-B-A→A-CAUSE-B]
b. Almost certainly, however, the underlying problem of Aquitaine caused the war.

Inaccurate Transformation
5a. Moreover, main road traffic has scarcely been slowed and concern should be caused by the rising number of cyclist

casualties. [B-CAUSEBY-A→A-CAUSE-B]
b. Moreover, the rising number of cyclist casualties should cause main road traffic has scarcely been slowed and concern.

6a. Because of the risk of injury and the need to kill prey quickly, predators usually predate animals smaller than themselves.
[BEC-OF-A-B→A-CAUSE-B]

b The risk of injury and the need cause kill to prey quickly predators usually predate animals smaller than themselves.

Table 1: Examples of automatic reformulations (version a. is the original and b. the reformulation).

Handcrafted rules n P R F
B-CAUSEBY-A→ A-CAUSE-B 7 .82 (1.00) .71 (.75) .76 (.86)
BEC-OF-A-B→ A-CAUSE-B 9 .75 (.92) .70 (1.00) .72 (.97)
BEC-A-B→ B-BEC-A 8 .85 (.92) .83 (.87) .84 (.89)
CAUSEOF→ A-CAUSE-B 6 .97 (.90) .78 (1.00) .86 (.95)

Table 2: Number of Rules (n), Precision, Recall
and F-Measure for lexico-syntactic reformulation
using hand-crafted rules over GRs. Numbers in
brackets are over the subset of the corpus that con-
tains only the original sentences from PubMed and
the BNC.

We summarise our results in Table 2. Most of
the sentences in the corpus are manual reformu-
lations and some of them are quite stilted. The
numbers in brackets show performance over the
smaller set of original sentences from PubMed and
the BNC. These are more indicative of how the
rules will perform on real data. Our results sug-
gests that the framework we propose is adequate
for a range of lexico-syntactic reformulations and
a fairly small number of rules is required to cap-
ture a reformulation.

Loss of recall was usually from parsing error
(either misparses, in which case our rules don’t
match the GRs, or partial parses, where a full tree
can’t be formed because of missing GRs).

Loss of precision was a more worrying issue as
it often resulted in badly corrupted output. This
was usually the result of either bad parser deci-
sions regarding attachment or scope or just mis-
parsing (e.g., wide scoping of “and” in 5a-b and
parsing “prey” as a verb in 6a-b, Table 1). It might
be possible to trade-off recall for improved preci-
sion by identifying sentences where ambiguity is
a problem (by looking at multiple parses).

5 Conclusions and Future Work
In this paper we have reported our experience with
using different linguistic formalisms as represen-
tations for applying transform rules to generate
complex lexico-syntactic reformulations of sen-
tences expressing the discourse relation of causa-
tion. We find typed dependency structures to be
the most suited for this task and report that hand-
crafted transformation rules generalise well to sen-
tences in an unseen test corpus. We believe that
the framework we have described is adequate for a
range of regeneration tasks focused on text simpli-
fication. While in this paper we focus on the dis-
course relation of causation, other discourse rela-
tions commonly used in scientific writing can also
be realised using markers with different lexico-
syntactic properties; for instance, contrast can be
expressed using markers such as “while”, “un-
like”, “but”, “compared to”, “in contrast to” and
“the difference between”. Our rules for voice con-
version and information reordering for subordina-
tion are already general enough to be applied to
non-causal constructs. We also plan to use our
framework to explore sentence simplification and
sentence shortening applications.

We would in the future like to learn transfor-
mations rules automatically from a corpus. Hand-
crafting can get tedious as there are 17 types of
grammatical relations to take into account in the
RASP scheme. Preliminary work by us in this re-
gard suggests that augmenting a few hand-crafted
rules with around a hundred automatically learnt
rules can increase recall substantially. However,
our learning framework as yet does not allow node
transformations, and more work is required here.
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Abstract

In the field of referring expression gener-
ation, while in the static domain both in-
trinsic and extrinsic evaluations have been
considered, extrinsic evaluation in the dy-
namic domain, such as in a situated col-
laborative dialog, has not been discussed
in depth. In a dynamic domain, a cru-
cial problem is that referring expressions
do not make sense without an appropriate
preceding dialog context. It is unrealistic
for an evaluation to simply show a human
evaluator the whole period from the be-
ginning of a dialog up to the time point
at which a referring expression is used.
Hence, to make evaluation feasible it is
indispensable to determine an appropriate
shorter context. In order to investigate the
context necessary to understand a referring
expression in a situated collaborative dia-
log, we carried out an experiment with 33
evaluators and a Japanese referring expres-
sion corpus. The results contribute to find-
ing the proper contexts for extrinsic evalu-
tion in dynamic domains.

1 Introduction

In recent years, the NLG community has paid sig-
nificant attention to the task of generating referring
expressions, reflected in the seting-up of several
competitive events such as the TUNA and GIVE-
Challenges at ENLG 2009 (Gatt et al., 2009; By-
ron et al., 2009).

With the development of increasingly complex
generation systems, there has been heightened in-
terest in and an ongoing significant discussion on
different evaluation measures for referring expres-
sions. This discussion is carried out broadly in the
field of generation, including in the multi-modal
domain, e.g. (Stent et al., 2005; Foster, 2008).
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Figure 1: Overview of recent work on evaluation
of referring expressions

Figure 1 shows a schematic overview of recent
work on evaluation of referring expressions along
the two axes of evaluation method and domain in
which referring expressions are used.

There are two different evaluation methods cor-
responding to the bottom and the top of the verti-
cal axis in Figure 1: intrinsic and extrinsic eval-
uations (Sparck Jones and Galliers, 1996). In-
trinsic methods often measure similarity between
the system output and the gold standard corpora
using metrics such as tree similarity, string-edit-
distance and BLEU (Papineni et al., 2002). Intrin-
sic methods have recently become popular in the
NLG community. In contrast, extrinsic methods
evaluate generated expressions based on an exter-
nal metric, such as its impact on human task per-
formance.

While intrinsic evaluations have been widely
used in NLG, e.g. (Reiter et al., 2005), (Cahill
and van Genabith, 2006) and the competitive 2009
TUNA-Challenge, there have been a number of
criticisms against this type of evaluation. (Reiter
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and Sripada, 2002) argue, for example, that gener-
ated text might be very different from a corpus but
still achieve the specific communicative goal.

An additional problem is that corpus-similarity
metrics measure how well a system reproduces
what speakers (or writers) do, while for most NLG
systems ultimately the most important considera-
tion is its effect on the human user (i.e. listener
or reader). Thus (Khan et al., 2009) argues that
“measuring human-likeness disregards effective-
ness of these expressions”.

Furthermore, as (Belz and Gatt, 2008) state
“there are no significant correlations between in-
trinsic and extrinsic evaluation measures”, con-
cluding that “similarity to human-produced refer-
ence texts is not necessarily indicative of quality
as measured by human task performance”.

From early on in the NLG community, task-
based extrinsic evaluations have been considered
as the most meaningful evaluation, especially
when having to convince people in other commu-
nities of the usefulness of a system (Reiter and
Belz, 2009). Task performance evaluation is rec-
ognized as the “only known way to measure the ef-
fectiveness of NLG systems with real users” (Re-
iter et al., 2003). Following this direction, the
GIVE-Challenges (Koller et al., 2009) at INLG
2010 (instruction generation) also include a task-
performance evaluation.

In contrast to the vertical axis of Figure 1, there
is the horizontal axis of the domain in which refer-
ring expressions are used. Referring expressions
can thus be distinguished according to whether
they are used in a static or a dynamic domain, cor-
responding to the left and right of the horizontal
axis of Figure 1. A static domain is one such as the
TUNA corpus (van Deemter, 2007), which col-
lects referring expressions based on a motionless
image. In contrast, a dynamic domain comprises a
constantly changing situation where humans need
context information to identify the referent of a re-
ferring expression.

Referring expressions in the static domain have
been evaluated relatively extensively. A recent ex-
ample of an intrinsic evaluation is (van der Sluis
et al., 2007), who employed the Dice-coefficient
measuring corpus-similarity. There have been a
number of extrinsic evaluations as well, such as
(Paraboni et al., 2006) and (Khan et al., 2009), re-
spectively measuring the effect of overspecifica-
tion on task performance and the impact of gener-

ated text on accuracy as well as processing speed.
They belong thus in the top-left quadrant of Fig-
ure 1.

Over a recent period, research in the generation
of referring expressions has moved to dynamic do-
mains such as situated dialog, e.g. (Jordan and
Walker, 2005) and (Stoia et al., 2006). However,
both of them carried out an intrinsic evaluation
measuring corpus-similarity or asking evaluators
to compare system output to expressions used by
human (the right bottom quadrant in Figure 1).

The construction of effective generation sys-
tems in the dynamic domain requires the imple-
mentation of an extrinsic task performance evalu-
ation. There has been work on extrinsic evalua-
tion of instructions in the dynamic domain on the
GIVE-2 challenge (Byron et al., 2009), which is a
task to generate instructions in a virtual world. It is
based on the GIVE-corpus (Gargett et al., 2010),
which is collected through keyboard interaction.
The evaluation measures used are e.g. the number
of successfully completed trials, completion time
as well as the numbers of instructions the system
sent to the user. As part of the JAST project, a
Joint Construction Task (JCT) puzzle construction
corpus (Foster et al., 2008) was created which is
similar in some ways in its set-up to the REX-
J corpus which we use in the current research.
There has been some work on evaluating gener-
ation strategies of instructions for a collaborative
construction task on this corpus, both considering
intrinsic as well as extrinsic measures (Foster et
al., 2009). Their main concern is, however, the in-
teraction between the text structure and usage of
referring expressions. Therefore, their “context”
was given a priori.

However, as can be seen from Figure 1, in the
field of referring expression generation, while in
the static domain both intrinsic and extrinsic eval-
uations have been considered, the question of re-
alizing an extrinsic evaluation in the dynamic do-
main has not been dealt with in depth by previous
work. This paper addresses this shortcoming of
previous work and contributes to “filling in” the
missing quadrant of Figure 1 (the top-right).

The realization of such an extrinsic evaluation
faces one key difficulty. In a static domain, an ex-
trinsic evaluation can be realized relatively easily
by showing evaluators the static context (e.g. any
image) and a referring expression, even though
this is still costly in comparison to intrinsic meth-

Sixth International Natural Language Generation Conference (INLG 2010)

136



ods (Belz and Gatt, 2008).
In contrast, an extrinsic evaluation in the dy-

namic domain needs to present an evaluator with
the dynamic context (e.g. a certain length of the
recorded dialog) preceding a referring expression.
It is clearly not feasible to simply show the whole
preceding dialog; this would make even a very
small-scale evaluation much too costly. Thus, in
order to realize a cost-effective extrinsic evalua-
tion in a dynamic domain we have to deal with the
additional parameter of time length and content of
the context shown to evaluators.

This paper investigates the context necessary for
humans to understand different types of referring
expressions in a situated domain. This work thus
charts new territory and contributes to developing
a extrinsic evaluation in a dynamic domain. Sig-
nificantly, we consider not only linguistic but also
extra-linguistic information as part of the context,
such as the actions that have been carried out in the
preceding interaction. Our results indicate that, at
least in this domain, extrinsic evaluation results
in dynamic domains can depend on the specific
amount of context shown to the evaluator. Based
on the results from our evaluation experiments, we
discuss the broader conclusions to be drawn and
directions for future work.

2 Referring Expressions in the REX-J
Corpus

We utilize the REX-J corpus, a Japanese corpus
of referring expressions in a situated collaborative
task (Spanger et al., 2009a). It was collected by
recording the interaction of a pair of dialog partic-
ipants solving the Tangram puzzle cooperatively.
The goal of the Tangram puzzle is to construct a
given shape by arranging seven pieces of simple
figures as shown in Figure 2

!"#$%&'#()
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Figure 2: Screenshot of the Tangram simulator

In order to record the precise position of every
piece and every action by the participants, we im-
plemented a simulator. The simulator displays two
areas: a goal shape area, and a working area where
pieces are shown and can be manipulated.

We assigned different roles to the two partici-
pants of a pair: solver and operator. The solver
can see the goal shape but cannot manipulate the
pieces and hence gives instructions to the opera-
tor; by contrast, the operator can manipulate the
pieces but can not see the goal shape. The two
participants collaboratively solve the puzzle shar-
ing the working area in Figure 2.

In contrast to other recent corpora of refer-
ring expressions in situated collaborative tasks
(e.g. COCONUT corpus (Di Eugenio et al., 2000)
and SCARE corpora (Byron et al., 2005)), in
the REX-J corpus we allowed comparatively large
real-world flexibility in the actions necessary to
achieve the task (such as flipping, turning and
moving of puzzle pieces at different degrees), rel-
ative to the task complexity. The REX-J corpus
thus allows us to investigate the interaction of lin-
guistic and extra-linguistic information. Interest-
ingly, the GIVE-2 challenge at INLG 2010 notes
its “main novelty” is allowing “continuous moves
rather than discrete steps as in GIVE-1”. Our work
is in line with the broader research trend in the
NLG community of trying to get away from sim-
ple “discrete” worlds to more realistic settings.

The REX-J corpus contains a total of 1,444 to-
kens of referring expressions in 24 dialogs with a
total time of about 4 hours and 17 minutes. The
average length of each dialog is 10 minutes 43
seconds. The asymmetric data-collection setting
encouraged referring expressions from the solver
(solver: 1,244 tokens, operator: 200 tokens). We
exclude from consideration 203 expressions refer-
ring to either groups of pieces or whose referent
cannot be determined due to ambiguity, thus leav-
ing us 1,241 expressions.

We identified syntactic/semantic features in the
collected referring expressions as listed in Table 1:
(a) demonstratives (adjectives and pronouns), (b)
object attribute-values, (c) spatial relations and (d)
actions on an object. The underlined part of the
examples denotes the feature in question.

3 Design of Evaluation Experiment

The aim of our experiment is to investigate the
“context” (content of the time span of the recorded
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Table 1: Syntactic and semantic features of refer-
ring expressions in the REX-J corpus

Feature Tokens Example
(a) demonstrative 742 ano migigawa no sankakkei

(that triangle at the right side)
(b) attribute 795 tittyai sankakkei

(the small triangle)
(c) spatial relations 147 hidari no okkii sankakkei

(the small triangle on the left)
(d) action-mentioning 85 migi ue ni doketa sankakkei

(the triangle you put away to
the top right)

interaction prior to the uttering of the referring ex-
pression) necessary to enable successful identifi-
cation of the referent of a referring expression.
Our method is to vary the context presented to
evaluators and then to study the impact on human
referent identification. In order to realize this, for
each instance of a referring expression, we vary
the length of the video shown to the evaluator.
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Figure 3: The interface presented to evaluators

The basic procedure of our evaluation experi-
ment is as follows:

(1) present human evaluators with speech and
video from a dialog that captures shared
working area of a certain length previous to

the uttering of a referring expression,
(2) stop the video and display as text the next

solver’s utterance including the referring ex-
pression (shown in red),

(3) ask the evaluator to identify the referent
of the presented referring expression (if the
evaluator wishes, he/she can replay the video
as many times as he likes),

(4) proceed to the next referring expression (go
to (1)).

Figure 3 shows a screenshot of the interface pre-
pared for this experiment.

The test data consists of three types of referring
expressions: DPs (demonstrative pronouns),
AMEs (action-mentioning expressions), and
OTHERs (any other expression that is neither a
DP nor AME, e.g intrinsic attributes and spatial
relations). DPs are the most frequent type of
referring expression in the corpus. AMEs are
expressions that utilize an action on the referent
such as “the triangle you put away to the top
right” (see Table 1)1. As we pointed out in our
previous paper (Spanger et al., 2009a), they are
also a fundamental type of referring expression in
this domain.

The basic question in investigating a suitable
context is what information to consider about the
preceding interaction; i.e. over what parameters to
vary the context. In previous work on the gener-
ation of demonstrative pronouns in a situated do-
main (Spanger et al., 2009b), we investigated the
role of linguistic and extra-linguistic information,
and found that time distance from the last action
(LA) on the referent as well as the last mention
(LM) to the referent had a significant influence on
the usage of referring expressions. Based on those
results, we focus on the information on the refer-
ent, namely LA and LM.

For both AMEs and OTHERs, we only consider
two possibilities of the order in which LM and LA
appear before a referring expression (REX), de-
pending on which comes first. These are shown in
Figure 4, context patterns (a) LA-LM and (b) LM-
LA. Towards the very beginning of a dialog, some
referring expressions have no LM and LA; those
expressions are not considered in this research.

All instances of AMEs and OTHERs in our test
data belong to either the LA-LM or the LM-LA

1An action on the referent is usually described by a verb
as in this example. However, there are cases with a verb el-
lipsis. While this would be difficult in English, it is natural
and grammatical in Japanese.
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Figure 4: Schematic overview of the three context
Patterns

pattern. For each of these two context patterns,
there are three possible contexts2: Both (including
both LA and LM), LA/LM (including either LA or
LM) and None (including neither). Depending on
the order of LA and LM prior to an expression,
only one of the variations of LA/LM is possible
(see Figure 4 (a) and (b)).

In contrast, DPs tend to be utilized in a deic-
tic way in such situated dialogs (Piwek, 2007).
We further noted in (Spanger et al., 2009b), that
DPs in a collaborative task are also frequently used
when the referent is under operation. While they
belong neither to the LA-LM nor the LM-LA pat-
tern, it would be inappropriate to exclude those
cases. Hence, for DPs we consider another situa-
tion where the last action on the referent overlaps
with the utterance of the DP (Figure 4 (c) LM-LA’
pattern). In this case, we consider an ongoing op-
eration on the referent as a “last action”. Another
peculiarity of the LM-LA’ pattern is that we have
no None context in this case, since there is no way
to show a video without showing LA (the current
operation).

Given the three basic variations of context, we
recruited 33 university students as evaluators and

2To be more precise, we set a margin at the beginning of
contexts as shown in Figure 4.

divided them equally into three groups, i.e. 11
evaluators per group. As for the referring ex-
pressions to evaluate, we selected 60 referring ex-
pressions used by the solver from the REX-J cor-
pus (20 from each category), ensuring all were
correctly understood by the operator during the
recorded dialog. We selected those 60 instances
from expressions where both LM and LA ap-
peared within the last 30 secs previous to the re-
ferring expression. This selection excludes initial
mentions, as well as expressions where only LA
or only LM exists or they do not appear within 30
secs. Hence the data utilized for this experiment
is limited in this sense. We need further experi-
ments to investigate the relation between the time
length of contexts and the accuarcy of evaluators.
We will return to this issue in the conclusion.

We combined 60 referring expressions and the
three contexts to make the test instances. Follow-
ing the Latin square design, we divided these test
instances into three groups, distributing each of
the three contexts for every referring expression
to each group. The number of contexts was uni-
formly distributed over the groups. Each instance
group was assigned to each evaluator group.

For each referring expression instance, we
record whether the evaluator was able to correctly
identify the referent, how long it took them to
identify it and whether they repeated the video
(and if so how many times).

Reflecting the distribution of the data available
in our corpus, the number of instances per context
pattern differs for each type of referring expres-
sion. For AMEs, overwhelmingly the last action
on the referent was more recent than the last men-
tion. Hence we have only two LA-LM patterns
among the 20 AMEs in our data. For OTHERs, the
balance is 8 to 12, with a slight majority of LM-
LA patterns. For DPs, there is a strong tendency to
use a DP when a piece is under operation (Spanger
et al., 2009b). Of the 20 DPs in the data, 2 were
LA-LM, 5 were LM-LA pattern while 13 were of
the LM-LA’ pattern (i.e. their referents were under
operation at the time of the utterance). For these
13 instances of LM-LA’ we do not have a None
context.

The average stimulus times, i.e. time period of
presented context, were 7.48 secs for None, 11.04
secs for LM/LA and 18.10 secs for Both.
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Table 2: Accuracy of referring expression identification per type and context

Type context pattern\Context None LM/LA Both Increase [None → Both]
(LA-LM) 0.909 0.955 0.955 0.046

DP (20/22) (21/22) (21/22)
(LM-LA) 0.455 0.783 0.843 0.388

(25/55) (155/198) (167/198)
Total 0.584 0.800 0.855 0.271

(LA-LM) 0.227 0.455 0.682 0.455
AME (5/22) (10/22) (15/22)

(LM-LA) 0.530 0.859 0.879 0.349
(105/198) (170/198) (174/198)

Total 0.500 0.818 0.859 0.359
(LA-LM) 0.784 0.852 0.943 0.159

OTHER (69/88) (75/88) (83/88)
(LM-LA) 0.765 0.788 0.879 0.114

(101/132) (104/132) (116/132)
Total 0.773 0.814 0.905 0.132
Overall 0.629 0.811 0.903 0.274

(325/517) (535/660) (576/638)

4 Results and Analysis

In this section we discuss the results of our evalua-
tion experiment. In total 33 evaluators participated
in our experiment, each solving 60 problems of
referent identification. Taking into account the ab-
sence of the None context for the DPs of the LM-
LA’ pattern (see (c) in Figure 4), we have 1,815
responses to analyze. We focus on the impact of
the three contexts on the three types of referring
expressions, considering the two context patterns
LA-MA and LM-LA.

4.1 Overview of Results

Table 2 shows the micro averages of the accura-
cies of referent identification of all evaluators over
different types of referring expressions with differ-
ent contexts. Accuracies increase with an increase
in the amount of information in the context; from
None to Both by between 13.2% (OTHERs) and
35.9% (AMEs). The average increase of accuracy
is 27.4%.

Overall, for AMEs the impact of the context is
the greatest, while for OTHERs it is the smallest.
This is not surprising given that OTHERs tend to
include intrinsic attributes of the piece and its spa-
tial relations, which are independent of the pre-
ceding context. We conducted ANOVA with the
context as the independent variable, testing its ef-
fect on identification accuracy. The main effect
of the context was significant on accuracy with
F (2, 1320) = 9.17, p < 0.01. Given that for
DPs we did not have an even distribution between
contexts, we only utilized the results of AMEs and

OTHERs.
There are differences between expression types

in terms of the impact of addition of LM/LA into
the context, which underlines that when studying
context, the relative role and contribution of LA
and LM (and their interaction) must be looked at in
detail for different types of referring expressions.

Over all referring expressions, the addition into
a None context of LM yields an average increase
in accuracy of 9.1% for all referring expression
types, while for the same conditions the addition
of LA yields an average increase of 21.3%. Hence,
interestingly for our test data, the addition of LA
to the context has a positive impact on accuracy by
more than two times over the addition of LM.

It is also notable that even with neither LA nor
LM present (i.e. the None context), the evaluators
were still able to correctly identify referents in be-
tween 50–68.6% (average: 62.9%) of the cases.
While this accuracy would be insufficient for the
evaluation of machine generated referring expres-
sions, it is still higher than one might expect and
further investigation of this case is necessary.

4.2 Demonstrative Pronouns

For DPs, there is a very clear difference between
the two patterns (LM-LA and LA-LM) in terms of
the increase of accuracy with a change of context.
While accuracy for the LA-LM pattern remains at
a high level (over 90%) for all three contexts (and
there is only a very small increase from None to
Both), for the LM-LA pattern there is a strong in-
crease from None to Both of 38.8%.

The difference in accuracy between the two
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context patterns of DPs in the None context might
come from the mouse cursor effect. The two ex-
pressions of LA-LM pattern happened to have a
mouse cursor on the referent, when they were
used, resulting in high accuracy. On the other
hand, 4 out of 5 expressions of LM-LA pattern did
not have a mouse cursor on the referent. We have
currently no explanation for the relation between
context patterns and the mouse position. While
we have only 7 expressions in the None context
for DPs and hence cannot draw any decisive con-
clusions, we note that the impact of the mouse po-
sition is a likely factor.

For the LM-LA pattern, there is an increase
in accuracy of 32.8% from None to the LA-
context. Overwhelmingly, this represents in-
stances in which the referents are being operated
at the point in time when the solver utters a DP
(this is in fact the LM-LA’ pattern, which has no
None context). For those instances, the current
operation information is sufficient to identify the
referents. In contrast, addition of LM leads only
to a small increase in accuracy of 5.6%. This re-
sult is in accordance with our previous work on the
generation of DPs, which stressed the importance
of extra-linguistic information in the framework of
considering the interaction between linguistic and
extra-linguistic information.

4.3 Action-mentioning Expressions

While for AMEs the number of instances is very
uneven between patterns (similar to the distribu-
tion for DPs), there is a strong increase in accuracy
from the None context to the Both context for both
patterns (between 30% to almost 50%). However,
there is a difference between the two patterns in
terms of the relative contribution of LM and LA to
this increase.

While for the LA-LM pattern the impact of
adding LM and LA is very similar, for the LM-LA
pattern the major increase in accuracy is due to
adding LA into the None context. This indicates
that for AMEs, LA has a stronger impact on ac-
curacy than LM, as is to be expected. The strong
increase for AMEs of the LM-LA pattern when
adding LA into the context is not surprising, given
that the evaluators were able to see the action men-
tioned in the AME.

For the opposite reason, it is not surprising that
AMEs show the lowest accuracy in the None con-
text, given that the last action on the referent is

not seen by the evaluators. However, accuracy
was still slightly over 50% in the LM-LA pattern.
Overall, of the 18 instances of AMEs of the LM-
LA pattern, in the None context a majority of eval-
uators correctly identified 9 and erred on the other
9. Further analysis of the difference between cor-
rectly and incorrectly identified AMEs led us to
note again the important role of the mouse cursor
also for AMEs.

Comparing to the LM-LA pattern, we had very
low accuracy even with the Both context. As we
mentioned in the previous section, we had very
skewed test instances for AME, i.e. 18 LM-LA
patterns vs. 2 LA-LM patterns. We need further
investigation on the LA-LM pattern of AME with
more large number of instances.

Of the 18 LM-LA instances of AMEs, there are
14 instances that mention a verb describing an ac-
tion on the referent. The referents of 6 of those
14 AMEs were correctly determined by the evalu-
ators and in all cases the mouse cursor played an
important role in enabling the evaluator to deter-
mine the referent. The evaluators seem to utilize
the mouse position at the time of the uttering of the
referring expression as well as mouse movements
in the video shown. In contrast, for 8 out of the
9 incorrectly determined AMEs no such informa-
tion from the mouse was available. There was a
very similar pattern for AMEs that did not include
a verb. These points indicate that movements and
the position of the mouse both during the video as
well as the time point of the uttering of the refer-
ring expression give important clues to evaluators.

4.4 Other Expressions

There is a relatively even gain in identification ac-
curacy from None to Both of between about 10–
15% for both patterns. However, there is a simi-
lar tendency as for AMEs, since there is a differ-
ence between the two patterns in terms of the rel-
ative contribution of LM and LA to this increase.
While for the LA-LM pattern the impact of adding
LM and LA is roughly equivalent, for the LM-LA
pattern the major increase in accuracy is due to
adding LM into the LA-context.

For this pattern of OTHERs, LM has a stronger
impact on accuracy than LA, which is exactly the
opposite tendency to AMEs. For OTHERs (e.g.
use of attributes for object identification), seeing
the last action on the target has a less positive im-
pact than listening to the last linguistic mention.
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Furthermore, we note the relatively high accuracy
in the None context for OTHERs, underlining the
context-independence of expressions utilizing at-
tributes and spatial relations of the pieces.

4.5 Error Analysis

We analyzed those instances whose referents were
not correctly identified by a majority of evalua-
tors in the Both context. Among the three expres-
sion types, there were about 13–16% of wrong an-
swers. In total for 7 of the 60 expressions a ma-
jority of evaluators gave wrong answers (4 DPs, 2
AMEs and 1 OTHER). Analysis of these instances
indicates that some improvements of our concep-
tion of “context” is needed.

For 3 out of the 4 DPs, the mouse was not over
the referent or was closer to another piece. In addi-
tion, these DPs included expressions that pointed
to the role of a piece in the overall construction of
the goal shape, e.g. “soitu ga atama (that is the
head)”, or where a DP is used as part of a more
complex referring expression, e.g. “sore to onazi
katati . . . (the same shape as this)”, intended to
identify a different piece. For a non-participant
of the task, such expressions might be difficult to
understand in any context. This phenomenon is
related to the “overhearer-effect” (Schober et al.,
1989).

The two AMEs that the majority of evaluators
failed to identify in the Both context were also
misidentified in the LA context. Both AMEs were
missing a verb describing an action on the referent.
While for AMEs including a verb the accuracy in-
creased from None to Both by 50%, for AMEs
without a verb there was an increase by slightly
over 30%, indicating that in the case where an
AME lacks a verb, the context has a smaller pos-
itive impact on accuracy than for AMEs that in-
clude a verb. In order to account for those cases,
further work is necessary, such as investigating
how to account for the information on the distrac-
tors.

5 Conclusions and Future Work

In order to address the task of designing a flexi-
ble experiment set-up with relatively low cost for
extrinsic evaluations of referring expressions, we
investigated the context that needs to be shown to
evaluators in order to correctly determine the ref-
erent of an expression.

The analysis of our results showed that the con-

text had a significant impact on referent identifi-
cation. The impact was strongest for AMEs and
DPs and less so for OTHERs. Interestingly, we
found for both DPs and AMEs that including LA
in the context had a stronger positive impact than
including LM. This emphasizes the importance of
taking into account extra-linguistic information in
a situated domain, as considered in this study.

Our analysis of those expressions whose refer-
ent was incorrectly identified in the Both context
indicated some directions for improving the “con-
text” used in our experiments, for example look-
ing further into AMEs without a verb describing
an action on the referent. Generally, there is a
necessity to account for mouse movements during
the video shown to evaluators as well as the prob-
lem for extrinsic evaluations of how to address the
“overhearer’s effect”.

While likely differing in the specifics of the set-
up, the methodology in the experiment design dis-
cussed in this paper is applicable to other domains,
in that it allows a low-cost flexible design of eval-
uating referring expressions in a dynamic domain.
In order to avoid the additional effort of analyzing
cases in relation to LM and LA, in the future it will
be desirable to simply set a certain time period and
base an evaluation on such a set-up.

However, we cannot simply assume that a
longer context would yield a higher identification
accuracy, given that evaluators in our set-up are
not actively participating in the interaction. Thus
there is a possibility that identification accuracy
actually decreases with longer video segments,
due to a loss of the evaluator’s concentration. Fur-
ther investigation of this question is indicated.

Based on the work reported in this paper, we
plan to implement an extrinsic task-performance
evaluation in the dynamic domain. Even with
the large potential cost-savings based on the re-
sults reported in this paper, extrinsic evaluations
will remain costly. Thus one important future task
for extrinsic evaluations will be to investigate the
correlation between extrinsic and intrinsic evalua-
tion metrics. This in turn will enable the use of
cost-effective intrinsic evaluations whose results
are strongly correlated to task-performance eval-
uations. This paper made an important contribu-
tion by pointing the direction for further research
in extrinsic evaluations in the dynamic domain.
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Abstract

This paper proposes a method for extract-
ing high-level rules for expository dialogue
generation. The rules are extracted from di-
alogues that have been authored by expert
dialogue writers. We examine the rules that
can be extracted by this method, focusing on
whether different dialogues and authors ex-
hibit different dialogue styles.

1 Introduction

In the past decade, a new area of Natural Language
Generation (NLG) has emerged: the automated gen-
eration of expository dialogue, also often referred to
as scripted, authored or fictive dialogue. Research in
this area began with the seminal study by André et
al. (2000), which explored generation of dialogues
between a virtual car buyer and seller from technical
data on a car. This strand of work was developed fur-
ther in the NECA project (van Deemter et al., 2008)
and has since been extended to other domains, in-
cluding explanation of medical histories (Williams
et al., 2007), patient information leaflets (Piwek et
al., 2007) and Wall Street Journal articles (Hernault
et al., 2008).

Systems for generating expository dialogue have
explored different inputs (databases, knowledge rep-
resentations and text), generation methods (e.g.,
rule versus constraint-based approaches) and out-
puts (from dialogue scripts in text form to audio and
computer-animated dialogue). A common trait of all
these systems is, however, that at some point in the
generation process, they produce a dialogue script, a

text file which specifies what the interlocutors say,
possibly enriched with mark-up for dialogue acts,
speech and gestures – see, e.g., Piwek et al. (2002).
These systems are different from conventional dia-
logue systems in that the system does not engage in
a dialogue with the user; rather, the system generates
a dialogue between two or more fictitious charac-
ters for the user/audience to view and learn from. In
other words, the dialogue is used to deliver informa-
tion to the user or audience, rather than between the
interlocutors. Piwek (2008) discusses several empir-
ical studies that identify benefits of the use of expos-
itory dialogue for education and persuasion.

In this paper, we take a step towards addressing
two shortcomings of the work so far. Firstly, all
the work cited has relied on hand-crafted resources
(typically rules) for creating the dialogue. With the
resources being created by non-expert dialogue au-
thors (e.g., academic researchers), generated dia-
logues based on these resources may not be optimal;
for instance, Williams et al. (2007) found that gener-
ated dialogues can be too information-dense, requir-
ing conversational padding. Secondly, the resources
for creating dialogue are tied to a specific domain,
making it hard to redeploy a system in new domains.

We propose to address the first issue by automat-
ically creating dialogue generation resources from a
corpus of dialogues written by known effective dia-
logue authors. This fits in with a trend in dialogue
modelling and generation to create resources from
empirical data (Oh and Rudnicky, 2002; DeVault et
al., 2008; Henderson et al., 2008; Belz and Kow,
2009).

The second issue is addressed by specifying di-
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alogue generation rules at a level of detail that ab-
stracts over the particulars of the domain and fits in
with existing NLG architectures. The reference ar-
chitecture of Reiter and Dale (2000) identifies three
principal NLG tasks: Document Planning (DP),
Microplanning and Realisation. DP is primarily
non-linguistic: it concerns selection of information
and organization of this information into a coherent
whole. The latter is achieved by making sure that
the information is tied together by Rhetorical Rela-
tions such as Contrast, Elaboration and Explanation,
in other words, it is part of a Rhetorical Structure.
We propose that dialogue generation rules interface
with Rhetorical Structure and map to a Sequence of
Dialogue Acts.

Interestingly, the interface between DP and Mi-
croplanning has also been identified as a place where
decisions and preferences regarding style take an ef-
fect (McDonald and Pustejovsky, 1985). A ques-
tion that we explore in this paper is whether dialogue
styles exist at the highly abstract level we focus on
in this paper. We concentrate on style in the sense of
‘[t]he manner of expression characteristic of a par-
ticular writer’1.

The remainder of this paper is set up as follows.
In Section 2, we introduce the corpus that we use to
extract dialogue generation resources. Section 3 ex-
amines the dialogues in the corpus for prima facie
evidence for stylistic differences between authors at
the dialogue level. In Section 4, we describe our ap-
proach to extracting high-level dialogue generation
rules from the corpus. Next, in Section 5 we anal-
yse the resulting rules, looking for further evidence
of different dialogue styles. We also compare the
rules that were harvested from our corpus with hand-
crafted rules in terms of content and variety. Finally,
Section 6 contains our conclusions and a discussion
of avenues for further research.

2 A Parallel Monologue-Dialogue Corpus

The current work makes use of a corpus of human-
authored dialogues, the CODA corpus.2 In total, this
corpus consist of about 800 dialogue turns. This

1From definition 13.a. of the Oxford English Dictionary at
http://dictionary.oed.com

2Further information on the construction of this cor-
pus can be found in the annotation manual at comput-
ing.open.ac.uk/coda/AnnotationManual.pdf.

paper is based on three dialogues from the cor-
pus: George Berkeley’s ‘Dialogues between Hylas
and Philonous’ (extract of 172 turns), Mark Twain’s
‘What is man?’ (extract of 445 turns) and Yuri Gure-
vich’s ‘Evolving Algebras’ (extract of 89 turns).
Berkeley’s dialogue is one of the classics of philoso-
phy, arguing for the, at first sight, extravagant claim
that ‘there is no such thing as material substance in
the world’. Twain, according to the Encyclopaedia
Britannica ‘one of America’s best and most beloved
writers’, takes on the concept of free will. Gure-
vich’s dialogue deals with the mathematical concept
of evolving algebras. Of these dialogues, Twain is
by a large margin the longest (over 800 turns in total)
and the only one which is aimed specifically at the
general public, rather than an academic/specialist
audience.

For each of the dialogues, the corpus also con-
tains human-authored monologue which expresses
the same content as the dialogue. Monologue and
dialogue are aligned through mappings from mono-
logue snippets to dialogue spans. As a result, the
CODA corpus is a parallel monologue-dialogue cor-
pus. Both the monologue and dialogue come with
annotations: the monologue with Rhetorical Struc-
ture Theory (RST) relations (Mann and Thompson,
1988; Carlson and Marcu, 2001) and the dialogue
side with an adaptation of existing Dialogue Act an-
notation schemes (Carletta et al., 1997; Core and
Allen, 1997). Table 2 contains an overview of these
RST relations and Dialogue Act labels.

3 Dialogue Analysis

In this section we examine whether there is prima
facie evidence for differences in style between the
three dialogues. Whereas existing work in NLG on
style has focused on lexical and syntactic choice,
see Reiter and Williams (2008), here we focus on
higher-level characteristics of the dialogues, in par-
ticular, proportion of turns with multiple dialogue
acts, frequencies of dialogue act bigrams, and rela-
tion between dialogue acts and speaker roles.

An important reason for determining whether
there are different styles involved, is that this has
implications for how we use the corpus to create
expository dialogue generation resources. If differ-
ent dialogues employ different styles, we need to be
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RST relations Dialogue Acts
Enablement, Cause, Evaluation (Subjective, Inferred),
Comment, Attribution, Condition-Hypothetical, Contrast,
Comparison, Summary, Manner-means, Topic-Comment
(Problem-Solution, Statement-Response, Question-
Answer, Rhetorical Question) Background, Temporal,
Elaboration/Explanation, (Additional, General-Specific,
Example, Object-attribute, Definition, Evidence, Reason),
Same-unit

Explain, Info-Request (Init-Factoid-
InfoReq, Init-YN-InfoReq, Init-
Complex-InfReq), Init-Request-
Clarify, Response-Answer (Resp-
Answer-Yes/No, and Resp-Answer-
Factoid), Resp-Agree, Resp-
Contradict

Table 1: RST relations and Dialogue Acts used in the CODA corpus. Annotators used the fine-grained
categories in italics that are listed in brackets. For the current study, we rely, however, on the higher-level
categories that preceed the fine-grained categories and which combine several of them.

careful with creating resources which combine data
from different dialogues. Merging such data, if any-
thing, may lead to the generation of dialogues which
exhibit features from several possibly incompatible
styles. Since our aim is specifically to generate dia-
logues that emulate the masters of dialogue author-
ing, it is then probably better to create resources
based on data from a single master or dialogue.

3.1 Multi-act Turns
One of the characteristics of dialogue is the pace
and the amount of information presented in each
of the speaker’s turns. In a fast-paced dialogue
turns are concise containing a single dialogue act.
Such dialogues of the form A:Init B:Response A:Init
B:Response ... are known as ‘pingpong’ dialogue.
Twain’s ‘What is man?’ dialogue starts in this fash-
ion (O.M. = Old Man; Y.M = Young Man):

O.M. What are the materials of
which a steam-engine is made?

Y.M. Iron, steel, brass, white-metal,
and so on.

O.M. Where are these found?
Y.M In the rocks.
O.M. In a pure state?
Y.M. No–in ores.

. . .

One character serves as the initiator and the other
replies with a response. With turns that contain more
than one dialogue, henceforth multi-act turns, this
pattern can be broken:

O.M. . . .
And you not only did not make that

Author Twain Gurevich Berkeley
Multi-act 34% 43% 24%
Layman/Expert 45%/55% 36%/64% 51%/49%

Table 2: Proportion of multi-act utterances and their
distribution between Layman and Expert

machinery yourself, but you have NOT
EVEN ANY COMMAND OVER IT.

Y.M. This is too much.
You think I could have formed no
opinion but that one?

O.M. Spontaneously? No. And . . .

Multi-act turns are turns comprised of multiple dia-
logue acts, such as the Young Man’s in the exam-
ple above, where a Resp-Contradict (‘This is too
much.’) is followed by an Init-YN-Request (‘You
think I could have formed no opinion but that one?’).

The dialogue pace may vary throughout a dia-
logue. We, however, find that overall proportions
of multi-act turns and their distribution between ex-
pert and layman vary between the authors (see Ta-
ble 2). Gurevich’s dialogue has the highest propor-
tion (43%) of multi-act turns and majority of them
are attributed to the expert. Only 24% of Berkeley’s
dialogue turns consist of multiple dialogue acts and
they are evenly split between the expert and the lay-
man. Gurevich’s dialogue is the type of dialogue
where an expert gives a lesson to a layman while
in Berkeley’s dialogue one character often comple-
ments ideas of the other character making it difficult
to determine which of the characters is an expert.
The amount of multi-act turns seems to be one of
the stylistic choices made by a dialogue author.
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3.2 Dialogue Diversity

Figure 1: Bigram coverage for the 1-st to 4th most
frequent bigrams.

Dialogues are essentially a sequence of turns,
where each turn consists of one or more dialogue
acts. For our measure of dialogue diversity we focus
on two-turn sequences (i.e., turn bigrams), where a
turn is identified by the sequence of dialogue acts it
contains.

We define bigram coverage for i as the percent-
age that the top i most frequent bigrams contribute
to all bigrams in the corpus. Diversity of the dia-
logue is inversely related to the dialogue coverage.
In a dialogue with minimal diversity, the same turn,
consisting of one or more dialogue acts, is repeated
throughout the dialogue. The turn bigram consisting
of two such turns has 100% bigram coverage.

Figure 1 shows the coverage for 1 ≤ i ≤ 4 for
each author in the corpus.3 Out of the three authors,
Twain’s dialogues are the most diverse where the top
4 bigrams constitute only 15% of all bigrams. In
Gurevich’s dialogues the four most frequent bigrams
constitute 25% and in Berkeley 40%.

Note that for all three authors the dialogue cov-
erage for the 4 most frequent bigrams is quite low
indicating high variability in bigrams used. To
achieve such variability in automatically generated
dialogues we need a large number of distinct gener-
ation rules.

3This range was chosen for illustration purposes. Bigram
coverage can be compared for any i ≤total number of distinct
bigrams.

3.3 Dialogue Acts and Speaker Roles
One of the most frequent bigrams for all three au-
thors was, not unexpectedly, the sequence:

A: InfoRequest
B: Response-Answer

There is, however, a difference in the roles of speak-
ers A and B. In all dialogues, one of the speakers
took on the expert role and the other the layman role.
For the aforementioned bigram, both in Berkeley’s
and Gurevich’s dialogues the layman typically ini-
tiates the request for information and the expert re-
sponds (and often goes on to explain the response in
Gurevich’s dialogue):

Q: Is it difficult to define basic
transition rules in full generality?

A: No. Here is the definition.
– Any local function update is a rule.
. . .

(From Gurevich’s dialogue)

In contrast, in Twain’s dialogues the roles are typ-
ically reversed: the expert asks and the layman re-
sponds:

O.M. Then the impulse which moves you
to submit to the tax is not ALL
compassion, charity, benevolence?

Y.M. Well–perhaps not.

Both techniques allow the author to convey a par-
ticular piece of information, but each giving rise its
very own dialogue style.

4 Approach to Rule Extraction

Comparing statistics for individual dialogues gives
us some idea about whether different styles are in-
volved. The true test for whether different styles are
involved is, however, whether for the same content
different realizations are generated. Unfortunately,
for our three dialogues the content is different to be-
gin with. The parallel corpus allows us, however, to
get around this problem. From the parallel corpus
we can extract rules which map RST structures to
dialogue act sequences. The Lefthand Side (LHS)
of a rule represents a particular rhetorical structure
found in the monologue side, whereas the Right-
hand Side (RHS) of the rule represents the dialogue
act sequence with which it is aligned in the corpus.
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Such rules can be compared between the different
dialogues: in particular, we can examine whether the
same LHS gives rise to similar or different RHSs.

4.1 Comparison with previous work

Hernault et al. (2008) manually construct surface-
level rules mapping monologue to dialogue.
Surface-level rules execute text-to-text conversion
operating directly on the input string. In our ap-
proach, we separate the conversion into two stages.
A first stage converts RST structures to Dialogue
Act sequences. A second stage, which is beyond
the scope of this paper, converts Dialogue Act se-
quences to text.

A further difference between the current approach
and Hernault et al.’s is that the LHS of our rules
can match nested RST structures. This covers, what
we call, simple rules (involving a single RST re-
lation, e.g., Contrast(X,Y)) and complex rules (in-
volving 2 or more nested RST relations, e.g., Con-
trast(Condition(X,Y),Z)). Hernault et al. only allow
for simple rules. A detailed comparison between our
approach and that of Hernault et al., using the attri-
bution rule as an example, can be found in Section
5.3.

id DA turns
0 Init-YN-

InfoReq
Is your mind a part of your PHYSI-
CAL equipment ?

0 Resp-
Answer-No

No.

1 Explain It is independent of it ; it is spiritual
2 Init-YN-

InfoReq
Being spiritual, it cannot be af-
fected by physical influences?

2 Resp-
Answer-No

No.

3 Init-YN-
InfoReq

Does the mind remain sober with
the body is drunk ?

- decorative Well–
3 Resp-

Answer-No
No.

Table 3: Example of annotated dialogue (from Mark
Twain’s ‘What is man?’).

4.2 Rule Extraction Algorithm

Table 3 and Figure 2 show annotated dialogue (au-
thored by Twain) and its annotated monologue trans-
lation. Each terminal node of the RST structure
corresponds to a part of a monologue snippet. All
nodes with the same id correspond to a complete

Condition

Attribution

id=2

Contrast

id=0

id=1

Being spiritual,

by phisical influences.

nuc

id=3
Let’s for a minute 
assume that

Explanation
it can not be affected

your mind is not part
id=0

of your physical equipment, it is spiritual.
that it is independent of it,

However, 
the mind    
does not
remain sober
when the body
is drunk.

nuc

nuc

Figure 2: RST structure for the translation of dia-
logue in Table 3

span rule
0-0 Attribution(0, 0)
0-1 Attribution( Explanation(0, 1))
2-3 Contrast(2, 3)
0-3 Condition (Attribution( Ex-

plain(0, 1)), Contrast(2, 3))

Table 4: RST sub-structures: LHS of monologue-to-
dialogue mapping rules

snippet and are linked to the dialogue act(s) with the
same ids. The relation between monologue snippets
and dialogue act segments is one-to-many. In other
words, one snippet (e.g. snippets with id=0, id=2)
can be expressed by multiple dialogue act segments.

Rules are extracted as follows: For each (auto-
matically extracted) sub-structure of the RST struc-
tures on the monologue side, a rule is created (see
Table 4). Two constraints restrict extraction of sub-
structures: 1) spans of the structure’s terminal nodes
must be consecutive and 2) none of the ids of the
terminal nodes are shared with a node outside the
sub-structure.

For example, Explanation(0, 1) is not extracted
because the node with id=0 appears also under the
Attribution relation which is not a part of this sub-
structure.

Additionally, rules are generated by removing a
relation and its satellite node and moving a nucleus
node one level up. Attribution(0, 0) was extracted
from a tree that had the Explanation relation and its
satellite child 1 pruned. This operation relies on the
validity of the following principle for RST (Marcu,
1997): ‘If a relation holds between two textual spans
of the tree structure of a text, that relation also holds
between the most important units of the constituent
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subspans.’
The RST sub-structure is the LHS of a rule and

dialogue act sequences are the RHS of a rule.

5 Results: Analysis of the Rules

In this section we describe the rules collected from
the corpus. We compare the rules collected from the
dialogues of different authors. We also compare the
rules constructed manually in previous work with
the rules collected from the corpus, specifically for
the attribution relation.

5.1 Rule Statistics

relation Twain Gurev Berk all
simple 31 (33) 29 (38) 25 (26) 81 (97)
complex 19 26 16 61 (61)
null 15 (22) 9 (18) 9 (27) 25 (67)
total 65 64 50 167
# turns 85 78 96 259

Table 5: Numbers of extracted distinct structural
rules (total occurrences are parenthesized)

relation Twain Gurevich Berkley
attribution 15% 2% 12%
contrast 18% 9% 17%
expl/elab 34% 47% 26%
eval 9% 6% 21%
other 24% 36% 24%
total 100% 100% 100%

Table 6: Proportions of relations expressed as rules

relation Twain Gurevich Berkley
overall 2.4 1.9 2.9
contrast 2.3 2 2.6
elab/expl 2.7 1.7 3.3
eval 2 2 2.5

Table 7: Average number of turns in simple rules

Simple rules are the rules with one RST relation in
the LHS. Complex rules are the rules with multiple
RST relations in the LHS. In Table 4, rules for the
LHS 0-0 and 2-3 are simple while the rules for 0-1

and 0-3 are complex. Null rules are the rules with no
RST relation in the LHS.

From our sample of 259 translated and annotated
dialogue turns from the corpus, we extracted 81 sim-
ple, 61 complex, and 25 null rules (null rules involve
no RST structure and are discussed below). Table 5
shows the number of distinct rules per author.4 In
parentheses we show the number of actual (not nec-
essarily distinct) rule occurrences in corpus. The
majority of simple rules in the corpus (65 out of 81)
occur only once.5 This shows that the dialogue au-
thors use a variety of dialogue act sequences when
presenting their arguments in dialogue.

To compare dialogue styles we compare the rules
across the dialogues of different authors. Table 6
shows the proportions of relation types in each au-
thor’s dialogues that are mapped to a dialogue struc-
ture and produce a mapping rule.6 Not all relations
in monologue are mapped to a dialogue structure.
For example, Explain moves may contain multiple
clauses that are presented by a single character in
the same turn. We find differences in distributions
of relation types mapped to dialogue between the
three authors (Fisher’s exact test p<.01). Berkeley’s
dialogues produce more mapping rules with Eval-
uation and less with Explanation/Elaboration rela-
tions than the other two authors. Gurevich’s di-
alogues produce less mapping rules with Attribu-
tion and Contrast relations than the other two au-
thors. This difference between distributions of re-
lation types mapped to dialogue has an important
implication for dialogue generation. Dialogue gen-
eration programs may vary the style of a dialogue
by choosing which discourse relations of the mono-
logue are mapped to dialogue turns.

Another relevant property of a rule is the number
of turns in the RHS of the rule. Number of turns in a
rule shows how many times the dialogue characters
switch to present information of the monologue cor-
responding to the LHS of the rule. The average num-
bers of turns in the RHS of all rules of the Twain,
Gurevich, and Berkeley dialogues are 2.4, 1.9, 2.9
respectively (see Table 7). They are all pairwise sig-
nificantly different (t-test p < .05) ranking the au-

4Two rules are distinct if either their LHS (relation in mono-
logue) or RHSs (sequence of dialogue acts) are different.

565=81-(97-81)
6This includes simple and complex rules
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thors in the order Gurevich < Twain < Berkeley
according to the number of turns in the RHS of the
rule. Similar ranking also appears as a trend for in-
dividual relations suggesting that this is the effect of
the author’s style rather than the relations (the dis-
tribution of relation types is different across the au-
thors). This suggests that dialogue generation may
affect the style of automatically generated dialogue
by selectively choosing rules with longer (or shorter)
RHS.

5.2 Null Rule
A null rule is a rule where a sequence of dialogue
turns between two characters corresponds with a text
segment with no rhetorical relation. A text segment
without a rhetorical relation corresponds to a leaf
node in the RST structure. A null rule typically cre-
ates a dialogue fragment consisting of a yes/no ques-
tion (Init-YN-Info-Req) followed by yes/no answer,
or a complex information request (e.g. What is your
opinion on X?) followed by an Explain dialogue act,
or a presentation of an argument (Explain dialogue
act) followed by a response that signals agreement
(Resp-Agree). Null rules create more interactivity in
the dialogue.

The monologue segment corresponding to the
LHS of a null rule may be in a rhetorical relation
with another segment, such that the LHS of the null
rule is embedded into another rule. Table 8 shows an
example of a null rule embedded in a contrast rule.
Turns 1 - 3 correspond to the RHS of the Null rule
and 1 - 4 correspond to the RHS of the Contrast rule.

Null rules can be used to turn information into
dialogue, even when there is no RST relation. For
example, we may want to convey the piece of in-
formation A,B,C,D,E in that order, with rel1(A,B)
and rel2(D,E). Whereas a simple rule may apply to
relations and turn them into dialogue, C is left un-
touched. However, a null rule can be applied to C, to
also turn its presentation into a dialogue exchange.

5.3 Case Study: the Attribution Rule
In this section we present a comparison of manu-
ally created rules for the RST attribution relation and
rules extracted from the CODA corpus.

Hernault et al. manually construct two surface-
level rules for the Attribution (S,N)7 relation (see

7N is a nucleus phrase that carries main information and S is

Table 9). In the Dialogue Act column we show
the dialogue act representation of the correspond-
ing surface-level rules. The first rule converts attri-
bution relation into a Complex-Info-Request by the
Layman followed with the Explain by the Expert.
The second rule converts the attribution relation into
Explain by the Expert, Factoid-Info-Request by the
Layman and Factoid-Response by Expert. In both
rules, the Expert is the one providing information
(N) to the Layman and information is presented in
Explain dialogue act

Table 10 shows six attribution rules we collected
from phrases with attribution relation in the corpus
(Twain1-4,Berkeley1,Gurevich)8. We notice several
differences with the manually constructed rules:

• The variety of dialogue act sequences: each
RHS of the rule (or dialogue act sequence) is
different.

• Main information (N) can be presented by
either the expert (Twain1, Twain2, Twain3,
Berkeley1) or by the layman (Twain4, Gure-
vich1).

• Main information (N) can be presented in
different dialogue acts: Explain dialogue act
(Twain1, Twain4, Berkeley), YN-Info-Request
(Twain2, Twain3), or Complex-Info-Request
(Gurevich).

• Contextual information is part of the rule and
may be used when choosing which rule to ap-
ply.

6 Conclusions and Further Work

In this paper, we have introduced a new approach to
creating resources for automatically generating ex-
pository dialogue. The approach is based on ex-
tracting high-level rules from RST relations to Di-
alogue Act sequences using a parallel Monologue-
Dialogue corpus. The approach results in rules that
are reusable across applications and based on known
expert dialogue authors.

After examining differences between the dia-
logues in the corpus in order to obtain prima facie
evidence for differences in style, we conducted a
detailed evaluation of the rules that were extracted
a satellite phrase that contains the entity to whom N is attributed

8These are all the rules for attribution RST relation from 50
annotated turns for each author
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Turn Speaker Dialogue act Dialogue
Contrast rule. Segment with contrast relation:
[He never does anything for any one else’s comfort , spiritual or physical.] [EXCEPT ON THOSE DISTINCT TERMS
– that it shall FIRST secure HIS OWN spiritual comfort ].

Null rule. Segment without rhetorical relation:
He never does anything for any one else’s comfort , spiritual or physical

1 Layman decorative Come!
2 Expert Init-YN-Request He never does anything for any one else ’ s comfort , spiritual or physical ?
3 Expert Resp-Answer-No No
4 Expert Explain EXCEPT ON THOSE DISTINCT TERMS – that it shall FIRST secure HIS

OWN spiritual comfort .

Table 8: Contrast rule example containing null rule from Twain dialogue.

Rule 1
Speaker Surface-level Rule Dialogue act Example Dialogue
Layman What did + GetSubject(S+N) + Getmain-

VerbLemma(S+N)
Complex-Info-Request What did S say?

Expert AddifNotPresentIn(N, That) + N Explain N
Rule 2

Expert RemoveIfPresentIn(N, That) + N Explain N
Layman Who GetMainVerb(N) that? Factoid-Info-Req Who said that?
Expert GetSubjectFromSentence(S+N) Factoid-Response S did

Table 9: Manually created rules for Attribution(S,N) relation (Hernault et al., 2008)

from the corpus. We extracted 167 distinct rules and
discussed the three types of rules: null, simple and
complex (depending on the number of RST relation
in the LHS: 0, 1 or more).

We found differences between authors in several
respects, specifically:

• number of turns per simple rule
• number of dialogue acts per simple rule
• combination of speaker roles and dialogue acts

A detailed comparison between our automatically
extracted attribution rule and the hand-crafted rules
used by Hernault et al. showed up a number of
differences. Apart from the fact that the corpus
yielded many more rules than the two manually cre-
ated ones, there were differences in which interlocu-
tor presented particular information and which dia-
logue acts were being used.

The current work has focussed on high-level map-
ping rules which can be used both for generation
from databases and knowledge representations and
also for generation from text. In future work, we
will focus on mapping text (in monologue form) to
dialogue. For this we need to combine the high-
level rules with rules for paraphrasing the text in the
monologue with text for the dialogue acts that ex-
press the same information in dialogue form. For

automatically extracting these surface level map-
pings we will draw on the approach to learning para-
phrases from a corpus that is described in Barzilay
and McKeown (2001). An important component of
our future effort will be to evaluate whether automat-
ically generating dialogues from naturally-occurring
monologues, following the approach described here,
results in dialogues that are fluent and coherent and
preserve the information from the input monologue.
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Abstract

Fluency rankers are used in modern sentence
generation systems to pick sentences that are
not just grammatical, but also fluent. It has
been shown that feature-based models, such as
maximum entropy models, work well for this
task.

Since maximum entropy models allow for in-
corporation of arbitrary real-valued features,
it is often attractive to create very general
feature templates, that create a huge num-
ber of features. To select the most discrim-
inative features, feature selection can be ap-
plied. In this paper we compare three fea-
ture selection methods: frequency-based se-
lection, a generalization of maximum entropy
feature selection for ranking tasks with real-
valued features, and a new selection method
based on feature value correlation. We show
that the often-used frequency-based selection
performs badly compared to maximum en-
tropy feature selection, and that models with a
few hundred well-picked features are compet-
itive to models with no feature selection ap-
plied. In the experiments described in this pa-
per, we compressed a model of approximately
490.000 features to 1.000 features.

1 Introduction

As shown previously, maximum entropy models
have proven to be viable for fluency ranking (Nakan-
ishi et al., 2005; Velldal and Oepen, 2006; Velldal,
2008). The basic principle of maximum entropy
models is to minimize assumptions, while impos-
ing constraints such that the expected feature value

is equal to the observed feature value in the train-
ing data. In its canonical form, the probability of a
certain event (y) occurring in the context (x) is a log-
linear combination of features and feature weights,
whereZ(x) is a normalization over all events in con-
text x (Berger et al., 1996):

p(y|x) =
1

Z(x)
exp

n∑
i=1

λifi (1)

The training process estimates optimal feature
weights, given the constraints and the principle of
maximum entropy. In fluency ranking the input (e.g.
a dependency structure) is a context, and a realiza-
tion of that input is an event within that context.

Features can be hand-crafted or generated auto-
matically using very general feature templates. For
example, if we apply a template rule that enumer-
ates the rules used to construct a derivation tree to
the partial tree in figure 1 the rule(max xp(np)) and
rule(np det n) features will be created.

Figure 1: Partial derivation tree for the noun phrase de
adviezen (the advices).

To achieve high accuracy in fluency ranking
quickly, it is attractive to capture as much of the lan-
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guage generation process as possible. For instance,
in sentence realization, one could extract nearly ev-
ery aspect of a derivation tree as a feature using very
general templates. This path is followed in recent
work, such as Velldal (2008). The advantage of this
approach is that it requires little human labor, and
generally gives good ranking performance. How-
ever, the generality of templates leads to huge mod-
els in terms of number of features. For instance, the
model that we will discuss contains about 490,000
features when no feature selection is applied. Such
models are very opaque, giving very little under-
standing of good discriminators for fluency ranking,
and the size of the models may also be inconvenient.
To make such models more compact and transpar-
ent, feature selection can be applied.

In this paper we make the following contribu-
tions: we modify a maximum entropy feature selec-
tion method for ranking tasks; we introduce a new
feature selection method based on statistical corre-
lation of features; we compare the performance of
the preceding feature selection methods, plus a com-
monly used frequency-based method; and we give
an analysis of the most effective features for fluency
ranking.

2 Feature Selection

2.1 Introduction

Feature selection is a process that tries to extract
S ⊂ F from a set of features F , such that the model
using S performs comparably to the model using
F . Such a compression of a feature set can be ob-
tained if there are features: that occur sporadically;
that correlate strongly with other features (features
that show the same behavior within events and con-
texts); or have values with little or no correlation to
the classification or ranking.

Features that do have no correlation to the classi-
fication can be removed from the model. For a set
of highly-correlating features, one feature can be se-
lected to represent the whole group.

Initially it may seem attractive to perform fluency
selection by training a model on all features, select-
ing features with relatively high weights. However,
if features overlap, weight mass will usually be di-
vided over these features. For instance, suppose that
f1 alone has a weight of 0.5 in a given model. If

we retrain the model, after adding the features f2..f5

that behave identically to f1, the weight may be dis-
tributed evenly between f1..f5, giving each feature
the weight 0.1.

In the following sections, we will give a short
overview of previous research in feature selection,
and will then proceed to give a more detailed de-
scription of three feature selection methods.

2.2 Background

Feature selection can be seen as model selection,
where the best model of all models that can be
formed using a set of features should be selected.
Madigan and Raftery (1994) propose an method for
model selection aptly named Occam’s window. This
method excludes models that do not perform com-
petitively to other models or that do not perform bet-
ter than one of its submodels. Although this method
is conceptually firm, it is nearly infeasable to apply
it with the number of features used in fluency rank-
ing. Berger et al. (1996) propose a selection method
that iteratively builds a maximum entropy model,
adding features that improve the model. We modify
this method for ranking tasks in section 2.5. Ratna-
parkhi (1999) uses a simple frequency-based cutoff,
where features that occur infrequently are excluded.
We discuss a variant of this selection criterium in
section 2.3. Perkins et al. (2003) describe an ap-
proach where feature selection is applied as a part
of model parameter estimation. They rely on the
fact that `1 regularizers have a tendency to force a
subset of weights to zero. However, such integrated
approaches rely on parameter tuning to get the re-
quested number of features.

In the fluency ranking literature, the use of a fre-
quency cut-off (Velldal and Oepen, 2006) and `1
regularization (Cahill et al., 2007) is prevalent. We
are not aware of any detailed studies that compare
feature selection methods for fluency ranking.

2.3 Frequency-based Selection

In frequency-based selection we follow Malouf and
Van Noord (2004), and count for each feature f the
number of inputs where there are at least two realiza-
tions y1, y2, such that f(y1) 6= f(y2). We then use
the first N features with the most frequent changes
from the resulting feature frequency list.
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Veldall (2008) also experiments with this selec-
tion method, and suggests to apply frequency-based
selection to fluency ranking models that will be dis-
tributed to the public (for compactness’ sake). In
the variant he and Malouf and Van Noord (2004)
discuss, all features that change within more than n
contexts are included in the model.

2.4 Correlation-based Selection

While frequency-based selection helps selecting fea-
tures that are discriminative, it cannot account for
feature overlap. Discriminative features that have a
strong correlation to features that were selected pre-
viously may still be added.

To detect overlap, we calculate the correlation of a
candidate feature and exclude the feature if it shows
a high correlation with features selected previously.
To estimate Pearson’s correlation of two features, we
calculate the sample correlation coefficient,

rf1,f2 =

∑
x∈X,y∈Y (f1(x, y)− f̄1)(f2(x, y)− f̄2)

(n− 1)sf1sf2
(2)

where f̄x is the average feature value of fx, and
sfx is the sample standard deviation of fx.

Of course, correlation can only indicate overlap,
and is in itself not enough to find effective features.
In our experiments with correlation-based selection
we used frequency-based selection as described in
2.3, to make an initial ranking of feature effective-
ness.

2.5 Maximum Entropy Feature Selection

Correlation-based selection can detect overlap, how-
ever, there is yet another spurious type of feature
that may reduce its effectiveness. Features with rel-
atively noisy values may contribute less than their
frequency of change may seem to indicate. For in-
stance, consider a feature that returns a completely
random value for every context. Not only does this
feature change very often, its correlation with other
features will also be weak. Such a feature may seem
attractive from the point of view of a frequency or
correlation-based method, but is useless in practice.

To account for both problems, we have to measure
the effectiveness of features in terms of how much
their addition to the model can improve prediction

of the training sample. Or in other words: does the
log-likelihood of the training data increase?

We have modified the Selective Gain Com-
putation (SGC) algorithm described by Zhou et
al. (2003) for ranking tasks rather than classification
tasks. This method builds upon the maximum en-
tropy feature selection method described by Berger
et al. (1996). In this method features are added iter-
atively to a model that is initially uniform. During
each step, the feature that provides the highest gain
as a result of being added to the model, is selected
and added to the model.

In maximum entropy modeling, the weights of the
features in a model are optimized simultaneously.
However, optimizing the weights of the features in
model pS,f for every candidate feature f is compu-
tationally intractable. As a simplification, it is as-
sumed that the weights of features that are already
in the model are not affected by the addition of a
feature f . As a result, the optimal weight α of f can
be found using a simple line search method.

However, as Zhou et al. (2003) note, there is still
an inefficiency in that the weight of every candidate
feature is recalculated during every selection step.
They observe that gains of remaining candidate fea-
tures rarely increase as the result of adding a fea-
ture. If it is assumed that this never happens, a list
of candidate features ordered by gain can be kept.
To account for the fact that the topmost feature in
that list may have lost its effectiveness as the result
of a previous addition of a feature to the model, the
gain of the topmost feature is recalculated and rein-
serted into the list according to its new gain. When
the topmost feature retains its position, it is selected
and added to the model.

Since we use feature selection with features that
are not binary, and for a ranking task, we modified
the recursive forms of the model to:

sumα
S∪f (y|x) = sumS(y|x) · eαf(y) (3)

ZαS∪f (x) = ZS(x)−
∑
y

sumS(y|x)

+
∑
y

sumS∪f (y|x) (4)

Another issue that needs to be dealt with is the
calculation of context and event probabilities. In the
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literature two approaches are prevalent. The first ap-
proach divides the probability mass uniformly over
contexts, and the probability of events within a con-
text is proportional to the event score (Osborne,
2000):

p(x) =
1
|X|

(5)

p(y|x) =
p(x)

( score(x,y)P
y score(x,y))

(6)

where |X| is the number of contexts. The sec-
ond approach puts more emphasis on the contexts
that contain relatively many events with high scores,
by making the context probability dependent on the
scores of events within that context (Malouf and van
Noord, 2004):

p(x) =

∑
y score(x, y)∑

y∈X score(x, y)
(7)

In our experiments, the second definition of con-
text probability outperformed the first by such a
wide margin, that we only used the second defini-
tion in the experiments described in this paper.

2.6 A Note on Overlap Detection

Although maximum-entropy based feature-selection
may be worthwhile in itself, the technique can also
be used during feature engineering to find overlap-
ping features. In the selection method of Berger et
al. (1996), the weight and gain of each candidate fea-
ture is re-estimated during each selection step. We
can exploit the changes in gains to detect overlap be-
tween a selected feature fn, and the candidates for
fn+1. If the gain of a feature changed drastically in
the selection of fn+1 compared to that of fn, this
feature has overlap with fn.

To determine which features had a drastic change
in gain, we determine whether the change has a sig-
nificance with a confidence interval of 99% after
normalization. The normalized gain change is cal-
culated in the following manner as described in al-
gorithm 1.

Algorithm 1 Calculation of the normalized gain
delta

∆Gf ← Gf,n −Gf,n−1

if ∆Gf ≥ 0.0 then
∆Gf,norm ←

∆Gf

Gf ,n

else
∆Gf,norm ←

∆Gf

Gf,n−1

end if

3 Experimental Setup

3.1 Task

We evaluated the feature selection methods in con-
junction with a sentence realizer for Dutch. Sen-
tences are realized with a chart generator for the
Alpino wide-coverage grammar and lexicon (Bouma
et al., 2001). As the input of the chart genera-
tor, we use abstract dependency structures, which
are dependency structures leaving out information
such as word order. During generation, we store the
compressed derivation trees and associated (HPSG-
inspired) attribute-value structures for every real-
ization of an abstract dependency structure. We
then use feature templates to extract features from
the derivation trees. Two classes of features (and
templates) can be distinguished output features that
model the output of a process and construction fea-
tures that model the process that constructs the out-
put.

3.1.1 Output Features

Currently, there are two output features, both rep-
resenting auxiliary distributions (Johnson and Rie-
zler, 2000): a word trigram model and a part-of-
speech trigram model. The part-of-speech tag set
consists of the Alpino part of speech tags. Both
models are trained on newspaper articles, consist-
ing of 110 million words, from the Twente Nieuws
Corpus1.

The probability of unknown trigrams is estimated
using linear interpolation smoothing (Brants, 2000).
Unknown word probabilities are determined with
Laplacian smoothing.

1http://wwwhome.cs.utwente.nl/druid/
TwNC/TwNC-main.html
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3.1.2 Construction Features
The construction feature templates consist of tem-

plates that are used for parse disambiguation, and
templates that are specifically targeted at generation.
The parse disambiguation features are used in the
Alpino parser for Dutch, and model various linguis-
tic phenomena that can indicate preferred readings.
The following aspects of a realization are described
by parse disambiguation features:

• Topicalization of (non-)NPs and subjects.

• Use of long-distance/local dependencies.

• Orderings in the middle field.

• Identifiers of grammar rules used to build the
derivation tree.

• Parent-daughter combinations.

Output features for parse disambiguation, such
as features describing dependency triples, were not
used. Additionally, we use most of the templates de-
scribed by Velldal (2008):

• Local derivation subtrees with optional grand-
parenting, with a maximum of three parents.

• Local derivation subtrees with back-off and
optional grand-parenting, with a maximum of
three parents.

• Binned word domination frequencies of the
daughters of a node.

• Binned standard deviation of word domination
of node daughters.

3.2 Data

The training and evaluation data was constructed by
parsing 11764 sentences of 5-25 tokens, that were
randomly selected from the (unannotated) Dutch
Wikipedia of August 20082, with the wide-coverage
Alpino parser. For every sentence, the best parse ac-
cording to the disambiguation component was ex-
tracted and considered to be correct. The Alpino
system achieves a concept accuracy of around 90%
on common Dutch corpora (Van Noord, 2007). The

2http://ilps.science.uva.nl/WikiXML/

original sentence is considered to be the best realiza-
tion of the abstract dependency structure of the best
parse.

We then used the Alpino chart generator to con-
struct derivation trees that realize the abstract de-
pendency structure of the best parse. The result-
ing derivation trees, including attribute-value struc-
tures associated with each node, are compressed and
stored in a derivation treebank. Training and testing
data was then obtained by extracting features from
derivation trees stored in the derivation treebank.
At this time, the realizations are also scored using
the General Text Matcher method (GTM) (Melamed
et al., 2003), by comparing them to the original
sentence. We have previously experimented with
ROUGE-N scores, which gave rise to similar results.
However, it is shown that GTM shows the highest
correlation with human judgments (Cahill, 2009).

3.3 Methodology

To evaluate the feature selection methods, we first
train models for each selection method in three
steps: 1. For each abstract dependency structure in
the training data 100 realizations (and corresponding
features) are randomly selected. 2. Feature selection
is applied, and the N -best features according to the
selection method are extracted. 3. A maximum en-
tropy model is trained using the TADM3 software,
with a `2 prior of 0.001, and using the N -best fea-
tures.

We used 5884 training instances (abstract depen-
dency trees, and scored realizations) to train the
model. The maximum entropy selection method was
used with a weight convergence threshold of 1e−6.
Correlation is considered to be strong enough for
overlap in the correlation-based method when two
features have a correlation coefficient of rf1,f2 ≥
0.9

Each model is then evaluated using 5880 held-
out evaluation instances, where we select only in-
stances with 5 or more realizations (4184 instances),
to avoid trivial ranking cases. For every instance,
we select the realization that is the closest to the
original sentence to be the correct realization4. We
then calculate the fraction of instances for which the

3http://tadm.sourceforge.net/
4We follow this approach, because the original sentence is

not always exactly reproduced by the generator.
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model picked the correct sentence. Of course, this is
a fairly strict evaluation, since there may be multiple
equally fluent sentences.

4 Results

4.1 Comparing the Candidates
Since each feature selection method that we evalu-
ated gives us a ranked list of features, we can train
models for an increasing number of features. We
have followed this approach, and created models for
each method, using 100 to 5000 features with a step
size of 100 features. Figure 2 shows the accuracy
for all selection methods after N features. We have
also added the line that indicates the accuracy that
is obtained when a model is trained with all features
(490667 features).
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Figure 2: Accuracy of maximum entropy, correlation-
based, and frequency-based selection methods after se-
lecting N features (N ≤ 5000), with increments of 100
features.

In this graph we can see two interesting phenom-
ena. First of all, only a very small number of fea-
tures is required to perform this task almost as well
as a model with all extracted features. Secondly, the
maximum entropy feature selection model is able
to select the most effective features quickly - fewer
than 1000 features are necessary to achieve a rela-
tively high accuracy.

As expected, the frequency-based method fared
worse than maximum entropy selection. Initially

some very useful features, such as the n-gram
models are selected, but improvement of accuracy
quickly stagnates. We expect this to be caused by
overlap of newly selected features with features that
were initially selected. Even after selecting 5000
features, this method does not reach the same accu-
racy as the maximum entropy selection method had
after selecting only a few hundred features.

The correlation-based selection method fares bet-
ter than the frequency-based method without over-
lap detection. This clearly shows that feature over-
lap is a problem. However, the correlation-based
method does not achieve good accuracy as quickly
as the maximum entropy selection method. There
are three possible explanations for this. First, there
may be noisy features that are frequent, and since
they show no overlap with selected features they are
good candidates according to the correlation-based
method. Second, less frequent features that overlap
with a frequent feature in a subset of contexts may
show a low correlation. Third, some less frequent
features may still be very discriminative for the con-
texts where they appear, while more frequent fea-
tures may just be a small indicator for a sentence
to be fluent or non-fluent. It is possible to refine
the correlation-based method to deal with the second
class of problems. However, the lack of performance
of the correlation-based method makes this unattrac-
tive - during every selection step a candidate feature
needs to be compared with all previously selected
features, rather than some abstraction of them.

Table 1 shows the peak accuracies when select-
ing up to 5000 features with the feature selection
methods described. Accuracy scores of the random
selection baseline, the n-gram models, and a model
trained on all features are included for comparison.
The random selection baseline picks a realizations
randomly. The n-gram models are the very same
n-gram models that were used as auxiliary distribu-
tions in the feature-based models. The combined
word/tag n-gram model was created by training a
model with both n-gram models as the only fea-
tures. We also list a variation of the frequency-based
method often used in other work (such as Velldal
(2008) and Malouf and Van Noord (2004)), where
there is a fixed frequency threshold (here 4), rather
than using the first N most frequently changing fea-
tures.
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Besides confirming the observation that feature
selection can compress models very well, this table
shows that the popular method of using a frequency
cutoff, still gives a lot of opportunity for compress-
ing the model further. In practice, it seems best to
plot a graph as shown in figure 2, choose an accept-
able accuracy, and to use the (number of) features
that can provide that accuracy.

Method Features Accuracy
Random 0 0.0778

Tag n-gram 1 0.2039
Word n-gram 1 0.2799

Word/tag n-gram 2 0.2908
All 490667 0.4220

Fixed cutoff (4) 90103 0.4181
Frequency 4600 0.4029
Correlation 4700 0.4172

Maxent 4300 0.4201

Table 1: Peak accuracies for the maximum entropy,
correlation-based, and frequency-based selection meth-
ods when selecting up to 5000 features. Accuracies for
random, n-gram and full models are included for com-
parison.

4.2 Overlap in Frequency-based Selection
As we argued in section 2.5, the primary disadvan-
tage of the frequency-based selection is that it cannot
account for correlation between features. In the ex-
treme case, we could have two very distinctive fea-
tures f1 and f2 that behave exactly the same in any
event. While adding f2 after adding f1 does not im-
prove the model, frequency-based selection cannot
detect this. To support this argumentation empiri-
cally, we analyzed the first 100 selected features to
find good examples of this overlap.

Initially, the frequency-based selection chooses
three distinctive features that are also selected by
the maximum entropy selection method: the two n-
gram language models, and a preference for topical-
ized NP subjects. After that, features that indicate
whether the vp arg v(np) rule was used change very
frequently within a context. However, this aspect
of the parse tree is embodied in 13 successively se-
lected features. Due to the generality of the feature
templates, there are multiple templates to capture the
use of this grammar rule: through local derivation

trees (with optional grandparenting), back-off for lo-
cal derivation trees, and the features that calculate
lexical node dominance.

Another example of such overlap in the first
100 features is in features modeling the use of the
non wh topicalization(np) rule. Features containing
this rule identifier are used 30 times in sequence,
where it occurs in local derivation subtrees (with
varying amounts of context), back-off local deriva-
tion subtrees, lexical node domination, or as a grand-
parent of another local derivation subtree.

In the first 100 features, there were many overlap-
ping features, and we expect that this also is the case
for more infrequent features.

4.3 Effective Features
The maximum entropy selection method shows that
only a small number of features is necessary to per-
form fluency ranking (section 4.1). The first fea-
tures that were selected in maximum entropy selec-
tion can give us good insight of what features are
important for fluency ranking. Table 2 shows the 10
topmost features as returned by the maximum en-
tropy selection. The weights shown in this table, are
those given by the selection method, and their sign
indicates whether the feature was characteristic of a
fluent sentence (+) or a non-fluent sentence (−).

As expected (see table 1) the n-gram models are
a very important predictor for fluency. The only
surprise here may be that the overlap between both
n-gram models is small enough to have both mod-
els as a prominent feature. While the tag n-gram
model is a worse predictor than the word n-gram
model, we expect that the tag n-gram model is espe-
cially useful for estimating fluency of phrases with
word sequences that are unknown to the word n-
gram model.

The next feature that was selected,
r2(vp arg v(pred),2,vproj vc), indicates that
the rule vp arg v(pred) was used with a vproj vc
node as its second daughter. This combination
occurs when the predicative complement is placed
after the copula, for instance as in Amsterdam is de
hoofdstad van Nederland (Amsterdam is the capital
of The Netherlands), rather than De hoofdstad
van Nederland is Amsterdam (The capital of The
Netherlands is Amsterdam).

The feature s1(non subj np topic) and its neg-
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ative weight indicates that realizations with non-
topicalized NP subjects are dispreferred. In Dutch,
non-topicalized NP subjects arise in the OVS word-
order, such as in de soep eet Jan (the soup eats Jan).
While this is legal, SVO word-order is clearly pre-
ferred (Jan eet de soep).

The next selected feature (ldsb(vc vb,vb v,
[vproj vc,vp arg v(pp)])) is also related to top-
icalization: it usually indicates a preference for
prepositional complements that are not topicalized.
For instance, dit zorgde voor veel verdeeldheid
(this caused lots of discord) is preferred over the
PP-topicalized voor veel verdeeldheid zorgde dit
(lots of discord caused this).

ldsb(n n pps,pp p arg(np),[]) gives preference
PP-ordering in conjuncts where the PP modifier fol-
lows the head. For instance, the conjunct groepen
van bestaan of khandas (planes of existance or khan-
das) is preferred by this feature over van bestaan
groepen of khandas (of existence planes or khan-
das).

The next feature (lds dl(mod2,[pp p arg(np)],
[1],[non wh topicalization(modifier)])) forms an
exception to the dispreference of topicalization of
PPs. If we have a PP that modifies a copula in a
subject-predicate structure, topicalization of the PP
can make the realization more fluent. For instance,
volgens Williamson is dit de synthese (according to
Williamson is this the synthesis) is considered more
fluent than dit is de synthese volgens Williamson
(this is the synthesis according to Williamson).

The final three features deal with punctuation.
Since punctuation is very prevalent in Wikipedia
texts due to the amount of definitions and clarifi-
cations, punctuation-related features are common.
Note that the last two lds dl features may seem to
be overlapping, they are not: they use different fre-
quency bins for word domination.

5 Conclusions and Future Work

Our conclusion after performing experiments with
feature selection is twofold. First, fluency models
can be compressed enormously by applying feature
selection, without losing much in terms of accuracy.
Second, we only need a small number of targeted
features to perform fluency ranking.

The maximum entropy feature selection method

Weight Name
0.012 ngram lm
0.009 ngram tag
0.087 r2(vp arg v(pred),2,vproj vc)
-0.094 s1(non subj np topic)
0.090 ldsb(vc vb,vb v,

[vproj vc,vp arg v(pp)])
0.083 ldsb(n n pps,pp p arg(np),[])
0.067 lds dl(mod2,[pp p arg(np)],[1],

[non wh topicalization(modifier)])
0.251 lds dl(start start ligg streep,

[top start xp,punct(ligg streep),
top start xp],[0,0,1],[top start])

0.186 lds dl(start start ligg streep,
[top start xp,punct(ligg streep),
top start xp],[0,0,2],[top start])

0.132 r2(n n modroot(haak),5,l)

Table 2: The first 10 features returned by maximum en-
tropy feature selection, including the weights estimated
by this feature selection method.

shows a high accuracy after selecting just a few fea-
tures. The commonly used frequency-based selec-
tion method fares far worse, and requires addition
of many more features to achieve the same perfor-
mance as the maximum entropy method. By exper-
imenting with a correlation-based selection method
that uses the frequency method to make an initial
ordering of features, but skips features that show a
high correlation with previously selected features,
we have shown that the ineffectiveness of frequency-
based selection can be attributed partly to feature
overlap. However, the maximum entropy method
was still more effective in our experiments.

In the future, we hope to evaluate the same tech-
niques to parse disambiguation. We also plan to
compare the feature selection methods described in
this paper to selection by imposing a `1 prior.

The feature selection methods described in this
paper are usable for feature sets devised for ranking
and classification tasks, especially when huge sets of
automatically extracted features are used. An open
source implementation of the methods described in
this paper is available5, and is optimized to work on
large data and feature sets.

5http://danieldk.eu/Code/FeatureSqueeze/
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Abstract

Building NLG systems, in particular sta-
tistical ones, requires parallel data (paired
inputs and outputs) which do not gener-
ally occur naturally. In this paper, we in-
vestigate the idea of automatically extract-
ing parallel resources for data-to-text gen-
eration fromcomparablecorpora obtained
from the Web. We describe our compa-
rable corpus of data and texts relating to
British hills and the techniques for extract-
ing paired input/output fragments we have
developed so far.

1 Introduction

Starting with Knight, Langkilde and Hatzivas-
siloglou’s work on Nitrogen and its successor
Halogen (Knight and Hatzivassiloglou, 1995;
Knight and Langkilde, 2000),NLG has over the
past 15 years moved towards using statistical tech-
niques, in particular in surface realisation (Langk-
ilde, 2002; White, 2004), referring expression
generation (most of the sytems submitted to the
TUNA andGRECshared task evaluation challenges
are statistical, see Gatt et al. (2008), for example),
and data-to-text generation (Belz, 2008).

The impetus for introducing statistical tech-
niques inNLG can be said to have originally come
from machine translation (MT),1 but unlike MT,
where parallel corpora of inputs (source language
texts) and outputs (translated texts) occur naturally
at least in some domains,2 NLG on the whole has
to use manually created input/output pairs.

Data-to-text generation (D2T) is the type ofNLG

that perhaps comes closest to having naturally oc-
curing inputs and outputs at its disposal. Work
in D2T has involved different domains including
generating weather forecasts from meteorological

1Nitrogen was conceived as anMT system component.
2Canadian and European parliamentary proceedings, etc.

data (Sripada et al., 2003), nursing reports from in-
tensive care data (Portet et al., 2009), and museum
exhibit descriptions from database records (Isard
et al., 2003; Stock et al., 2007); types of data in-
clude dynamic time-series data (e.g. medical data)
and static database entries (museum exhibits).

While data and texts in the three example do-
mains cited above do occur naturally, two factors
mean they cannot be used directly as example cor-
pora or training data for buildingD2T systems:
one, most are not freely available to researchers
(e.g. by simply being available on the Web), and
two, more problematically, for the most part, there
is no direct correspondence between inputs and
outputs as there is, say, between a source language
text and its translation. On the whole, naturally
occurring resources of data and related texts are
not strictly parallel, but are merely what has be-
come known ascomparablein the MT literature,
with only a subset of data having corresponding
text fragments, and other text fragments having
no obvious corresponding data items. Moreover,
data transformations may be necessary before cor-
responding text fragments can be identified.

In this report, we look at the possibility of au-
tomatically extracting parallel data-text fragments
from comparable corpora in the case ofD2T from
static database records. Such a parallel data-text
resource could then be used to train an existing
D2T generation system, or even build a new statis-
tical generator from scratch, e.g. using techniques
from statisticalMT (Belz and Kow, 2009). The
steps involved in going from comparable data and
text resources to generators that produce texts sim-
ilar to those in the text resource are then as fol-
lows: (1) identify sources on the Web for com-
parable data and texts; (2) pair up data records
and texts; (3) extract parallel fragments (sets of
data fields paired with word strings); (4) train a
D2T generator using the parallel fragments; and
(5) feed data inputs to the generator which then
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Figure 1: Overview of processing steps.

generates new texts describing them. Figure 1 il-
lustrates steps 1–3 which this paper focuses on. In
Section 3 we look at steps 1 and 2; in Section 4 at
step 3. First we briefly survey related work inMT.

2 Related work in MT

In statisticalMT, the expense of manually creat-
ing new parallelMT corpora, and the need for very
large amounts of parallel training data, has led
to a sizeable research effort to develop methods
for automatically constructing parallel resources.
This work typically starts by identifying compara-
ble corpora. Much of it has focused on identify-
ing word translations in comparable corpora, e.g.
Rapp’s approach was based on the simple and el-
egant assumption that if wordsAf and Bf have
a higher than chance co-occurrence frequency in
one language, then two appropriate translations
Ae and Be in another language will also have
a higher than chance co-occurrence frequency
(Rapp, 1995; Rapp, 1999). At the other end of
the spectrum, Resnik & Smith (2003) search the
Web to detect web pages that are translations of
each other. Other approaches aim to identify pairs
of sentences (Munteanu and Marcu, 2005) or sub-
sentential fragments (Munteanu and Marcu, 2006)
that are parallel within comparable corpora.

The latter approach is particularly relevant to
our work. They start by translating each docu-
ment in the source language (SL) word for word
into the target language (TL). The result is given
to an information retrieval (IR) system as a query,
and the top 20 results are retained and paired with
the givenSL document. They then obtain all sen-
tence pairs from each pair ofSL and TL docu-
ments, and discard those sentence pairs with few
words that are translations of each other. To the re-
maining sentences they then apply a fragment de-
tection method which tries to distinguish between
source fragments that have a translation on the tar-
get side, and fragments that do not.

The biggest difference between theMT situation
and theD2T situation is that in the latter sentence-
aligned parallel resources exist and can be used as
a starting point. E.g. Munteanu & Marcu use an
existing parallel Romanian-English corpus to (au-
tomatically) create a lexicon from which is then
used in various ways in their method.

In D2T we have no analogous resources to help
us get started, and the methods described in this
paper use no such prior knowledge.

3 A Comparable Corpus of British Hills

As a source of data, we use the Database of British
Hills (BHDB) created by Chris Crocker,3 version
11.3, which currently contains measurements and
other information about 5,614 British hills. Ad-
ditionally, we perform reverse geocoding via the
Google Map API4 which allows us to convert
latitude and longitude information from the hills
database into country and region names. We add
the latter to each database entry.

On the text side, we use Wikipedia texts in the
WikiProject British and Irish Hills (retrieved on
2009-11-09). There are currently 899 pages cov-
ered by this WikiProject, 242 of which are of qual-
ity category B or above.5

Matching up data records and documents:
Matching up the data records in theBHDB with
articles in Wikipedia is not trivial: not allBHDB

entries have corresponding Wikipedia articles, dif-
ferent hills often share the same name, and the
same hill can have different names and spellings.

We perform a search of Wikipedia with the hill’s
name as the search term, using the Mediawiki API,
and then retain the topn search results returned
(currently n = 1). The top search result is not
always a correct match for the database record. We

3http://www.biber.fsnet.co.uk
4http://code.google.com/apis/maps/
5B = The article is mostly complete and without major

issues, but requires some further work.
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{ "id": 1679, "main-name-info": {"name": "Hill of Stake", "notes": " ",
"parent": "", "parent-notes": ""},

"alt-name-info": [], "raw-name": "Hill of Stake", "rhb-section": "27A", "area": "Ayr to River Clyde",
"height-metres": 522, "height-feet": 1713, "map-1to50k": "63", "map-1to25k": "341N", "gridref": "NS273630",
"col-gridref": "NS320527", "col-height": 33, "drop": 489, "gridref10": "NS 27360 62998", "feature": "trig point",
"observations": "", "survey": "", "date-climbed": "", "classification": "Ma,CoH,CoU",
"county-name": "Renfrewshire(CoH); Renfrewshire(CoU)", "revision": "28-Oct-2001", "comments": "",
"streetmap": "http://www.streetmap.co.uk/newmap.srf?x=227356&y=663005&z=3&sv=227356,663005&st=4&tl=˜&bi=˜&lu=N&ar=n",
"ordanancesurvey-map": "http://getamap.ordnancesurvey.co.uk/getamap/frames.htm?mapAction=gaz&gazName=g&gazString=NS273630",
"x-coord": 227356, "y-coord": 663005, "latitude": 55.82931,
"longitude": -4.75789, "country": "Scotland", "region": "Renfrewshire" }

Hill of Stake is a hill on the boundary between North Ayrshire and Renfrewshire , Scotland . It is 522 metres ( 1712 feet ) high

. It is one of the Marilyns of Lowland Scotland . It is the highest point of the relatively low-lying county of Renfrewshire and

indeed the entire Clyde Muirshiel Regional Park of which it is a part .

Table 1: Output of step 1: data record from British HillsDB and matched Wikipedia text (Hill of Stake).

manually selected the pairs we are confident are a
correct match. This left us with 759 matched pairs
out of a possible 899.

Table 1 shows an example of an automatically
matched database entry and Wikipedia article. It
illustrates the non-parallelism discussed in the pre-
ceding section; e.g. there is no information in the
database corresponding to the last sentence.

4 Towards a Parallelised Corpus

4.1 Aligning data fields and sentences

In the second processing step, we pair up data
fields and sentences. Related methods inMT have
translation lexicons and thesauri that can be used
as bridges betweenSL and TL texts, but there is
no equivalents inNLG. Our current method asso-
ciates each data field with a hand-written ‘match
predicate’. For example, the match predicate for
height-metres returns True if the sentence con-
tains the words ‘X metres’ (among other patterns),
where X is some number within 5% of the height
of the hill in the database. We retain only the sen-
tences that match at least one data field. Table 2
shows what the data field/sentence alignment pro-
cedure outputs for the Hill of Stake.

4.2 Identifying Parallel Fragments

While it was fine for step 2 to produce some rough
matches, in step 3, parallel fragment detection, the
aim is to retain only those parts of a sentence that
can be said to realise some data field(s) in the set
of data fields with which it has been matched.

Computing data-text associations: Following
some preprocessing of sentences where each oc-
currence of a hill’s name and height is replaced
by lexical class tokensNAME , HEIGHT METRES

or HEIGHT FEET , the first step is to construct a

kind of lexicon of pairs(d,w) of data fieldsd and
wordsw, such thatw is often seen in the realisa-
tion of d. For this purpose we adapt Munteanu
& Marcu’s (2006) method for (language to lan-
guage) lexicon construction. For this purpose we
compute a measure of the strength of association
between data fields and words; we use theG2 log-
likelihood ratio which has been widely used for
this sort of purpose (especially lexical association)
since it was introduced toNLP (Dunning, 1993).
Following Moore (2004a) rather than Munteanu &
Marcu, our current notion of cooccurrence is that
a data field and word cooccur if they are present
in the same pair of data fields and sentence (as
identified by the method described in Section 4.1
above). We then obtain counts for the number of
times each word cooccurs with each data field, and
the number of times it occurs without the data field
being present (and conversely). This allows us to
compute theG2 score, for which we use the for-
mulation from Moore (2004b) shown in Figure 2.

If the G2 score for a given(d,w) pair is greater
thanp(d)p(w), then the association is taken to be
positive, i.e.w is likely to be a realisation ofd,
otherwise the association is taken to be negative,
i.e.w is likely not to be part of a realisation ofd.

For eachd we then convertG2 scores to proba-
bilities by dividingG2 by the appropriate normal-
ising factor (the sum over all negativeG2 scores
for d for obtaining the negative association proba-
bilities, and analogously for positive associations).
Table 3 shows the three words with the highest
positive association probabilities for each of our
six data fields. Note that these are not the three
most likely alternative ‘translations’ of each data
key, but rather the three words which are most
likely to be part of a realisation of a data field, if
seen in conjunction with it.
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"main-name-only": "Hill of Stake" , NAME is a hill on the boundary between North Ayrshire and Renfrewshire,
"country": "Scotland" Scotland.
"height-metres": 522, It is HEIGHT METERS metres (HEIGHT FEET feet) high.
"height-feet": 1713

"country": "Scotland", It is one of the Marilyns of Lowland Scotland.
"classification": ["Ma", "CoH", "CoU"]

"main-name-only": "Hill of Stake" It is the highest point of the relatively low-lying county of Renfrewshire and
indeed the entire Clyde Muirshiel Regional Park of which it is a part.

Table 2: Output of step 2: aligned data fields and sentences, for Hill ofStake.

2N

(

p(d,w)log
p(d,w)

p(d)p(w)
+ p(d,¬w)log

p(d,¬w)

p(d)p(¬w)
+ p(¬d,w)log

p(¬d,w)

p(¬d)p(w)
+ p(¬d,¬w)log

p(¬d,¬w)

p(¬d)p(¬w)

)

Figure 2:Formula for computingG2 from Moore (2004b) (N is the sample size).

Data keyd Wordw P+(w|d)
main-name-only NAME 0.1355

a 0.0742
in 0.0660

classification as 0.0412
adjoining 0.0193
qualifies 0.0177

region District 0.1855
Lake 0.1661
area 0.1095

country in 0.1640
NAME 0.1122

Scotland 0.0732
height-metres metres 0.1255

m 0.0791
height 0.0679

height-feet feet 0.1511
HEIGHT METERS 0.0974

( 0.0900

Table 3: Data keys with 3 most likely words.

Identify ing realisations: The next step is to ap-
ply these probabilities to identify those parts of a
sentence that are likely to be a valid realisation of
the data fields in the input. In Figure 3 we plot
the positive and negative association probabilities
for one of the sentences from our running exam-
ple, Hill of Stake. The light grey graph represents
the association probabilities between each word
in the sentence andheight-feet , the dark grey
line those between the words in the sentence and
height-metres . We plot the negative association
probabilities simply by multiplying each by−1.

The part of the sentence that one would
want to extract as a possible realisation of
{ height-metres, height-feet }, namely
“ HEIGHT METRES metres ( HEIGHT FEET feet )
high”, shows up clearly as a sequence of relatively
strong positive association values. Our current
approach identifies such contiguous positive

Figure 3: Positive and negative association prob-
abilities plotted against the words they were com-
puted for.

association scores and extracts the corresponding
sentence fragments. This works well in many
cases, but is too simple as a general approach; we
are currently developing this method further.

5 Concluding Remarks

In this paper we have been interested in the prob-
lem of automatically obtaining parallel corpora for
data-to-text generation. We presented our com-
parable corpus of 759 paired database entries and
human-authored articles about British Hills. We
described the three techniques which we have im-
plemented so far and which we combine to extract
parallel data-text fragments from the corpus: (i)
identification of candidate pairs of data fields and
sentences; (ii) computing scores for the strength
of association between data and words; and (iii)
identifying sequences of words in sentences that
have positive association scores with the given
data fields.
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Abstract

Critical software most often requires an
independent validation and verification
(IVV). IVV is usually performed by do-
main experts, who are not familiar with
specific, many times formal, development
technologies. In addition, model-based
testing (MBT) is a promising testing tech-
nique for the verification of critical soft-
ware. Test cases generated by MBT tools
are logical descriptions. The problem is,
then, to provide natural language (NL) de-
scriptions of these test cases, making them
accessible to domain experts. In this pa-
per, we present ongoing research aimed at
finding a suitable method for generating
NL descriptions from test cases in a for-
mal specification language. A first proto-
type has been developed and applied to a
real-world project in the aerospace sector.

1 Introduction

Model-based testing (MBT) is an active research
area and a promising theory of software and hard-
ware testing (Utting and Legeard, 2006; Hierons
et al., 2009). MBT approaches start with a formal
model or specification of the software, from which
test cases are generated. These techniques have
been developed and applied to models written in
different formal notations, such as Z (Stocks and
Carrington, 1996), finite state machines and their
extensions (Grieskamp et al., 2002), B (Legeard et
al., 2002), algebraic specifications (Bernot et al.,
1991), and so on.

The fundamental hypothesis behind MBT is
that, as a program is correct if it verifies its specifi-
cation, then the specification is an excellent source
of test cases. Once test cases are derived from the
model, they are refined to the level of the imple-
mentation language and executed. The resulting

output is then abstracted to the level of the speci-
fication language, and the model is used again to
verify if the test case has detected an error.

The Test Template Framework (TTF) described
by Stocks and Carrington (1996) is a particular
MBT theory specially well suited for unit testing.
The TTF uses Z specifications (Spivey, 1989) as
the entry models and prescribes how to generate
test cases for each operation included in the model.
Fastest (Cristiá and Rodrı́guez Monetti, 2009) im-
plements the TTF allowing users to automatically
produce test cases for a given Z specification. Re-
cently, we used Fastest to test an on-board satellite
software for a major aerospace company in South
America. Since Fastest uses models written in the
Z specification language, test cases generated by
this tool are paragraphs of formal text (see Section
2). This description is suitable for the automatic
tasks involved in testing (e.g., automatic execu-
tion, hyperlinking, traceability), but humans need
to be able to read Z specifications in order to un-
derstand what is being tested. In projects where
independent verification and validation (IVV) is
required this might be a problem, as most stake-
holders will not necessarily be fluent in Z.

This is precisely the case in the project men-
tioned above, where the aerospace company re-
quested not only the test cases in Z, but also in
English. As it can be expected, in a project with
hundreds of test cases, manual translation would
increase the overall cost of testing and, most criti-
cally, reduce its quality due to the introduction of
human errors. Interestingly, this problem is op-
posite to those in mainstream industrial practice,
where test cases are described in natural language
and must be formalised, in order to augment the
quality and, hopefully, reduce the costs of testing.

Given the formal, structured nature of the
source text, natural language generation (NLG)
techniques seem to be an appropriate approach
to solving this problem. In the rest of the pa-
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per, we give an example of a test case from the
project mentioned above (Section 2), describe a
template-based method for generating NL descrip-
tions (Section 3), and propose further work to-
wards a more general NLG solution (Section 4).

2 An Example from the Aerospace
Industry

The problem of generating NL descriptions of
specifications in Z arises in the following scenario:
a company developing the software for a satellite
needs to verify that the implementation conforms
to a certain aerospace standard (ECSS, 2003) de-
scribing the basic functionality of any satellite
software. We therefore started by modelling in Z
the services described by the standard and used the
Fastest tool to generate test cases.

The model is a “standard” Z specification: it
has a schema box that defines the state space of
the system and operations defining the transition
relation between states1. Each operation formal-
izes one of the services described by the standard
(e.g., memory dump, telecommand verification,
enabling or disabling on-board monitoring, etc.).

Figure 1 shows one of the test cases generated
for the operation DumpMemoryAbsAdd, that mod-
els a remote request for the on-board software to
dump some portion of its memory. In TTF and
Fastest, a Z test case is essentially a set of bind-
ings between variables and values, and test cases
are grouped according to the operation they test.
Identifiers appearing in a test case are the input
and state variables from the definition of the oper-
ation. These are bound to certain values defining
the state in which the system must be tested and
the input given to the operation in each unique test
case. In the example, input variables are those dec-
orated with a question mark, while state variables
are plain identifiers. All these variables are de-
clared somewhere else in the specification, by us-
ing a special schema box called valid input space,
associated with each operation.

For example, the Z schema in Figure 1 indicates
that the implementation of the dump memory ser-
vice must be tested in a state where the system is
processing a telecommand (processingTC = yes),
the telecommand is a request for a memory dump
(srv = DMMA), the system has one memory block

1The Z specification language is essentially typed first or-
der logic, with syntactic sugar in the form of operators, that
serve as shortcuts for frequently used complex expressions.

DumpMemoryAbsAdd SP 7 TCASE
mid = mid0 ∧ srv = DMAA ∧ lengths = ∅
processingTC = yes ∧ adds = ∅
blocks = {mid0 7→ {1 7→ byte0, 2 7→ byte1,

3 7→ byte2, 4 7→ byte3}}
m? = mid0 ∧ sa? = 〈1〉 ∧ len? = 〈2〉

Figure 1: A test case described in Z

which is four bytes long (blocks = {. . .}), there
are no other pending requests (adds = lengths =
∅); and the request is for a memory dump of
length two (len? = 〈2〉) starting at the first ad-
dress (sa? = 〈1〉) of the available memory block
(m? = mid0 = mid).

Fastest generated almost 200 test cases like the
one depicted in Figure 1 from a model describ-
ing a simplified version of five services listed in
the standard. The customer requested to deliver a
natural language description of each one of them
and a model describing all the services would have
thousands of test cases. Clearly, trying to make
the translation by hand would have been not only
a source of errors, but also a technical retreat.

3 A Template-Based NLG Solution

As a first approach, we used a template-based
method. We started by defining a grammar to
express what we called NL test case templates
(NLTCT). It appears in Figure 22. Each NLTCT
specifies how an NL description is generated for
the Z test cases of a given operation. It starts with
the name of the operation. Next follows a text sec-
tion, intended as a parametrized NL description of
the test case, where calls to translation rules can
be inserted as needed. Finally, all necessary trans-
lation rules are defined, by indicating what is writ-
ten in replacement for a call when a certain vari-
able in the formal description of a test case appears
bound to a specific value. In this way, a different
text is generated for each test case, according to
the binding between values and variables that de-
fines the case. The Appendix shows the NLTCT
for the operation DumpMemoryAbsAdd.

We implemented a parser in awk that takes an
NLTCT and a Z test case, and generates the NL
description of each test case in the input. Figure 3
shows the result for the test case in Figure 1.

This first prototype showed that NLTCTs tend

2Fastest saves formal test cases in text files written in ZLa-
TeX, an extension of the LATEX markup language, what ex-
plains the use of this format in the NLTCT grammar.
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NLTCT ::= 〈Operation〉 eol
〈NLTCD〉 eol
〈TCRule〉{, 〈TCRule〉}

Operation ::= operation =〈identifier〉
NLTCD ::= \begin{tcase} eol

〈LaTeXText〉 eol
\end{tcase}

LaTeXText ::= LaTeX | 〈TCRuleCall〉 | 〈LaTeXText〉
TCRuleCall ::= & rule 〈identifier〉 &

TCRule ::= \begin{trule}{〈identifier〉} eol
case 〈identifier〉[, 〈identifier〉] eol
〈RuleDef 〉 eol {, 〈RuleDef 〉 eol}
endcase eol
\end{trule}

RuleDef ::= $〈ZLaTeX〉[“ | “ 〈ZLaTeX〉 | & 〈ZLaTeX〉]
: 〈LaTeX〉 eol

LaTeX ::= free LATEX text
ZLaTeX ::= free Z LATEX text

Figure 2: Grammar for NLTC templates

to be relatively small and simple, in spite of the
large number of test cases. This is due to test cases
combining a small set of values in many differ-
ent ways. However, NLTCTs for large operations
tend to become increasingly more complex, for
the number of combinations grows exponentially.
As a consequence, these operations require a large
number of cases within translation rules and some-
times even more translation rules3.

A thorough evaluation of this method is due. Its
suitability must be measured from the perspective
of two kinds of users: (a) the engineers who write
the formal models, generate the formal test cases
and write the NLTCTs; and (b) other stakeholders
(e.g., the customer, auditors, domain experts), who
read the descriptions of the test cases in natural
language. For the engineers, applying the method
should be more efficient, in terms of time and ef-
fort, than writing the descriptions by hand. For the
readers, success will be determined by the read-
ability of the output and, more critically, by its
precision with respect to the specification. At the
moment of writing, we are designing two empiri-
cal studies aimed at obtaining these measures.

4 Future and Related Work

The solution presented above was successful in
generating adequate NL descriptions of the test

3This is because templates are written in terms of the val-
ues bound to variables, and not in terms of the predicates sat-
isfied by those values, which are nonetheless available as part
of the MBT approach.

Test case: DumpMemoryAbsAdd SP 7 TCASE

Service (6,5) will be tested in a situation that verifies that:

• the state is such that:

– the on-board system is currently processing a
telecommand and has not answered it yet.

– the service type of the telecommand is
DMAA.

– the set of sequences of available memory
cells contains only one sequence, associated
to a memory ID, which has four different
bytes.

– the set of starting addresses of the chunks
of memory that have been requested by the
ground is empty.

• the input memory ID to be dumped is the avail-
able memory ID, the input set of start addresses
of the memory regions to be dumped is the uni-
tary sequence composed of 1, the set of numbers of
memory cells to be dumped is the unitary sequence
composed of 2.

Figure 3: NL description of the test in Figure 1

cases in one particular project. However, the lim-
itations mentioned in the previous section show
that this solution would not generalise well to
specifications in other domains. Moreover, it re-
quires defining a new template for each operation;
a task of still considerable size for large systems.

At the same time, Z specifications contain all
the information necessary to produce the tem-
plates for the operations in the system, regardless
of its domain of application. This information is
structured according to the syntax of the formal
language. Additionally, when formally specifying
a system, it is common practice to include associ-
ations between the identifiers in the specification
(new types, operations, state schemata, variables,
constants, etc.) and the elements they refer to in
the application domain (i.e., aerospace software).
These associations are called designations (Jack-
son, 1995), some of which, relevant to the test case
in Figure 1, are shown in Figure 4.

These considerations lead us to believe in the

srv≈Service type of the telecommand
DMAA≈Dump memory using absolute addresses

processingTC≈The on-board system is currently processing
a telecommand and has not answered it yet

m?≈Memory ID to be dumped
sa?≈Start addresses of the memory regions to be

dumped
len?≈The number of memory cells to be dumped

for each start address

Figure 4: Designations for the test in Figure 1
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possibility of generating NL descriptions of Z test
cases automatically by using their definitions, the
system specification and the designations of iden-
tifiers. Such a solution would be independent of
the application domain and, more importantly, of
the number of operations in the model.

The linguistic properties of the target document
are relevant in devising an adequate treatment for
the input, but the overall structure of the output re-
mains rigid and its content is determined by the
definition of each test case. The approach would
still be template-based, but in terms of the NLG
architecture of Reiter and Dale (2000), templates
would be defined at the level of the document
structure4, with minimal microplanning and sur-
face strings generated according to the part of the
test case being processed and the designations of
the identifiers5. The next stages of our project will
point in this direction, using techniques from NLG
for automating the definition of the templates pre-
sented in the previous section.

There have been efforts for producing nat-
ural language versions of formal specifications
in the past. Punshon et al. (1997) use a case
study to present the REVIEW system (Salek et
al., 1994)6. REVIEW automatically paraphrases
specifications developed with Metaview (Soren-
son et al., 1988), an academic research metasys-
tem that facilitates the construction of CASE envi-
ronments to support software specification tasks.
Coscoy (1997) describes a mechanism based on
program extraction, for generating explanations of
formal proofs in the Calculus of Inductive Con-
structions, implemented in the Coq Proof Assis-
tant (Bertot and Castéran, 2004). Lavoie et al.
(1997) present MODEX, a tool that generates cus-
tomizable descriptions of the relations between
classes in object-oriented models specified in the
ODL standard (Cattell and Barry, 1997). Bertani
et al. (1999) describe a controlled natural language
approach to translating formal specifications writ-
ten in an extension of TRIO (Ghezzi et al., 1990)
by transforming syntactic trees in TRIO into syn-
tactic trees of the controlled language.

The solutions presented in the related work
above are highly dependant on particular aspects

4Somewhat along the lines of what Wilcock (2005) de-
scribes for XML-based NLG.

5This approach is similar to the method proposed by Kit-
tredge and Lavoie (1998) for generating weather forecasts.

6Salek et al. (1994) also give a comprehensive survey of
related work for generating NL explanations for particular
specification languages (most of which are now obsolete).

of the source language and do not apply directly
to specifications written in Z. To our knowledge,
no work has been done towards producing NL de-
scriptions of Z specifications. The same holds for
test cases generated using the MBT approach.

5 Conclusion

In this paper we presented a concrete NLG prob-
lem in the area of software development involv-
ing formal methods. We focused the description
on the generation of NL descriptions of test cases,
but nothing prevents us from extending the idea to
entire system specifications.

The development of a general technique for ver-
balising formal specification would fill the com-
munication gap between system designers and
other stakeholders in the development process,
while preserving the advantages associated to the
use of formal methods: precision, lack of ambigu-
ity, formal proof of system properties, etc.

Finally, we hope this paper draws attention from
NLG experts to an area which would benefit sub-
stantially from their expertise.
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Appendix A. NLTCT for the Example

NLTCT for DumpMemoryAbsAdd (some parts
were replaced by [...] due to space restrictions):
operation = DumpMemoryAbsAdd

\begin{tcase}
\centerline{{\bf Test case: \ltcaseid}}

The service (6,5) will be tested in the
situation that verifies that:
\begin{itemize}
\item the state is such that:
\begin{itemize}
\item the on-board system is &trule PTCr&.
\item the service type of the telecommand

is &trule SRVr&.
[...]
\item the set of starting addresses of the

chunks of memory that have been
requested by the ground is &trule
ADSr&.

\end{itemize}
[...]

\end{itemize}
\end{tcase}

\begin{trule}{PTCr}
case processingTC
$yes :currently processing a telecommand and

has not answered it yet
$no :not currently processing a telecommand
endcase
\end{trule}

\begin{trule}{SRVr}
case srv
$* :*
endcase
\end{trule}

\begin{trule}{ADSr}
case adds
$\emptyset :empty
$\langle 0 \rangle :the unitary sequence

composed of 0
endcase
\end{trule}

[...]
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Abstract

Today there exist a growing number of
framenet-like resources offering seman-
tic and syntactic phrase specifications that
can be exploited by natural language gen-
eration systems. In this paper we present
on-going work that provides a starting
point for exploiting framenet information
for multilingual natural language genera-
tion. We describe the kind of information
offered by modern computational lexical
resources and discuss how template-based
generation systems can benefit from them.

1 Introduction

Existing open-source multilingual natural lan-
guage generators such as NaturalOWL (Galanis
and Androutsopoulos, 2007) and MPIRO (Isard et
al., 2003) require a large amount of manual lin-
guistic input to map ontology statements onto se-
mantic and syntactic structures, as exemplified in
Table 1. In this table, each statement contains a
property and two instances; each template con-
tains the lexicalized, reflected property and the two
ontology classes (capitalized) the statement’s in-
stances belong to.

Ontology statement Sentence template
painted-by (ex14, p-Kleo) VESSEL was decorated by PAINTER
exhibit-depicts (ex12, en914) PORTRAIT depicts EXHIBIT-STORY
current-location (ex11, wag-mus) COIN is currently displayed in MUSEUM

Table 1: MPIRO ontology statements and their
corresponding sentence templates.

Consider adapting such systems to museum vis-
itors in multilingual environments: as each state-
ment is packaged into a sentence through a fixed
sentence template, where lexical items, style of
reference and linguistic morphology have already
been determined, this adaptation process requires
an extensive amount of manual input for each lan-
guage, which is a labour-intensive task.

One way to automate this natural language map-
ping process, avoiding manual work is through
language-specific resources that provide semantic
and syntactic phrase specifications that are, for ex-
ample, presented by means of lexicalized frames.
An example of such a resource in which frame
principles have been applied to the description and
the analysis of lexical entries from a variety of se-
mantic domains is the Berkeley FrameNet (FN)
project (Fillmore et al., 2003). The outcome of
the English FN has formed the basis for the devel-
opment of more sophisticated and computation-
ally oriented multilingual FrameNets that today
are freely available (Boas, 2009).

This rapid development in computational lexi-
cography circles has produced a growing number
of framenet-like resources that we argue are rel-
evant for natural language generators. We claim
that semantic and syntactic information, such as
that provided in a FrameNet, facilitates mapping
of ontology statements to natural language. In
this paper we describe the kind of information
which is offered by modern computational lexi-
cal resources and discuss how template-based nat-
ural language generation (NLG) systems can ben-
efit from them.

1.1 Semantic frames

A frame, according to Fillmore’s frame semantics,
describes the meaning of lexical units with refer-
ence to a structured background that motivates the
conceptual roles they encode. Conceptual roles
are represented with a set of slots called frame
elements (FEs). A semantic frame carries infor-
mation about the different syntactic realizations of
the frame elements (syntactic valency), and about
their semantic characteristics (semantic valency).

A frame can be described with the help of
two types of frame elements that are classified
in terms of how central they are to a particular
frame, namely: core and peripheral. A core ele-
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ment is one that instantiates a conceptually nec-
essary component of a frame while making the
frame unique and different from other frames. A
peripheral element does not uniquely characterize
a frame and can be instantiated in any semantically
appropriate frame.

1.2 The language generation module
The kind of language generation system discussed
here consists of a language generation module
that is guided by linguistic principles to map its
non-linguistic input (i.e. a set of logical state-
ments) to syntactic and semantic templates. This
kind of generation system follows the approaches
that have been discussed elsewhere (Reiter, 1999;
Busemann and Horacek, 1998; Geldof and van de
Velde, 1997; Reiter and Mellish, 1993).

The goal of the proposed module is to associate
an ontology statement with relevant syntactic and
semantic specifications. This generation process
should be carried out during microplanning (cf.
Reiter and Dale (2000)) before aggregation and re-
ferring expression generation take place.

1.3 The knowledge representation
The knowledge representation which serves as the
input to the language generator is a structured on-
tology specified in the Web Ontology Language
(OWL) (Berners-Lee, 2004) on which programs
can perform logical reasoning over data.

Ontological knowledge represented in OWL
contains a hierarchical description of classes (con-
cepts) and properties (relations) in a domain. It
may also contain instances that are associated with
particular classes, and assertions (axioms), which
allow reasoning about them. Generating linguis-
tic output from this originally non-linguistic input
requires instantiations of the ontology content, i.e.
concepts, properties and instances by lexical units.

2 From ontology statements to template
specifications

Our approach to automatic template generation
from ontology statements has three major steps:
(1) determining the base lexeme of a statement’s
property and identifying the frame it evokes,1 (2)
matching the statement’s associated concepts with
the frame elements, and (3) extracting the syntac-
tic patterns that are linked to each frame element.

1Base lexemes become words after they are subjected to
morphological processing which is guided by the syntactic
context.

The remainder of this section describes how
base lexemes are chosen and how information
about the syntactic and semantic distribution of the
lexemes underlying an ontological statement are
acquired.

2.1 Lexical units’ determination and frame
identification

The first, most essential step that is required for
recognizing which semantic frame is associated
with an ontology statement is lexicalization. Most
Web ontologies contain a large amount of linguis-
tic information that can be exploited to map the
ontology content to linguistic units automatically
(Mellish and Sun, 2006). However, direct verbal-
ization of the ontology properties and concepts re-
quires preprocessing, extensive linguistic knowl-
edge and sophisticated disambiguation algorithms
to produce accurate results. For the purposes of
this paper where we are only interested in lexical-
izing the ontology properties, we avoid applying
automatic verbalization; instead we choose man-
ual lexicalization.

The grammatical categories that are utilized to
manifest the ontology properties are verb lexemes.
These are determined according to the frame defi-
nitions and with the help of the ontology class hi-
erarchy. For example, consider the statement cre-
ate (bellini, napoleon). In this domain, i.e. the
cultural heritage domain, the property create has
two possible interpretations: (1) to create a physi-
cal object which serves as the representation of the
presented entity, (2) to create an artifact that is an
iconic representation of an actual or imagined en-
tity or event. FrameNet contains two frames that
correspond to these two definitions, namely: Cre-
ate Representation and Create physical artwork.

Figure 1: A fragment of the ontology.

By following the ontological representation de-
parting from the given instances, as illustrated in
Figure 1, we learn that bellini is an instance of the
class Actor, napoleon is an instance of the class
Represented Object, and that napoleon is the rep-
resented entity in the painting p-163. Thus, in this
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context, an appropriate lexicalization of the prop-
erty create is the verb paint which evokes the Cre-
ate Representation frame.

For clarity, we specify in Table 2 part of the in-
formation that is coded in the frame. In this ta-
ble we find the name of the frame, its definition,
the set of lexical units belonging to the frame, the
names of its core elements and a number of sen-
tences annotated with these core FEs.

Create representation

Def A Creator produces a physical object which is to serve as a Representation
of an actual or imagined entity or event, the Represented.

LUs carve.v, cast.v, draw.v, paint.v, photograph.v, sketch.v

core
Creator (C) (1) Since [ Frans]C PHOTOGRAPHED [them]R ten

FEs
years ago the population has increased.
(2) [ Picasso]C DREW [some violent-looking birds]R .

Represented (R) (3) When [ Nadar]C PHOTOGRAPHED [ her ]R ,
Desbordes-Valmore was sixty-eight.
(4) [ Munch]C PAINTED [ himself ]R as a ghost.

Table 2: Frame Create representation.

2.2 Matching the ontology concepts with
frame elements

In this step, the set of core frame elements which
function as the obligatory arguments of the re-
quired lexeme are matched with their correspond-
ing ontology concepts. The algorithm that is ap-
plied to carry out this process utilizes the FE Tax-
onomy and the ontology class hierarchy.2

Matching is based on the class hierarchies. For
example: Actor, which is a subclass of Person is
matched with the core element Creator, which is
a subclass of Agent because they are both charac-
terized as animate objects that have human prop-
erties. Similarly, Represented Object, which is a
subclass of Conceptual Object, is matched with
the core element Represented, which is a subclass
of Entity because they are both characterized as
the results of a human creation that comprises non-
material products of the human mind.

This matching process leads to consistent speci-
fications of the semantic roles specifying sentence
constituents which are not bound to the input on-
tology structure.3

2.3 Semantic and syntactic knowledge
extraction

Semantic frames, besides providing information
about a lexeme’s semantic content, provide infor-
mation about the valency pattern associated with

2The Frame Element Taxonomy: http://www.
clres.com/db/feindex.html

3One of the basic assumptions of our approach is that se-
mantically, languages have a rather high degree of similarity,
whereas syntactically they tend to differ.

it, i.e. how semantic roles are realized syntac-
tically and what are the different types of gram-
matical functions they may fulfill when occurring
with other elements. An example of the syntactic
patterns and possible realizations of the semantic
elements that appear in the Create representation
frame are summarized in Table 3.4 From this in-
formation we learn the kind of syntactic valency
patterns that are associated with each semantic el-
ement. For example, we learn that in active con-
structions Creator appears in the subject position
while in passive constructions it follows the prepo-
sition by. It can also be eliminated in passive con-
structions when other peripheral elements appear
(Example 2), in this case it is the FE Time (T).
Although it is a peripheral element, it plays an im-
portant role in this context.

FEs Syntactic Pattern
[C, R] [ [ NP Ext], [NPObj ] ]
Example 1: [Leonardo da Vinci]C painted [this scene]R
[R, T] [ [ [NPExt], PP[in]Dep] ]
Example 2: [The lovely Sibyls]R were painted in [the last century]T .
[R, C, T] [ [ NP Ext] , [ PP[by]Dep], [ PP[in]Dep] ]
Example 3: [The Gerichtsstube]R was painted by [Kuhn]C in [1763]T .

Table 3: Syntactic realizations of the lexical entry
paint.

This knowledge is extracted automatically from
the FN database and is converted to sentence spec-
ifications with the help of a simple Perl script. Be-
low is a template example which specifies the sen-
tence construction of the sentence in Example 3:
(template ( type: passive)

(( head: |paint|) (feature: (tense: past) )

( arg1 (Represented (head: |gerichtsstube|) (

determiner: |the|))

arg2 (Creator (head: |kuhn|) (mod: |by|))

arg3 (Time (head: |1763|) (mod: |in|))))

3 Testing the method

To test our approach, we employ the MPIRO do-
main ontology content.5 Table 4 illustrates some
of the results, i.e. examples of the ontology state-
ments, the frame that matched their property lex-
icalization, and their possible realization patterns
that were extracted from the English FrameNet.

The results demonstrate some of the advantages
of the syntactic and semantic valency properties
provided in FN that are relevant for expressing nat-
ural language. These include: Verb collocations

4FN’s abbreviations: Constructional Null Instantia-
tion (CNI), External Argument (Ext), Dependent (Dep).

5<http://users.iit.demokritos.gr/
˜eleon/ELEONDownloads.html>
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Nr Ontology statement Frame Possible realization patterns
(1) depict (portraitMED , storyITE) Communicate MEDIUM depict CATEGORY.

categorization MEDIUM depict ITEM of CATEGORY.
(2) depict (modigCRE , portraitREP ) Create physical artwork CREATOR paint REPRESENTATION.

CREATOR paint REPRESENTATION
from REFERENCE in PLACE.

(3) depict (kuhnCRE , flowerREP ) Create representation CREATOR paint REPRESENTED.
REPRESENTED is painted by CREATOR in TIME.

(4) locate (portraitTHE , louvreLOC) Being located THEME is located LOCATION.
(5) copy (portraitORI , portraitCOP ) Duplication COPY replicate ORIGINAL.

CREATOR replicate ORIGINAL.

Table 4: Ontology statements and their possible realization patterns extracted from frames. Each instance
is annotated with the three first letters of the core frame element it has been associated with.

examples (1) and (2). Intransitive usages, exam-
ple (4). Semantic focus shifts, examples (3) and
(5). Lexical variations and realizations of the same
property, examples (1), (2) and (3).

4 Discussion and related work

Applying frame semantics theory has been sug-
gested before in the context of multilingual lan-
guage generation (De Bleecker, 2005; Stede,
1996). However, to our knowledge, no generation
application has tried to extract semantic frame in-
formation directly from a framenet resource and
integrate the extracted information in the genera-
tion machinery. Perhaps because it is not until now
that automatic processing of multilingual framenet
data become available (Boas, 2009). Moreover,
the rapid increase of Web ontologies has only re-
cently become acknowledged in the NLG commu-
nity, who started to recognize the new needs for
establishing feasible methods that facilitate gen-
eration and aggregation of natural language from
these emerging standards (Mellish and Sun, 2006).

Authors who have been experimenting with
NLG from Web ontologies (Bontcheva and Wilks,
2004; Wilcock and Jokinen, 2003) have demon-
strated the usefulness of performing aggregation
and applying some kind of discourse structures in
the early stages of the microplanning process. As
mentioned in Section 1.1, peripheral elements can
help in deciding on how the domain information
should be packed into sentences. In the next step
of our work, when we proceed with aggregations
and discourse generation we intend to utilize the
essential information provided by these elements.

Currently, the ontology properties are lexical-
ized manually, a process which relies solely on the
frames and the ontology class hierarchies. To in-
crease efficiency and accuracy, additional lexical

resources such as WordNet must be integrated into
the system. This kind of integration has already
proved feasible in the context of NLG (Jing and
McKeown, 1998) and has several implications for
automatic lexicalization.

5 Conclusions

In this paper we presented on-going research on
applying semantic frame theory to automate natu-
ral language template generation.

The proposed method has many advantages.
First, the extracted templates and syntactic alterna-
tions provide varying degrees of complexity of lin-
guistic entities which eliminate the need for man-
ual input of language-specific heuristics. Second,
the division of phases and the separation of the dif-
ferent tasks enables flexibility and re-use possibil-
ities. This is in particular appealing for modular
NLG systems. Third, it provides multilingual ex-
tension possibilities. Framenet resources offer an
extended amount of semantic and syntactic phrase
specifications that are only now becoming avail-
able in languages other than English. Because
non-English framenets share the same type of con-
ceptual backbone as the English FN, the steps in-
volved in adapting the proposed method to other
languages mainly concern lexicalization of the on-
tology properties.

Future work aims to enhance the proposed
method along the lines discussed in Section 4 and
test it on the Italian and Spanish framenets. We
intend to experiment with the information about
synonymous words and related terms provided in
FN (which we haven’t taken advantage of yet) and
demonstrate how existing NLG applications that
are designed to accommodate different user needs
can benefit from it.
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Abstract 

We have begun a project to automatically cre-
ate the lexico-syntactic resources for a mi-
croplanner as a side-effect of running a do-
main-specific language understanding system. 
The resources are parameterized synchronous 
TAG Derivation Trees. Since the KB is as-
sembled from the information in the texts that 
these resources are abstracted from, it will de-
compose along those same lines when used for 
generation. As all possible ways of expressing 
each concept are pre-organized into general 
patterns known to be linguistically-valid (they 
were observed in natural text), we obtain an 
architectural account for expressibility. 

1. Expressibility 

People speak grammatically. They may stutter, 
restart, or make the occasional speech error, but 
all in all they are faithful to the grammar of the 
language dialects they use. One of the ways that 
a language generation system can account for 
this is through the use of grammar that defines 
all of the possible lexico-syntactic elements from 
which a text can be constructed and defines all 
their rules of composition, such as lexicalized 
Tree Adjoining Grammar (TAG). Without the 
ability to even formulate an ungrammatical text, 
such a generator provides an account for human 
grammaticality based on its architecture rather 
than its programmer.  

We propose a similar kind of accounting for 
the problem of expressibility: one based on 
architecture rather than accident. Expressibility, 
as defined by Meteer (1992), is an issue for 
microplanners as they decide on which lexical 
and syntactic resources to employ. Not all of the 
options they might want to use are available in 
the language – they are not expressible. Consider 
the examples in Figure 1, adapted from Meteer 
1992 pg. 50. 
 

Expression Construction (‘decide’) 

“quick decision” <result> + <quick> 

“decide quickly” <action> + <quick> 

“important decision” <result> + <important> 

* “decide importantly” <action> + <important> 
Figure 1: Constraints on expressibility: To say 
that there was a decision and it was important, 

you are forced to use the noun form because 
there is no adverbial form for important as 

there is for quick  

In this short paper, we discuss our approach to 
expressibility. We describe in detail our novel 
method centered on how to use parser observa-
tions to guide generator decisions, and we pro-
vide a snapshot of the current status of our 
system implementation. 

2. Related Work 

Natural language generation (NLG) systems 
must have some way of making sure that the 
messages they build are actually expressible. 
Template-based generators avoid problems with 
expressibility largely by anticipating all of the 
wording that will be needed and packaging it in 
chunks that are guaranteed to compose correctly. 
Becker (2006), for example, does this via fully 
lexicalized TAG trees.   

Among more general-purpose generators, one 
approach to expressibility is to look ahead into 
the lexicon, avoiding constructions that are 
lexically incompatible. Look-ahead is expensive, 
however, and is only practical at small abstrac-
tion distances such as Shaw’s re-writing sentence 
planner (1998). 

Meteer’s own approach to expressibility 
started by interposing another level of represen-
tation between the microplanner and the surface 
realizer, an ‘abstract syntactic representation’ in 
the sense of RAGS (Cahill et al. 1999), that 
employed functional relationships (head, argu-
ment, matrix, adjunct) over semantically typed, 
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lexicalized constituents. This blocks *decide 
importantly because ‘important’ only has a 
realization as a property and her composition 
rules prohibit using a property to modify an 
action (‘decide’). Shifting the perspective from 
the action to its result allows the composition to 
go through. 

We are in sympathy with this approach – a 
microplanner needs its own representational 
level to serve as a scratch pad (if using a revi-
sion-based approach) or just as a scaffold to hold 
intermediate results. However, Meteer’s seman-
tic and lexical constraints do require operating 
with fine-grain details. We believe that we can 
work with larger chunks that have already been 
vetted for expressibility because we’ve observed 
someone use them, either in writing or speech.  

3. Method 

Our approach is similar to that of Zhong  & Stent 
(2005) in that we use the analysis of a corpus as 
the basis for creating the resources for the reali-
zation component. Several differences stand out. 
For one, we are working in specific domains 
rather than generic corpora like the WSJ. This 
enables the biggest difference: our analysis is 
performed by a completely accurate,1 domain-
specific NLU system (‘parser’)2 based on a 
semantic grammar (McDonald 1993). It is read-
ing for the benefit of a knowledge base, adding 
specific facts within instances of a highly struc-
tured, predefined prototypes. Such instances are 
used as the starting point for the generation 
process. 

On the KB side, our present focus happens to 
be on hurricanes and the process they go through 
as they evolve. We have developed a semantic 
grammar for this domain, and it lets us analyze 
texts like these:3 

(1) “Later that day it made landfall near 
the Haitian town of Jacmel.” 

                                                           
1 Parse accuracy and correct word sense interpretation is 
only possible if the semantic domain under analysis is 
restricted by topic and sublanguage.  
2 Most systems referred to as “parsers” stop at a structural 
description. Ours stops at the level of a disambiguated 
conceptual model and is more integrated than most. 
3 #1 and 2 are from the Wikipedia article on Hurricane 
Gustav. #3 is from a New York Times article. 

(2) “… and remained at that intensity until 
landfall on the morning of September 1 
near Cocodrie, Louisiana.” 

(3) “By landfall on Monday morning …” 
Such texts tell us how people talk about hurri-

canes, specifically here about landfall events. 
They tell us what combinations of entities are 
reasonable to include within single clauses 
(intensity, time, location), and they tell us which 
particular realizations of the landfall concept 
have been used in which larger linguistic con-
texts. They also indicate what information can be 
left out under the discourse conditions defined by 
the larger texts they appear in.4 

As different texts are read, we accumulate dif-
ferent realization forms for the same content. In 
example #1, landfall is expressed via the idiom 
make landfall, the time is given in an initial 
adverbial, and the location as a trailing adjunct. 
In #2, the landfall stands by itself as the head of a 
time-adverbial and the time and location are 
adjuncts off of it. This set of alternative phras-
ings provides the raw material for the microplan-
ner to work with – a natural set of paraphrases. 

3.1 Derivation Trees as templates 

As shown in Figure 3, to create resources for the 
microplanner, we start with the semantic analysis 
that the parser anchors to its referent when it 
instantiates the appropriate event type within the 
prototypical model of what hurricanes do, here a 
‘landfall event’, noting the specific time and 
location. Following Bateman (e.g. 2007) and 
Meteer (1992), we work with typed, structured 
objects organized under a foundational ontol-
ogy.5 Figure 2 shows the current definition of the 
landfall class in a local notation for OWL Full. 
(Class HurricaneLandfall 
  (restrict hurricane - Hurricane) 
  (restrict intensity – Saffir-Simpson) 
  (restrict location – PhysEndurant) 
  (restrict time – Date&Time)) 

Figure 2. The Landfall class 

 
                                                           
4 For example, in #1 and #3 the precise date had been given 
already in earlier sentences. 
5 An extension of Dolce (Gangemi et al. 2002). 
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Figure 3. Overview 

The semantic analysis recursively maps con-
stituents’ referents to properties of a class in-
stance. Accompanying it is a syntactic analysis in 
the form of a TAG Derivation Tree6 (DT) where 
each of its nodes (initial trees, insertions or 
adjunctions) points both to its lexical anchor and 
its specific correspondence in the domain model. 

To create a reusable resource, we abstract 
away from the lexicalization in these DT/model-
anchored pairs, and replace it with the corre-
sponding model classes as determined by the 
restrictions on the properties. For example, the 
day of the week in #3, lexically given as Monday 
morning and then dereferenced to an object with 
the meaning ‘9/1/2008 before noon’ is replaced 
in the resource with that object’s type. 

The result is a set of templates associated with 
the combination of types that corresponds to the 
participants in its source text – the more com-
posed the type, the more insertions / adjunctions 
in the template derivation tree.   

3.2 Synchronous TAGS 

This combination of derived trees and model-
levels classes and properties where the nodes of 
the two structures are linked is a synchronous 
TAG (ST). As observed by Shieber and Schabes 
(1991) who introduced this notion, “[STs] make 
the fine-grained correspondences between ex-
pressions of natural language and their meanings 
explicit by … node linking”.  
                                                           
6 The primary analysis is phrase structure in a chart, but 
since every rule in the grammar corresponds to either a 
lexicalized insertion or adjunction, the pattern of rule 
application is read out as a TAG derivation tree. 

pp("by")
   insert: prep-comp("landfall")
   adjoin: pp ("on")
              insert: prep-comp("Monday")

(Individual HurricaneLandfall new-instance
 (hurricane #<>)
 (intensity #<>)
 (location #<>)
 (time #<DayOfWeek Monday>))

 

 

 

  
Figure 4. Synchronous TAG 

In particular, they observe that STs solve an 
otherwise arbitrary problem of ‘where does one 
start’ when faced with a bag of content to be 
realized as a text. Our STs identify natural 
‘slices’ of the content – those parts that have 
already been observed to have been realized 
together in a naturally occurring text. 

Because we have the luxury to be creating the 
knowledge base of our hurricane model by the 
accretion of relationships among individually 
small chunks of information (a triple store), we 
can take synchronous TAGS a step further and 
allow them to dictate the permitted ways that 
information can be delimited within the KB for 
purposes of generation following the ideas in 
(Stone 2002). 

If we can surmount the issues described be-
low, this stricture – that one can only select for 
generation units of content of the types that have 
been observed to be used together (the model 
side of the STs) – is a clean architectural expla-
nation of how it is that the generator’s messages 
are always expressible.  

4. State of Development 

We are at an early stage in our work. Everything 
we have described is implemented, but only on a 
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‘thin slice’ to establish that our ideas were credi-
ble. There are many issues to work out as we 
‘bulk up’ the system and begin to actually inte-
grate it in a in ‘tactical’ microplanner and begin 
to actually do the style of macro-planning (de-
termining the relevant portions of the domain 
model to use as content given the intent and 
affect) that our use of synchronous TAGS should 
allow. The most salient issues are how broadly 
we should generalize when we substitute domain 
types for lexicalizations in the templates, and 
what contextual information must be kept with 
the templates.  

The type generalizations need to be broad 
enough to encompass as many substitutions as 
possible, while being strict enough to ensure that 
when the template is applied to those objects the 
realizations available to them permit them to be 
expressed in that linguistic context.7 

The examples all have specific contexts in the 
sentences and recent discourse. Two of them (#2, 
#3) are using the landfall event as a time phrase. 
Can we move them and still retain the natural-
ness of the original (e.g. from sentence initial to 
sentence final), or does this sort of information 
need to be encoded? 

Another issue is how to evaluate a system like 
this. Given the accuracy of the analysis, recreat-
ing the source text is trivial, so comparison to the 
source of the resources as a gold standard is 
meaningless. Some alternative must be found. 

While we work out these issues, we are ex-
tending the NLU domain model and grammar to 
cover more cases and thence create more syn-
chronized TAG templates. We then manually 
identify alternative domain content to app hly to 
them to in order to explore the space of realiza-
tions and identify unforeseen interactions. 

Our short-term goals are to vastly increase the 
grammar coverage for our motivating examples 
and to hand over all microplanning decisions to 
the system itself. Long-term goals include broad-
ening the coverage further still, to as open a 
domain as is feasible, as well as testing different 
macroplanners and applications with which to 
drive the entire process. Among several possi-
bilities are automatic merged-and-modified 
summarization and a query-based discourse 
system. 
                                                           
7 In our example, substituting different days and times is 
obvious (by landfall on the afternoon of August 22), but as 
we move away from that precise set of types (general-time-
of-day + date) we see that what had been lexically fixed in 
the derivation tree (by landfall on) has to shift: … at 2:00 on 
August 22.  

5. Discussion 

Because the phrasal patterns observed in the 
corpus act as templates guiding the generation 
process, and as the underlying NLU system and 
generator (McDonald 1993, Meteer et al. 1987) 
are mature and grounded in linguistic principles, 
our system combines template-based and theory-
based approaches.  

Van Deemter et al. (2005) outlined three crite-
ria for judging template-driven applications 
against "standard" (non-template) NLG systems. 
(1) Maintainability is addressed by the fact that 
our templates aren't hand-made. To extend the 
set of available realization forms we expose the 
NLU system to more text. The subject domain 
has to be one that has already been modeled, but 
we are operating from the premise that a NLG 
component would only bother to speak about 
things that the system as a whole understands. 
(2) Output quality and variability are determined 
by the corpus; using corpora containing high 
quality and varied constructions will enable 
similar output from the generator. (3) Most 
crucially, our parser and generator components 
are linguistically well-founded. Composition into 
our ‘templates’ is smoothly accommodated 
(extra modifiers, shifts in tense or aspect, appli-
cation of transformations over the DT to form 
questions, relative clauses, dropped constituents 
under conjunction). The fully-articulated syntac-
tic structure can be automatically annotated to 
facilitate prosody or to take information structure 
markup on the DT. 

The closest system to ours may be Marciniak 
& Strube (2005) who also use an annotated 
corpus as a knowledge source for generation, 
getting their annotations via “a simple rule-based 
system tuned to the given types of text”. As far 
as we can tell, they are more concerned with 
discourse while we focus on the integration with 
the underlying knowledge base and how that KB 
is extended over time. 

Like them, we believe that one of the most 
promising aspects of this work going forward is 
that the use of a parser provides us with “self-
labeling data” to draw on for statistical analysis. 
Such training material would reduce the effort 
required to adapt a generator to a new domain, 
while simultaneously improving its output. 
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Abstract

In this paper we describe a cross-linguistic
experiment in attribute selection for refer-
ring expression generation. We used a
graph-based attribute selection algorithm
that was trained and cross-evaluated on
English and Dutch data. The results indi-
cate that attribute selection can be done in
a largely language independent way.

1 Introduction

A key task in natural language generation is refer-
ring expression generation (REG). Most work on
REG is aimed at producing distinguishing descrip-
tions: descriptions that uniquely characterize a tar-
get object in a visual scene (e.g., “the red sofa”),
and do not apply to any of the other objects in the
scene (the distractors). The first step in generating
such descriptions is attribute selection: choosing a
number of attributes that uniquely characterize the
target object. In the next step, realization, the se-
lected attributes are expressed in natural language.
Here we focus on the attribute selection step. We
investigate to which extent attribute selection can
be done in a language independent way; that is,
we aim to find out if attribute selection algorithms
trained on data from one language can be success-
fully applied to another language. The languages
we investigate are English and Dutch.

Many REG algorithms require training data, be-
fore they can successfully be applied to generate
references in a particular domain. The Incremen-
tal Algorithm (Dale and Reiter, 1995), for exam-
ple, assumes that certain attributes are more pre-
ferred than others, and it is assumed that determin-
ing the preference order of attributes is an empir-
ical matter that needs to be settled for each new
domain. The graph-based algorithm (Krahmer et
al., 2003), to give a second example, similarly
assumes that certain attributes are preferred (are

“cheaper”) than others, and that data are required
to compute the attribute-cost functions.

Traditional text corpora have been argued to be
of restricted value for REG, since these typically
are not “semantically transparent” (van Deemter
et al., 2006). Rather what seems to be needed is
data collected from human participants, who pro-
duce referring expressions for specific targets in
settings where all properties of the target and its
distractors are known. Needless to say, collecting
and annotating such data takes a lot of time and ef-
fort. So what to do if one wants to develop a REG
algorithm for a new language? Would this require
a new data collection, or could existing data col-
lected for a different language be used? Clearly,
linguistic realization is language dependent, but to
what extent is attribute selection language depen-
dent? This is the question addressed in this paper.

Below we describe the English and Dutch cor-
pora used in our experiments (Section 2), the
graph-based algorithm we used for attribute se-
lection (Section 3), and the corpus-based attribute
costs and orders used by the algorithm (Section 4).
We present the results of our cross-linguistic at-
tribute selection experiments (Section 5) and end
with a discussion and conclusions (Section 6).

2 Corpora

2.1 English: the TUNA Corpus

For English data, we used the TUNA corpus of
object descriptions (Gatt et al., 2007). This cor-
pus was created by presenting the participants in
an on-line experiment with a visual scene consist-
ing of seven objects and asking them to describe
one of the objects, the target, in such a way that it
could be uniquely identified. There were two ex-
perimental conditions: in the +LOC condition, the
participants were free to describe the target object
using any of its properties, including its location
on the screen, whereas in the -LOC condition they

Sixth International Natural Language Generation Conference (INLG 2010)

191



were discouraged (but not prevented) from men-
tioning object locations. The resulting object de-
scriptions were annotated using XML and com-
bined with an XML representation of the visual
scene, listing all objects and their properties in
terms of attribute-value pairs. The TUNA corpus
is split into two domains: one with descriptions of
furniture and one with descriptions of people.

The TUNA corpus was used for the comparative
evaluation of REG systems in the TUNA Chal-
lenges (2007-2009). For our current experiments,
we used the TUNA 2008 Challenge training and
development sets (Gatt et al., 2008) to train and
evaluate the graph-based algorithm on.

2.2 Dutch: the D-TUNA Corpus

For Dutch, we used the D(utch)-TUNA corpus of
object descriptions (Koolen and Krahmer, 2010).
The collection of this corpus was inspired by the
TUNA experiment described above, and was done
using the same visual scenes. There were three
conditions: text, speech and face-to-face. The
text condition was a replication (in Dutch) of the
TUNA experiment: participants typed identify-
ing descriptions of target referents, distinguishing
them from distractor objects in the scene. In the
other two conditions participants produced spo-
ken descriptions for an addressee, who was either
visible to the speaker (face-to-face condition) or
not (speech condition). The resulting descriptions
were annotated semantically using the XML anno-
tation scheme of the English TUNA corpus.

The procedure in the D-TUNA experiment dif-
fered from that used in the original TUNA exper-
iment in two ways. First, the D-TUNA experi-
ment used a laboratory-based set-up, whereas the
TUNA study was conducted on-line in a relatively
uncontrolled setting. Second, participants in the
D-TUNA experiment were completely prevented
from mentioning object locations.

3 Graph-Based Attribute Selection

For attribute selection, we use the graph-based al-
gorithm of Krahmer et al. (2003), one of the
highest scoring attribute selection methods in the
TUNA 2008 Challenge (Gatt et al. (2008), table
11). In this approach, a visual scene with tar-
get and distractor objects is represented as a la-
belled directed graph, in which the objects are
modelled as nodes and their properties as looping
edges on the corresponding nodes. To select the

attributes for a distinguishing description, the al-
gorithm searches for a subgraph of the scene graph
that uniquely refers to the target referent. Starting
from the node representing the target, it performs a
depth-first search over the edges connected to the
subgraph found so far. The algorithm’s output is
the cheapest distinguishing subgraph, given a par-
ticular cost function that assigns costs to attributes.

By assigning zero costs to some attributes, e.g.,
the type of an object, the human tendency to men-
tion redundant attributes can be mimicked. How-
ever, as shown by Viethen et al. (2008), merely
assigning zero costs to an attribute is not a suffi-
cient condition for inclusion; if the graph search
terminates before the free attributes are tried, they
will not be included. Therefore, the order in which
attributes are tried must be explicitly controlled.

Thus, when using the graph-based algorithm for
attribute selection, two things must be specified:
(1) the cost function, and (2) the order in which the
attributes should be searched. Both can be based
on corpus data, as described in the next section.

4 Costs and Orders

For our experiments, we used the graph-based at-
tribute selection algorithm with two types of cost
functions: Stochastic costs and Free-Naı̈ve costs.
Both reflect (to a different extent) the relative at-
tribute frequencies found in a training corpus: the
more frequently an attribute occurs in the training
data, the cheaper it is in the cost functions.

Stochastic costs are directly based on the at-
tribute frequencies in the training corpus. They
are derived by rounding −log2(P (v)) to the first
decimal and multiplying by 10, where P (v) is the
probability that attribute v occurs in a description,
given that the target object actually has this prop-
erty. The probability P (v) is estimated by deter-
mining the frequency of each attribute in the train-
ing corpus, relative to the number of target ob-
jects that possess this attribute. Free-Naı̈ve costs
more coarsely reflect the corpus frequencies: very
frequent attributes are “free” (cost 0), somewhat
frequent attributes have cost 1 and infrequent at-
tributes have cost 2. Both types of cost functions
are used in combination with a stochastic ordering,
where attributes are tried in the order of increasing
stochastic costs.

In total, four cost functions were derived from
the English corpus data and four cost functions de-
rived from the Dutch corpus data. For each lan-
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guage, we had two Stochastic cost functions (one
for the furniture domain and one for the people do-
main), and two Free-Naı̈ve cost functions (idem),
giving eight different cost functions in total. For
each language we determined two attribute orders
to be used with the cost functions: one for the fur-
niture domain and one for the people domain.

4.1 English Costs and Order

For English, we used the Stochastic and Free-
Naı̈ve cost functions and the stochastic order from
Krahmer et al. (2008). The Stochastic costs
and order were derived from the attribute frequen-
cies in the combined training and development
sets of the TUNA 2008 Challenge (Gatt et al.,
2008), containing 399 items in the furniture do-
main and 342 items in the people domain. The
Free-Naı̈ve costs are simplified versions of the
stochastic costs. “Free” attributes are TYPE in
both domains, COLOUR for the furniture domain
and HASBEARD and HASGLASSES for the people
domain. Expensive attributes (cost 2) are X- and
Y-DIMENSION in the furniture domain and HAS-
SUIT, HASSHIRT and HASTIE in the people do-
main. All other attributes have cost 1.

4.2 Dutch Costs and Order

The Dutch Stochastic costs and order were de-
rived from the attribute frequencies in a set of 160
items (for both furniture and people) randomly se-
lected from the text condition in the D-TUNA cor-
pus. Interestingly, our Stochastic cost computa-
tion method led to an assignment of 0 costs to
the COLOUR attribute in the furniture domain, thus
enabling the Dutch Stochastic cost function to in-
clude colour as a redundant property in the gener-
ated descriptions. In the English stochastic costs,
none of the attributes are free. Another difference
is that in the furniture domain, the Dutch stochas-
tic costs for ORIENTATION attributes are much
lower than the English costs (except with value
FRONT); in the people domain, the same holds for
attributes such as HASSUIT and HASTIE. These
cost differences, which are largely reflected in the
Dutch Free-Naı̈ve costs, do not seem to be caused
by differences in expressibility, i.e., the ease with
which the attributes can be expressed in the two
languages (Koolen et al., 2010); rather, they may
be due to the fact that the human descriptions in D-
TUNA do not include any DIMENSION attributes.

Language Furniture People
Training Test Dice Acc. Dice Acc.
Dutch Dutch 0.92 0.63 0.78 0.28

English 0.83 0.55 0.73 0.29
English Dutch 0.87 0.58 0.75 0.25

English 0.67 0.29 0.67 0.24

Table 1: Evaluation results for stochastic costs.

Language Furniture People
Training Test Dice Acc. Dice Acc.
Dutch Dutch 0.94 0.70 0.78 0.28

English 0.83 0.55 0.73 0.29
English Dutch 0.94 0.70 0.78 0.28

English 0.83 0.55 0.73 0.29

Table 2: Evaluation results for Free-Naı̈ve costs.

5 Results

All cost functions were applied to both Dutch and
English test data. As Dutch test data, we used a set
of 40 furniture items and a set of 40 people items,
randomly selected from the text condition in the
D-TUNA corpus. These items had not been used
for training the Dutch cost functions. As English
test data, we used a subset of the TUNA 2008 de-
velopment set (Gatt et al., 2008). To make the En-
glish test data comparable to the Dutch ones, we
only included items from the -LOC condition (see
Section 2.1). This resulted in 38 test items for the
furniture domain, and 38 for the people domain.

Tables 1 and 2 show the results of applying the
Dutch and English cost functions (with Dutch and
English attribute orders respectively) to the Dutch
and English test data. The evaluation metrics used,
Dice and Accuracy (Acc.), both evaluate human-
likeness by comparing the automatically selected
attribute sets to those in the human test data. Dice
is a set-comparison metric ranging between 0 and
1, where 1 indicates a perfect match between sets.
Accuracy is the proportion of system outputs that
exactly match the corresponding human data. The
results were computed using the ‘teval’ evaluation
tool provided to participants in the TUNA 2008
Challenge (Gatt et al., 2008).

To determine significance, we applied repeated
measures analyses of variance (ANOVA) to the
evaluation results, with three within factors: train-
ing language (Dutch or English), cost function
(Stochastic or Free-Naı̈ve), and domain (furniture
or people), and one between factor representing
test language (Dutch or English).

An overall effect of cost function shows that the
Free-Naı̈ve cost functions generally perform better
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than the Stochastic cost functions (Dice: F(1,76) =
34.853, p < .001; Accuracy: F(1,76) = 13.052, p =
.001). Therefore, in the remainder of this section
we mainly focus on the results for the Free-Naı̈ve
cost functions (Table 2).

As can be clearly seen in Table 2, Dutch and
English Free-Naı̈ve cost functions give almost the
same scores in both the furniture and the people
domain, when applied to the same test language.
The English Free-Naı̈ve cost function performs
slightly better than the Dutch one on the Dutch
people data, but this difference is not significant.

An overall effect of test language shows that the
cost functions (both Stochastic and Free-Naı̈ve)
generally give better Dice results on the Dutch
data than for the English data (Dice: F(1,76) =
7.797, p = .007). In line with this, a two-way in-
teraction between test language and training lan-
guage (Dice: F(1,76) = 6.870, p = .011) shows that
both the Dutch and the English cost functions per-
form better on the Dutch data than on the English
data. However, the overall effect of test language
did not reach significance for Accuracy, presum-
ably due to the fact that the Accuracy scores on the
English people data are slightly higher than those
on the Dutch people data.

Finally, the cost functions generally perform
better in the furniture domain than in the people
domain (Dice: F(1,76) = 10.877, p = .001; Accu-
racy: F(1,76) = 16.629, p < .001).

6 Discussion

The results of our cross-linguistic attribute selec-
tion experiments show that Free-Naı̈ve cost func-
tions, which only roughly reflect the attribute fre-
quencies in the training corpus, have an overall
better performance than Stochastic cost functions,
which are directly based on the attribute frequen-
cies. This holds across the two languages we in-
vestigated, and corresponds with the findings of
Krahmer et al. (2008), who compared Stochas-
tic and Free-Naı̈ve functions that were trained and
evaluated on English data only. The difference in
performance is probably due to the fact that Free-
Naı̈ve costs are less sensitive to the specifics of
the training data (and are therefore more generally
applicable) and do a better job of mimicking the
human tendency towards redundancy.

Moreover, we found that Free-Naı̈ve cost func-
tions trained on different languages (English or
Dutch) performed equally well when tested on the

same data (English or Dutch), in both the furniture
and people domain. This suggests that attribute
selection can in fact be done in a language inde-
pendent way, using cost functions that have been
derived from corpus data in one language to per-
form attribute selection for another language.

Our results did show an effect of test language
on performance: both English and Dutch cost
functions performed better when tested on the
Dutch D-TUNA data than on the English TUNA
data. However, this difference does not seem to
be caused by language-specific factors but rather
by the quality of the respective test sets. Although
the English test data were restricted to the -LOC
condition, in which using DIMENSION attributes
was discouraged, still more than 25% of the En-
glish test data (both furniture and people) included
one or more DIMENSION attributes, which were
never selected for inclusion by either the English
or the Dutch Free-Naı̈ve cost functions. The Dutch
test data, on the other hand, did not include any
DIMENSION attributes. In addition, the English
test data contained more non-unique descriptions
of target objects than the Dutch data, in particu-
lar in the furniture domain. These differences may
be due to the fact that data collection was done
in a more controlled setting for D-TUNA than for
TUNA. In other words, the seeming effect of test
language does not contradict our main conclusion
that attribute selection is largely language inde-
pendent, at least for English and Dutch.

The success of our cross-linguistic experiments
may have to do with the fact that English and
Dutch hardly differ in the expressibility of object
attributes (Koolen et al., 2010). To determine the
full extent to which attribute selection can be done
in a language-dependent way, additional experi-
ments with less similar languages are necessary.
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Abstract

Ontologies and datasets for the Semantic
Web are encoded in OWL formalisms that
are not easily comprehended by people.
To make ontologies accessible to human
domain experts, several research groups
have developed ontology verbalisers using
Natural Language Generation. In practice
ontologies are usually composed of simple
axioms, so that realising them separately
is relatively easy; there remains however
the problem of producing texts that are co-
herent and efficient. We describe in this
paper some methods for producing sen-
tences that aggregate over sets of axioms
that share the same logical structure. Be-
cause these methods are based on logical
structure rather than domain-specific con-
cepts or language-specific syntax, they are
generic both as regards domain and lan-
guage.

1 Introduction

When the Semantic Web becomes established,
people will want to build their own knowledge
bases (i.e., ontologies, or TBox axioms, and data,
or ABox axioms1). Building these requires a high
level of expertise and is time-consuming, even
with the help of graphical interface tools such as
Protégé (Knublauch et al., 2004). Fortunately, nat-
ural language engineers have provided a solution
to at least part of the problem: verbalisers, e.g.,
the OWL ACE verbaliser (Kaljurand and Fuchs,
2007).

Ontology verbalisers are NLG systems that gen-
erate controlled natural language from Semantic

1Description Logic (DL) underlies the Web Ontology
Language OWL. DL distinguishes statements about classes
(TBox) from those about individuals (ABox). OWL cov-
ers both kinds of statements, which in OWL terminology are
called ‘axioms’.

Web languages, see Smart (2008). Typically they
generate one sentence per axiom: for example,
from the axiom2 Cat v Animal the OWL ACE
verbaliser (Kaljurand and Fuchs, 2007) generates
‘Every cat is an animal’. The result is not a co-
herent text, however, but a disorganised list, often
including inefficient repetitions such as:

Every cat is an animal.
Every dog is an animal.
Every horse is an animal.
Every rabbit is an animal.

An obvious first step towards improved efficiency
and coherence would be to replace such lists with
a single aggregated sentence:

The following are kinds of animals: cats, dogs,
horses and rabbits.

In this paper, we show how all axiom patterns
in EL++, a DL commonly used in the Semantic
Web, can be aggregated without further domain
knowledge, and describe a prototype system that
performs such aggregations. Our method aggre-
gates axioms while they are still in logical form,
i.e., as part of sentence planning but before con-
verting to a linguistic representation and realising
as English sentences. This approach is somewhat
different from that proposed by other researchers
who convert ontology axioms to linguistic struc-
tures before aggregating (Hielkema, 2009; Galanis
et al., 2009; Dongilli, 2008). We present results
from testing our algorithm on over fifty ontologies
from the Tones repository3.

2 Analysis of Axiom Groupings

In this section we analyse which kinds of axioms
might be grouped together. Power (2010) anal-

2For brevity we use logic notation rather than e.g., OWL
Functional Syntax: subClassOf(class(ns:cat)
class(ns:animal)) where ns is any valid namespace.
The operatorv denotes the subclass relation, u denotes class
intersection, and ∃P.C the class of individuals bearing the
relation P to one or more members of class C.

3http://owl.cs.manchester.ac.uk/
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No. Logic OWL %
1 A v B subClassOf(A B) 51
2 A v ∃P.B subClassOf(A

someValuesFrom(P B)) 33
3 [a, b] ∈ P propertyAssertion(P a b) 8
4 a ∈ A classAssertion(A a) 4

Table 1: The four most common axiom patterns.

ysed axiom patterns present in the same fifty on-
tologies. In spite of the richness of OWL, the sur-
prising result was that only four relatively simple
patterns dominated, accounting for 96% of all pat-
terns found in more than 35,000 axioms. Overall
there were few unique patterns, typically only 10
to 20, and up to 34 in an unusually complex ontol-
ogy. Table 1 lists the common patterns in logic no-
tation and OWL Functional Syntax, and also gives
the frequencies across the fifty knowledge bases.
Examples of English paraphrases for them are:

1. Every Siamese is a cat.
2. Every cat has as body part a tail.
3. Mary owns Kitty.
4. Kitty is a Siamese.

When two or more axioms conform to a pattern:
A v B
A v C
B v C
C v D

there are two techniques with which to aggregate
them: merging and chaining. If the right-hand
sides are identical we can merge the left-hand
sides, and vice versa:4

[A, B] v C
A v [B, C]

Alternatively, where the right-hand side of an ax-
iom is identical to the left-hand side of another ax-
iom, we can ‘chain’ them:

A v B v C v D

Merging compresses the information into a more
efficient text, as shown in the introduction, while
chaining orders the information to facilitate infer-
ence — for example, ‘Every A is a B and every
B is a C’ makes it easier for readers to draw the
inference that every A is a C.

4We regard expressions like A v [B, C] and A v B v C
as shorthand forms allowing us to compress several axioms
into one formula. For merges one could also refactor the set
of axioms into a new axiom: thus for example A v [B, C]
could be expressed as A v (B u C), or [A, B] v C as
(A t B) v C. This formulation would have the advantage
of staying within the normal notation and semantics of DL;
however, it is applicable only to merges, not to chains.

1. 2. 3. 4.
1. L,R,C ×,R?,× ×,×,× L?,×,C

2. L,R,× ×,×,× ×,×,C
3. L,R,× ×,R?,×

4. L,R,×

Table 2: Aggregating common axioms: 1. A v B,
2. A v ∃P.B, 3. [a, b] ∈ P , 4. a ∈ A

Table 2 summarises our conclusions on whether
each pair of the four common patterns can be
merged or chained. Each cell contains three en-
tries, indicating the possibility of left-hand-side
merge (L), right-hand-side merge (R), and chain-
ing (C). As can be seen, some merges or chains
are possible across different patterns, but the safest
aggregations are those grouping axioms with the
same pattern (down the diagonal), and it is these
on which we focus here.

3 Merging Similar Patterns

Function Merge Patterns
f1(A) f1([A1, A2, A3, . . . ])

f2(A, B) f2([A1, A2, A3, . . . ], B)
f2(A, [B1, B2, B3, . . . ])

f3(A, B, C) f3([A1, A2, A3, . . . ], B, C)
f3(A, [B1, B2, B3, . . . ], C)
f3(A, B, [C1, C2, C3, . . . ])

Table 3: Generic merging rules.

If we represent ABox and TBox axioms as
Prolog terms (or equivalently in OWL Func-
tional Syntax), they take the form of functions
with a number of arguments — for example
subClassOf(A,B), where subClassOf is the func-
tor, A is the first argument and B is the second argu-
ment. We can then formulate generic aggregation
rules for merging one-, two- and three-argument
axioms, as shown in table 3.

In general, we combine axioms for which the
functor is the same and only one argument differs.
We do not aggregate axiom functions with more
than three arguments. The merged constituents
must be different expressions with the same log-
ical form.

4 Implemention

This section describes a Prolog application which
performs a simple verbalisation including aggre-
gation. It combines a generic grammar for real-
ising logical forms with a domain-specific lexicon
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derived from identifiers and labels within the input
ontology.

Input to the application is an OWL/XML file.5

Axioms that conform to EL++ DL are selected
and converted into Prolog format. A draft lex-
icon is then built automatically from the iden-
tifier names and labels, on the assumption that
classes are lexicalised by noun groups, properties
by verb groups with valency two, and individuals
by proper nouns.

Our aggregation rules are applied to axioms
with the same logical form. The first step picks
out all the logical patterns present in the input
ontology by abstracting from atomic terms. The
next step searches for all axioms matching each
of the patterns present. Then within each pattern-
set, the algorithm searches for axioms that differ
by only one argument, grouping axioms together
in the ways suggested in table 3. It exhaustively
lists every possible grouping and builds a new, ag-
gregated axiom placing the values for the merged
argument in a list, e.g., consider the axioms:
subClassOf(class(cat), class(feline)).
subClassOf(class(cat), class(mammal)).
subClassOf(class(dog), class(mammal)).
subClassOf(class(mouse), class(mammal)).

Identical first arguments =⇒
subClassOf(class(cat),

[class(feline),
class(mammal)]).

‘Every cat is a feline and a mammal.’

Identical second arguments =⇒
subClassOf([class(cat), class(dog),
class(mouse)], class(mammal)).
‘The following are kinds of mammal:

cats, dogs and mice.’

For all axioms with an identical first argu-
ment, class(cat), the algorithm places the
second arguments in a list, [class(feline),

class(mammal)], and builds a new axiom with the
first argument and the merged second argument.
From this, our realiser generates the sentence ‘Ev-
ery cat is a feline and a mammal.’ A similar pro-
cess is performed on first arguments when the sec-
ond arguments are identical.

To construct the grammar, we first formulated
rules for realising single axioms, and then added
rules for the aggregated patterns, incorporating
aggregation cues such as ‘both’ and ‘the follow-
ing:’ (Dalianis and Hovy, 1996). For the word-
ing of single axioms we relied mainly on proposals

5We convert OWL to OWL/XML with
the Manchester OWL Syntax Converter
http://owl.cs.manchester.ac.uk/converter/

from the OWL Controlled Natural Language task
force (Schwitter et al., 2008), so obtaining rea-
sonably natural sentences for common axiom pat-
terns, even though some less common axioms such
as those describing attributes of properties (e.g.,
domain, range, functionality, reflexivity, transitiv-
ity) are hard to express without falling back on
technical concepts from the logic of relations; for
these we have (for now) allowed short technical
formulations (e.g., ‘The property “has as part”
is transitive’). With these limitations, the gram-
mar currently realises any single axiom conform-
ing to EL++, or any aggregation of EL++ axioms
through the merge rules described above. Table 4
lists example aggregated axiom patterns and En-
glish realisations generated with our grammar.

5 Testing the ‘Merging’ Algorithm

Unit Original Aggregated Reduction
Sentences 35,542 11,948 66%
Words 320,603 264,461 18%

Table 5: Reduction achieved by aggregating

We have tested our generic merging rules on ax-
ioms conforming to EL++ in a sample of around
50 ontologies. Table 5 shows the reduction in the
number of generated sentence after aggregation.
Remember that previously, the system generated
one sentence for every axiom (35,542 sentences),
but with aggregation this is reduced to 11,948 sen-
tences, an overall reduction of 66%. However, ag-
gregation increases sentence length so the saving
in words is only 18%.

The effect of merging is to replace a large num-
ber of short sentences with a smaller number of
longer ones. Sometimes the aggregated sentences
were very long indeed, e.g., when a travel ontol-
ogy cited 800 instances of the class island —
perhaps such cases would be expressed better by
a table than by prose6.

The algorithm computes all possible merges, so
we get, for instance, Fred described as a person
in both ‘The following are people: Fred, . . . ’ and
‘Fred is all of the following: a person, . . . ’. This
means that the greater efficiency achieved through
aggregation may be counterbalanced by the extra
text required when the same axiom participates in
several merges — for a few of our ontologies, in

6In a summary one might instead simply give a count and
an example: ‘There are 800 islands, e.g., The Isle of Skye’.
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Aggregated Axiom Pattern Example of Generated Text
subClassOf([C1,C2,. . . ], C3). The following are kinds of vehicles: a bicycle, a car, a truck and a van.
subClassOf(C1, [C2,C3,. . . ]). Every old lady is all of the following: a cat owner, an elderly and a woman.
subClassOf([C1,C2,. . . ], The following are kinds of something that has as topping a tomato: a fungi,

objectSomeValuesFrom(P1, C3)). a fiorella and a margherita.
subClassOf(C1, [ objectSomeValuesFrom(P1, C2) Every fiorella is something that has as topping a mozzarella and is

objectSomeValuesFrom(P2, C3)]). something that has as topping an olive.
classAssertion(C1, [I1, I2, . . . ]). The following are people: Fred, Joe, Kevin and Walt.
classAssertion([C1,C2,. . . ], I). Fred is all of the following: an animal, a cat owner and a person.
objectPropertyAssertion(P1, [I1, I2, I3], I4). The following are pet of Walt: Dewey, Huey and Louie.
objectPropertyAssertion(P1, I4, [I1, I2, I3]). Walt has as pet Dewey, Huey and Louie.
disjointClasses([C1,C2,. . . ], C3). None of the following are mad cows: an adult, . . . a lorry or a lorry driver.
disjointClasses(C1, [C2,C3,. . . ]). No grownup is any of the following: a kid, a mad cow, a plant, or a tree.
dataPropertyDomain([P1, P2, . . . ], C1). If any of the following relationships hold between X and Y then X

must be a contact: “has as city”, “has as street” and “has as zip code”.
dataPropertyRange([P1, P2, . . . ], C1). If any of the following relationships hold between X and Y then Y

must be a string: “has as city”, “has as e mail” and “has as street”.
differentIndividuals(I1, [I2, I3, . . . ]). The One Star Rating is a different individual from any of the following:
differentIndividuals([I1, I2, . . . ], I3). the Three Star Rating or the Two Star Rating.
equivalentDataProperties(P1, [P2,P3,. . . ]). The following properties are equivalent to the property “has as zip code”:
equivalentDataProperties([P1,P2,. . . ], P3). “has as post code”, “has as zip” and “has as postcode”.
equivalentObjectProperties([P1,P2,. . . ], P3). The following properties are equivalent to the property “has as father”: . . . .
negativeobjectPropertyAssertion(P1, [I1, I2, . . . ], I3). None of the following are pet of Walt: Fluffy, Mog or Rex.
negativeobjectPropertyAssertion(P1, I1, [I2, I3, . . . ]). It is not true that Walt has as pet Fluffy or Rex.

Table 4: Example realisations of common aggregated EL++ axiom patterns.

fact, the word count for the aggregated version was
greater. This is an interesting problem that we
have not seen treated elsewhere. Merely pursu-
ing brevity, one might argue that an axiom already
included in a merge should be removed from any
other merges in which it participates; on the other
hand, the arbitrary exclusion of an axiom from a
list might be regarded as misleading. For now we
have allowed repetition, leaving the problem to fu-
ture work.

6 Related Work

Reape and Mellish’s (1999) survey of aggrega-
tion in NLG proposed a continuum of definitions
ranging from narrow to wide. Our technique fits
into the narrow definition, i.e., it is language-
independent, operating on non-linguistic concep-
tual representations with the aim of minimising re-
dundancy and repetition. It implements the subject
and predicate grouping rules and aggregation cues
suggested by Dalianis and Hovy (1996).

Recent NLG systems that aggregate data from
ontologies (Hielkema, 2009; Galanis and An-
droutsopoulos, 2007; Dongilli, 2008) do not per-
form aggregation directly on axioms, but only af-
ter converting them to linguistic representations.
Moreover, their systems generate only from ABox
axioms in restricted domains while ours generates
English for both ABox and TBox in any domain.

The approach most similar to ours is that
of Bontcheva and Wilks (2004), who aggre-
gate a subset of RDF triples after domain-
dependent discourse structuring — a task equiv-

alent to merging axioms that conform to the
objectPropertyAssertion pattern in table 4.

7 Conclusion

We have demonstrated that for the EL++ DL that
underlies many Semantic Web ontologies we can
define generic aggregation rules based on logical
structure, each linked to a syntactic rule for ex-
pressing the aggregated axioms in English. The
work described here is a first step in tackling a
potentially complex area, and relies at present on
several intuitive assumptions that need to be con-
firmed empirically. First, from an examination
of all combinations of the four commonest axiom
patterns, we concluded that axioms sharing the
same pattern could be combined more effectively
than axioms with different patterns, and there-
fore focussed first on same-pattern merges with
variations in only one constituent. Secondly, af-
ter systematically enumerating all such merges for
EL++, we have implemented a grammar that ex-
presses each aggregated pattern in English, relying
on an intuitive choice of the best form of words: at
a later stage we need to confirm that the resulting
sentences are clearly understood, and to consider
whether different formulations might be better.
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Abstract
In this paper we investigate the auto-
matic generation and evaluation of senten-
tial paraphrases. We describe a method
for generating sentential paraphrases by
using a large aligned monolingual cor-
pus of news headlines acquired automat-
ically from Google News and a stan-
dard Phrase-Based Machine Translation
(PBMT) framework. The output of this
system is compared to a word substitu-
tion baseline. Human judges prefer the
PBMT paraphrasing system over the word
substitution system. We demonstrate that
BLEU correlates well with human judge-
ments provided that the generated para-
phrased sentence is sufficiently different
from the source sentence.

1 Introduction

Text-to-text generation is an increasingly studied
subfield in natural language processing. In con-
trast with the typical natural language generation
paradigm of converting concepts to text, in text-
to-text generation a source text is converted into a
target text that approximates the meaning of the
source text. Text-to-text generation extends to
such varied tasks as summarization (Knight and
Marcu, 2002), question-answering (Lin and Pan-
tel, 2001), machine translation, and paraphrase
generation.

Sentential paraphrase generation (SPG) is the
process of transforming a source sentence into a
target sentence in the same language which dif-
fers in form from the source sentence, but approx-
imates its meaning. Paraphrasing is often used as
a subtask in more complex NLP applications to
allow for more variation in text strings presented
as input, for example to generate paraphrases of
questions that in their original form cannot be an-
swered (Lin and Pantel, 2001; Riezler et al., 2007),

or to generate paraphrases of sentences that failed
to translate (Callison-Burch et al., 2006). Para-
phrasing has also been used in the evaluation of
machine translation system output (Russo-Lassner
et al., 2006; Kauchak and Barzilay, 2006; Zhou
et al., 2006). Adding certain constraints to para-
phrasing allows for additional useful applications.
When a constraint is specified that a paraphrase
should be shorter than the input text, paraphras-
ing can be used for sentence compression (Knight
and Marcu, 2002; Barzilay and Lee, 2003) as well
as for text simplification for question answering or
subtitle generation (Daelemans et al., 2004).

We regard SPG as a monolingual machine trans-
lation task, where the source and target languages
are the same (Quirk et al., 2004). However, there
are two problems that have to be dealt with to
make this approach work, namely obtaining a suf-
ficient amount of examples, and a proper eval-
uation methodology. As Callison-Burch et al.
(2008) argue, automatic evaluation of paraphras-
ing is problematic. The essence of SPG is to gen-
erate a sentence that is structurally different from
the source. Automatic evaluation metrics in re-
lated fields such as machine translation operate on
a notion of similarity, while paraphrasing centers
around achieving dissimilarity. Besides the eval-
uation issue, another problem is that for an data-
driven MT account of paraphrasing to work, a
large collection of data is required. In this case,
this would have to be pairs of sentences that are
paraphrases of each other. So far, paraphrasing
data sets of sufficient size have been mostly lack-
ing. We argue that the headlines aggregated by
Google News offer an attractive avenue.

2 Data Collection

Currently not many resources are available for
paraphrasing; one example is the Microsoft Para-
phrase Corpus (MSR) (Dolan et al., 2004; Nelken
and Shieber, 2006), which with its 139,000 aligned
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Police investigate Doherty drug pics

Doherty under police investigation 

Police to probe Pete pics 

Pete Doherty arrested in drug-photo probe 

Rocker photographed injecting unconscious fan 

Doherty ʼinjected unconscious fan with drugʼ 

Photos may show Pete Doherty injecting passed-out fan

Doherty ʼinjected female fanʼ 

Figure 1: Part of a sample headline cluster, with
aligned paraphrases

paraphrases can be considered relatively small. In
this study we explore the use of a large, automat-
ically acquired aligned paraphrase corpus. Our
method consists of crawling the headlines aggre-
gated and clustered by Google News and then
aligning paraphrases within each of these clusters.
An example of such a cluster is given in Figure 1.
For each pair of headlines in a cluster, we calcu-
late the Cosine similarity over the word vectors of
the two headlines. If the similarity exceeds a de-
fined upper threshold it is accepted; if it is below
a defined lower threshold it is rejected. In the case
that it lies between the thresholds, the process is
repeated but then with word vectors taken from a
snippet from the corresponding news article. This
method, described in earlier work Wubben et al.
(2009), was reported to yield a precision of 0.76
and a recall of 0.41 on clustering actual Dutch
paraphrases in a headline corpus. We adapted this
method to English. Our data consists of English
headlines that appeared in Google News over the
period of April to September 2006. Using this
method we end up with a corpus of 7,400,144 pair-
wise alignments of 1,025,605 unique headlines1.

3 Paraphrasing methods

In our approach we use the collection of au-
tomatically obtained aligned headlines to train
a paraphrase generation model using a Phrase-
Based MT framework. We compare this ap-
proach to a word substitution baseline. The gen-
erated paraphrases along with their source head-

1This list of aligned pairs is available at
http://ilk.uvt.nl/∼swubben/resources.html

lines are presented to human judges, whose rat-
ings are compared to the BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
ROUGE (Lin, 2004) automatic evaluation metrics.

3.1 Phrase-Based MT

We use the MOSES package to train a
Phrase-Based Machine Translation model
(PBMT) (Koehn et al., 2007). Such a model
normally finds a best translation ẽ of a text in
language f to a text in language e by combining
a translation model p(f |e) with a language model
p(e):

ẽ = arg max
e∈e∗

p(f |e)p(e)

GIZA++ is used to perform the word align-
ments (Och and Ney, 2003) which are then used in
the Moses pipeline to generate phrase alignments
in order to build the paraphrase model. We first to-
kenize our data before training a recaser. We then
lowercase all data and use all unique headlines in
the training data to train a language model with the
SRILM toolkit (Stolcke, 2002). Then we invoke
the GIZA++ aligner using the 7M training para-
phrase pairs. We run GIZA++ with standard set-
tings and we perform no optimization. Finally, we
use the MOSES decoder to generate paraphrases
for our test data.

Instead of assigning equal weights to language
and translation model, we assign a larger weight
of 0.7 to the language model to generate better
formed (but more conservative) paraphrases. Be-
cause dissimilarity is a factor that is very impor-
tant for paraphrasing but not implemented in a
PBMT model, we perform post-hoc reranking of
the different candidate outputs based on dissimi-
larity. For each headline in the testset we generate
the ten best paraphrases as scored by the decoder
and then rerank them according to dissimilarity to
the source using the Levenshtein distance measure
at the word level. The resulting headlines are re-
cased using the previously trained recaser.

3.2 Word Substitution

We compare the PBMT results with a simple word
substitution baseline. For each noun, adjective and
verb in the sentence this model takes that word and
its Part of Speech tag and retrieves from Word-
Net its most frequent synonym from the most fre-
quent synset containing the input word. We use the
Memory Based Tagger (Daelemans et al., 1996)
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System Headline
Source Florida executes notorious serial killer
PBMT Serial killer executed in Florida
Word Sub. Florida executes ill-famed series slayer
Source Dublin evacuates airport due to bomb scare
PBMT Dublin airport evacuated after bomb threat
Word Sub. Dublin evacuates airdrome due to bomb panic
Source N. Korea blasts nuclear sanctions
PBMT N. Korea nuclear blast of sanctions
Word Sub. N. Korea blasts atomic sanctions

Table 1: Examples of generated paraphrased head-
lines

trained on the Brown corpus to generate the POS-
tags. The WordNet::QueryData2 Perl module is
used to query WordNet (Fellbaum, 1998). Gener-
ated headlines and their source for both systems
are given in Table 1.

4 Evaluation

For the evaluation of the generated paraphrases
we set up a human judgement study, and compare
the human judges’ ratings to automatic evaluation
measures in order to gain more insight in the auto-
matic evaluation of paraphrasing.

4.1 Method

We randomly select 160 headlines that meet the
following criteria: the headline has to be compre-
hensible without reading the corresponding news
article, both systems have to be able to produce a
paraphrase for each headline, and there have to be
a minimum of eight paraphrases for each headline.
We need these paraphrases as multiple references
for our automatic evaluation measures to account
for the diversity in real-world paraphrases, as the
aligned paraphrased headlines in Figure 1 witness.

The judges are presented with the 160 head-
lines, along with the paraphrases generated by
both systems. The order of the headlines is ran-
domized, and the order of the two paraphrases for
each headline is also randomized to prevent a bias
towards one of the paraphrases. The judges are
asked to rate the paraphrases on a 1 to 7 scale,
where 1 means that the paraphrase is very bad and
7 means that the paraphrase is very good. The
judges were instructed to base their overall quality
judgement on whether the meaning was retained,
the paraphrase was grammatical and fluent, and
whether the paraphrase was in fact different from

2http://search.cpan.org/dist/WordNet-
QueryData/QueryData.pm

system mean stdev.
PBMT 4.60 0.44
Word Substitution 3.59 0.64

Table 2: Results of human judgements (N = 10)

the source sentence. Ten judges rated two para-
phrases per headline, resulting in a total of 3,200
scores. All judges were blind to the purpose of the
evaluation and had no background in paraphrasing
research.

4.2 Results

The average scores assigned by the human judges
to the output of the two systems are displayed in
Table 2. These results show that the judges rated
the quality of the PBMT paraphrases significantly
higher than those generated by the word substitu-
tion system (t(18) = 4.11, p < .001).

Results from the automatic measures as well
as the Levenshtein distance are listed in Table 3.
We use a Levenshtein distance over tokens. First,
we observe that both systems perform roughly the
same amount of edit operations on a sentence, re-
sulting in a Levenshtein distance over words of
2.76 for the PBMT system and 2.67 for the Word
Substitution system. BLEU, METEOR and three
typical ROUGE metrics3 all rate the PBMT sys-
tem higher than the Word Substitution system.
Notice also that the all metrics assign the high-
est scores to the original sentences, as is to be ex-
pected: because every operation we perform is in
the same language, the source sentence is also a
paraphrase of the reference sentences that we use
for scoring our generated headline. If we pick a
random sentence from the reference set and score
it against the rest of the set, we obtain similar
scores. This means that this score can be regarded
as an upper bound score for paraphrasing: we can
not expect our paraphrases to be better than those
produced by humans. However, this also shows
that these measures cannot be used directly as an
automatic evaluation method of paraphrasing, as
they assign the highest score to the “paraphrase” in
which nothing has changed. The scores observed
in Table 3 do indicate that the paraphrases gener-

3ROUGE-1, ROUGE-2 and ROUGE-SU4 are also
adopted for the DUC 2007 evaluation campaign,
http://www-nlpir.nist.gov/projects/duc/
duc2007/tasks.html
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System BLEU ROUGE-1 ROUGE-2 ROUGE-SU4 METEOR Lev.dist. Lev. stdev.
PBMT 50.88 0.76 0.36 0.42 0.71 2.76 1.35
Wordsub. 24.80 0.59 0.22 0.26 0.54 2.67 1.50
Source 60.58 0.80 0.45 0.47 0.77 0 0

Table 3: Automatic evaluation and sentence Levenshtein scores

0 1 2 3 4 5 6
Levenshtein distance

0

0.2

0.4

0.6

0.8

co
rr

e
la

tio
n

BLEU
ROUGE-1
ROUGE-2
ROUGE-SU4
METEOR

Figure 2: Correlations between human judge-
ments and automatic evaluation metrics for vari-
ous edit distances

ated by PBMT are less well formed than the orig-
inal source sentence.

There is an overall medium correlation between
the BLEU measure and human judgements (r =
0.41, p < 0.001). We see a lower correlation
between the various ROUGE scores and human
judgements, with ROUGE-1 showing the highest
correlation (r = 0.29, p < 0.001). Between the
two lies the METEOR correlation (r = 0.35, p <
0.001). However, if we split the data according to
Levenshtein distance, we observe that we gener-
ally get a higher correlation for all the tested met-
rics when the Levenshtein distance is higher, as
visualized in Figure 2. At Levenshtein distance 5,
the BLEU score achieves a correlation of 0.78 with
human judgements, while ROUGE-1 manages to
achieve a 0.74 correlation. Beyond edit distance
5, data sparsity occurs.

5 Discussion

In this paper we have shown that with an automat-
ically obtained parallel monolingual corpus with
several millions of paired examples, it is possi-
ble to develop an SPG system based on a PBMT

framework. Human judges preferred the output
of our PBMT system over the output of a word
substitution system. We have also addressed the
problem of automatic paraphrase evaluation. We
measured BLEU, METEOR and ROUGE scores,
and observed that these automatic scores corre-
late with human judgements to some degree, but
that the correlation is highly dependent on edit
distance. At low edit distances automatic metrics
fail to properly assess the quality of paraphrases,
whereas at edit distance 5 the correlation of BLEU
with human judgements is 0.78, indicating that at
higher edit distances these automatic measures can
be utilized to rate the quality of the generated para-
phrases. From edit distance 2, BLEU correlates
best with human judgements, indicating that MT
evaluation metrics might be best for SPG evalua-
tion.

The data we used for paraphrasing consists of
headlines. Paraphrase patterns we learn are those
used in headlines and therefore different from
standard language. The advantage of our approach
is that it paraphrases those parts of sentences that
it can paraphrase, and leaves the unknown parts
intact. It is straightforward to train a language
model on in-domain text and use the translation
model acquired from the headlines to generate
paraphrases for other domains. We are also inter-
ested in capturing paraphrase patterns from other
domains, but acquiring parallel corpora for these
domains is not trivial.

Instead of post-hoc dissimilarity reranking of
the candidate paraphrase sentences we intend to
develop a proper paraphrasing model that takes
dissimilarity into account in the decoding pro-
cess. In addition, we plan to investigate if our
paraphrase generation approach is applicable to
sentence compression and simplification. On the
topic of automatic evaluation, we aim to define
an automatic paraphrase generation assessment
score. A paraphrase evaluation measure should be
able to recognize that a good paraphrase is a well-
formed sentence in the source language, yet it is
clearly dissimilar to the source.
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Abstract

The paper presents two models for produc-
ing and understanding situationally appro-
priate referring expressions (REs) during
a discourse about large-scale space. The
models are evaluated against an empirical
production experiment.

1 Introduction and Background

For situated interaction, an intelligent system
needs methods for relating entities in the world,
its representation of the world, and the natural lan-
guage references exchanged with its user. Hu-
man natural language processing and algorithmic
approaches alike have been extensively studied
for application domains restricted to small visual
scenes and other small-scale surroundings. Still,
rather little research has addressed the specific is-
sues involved in establishing reference to entities
outside the currently visible scene. The challenge
that we address here is how the focus of attention
can shift over the course of a discourse if the do-
main is larger than the currently visible scene.

The generation of referring expressions (GRE)
has been viewed as an isolated problem, focussing
on efficient algorithms for determining which in-
formation from the domain must be incorporated
in a noun phrase (NP) such that this NP allows
the hearer to optimally understand which referent
is meant. The domains of such approaches usu-
ally consist of small, static domains or simple vi-
sual scenes. In their seminal work Dale and Reiter
(1995) present the Incremental Algorithm (IA) for
GRE. Recent extensions address some of its short-
comings, such as negated and disjoined properties
(van Deemter, 2002) and an account of salience for
generating contextually appropriate shorter REs
(Krahmer and Theune, 2002). Other, alternative
GRE algorithms exist (Horacek, 1997; Bateman,
1999; Krahmer et al., 2003). However, all these al-

gorithms rely on a given domain of discourse con-
stituting the current context (or focus of attention).
The task of the GRE algorithm is then to single out
the intended referent against the other members of
the context, which act as potential distractors. As
long as the domains are such closed-context sce-
narios, the intended referent is always in the cur-
rent focus. We address the challenge of producing
and understanding of references to entities that are
outside the current focus of attention, because they
have not been mentioned yet and are beyond the
currently observable scene.

Our approach relies on the dichotomy between
small-scale space and large-scale space for hu-
man spatial cognition. Large-scale space is “a
space which cannot be perceived at once; its global
structure must be derived from local observations
over time” (Kuipers, 1977). In everyday situa-
tions, an office environment, one’s house, or a uni-
versity campus are large-scale spaces. A table-top
or a part of an office are examples of small-scale
space. Despite large-scale space being not fully
observable, people can nevertheless have a rea-
sonably complete mental representation of, e.g.,
their domestic or work environments in their cog-
nitive maps. Details might be missing, and peo-
ple might be uncertain about particular things and
states of affairs that are known to change fre-
quently. Still, people regularly engage in a con-
versation about such an environment, making suc-
cessful references to spatially located entities.

It is generally assumed that humans adopt a par-
tially hierarchical representation of spatial orga-
nization (Stevens and Coupe, 1978; McNamara,
1986). The basic units of such a representation
are topological regions (i.e., more or less clearly
bounded spatial areas) (Hirtle and Jonides, 1985).
Paraboni et al. (2007) are among the few to ad-
dress the issue of generating references to entities
outside the immediate environment, and present
an algorithm for context determination in hierar-

Sixth International Natural Language Generation Conference (INLG 2010)

209



...

...

... ...
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floor1 floor2

building 1A building 3B

old campus

kitchen office2 helpdesk office3office5

floor1 floor2 floor1

building 2C building 3B

new campus

Dienstag, 14. April 2009

(a) Example for a hierarchical representation of space.

(b) Illustration of the TA principle: starting from the atten-
tional anchor (a), the smallest sub-hierarchy containing both
a and the intended referent (r) is formed incrementally.

Figure 1: TA in a spatial hierarchy.

chically ordered domains. However, since it is
mainly targeted at producing textual references to
entities in written documents (e.g., figures and ta-
bles in book chapters), they do not address the
challenges of physical and perceptual situated-
ness. Large-scale space can be viewed as a hier-
archically ordered domain. To keep track of the
referential context in such a domain, in our previ-
ous work we propose the principle of topological
abstraction (TA, summarized in Fig. 1) for context
extension (Zender et al., 2009a), similar to Ances-
tral Search (Paraboni et al., 2007). In (Zender et
al., 2009b), we describe the integration of the ap-
proach in an NLP system for situated human-robot
dialogues and present two algorithms instantiating
the TA principle for GRE and resolving referring
expressions (RRE), respectively. It relies on two
parameters: the location of the intended referent
r, and the attentional anchor a. As discussed in
our previous works, for single utterances the an-
chor is the physical position where it is made (i.e.,
the utterance situation (Devlin, 2006)). Below, we
propose models for attentional anchor-progression
for longer discourses about large-scale space, and
evaluate them against real-world data.

2 The Models

In order to account for the determination of the
attentional anchor a, we propose a model called
anchor-progression A. The model assumes that
each exophoric reference1 serves as attentional
anchor for the subsequent reference. It is based
on observations on “principles for anchoring re-
source situations” by Poesio (1993), where the ex-
pression of movement in the domain determines

1This excludes pronouns as well as other descriptions that
pick up an existing referent from the linguistic context.

the updated current mutual focus of attention. a
and r are then passed to the TA algorithm. Taking
into account the verbal behavior observed in our
experiment, we also propose a refined model of
anchor-resetting R, where for each new turn (e.g.,
a new instruction), the anchor is re-set to the utter-
ance situation. R leads to the inclusion of naviga-
tional information for each first RE in a turn, thus
reassuring the hearer of the focus of attention.

3 The Experiment

We are interested in the way the disambiguation
strategies change when producing REs during a
discourse about large-scale space versus discourse
about small-scale space. In our experiment, we
gathered a corpus of spoken instructions in two
different situations: small-scale space (SSS) and
large-scale space (LSS). We use the data to evalu-
ate the utility of the A and R models. We specifi-
cally evaluate them against the traditional (global)
model G in which the indented referent must be
singled out from all entities in the domain.

The cover story for the experiment was to
record spoken instructions to help improve a
speech recognition system for robots. The partici-
pants were asked to imagine an intelligent service
robot capable of understanding natural language
and familiar with its environment. The task of the
participants was to instruct the robot to clean up
a working space, i.e., a table-top (SSS) and an in-
door environment (LSS) by placing target objects
(cookies or balls) in boxes of the same color. The
use of color terms to identify objects was discour-
aged by telling the participants that the robot is un-
able to perceive color. The stimuli consisted of 8
corresponding scenes of the table-top and the do-
mestic setting (cf. Fig. 2). In order to preclude the
specific phenomena of collaborative, task-oriented
dialogue (cf., e.g., (Garrod and Pickering, 2004)),
the participants had to instruct an imaginary recip-
ient of orders. The choice of a robot was made to
rule out potential social implications when imag-
ining, e.g., talking to a child, a butler, or a friend.

The SSS scenes show a bird’s-eye view of the
table including the robot’s position (similar to (Fu-
nakoshi et al., 2004)). The way the objects are ar-
ranged allows to refer to their location with respect
to the corners of the table, with plates as additional
landmarks. The LSS scenes depict an indoor envi-
ronment with a corridor and, parallel to SSS, four
rooms with tables as landmarks. The scenes show
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Table 1: Example from the small-scale (1–2) and large-scale space (3–4) scenes in Fig. 2.

1. nimm [das plätzchen unten links]mG,A , leg es [in die schachtel unten rechts auf dem teller]oG,A

‘take the cookie on the bottom left, put it into the bottom right box on the plate’

2. nimm [das plätzchen unten rechts]mG,oA , leg es [in die schachtel oben links auf dem teller]mG,A

‘take the cookie on the bottom right, put it into the top left box on the plate’

3. geh [ins wohnzimmer]mG,A,R und nimm [den ball]uG,mA,R und bring ihn [ins arbeitszimmer]mG,A,R , leg ihn [in die
kiste auf dem tisch]uG,oA,R

‘go to the living room and take the ball and bring it to the study; put it into the box on the table’

4. und nimm [den ball]uG,R,mA und bring ihn [in die küche]mG,A,R und leg ihn [in die kiste auf dem boden]uG,mA,R

‘and take the ball and bring it to the kitchen and put it into the box on the floor’

(a) Small-scale space: squares represent small boxes,
stars cookies, and white circles plates.

ArbeitszimmerKüche

Wohnzimmer Bad

(b) Large-scale space: squares represent boxes placed on the
floor or on a table, circles represent balls, rooms are labeled.

Figure 2: Two stimuli scenes from the experiment.

the robot and the participant in the corridor.
In order to gather more comparable data we

opted for a within-participants approach. Each
person participated in the SSS treatment and in the
LSS treatment. To counterbalance potential carry-
over effects, half of the participants were shown
the treatments in inverse order, and the sequence
of the 8 scenes in each treatment was varied in a
principled way. In order to make the participants
produce multi-utterance discourses, they were re-
quired to refer to all target object pairs. The exact
wording of their instructions was up to them.

Participants were placed in front of a screen and
a microphone into which they spoke their orders
to the imaginary robot, followed by a self-paced
keyword after which the experimenter showed the
next scene. The experiment was conducted in Ger-
man and consisted of a pilot study (10 partici-
pants) and the main part (19 female and 14 male
students, aged 19–53, German native speakers).
The data of three participants who did not behave
according to the instructions was discarded. The
individual sessions took 20–35 min., and the par-
ticipants were paid for their efforts.

Using the UAM CorpusTool software, tran-
scriptions of the recorded spoken instructions
were annotated for occurrences of the linguistic
phenomenon we are interested in, i.e., REs. Sam-

ples were cross-checked by a second annotator.
REs were marked as shallow ‘refex’ segments,
i.e., complex NPs were not decomposed into their
constituents. Only definite NPs representing ex-
ophoric REs (cf. Sec. 2) qualify as ‘refex’ seg-
ments. If a turn contained an indefinite NP, the
whole turn was discarded. The ‘refex’ segments
were coded according to the amount of informa-
tion they contain, and under which disambigua-
tion model M ∈ {G,A,R} (R only for LSS)
they succeed in singling out the described refer-
ent. Following Engelhardt et al. (2006), we dis-
tinguish three types of semantic specificity. A RE
is an over-description with respect to M (overM )
if it contains redundant information, and it is an
under-description (underM ) if it is ambiguous ac-
cording to M . Minimal descriptions (minM ) con-
tain just enough information to uniquely identify
the referent. Table 1 shows annotated examples.

4 Results

The collected corpus consists of 30 annotated ses-
sions with 2 treatments comprising 8 scenes with
4 turns. In total, it contains 4,589 annotated REs,
out of which only 83 are errors. Except for the
error rate calculation, we only consider non-error
‘refex’ segments as the universe. The SSS treat-
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Table 2: Mean frequencies (with standard deviation in italics) of minimal (min), over-descriptions
(over), and under-descriptions (under) with respect to the models (A, R, G) in both treatments.

overG overA overR minG minA minR underG underA underR

small-scale 13.94% 34.45% 78.90% 60.11% 7.16% 5.43%
space 15.85% 14.37% 17.66% 13.13% 12.07% 10.50%

large-scale 6.81% 34.75% 20.06 % 68.04% 64.55% 76.73% 25.16% 0.69% 3.21%
space 7.53% 12.13% 10.10% 17.87% 13.13% 10.66% 19.48% 1.72% 5.06%

ment contains 1,902 ‘refex’, with a mean number
of 63.4 and a std. dev. σ=1.98 per participant. This
corresponds to the expected number of 64 REs to
be uttered: 8 scenes × 4 target object pairs. The
LSS treatment contains 2,604 ‘refex’ with an aver-
age of 86.8 correct REs (σ=18.19) per participant.
As can be seen in Table 1 (3–4), this difference
is due to the participants’ referring to intermediate
waypoints in addition to the target objects. Table 2
summarizes the analysis of the annotated data.

Overall, the participants had no difficulties with
the experiment. The mean error rates are low in
both treatments: 1.78% (σ=3.36%) in SSS, and
1.80% (σ=2.98%) in LSS. A paired sample t-
test of both scores for each participant shows that
there is no significant difference between the error
rates in the treatments (p=0.985), supporting the
claim that both treatments were of equal difficulty.
Moreover, a MANOVA shows no significant effect
of treatment-order for the verbal behavior under
study, ruling out potential carry-over effects.

Production experiments always exhibit a con-
siderable variation between participants. When
modeling natural language processing systems,
one needs to take this into account. A GRE com-
ponent should produce REs that are easy to un-
derstand, i.e., ambiguities should be avoided and
over-descriptions should occur sparingly. A GRE
algorithm will always try to produce minimal de-
scriptions. The generation of an under-description
means a failure to construct an identifying RE,
while over-descriptions are usually the result of
a globally ‘bad’ incremental construction of the
generated REs (as is the case, e.g., in the IA). An
RRE component, on the other hand, should be able
to identify as many referents as possible by treat-
ing as few as possible REs as under-descriptions.

The analysis of the SSS data with respect to
G establishes the baseline for a comparison with
other experiments and GRE approaches. 13.9% of
the REs contain redundant information (overG),
compared to 21% in (Viethen and Dale, 2006). In
contrast, however, our SSS scenes did not provide
the possibility for producing more-than-minimal
REs for every target object, which might account

for the difference. underG REs occur with a fre-
quency of 7.2% in the SSS data. Because under-
descriptions result in the the hearer being unable to
reliably resolve the reference, this means that the
robot in our experiment cannot fulfill its task. This
might explain the difference to the 16% observed
in the task-independent study by Viethen and Dale
(2006). The significantly (p<0.001) higher mean
frequency of minG than minA underpins that G
is an accurate model for the verbal behavior in
SSS. However, G does not fit the LSS data well.
An RRE algorithm with model G would fail to
resolve the intended referent in 1 out of 4 cases
(cf. underG in LSS). With only 0.7% underA
REs on average, A models the LSS data signifi-
cantly better (p<0.001). Still, there is is a high
rate of overA REs. In comparison, R yields a
significantly (p<0.001) lower amount of overR.
The mean frequency of underR is significantly
(p=0.010) higher than for underA, but still below
underG in the SSS data. With a mean frequency
of 76.7% minR, R models the data better than
both G and A. For the REs in LSS minR is in
the same range as minG for the REs in SSS.

5 Conclusions

Overall, the data exhibit a high mean frequency of
over-descriptions. However, since this means that
the human-produced REs contain more informa-
tion than minimally necessary, this does not nega-
tively affect the performance of an RRE algorithm.
For a GRE algorithm, however, a more cautious
approach might be desirable. In situated discourse
about LSS, we thus suggest that A is suitable for
the RRE task because it yields the least amount
of unresolvable under-descriptions. For the GRE
task R is more appropriate. It strikes a balance
between producing short descriptions and supple-
menting navigational information.
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Emiel Krahmer and Mariët Theune. 2002. Effi-
cient context-sensitive generation of referring ex-
pressions. In Kees van Deemter and R. Kibble, ed-
itors, Information Sharing: Givenness and Newness
in Language Processing, pages 223–264. CSLI Pub-
lications, Stanford, CA, USA.

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
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Preface

Generation Challenges 2010 was the fourth round of shared-task evaluation compe-
titions (STECs) that involve the generation of natural language; it followed the Pilot
Attribute Selection for Generating Referring Expressions Challenge in 2007 (AS-
GRE’07) and Referring Expression Generation Challenges in 2008 (REG’08), and
Generation Challenges 2009 (GenChal’09). More information about all theseNLG

STECactivities can be found via the links on the Generation Challenges homepage
(http://www.nltg.brighton.ac.uk/research/genchal10).

Generation Challenges 2010 brought together three sets ofSTECs: the three
GREC Challenges,GREC Named Entity Generation (GREC-NEG), Named Entity
Reference Detection (GREC-NER), and Named Entity Reference Regeneration
(GREC-Full), organised by Anja Belz and Eric Kow; the Challenge on Generat-
ing Instructions in Virtual Environments (GIVE) organised by Donna Byron, Jus-
tine Cassell, Robert Dale, Alexander Koller, Johanna Moore, Jon Oberlander, and
Kristina Striegnitz; and the new Question Generation (QG) tasks, organised by
Vasile Rus, Brendan Wyse, Mihai Lintean, Svetlana Stoyanchev and Paul Piwek.

In the GIVE Challenge, participating teams developed systems which gener-
ate natural-language instructions to users navigating a virtual 3D environment and
performing computer-game-like tasks. The seven participating systems were eval-
uated by measuring how quickly, accurately and efficiently users were able to per-
form tasks with a given system’s instructions, as well as on subjective measures.
Unlike the firstGIVE Challenge, this year’s challenge allowed users to move and
turn freely in the virtual environment, rather than in discrete steps, making the NLG
task much harder. The evaluation report for theGIVE Challenge can be found in
this volume; the participants’ reports will be made available on theGIVE website
(http://www.give-challenge.org/research) at a later stage.

The GREC Tasks used theGREC-People corpus of introductory sections from
Wikipedia articles on people. InGREC-NEG, the task was to select referring ex-
pressions for all mentions of all people in an article from given lists of alternatives
(this was the same task as at GenChal’09). TheGREC-NER task combines named-
entity recognition and coreference resolution, restricted to people entities; the aim
for participating systems is to identify all those types of mentions of people that
are annotated in theGREC-People corpus. The aim forGREC-Full systems was to
improve the referential clarity and fluency of input texts. Participants were free to
do this in whichever way they chose. Participants were encouraged, though not
required, to create systems which replace referring expressions as and where nec-
essary to produce as clear and fluent a text as possible. This task could be viewed
as combining theGREC-NER andGREC-NEG tasks.

The first Question Generation challenge consisted of three tasks: Task A re-
quired questions to be generated from paragraphs of texts; Task B required systems
to generate questions from sentences, and Task C was an Open Task track in which
any QG research involving evaluation could be submitted. At the time of going to
press, theQG tasks are still running; this volume contains a preliminary report from
the organisers.

In addition to the four shared tasks, Generation Challenges 2010 offered (i) an
open submission track in which participants could submit any work involving the
data from any of the shared tasks, while opting out of the competetive element, (ii)
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an evaluation track, in which proposals for new evaluation methods for the shared
task could be submitted, and (iii) a task proposal track in which proposals for new
shared tasks could be submitted. We believe that these types of open-access tracks
are important because they allow the wider research community to shape the focus
and methodologies ofSTECs directly.

We received three submissions in the Task Proposals track: an outline proposal
for tasks involving language generation under uncertainty (Lemon et al.); a pro-
posal for a shared task on improving text written by non-native speakers (Dale and
Kilgarriff); and a proposal for a surface realisation task (White et al.).

Once again, we successfully applied (with the help of support letters from many
of last year’s participants and otherHLT colleagues) for funding from the Engineer-
ing and Physical Sciences Research Council (EPSRC), the main funding body for
HLT in the UK. This support helped with all aspects of organising Generation Chal-
lenges 2010, and enabled us to create the newGREC-People corpus and to carry out
extensive human evaluations, as well as to employ a dedicated research fellow (Eric
Kow) to help with all aspects of Generation Challenges 2010.

Preparations are already underway for a fifthNLG shared-task evaluation event
next year, Generation Challenges 2011, which is likely to include a further run of
the GIVE Task, a second run of theQG Challenge, and a pilot surface realisation
task. We expect that results will be presented atENLG’11.

Just like our previousSTECs, Generation Challenges 2010 would not have been
possible without the contributions of many different people. We would like to thank
the students of Oxford University,KCL, UCL, Brighton and Sussex Universities
who participated in the evaluation experiments, as well as all other participants in
our online data elicitation and evaluation exercises; theINLG ’10 organisers, Ielka
van der Sluis, John Kelleher and Brian MacNamee; the research support team at
Brighton University and theEPSRCfor help with obtaining funding; and last but
not least, the participants in the shared tasks themselves.

July 2010 Anja Belz, Albert Gatt and Alexander Koller
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The GREC Challenges 2010:
Overview and Evaluation Results

Anja Belz Eric Kow
Natural Language Technology Group

School of Computing, Mathematical and Information Sciences
University of Brighton
Brighton BN2 4GJ, UK

{asb,eykk10}@bton.ac.uk

Abstract

There were threeGREC Tasks at Gen-
eration Challenges 2010:GREC-NER re-
quired participating systems to identify
all people references in texts; forGREC-
NEG, systems selected coreference chains
for all people entities in texts; andGREC-
Full combined theNER andNEG tasks, i.e.
systems identified and, if appropriate, re-
placed references to people in texts. Five
teams submitted 10 systems in total, and
we additionally created baseline systems
for each task. Systems were evaluated au-
tomatically using a range of intrinsic met-
rics. In addition, systems were assessed by
human judges using preference strength
judgements. This report presents the eval-
uation results, along with descriptions of
the threeGREC tasks, the evaluation meth-
ods, and the participating systems.

1 Introduction

Until recently, referring expression generation
(REG) research focused on the task of selecting the
semantic content of one-off mentions of listener-
familiar discourse entities. In theGREC research
programme we have been interested inREG as (i)
grounded within discourse context, (ii) embedded
within an application context, and (iii) informed
by naturally occurring data.

In general terms, theGREC tasks are about how
to select appropriate references to an entity in the
context of a piece of discourse longer than a sen-
tence. InGREC’10, there were three subtasks:
identification of references to people in free text
(GREC-NER); selection of references to people in
text (GREC-NEG); and regeneration of references
to people in text (GREC-Full) which can be thought
of as combining theNER andNEG tasks.

The immediate motivating application context

for theGRECTasks is the improvement of referen-
tial clarity and coherence in extractive summaries
and multiply edited texts (such as Wikipedia ar-
ticles) by regenerating referring expressions con-
tained in them. The motivating theoretical inter-
est for theGRECTasks is to discover what kind of
information is useful for making choices between
different kinds of referring expressions in context.

TheGREC’10 tasks used theGREC-People cor-
pus which consists of 1,100 Wikipedia texts about
people within which we have annotated all refer-
ences to people.

Five teams participated in theGREC’10 tasks
(see Table 1), submitting 10 systems in total. Two
of these were created by combining theNER sys-
tem of one of the teams with theNEG systems
of two different teams, producing two ‘combined’
systems for theFull Task. We also used the corpus
texts themselves as ‘system’ outputs, and created
baseline systems for all three tasks. We evaluated
systems using a range of intrinsic automatically
computed and human-assessed evaluation meth-
ods. This report describes the data (Section 2)
and evaluation methods (Section 3) used in the
threeGREC’10 tasks, and then presents task defi-
nition, participating systems, evaluation methods,
and evaluation results for each of the three tasks
separately (Sections 4– 6).

2 GREC’10 Data

The GREC’10 data is derived from theGREC-
People corpus which (in its 2010 version) con-
sists of 1,100 annotated introduction sections from
Wikipedia articles in the category People. An in-
troduction section was defined as the textual con-
tent of a Wikipedia article from the title up to (and
excluding) the first section heading, the table of
contents or the end of the text, which ever comes
first. Each text belongs to one of six subcategories:
inventors, chefs, early music composers, explor-
ers, kickboxers and romantic composers. For the

Sixth International Natural Language Generation Conference (INLG 2010)

219



Team Affiliation NEG systems NER systems Full systems
UDelx University of Delaware UDel-NEG UDel-NER UDel-Full
UMUS Université du Maine UMUS – –

Universität Stuttgart
JUx Jadavpur University JU – –
Poly-co École Polytechnique de Montréal – Poly-co –
XRCEy Xerox Research Centre Europe XRCE – –
UDel/UMUS (see above) – – UDel-UMUS-Full
UDel/XRCE (see above) – – UDel-XRCE-Full

Table 1: GREC-NEG’09 teams and systems (combined teams in last two rows).x = resubmitted after
fixing character encoding problems and/or software bugs;y = late submission.

All Inventors Chefs Early Explorers Kickboxers Romantic
Composers Composers

Training 809 249 248 312 – – –
Development 91 28 28 35 – – –
Test (NEG) 100 31 30 39 – – –
Test (NER/Full) 100 – – – 33 34 33
Total 1,100 307 306 387 33 34 33

Table 2: Overview ofGREC’10 data sets.

purposes of theGREC task, theGREC-People cor-
pus was divided into training, development and
test data. The number of texts in the subsets are
as shown in Table 2.

In the GREC-People annotation scheme, a dis-
tinction is made betweenreference andreferential
expression. A reference is ‘an instance of refer-
ring’ which is unique, whereas a referential ex-
pression is a word string and each reference can be
realised by many different referential expressions.
In the GREC corpora, each time an entity is re-
ferred to, there is a single reference, but there may
be one or several referring expressions provided
with it: in the training/development data, there is
a singleRE for each reference (the one found in
the corpus); in the test set, there are fourREs for
each reference (the one from the corpus and three
additional ones selected by subjects in a manual
selection experiment).

We first manually annotated people mentions in
the GREC-People texts by marking up the word
strings that function as referential expressions
(REs) and annotating them with coreference in-
formation as well as semantic category, syntac-
tic category and function, and various supplements
and dependents. Annotations included nested ref-
erences, plurals and coordinatedREs, certain un-
named references and indefinites. In terminology
and the treatment of syntax used in the annota-
tion scheme we relied heavily onThe Cambridge
Grammar of the English Language by Huddleston
and Pullum (2002). For full details of the manual

annotation please refer to theGREC’10 documen-
tation (Belz, 2010).

The manual annotations were then automat-
ically checked and converted toXML format.
In the XML format of the annotations, the be-
ginning and end of a reference is indicated by
<REF><REFEX>... </REFEX></REF> tags, and
other properties mentioned above (e.g. syntactic
category) are encoded as attributes on these tags.
For the GREC tasks we decided not to transfer
the annotations of integrated dependents and rel-
ative clauses to theXML format. Such dependents
are included within<REFEX>...</REFEX> annota-
tions where appropriate, but without being marked
up as separate constituents.

Figure 1 shows one of theXML -annotated texts
from theGRECdata. For full details of the manual
annotations and theXML version, please refer to
the GREC’10 documentation (Belz, 2010). Here
we provide a brief summary.

The REF element indicates a reference, and is
composed of oneREFEX element (the ‘selected’
referential expression for the given reference; in
the corpus texts it is the referential expression
found in the corpus). The attributes of theREF
element areENTITY (entity identifier), MENTION
(mention identifier),SEMCAT (semantic category),
SYNCAT (syntactic category), andSYNFUNC (syntac-
tic function). ENTITY andMENTION together con-
stitute a unique identifier for a reference within a
text; together with theTEXT ID, they constitute a
unique identifier for a reference within the entire
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<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE GREC-ITEM SYSTEM "genchal09-grec.dtd">
<GREC-ITEM>
<TEXT ID="15">
<TITLE>Alexander Fleming</TITLE>

<PARAGRAPH> <REF ENTITY="0" MENTION="1" SEMCAT="person" SYNCAT="np" SYNFUNC="subj">
<REFEX ENTITY="0" REG08-TYPE="name" CASE="plain">Sir Alexander Fleming</REFEX>

</REF> (6 August 1881 - 11 March 1955) was a Scottish biologist and pharmacologist.
<REF ENTITY="0" MENTION="2" SEMCAT="person" SYNCAT="np" SYNFUNC="subj">

<REFEX ENTITY="0" REG08-TYPE="name" CASE="plain">Fleming</REFEX>
</REF> published many articles on bacteriology, immunology, and chemotherapy.
<REF ENTITY="0" MENTION="3" SEMCAT="person" SYNCAT="np" SYNFUNC="subj-det">

<REFEX ENTITY="0" REG08-TYPE="pronoun" CASE="genitive">his</REFEX>
</REF> best-known achievements are the discovery of the enzyme lysozyme in 1922 and the discovery
of the antibiotic substance penicillin from the fungus Penicillium notatum in 1928, for which
<REF ENTITY="0" MENTION="4" SEMCAT="person" SYNCAT="np" SYNFUNC="subj">

<REFEX ENTITY="0" REG08-TYPE="pronoun" CASE="nominative">he</REFEX>
</REF> shared the Nobel Prize in Physiology or Medicine in 1945 with
<REF ENTITY="1" MENTION="1" SEMCAT="person" SYNCAT="np" SYNFUNC="obj">

<REFEX ENTITY="1" REG08-TYPE="name" CASE="plain">Florey</REFEX>
</REF> and
<REF ENTITY="2" MENTION="1" SEMCAT="person" SYNCAT="np" SYNFUNC="obj">

<REFEX ENTITY="2" REG08-TYPE="name" CASE="plain">Chain</REFEX>
</REF>.</PARAGRAPH>
</TEXT>

<ALT-REFEX>
<REFEX ENTITY="0" REG08-TYPE="empty" CASE="no_case">_</REFEX>
<REFEX ENTITY="0" REG08-TYPE="name" CASE="genitive">Fleming’s</REFEX>
<REFEX ENTITY="0" REG08-TYPE="name" CASE="genitive">Sir Alexander Fleming’s</REFEX>
<REFEX ENTITY="0" REG08-TYPE="name" CASE="plain">Fleming</REFEX>
<REFEX ENTITY="0" REG08-TYPE="name" CASE="plain">Sir Alexander Fleming</REFEX>
<REFEX ENTITY="0" REG08-TYPE="pronoun" CASE="accusative">him</REFEX>
<REFEX ENTITY="0" REG08-TYPE="pronoun" CASE="genitive">his</REFEX>
<REFEX ENTITY="0" REG08-TYPE="pronoun" CASE="nominative">he</REFEX>
<REFEX ENTITY="0" REG08-TYPE="pronoun" CASE="nominative">who</REFEX>
<REFEX ENTITY="1" REG08-TYPE="empty" CASE="no_case">_</REFEX>
<REFEX ENTITY="1" REG08-TYPE="name" CASE="genitive">Florey’s</REFEX>
<REFEX ENTITY="1" REG08-TYPE="name" CASE="plain">Florey</REFEX>
<REFEX ENTITY="1" REG08-TYPE="pronoun" CASE="accusative">him</REFEX>
<REFEX ENTITY="1" REG08-TYPE="pronoun" CASE="genitive">his</REFEX>
<REFEX ENTITY="1" REG08-TYPE="pronoun" CASE="nominative">he</REFEX>
<REFEX ENTITY="1" REG08-TYPE="pronoun" CASE="nominative">who</REFEX>
<REFEX ENTITY="2" REG08-TYPE="empty" CASE="no_case">_</REFEX>
<REFEX ENTITY="2" REG08-TYPE="name" CASE="genitive">Chain’s</REFEX>
<REFEX ENTITY="2" REG08-TYPE="name" CASE="plain">Chain</REFEX>
<REFEX ENTITY="2" REG08-TYPE="pronoun" CASE="accusative">him</REFEX>
<REFEX ENTITY="2" REG08-TYPE="pronoun" CASE="genitive">his</REFEX>
<REFEX ENTITY="2" REG08-TYPE="pronoun" CASE="nominative">he</REFEX>
<REFEX ENTITY="2" REG08-TYPE="pronoun" CASE="nominative">who</REFEX>

</ALT-REFEX>
</GREC-ITEM>

Figure 1: ExampleXML -annotated text from theGREC-NEG’09 data.

corpus.
A REFEX element indicates a referential expres-

sion (a word string that can be used to refer to an
entity). The attributes of theREFEX element are
REG08-TYPE (name, common, pronoun, empty), and
CASE (nominative, accusative, etc.).

We allow arbitrary-depth embedding of refer-
ences. This means that aREFEX element may have
REF element(s) embedded in it.

The second (and last) component of a
GREC-ITEM is an ALT-REFEX element which
is a list of REFEX elements. For theGREC tasks,
these were obtained by collecting the set of all
REFEXs that are in the text, and adding several
defaults including pronouns and other cases (e.g.
genitive) ofREs already in the list.

REF elements that are embedded inREFEX ele-
ments contained in anALT-REFEX list have an un-
specifiedMENTION id (the ‘?’ value). Furthermore,

suchREF elements have had their enclosedREFEX

removed.
The two test data sets exist in two versions:

1. Version a: each text has a single human-selected refer-
ring expression for each reference (i.e. the one found in
the original Wikipedia article).

2. Version b: the same subset of texts as in (a); for this set
we did not use theREs in the corpus, but replaced each
of them with human-selected alternatives obtained in
an online experiment as described in (Belz and Varges,
2007); this version of the test set therefore contains
three versions of each text where all theREFEXs in a
given version were selected by one ‘author’.

The training, development and test data for the
GREC-NEG task is exactly as described above.
The training and development data for theGREC-
NER/Full tasks comes in two versions. The first is
identical to the standardXML -annotated version of
theGREC-People corpus as described above (Sec-
tion 2). The second is in the test data input format.
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In this format, texts have noREFEX andREF tags,
and noALT-REFEX element. A further difference is
that in the test data format, a proportion ofREFEX

word strings have been replaced with standardised
named references. All empty references have been
replaced in this way, whereas (non-relative) pro-
nouns, and previously seen named references that
are not identical to the standardised named refer-
ence, are replaced with a likelihood of 0.5.

The reason for this replacement is to make both
tasks easier (as we are running them for the first
time) as well as more realistic (in an extractive
summary, reference chains are unlikely to be as
good as in the Wikipedia texts).

3 Evaluation Procedures

Table 3 is an overview of the evaluation mea-
sures we applied to the three tasks inGREC’10.
Version a of the test sets has a single version
of each text, and the scoring metrics that are
based on counting matches (Word String Ac-
curacy counts matching word strings,REG08-
Type Recall/Precision count matchingREG08-
Type attribute values) simply count the number of
matches a system achieves against that single text.
Version b, however, has three versions of each text,
so the match-based metrics first calculate the num-
ber of matches for each of the three versions and
then use (just) the highest number of matches.

3.1 Automatic Evaluations

REG08-Type Precision is defined as the proportion
of REFEXs selected by a participating system which
match the referenceREFEXs. REG08-Type Recall
is defined as the proportion of referenceREFEXs
for which a participating system has produced a
match.

String Accuracy is defined as the proportion of
word strings selected by a participating system
that match those in the reference texts. This was
computed on complete, ‘flattened’ word strings
contained in the outermostREFEX i.e. embedded
REFEX word strings were not considered sepa-
rately.

We also computedBLEU-3, NIST, string-edit
distance and length-normalised string-edit dis-
tance, all on word strings defined as for String Ac-
curacy. BLEU andNIST are designed for multiple
output versions, and for the string-edit metrics we
computed the mean of means over the three text-
level scores (computed against the three versions

of a text).
To measure accuracy in theNER task, we ap-

plied three commonly used performance measures
for coreference resolution:MUC-6 (Vilain et al.,
1995), CEAF (Luo, 2005), andB-CUBED (Bagga
and Baldwin, 1998).

3.2 Human-assessed evaluations

We designed the human-assessed intrinsic evalua-
tion as a preference-judgement test where subjects
expressed their preference, in terms of two crite-
ria, for either the original Wikipedia text or the
version of it with system-generated referring ex-
pressions in it. For theGREC-NEG systems, the in-
trinsic human evaluation involved system outputs
for 30 randomly selected items from the test set.
We used a Repeated Latin Squares design which
ensures that each subject sees the same number
of outputs from each system and for each test set
item. There were three 10× 10 squares, and a
total of 600 individual judgements in this evalua-
tion (60 per system: 2 criteria× 3 articles× 10
evaluators). We recruited 10 native speakers of
English from among students currently complet-
ing a linguistics-related degree at Kings College
London and University College London.

For the GREC-Full systems, we used 21 ran-
domly selected test set items, a design analogous
to that for theGREC-NEG experiment, and 7 eval-
uators from the same cohort. This experiment had
three 7× 7 squares, and 294 individual judge-
ments.

Following detailed instructions, subjects did
two practice examples, followed by the texts to be
evaluated, in random order. Subjects carried out
the evaluation over the internet, at a time and place
of their choosing. They were allowed to interrupt
and resume the experiment (though discouraged
from doing so).

Figure 2 shows what subjects saw during the
evaluation of an individual text pair. The place
(left/right) of the original Wikipedia article was
randomly determined for each individual evalua-
tion of a text pair. People references are high-
lighted in yellow/orange, those that are identical
in both texts are yellow, those that are different are
orange (in theGREC-Full version, there were only
yellow highlights). The evaluator’s task is to ex-
press their preference in terms of each quality cri-
terion by moving the slider pointers. Moving the
slider to the left means expressing a preference for
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Quality criterion: Type of evaluation: Task: Evaluation Method(s):
Humanlikeness Intrinsic/automatic NEG 1. REG’08-Type Recall and Precision

2. String Accuracy
3. String-edit distance

NEG, Full 1. BLEU
2. NIST version ofBLEU

NER CEAF, MUC-6, B-CUBED

Fluency Intrinsic/human NEG, Full Human preference-strength judgements
Referential Clarity Intrinsic/human NEG, Full Human preference-strength judgements

Table 3: Overview ofGREC’10 evaluation procedures.

Figure 2: Example of text pair presented in human intrinsic evaluation ofGREC-NEG systems.

the text on the left, moving it to the right means
preferring the text on the right; the further to the
left/right the slider is moved, the stronger the pref-
erence. The two criteria were explained in the in-
troduction as follows (the wording of the first is
from DUC):

1. Referential Clarity: It should be easy to identify who
the referring expressions are referring to. If a person
is mentioned, it should be clear what their role in the
story is. So, a reference would be unclear if a person
is referenced, but their identity or relation to the story
remains unclear.

2. Fluency: A referring expression should ‘read well’,
i.e. it should be written in good, clear English, and the
use of titles and names should seem natural. Note that
the Fluency criterion is independent of the Referential
Clarity criterion: a reference can be perfectly clear, yet
not be fluent.

It was not evident to the evaluators that slid-
ers were associated with numerical values. Slider
pointers started out in the middle of the scale (no
preference). The values associated with the points
on the slider ranged from -10.0 to +10.0.

4 GREC-NEG

4.1 Task

The GREC-NEG test data inputs are identical to
the training/development data (Figure 1), except
thatREF elements in the test data do not contain a
REFEX element, i.e. they are ‘empty’. The task for
participating systems is to select oneREFEX from
the ALT-REFEX list for eachREF in eachTEXT in
the test sets. If the selectedREFEX contains an em-
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beddedREF then participating systems also need
to select aREFEX for this embeddedREF and to set
the value of itsMENTION attribute. The same ap-
plies to all further embeddedREFEXs, at any depth
of embedding.

4.2 Systems

NEG-Base-rand, NEG-Base-freq, NEG-Base-
1st, NEG-Base-name: We created four baseline
systems each with a different way of selecting a
REFEX from thoseREFEXs in the ALT-REFEX list
that have matching entityIDs. Base-rand selects a
REFEX at random.Base-1st selects the firstREFEX
(unless the first is the empty reference in which
case it selects the second).1 Base-freq selects the
first REFEX with a REG08-TYPE andCASE combi-
nation that is the overall most frequent (as deter-
mined from the training/development data) given
the SYNCAT, SYNFUNC and SEMCAT of the refer-
ence.1 Base-name selects the shortestREFEX with
attributeREG08-TYPE=name.

UMUS: TheUMUS system mapsREFEXs to class
labels encodingREG08-TYPE, CASE, pronoun type,
reflexiveness and recursiveness. References are
represented by a set of features encoding the at-
tributes given in the corpus, information about in-
tervening references to other entities, preceding
punctuation, sentence and paragraph boundaries,
surrounding word andPOSn-grams, etc. A Condi-
tional Random Fields method is then used to map
features to class labels. The problem is construed
as predicting a sequence of class labels for each
entity, to avoid repetition. If there is more than
oneREFEX available with the predicted label then
the longest one is chosen the first time, and selec-
tion iterates through the list subsequently.

UDel: The UDel system is a set of decision-tree
classifiers (separate ones for the main subject and
other person entities) using psycholinguistically
inspired features that predict theREG08-TYPE and
CASE of theREFEX to select. Then the system ap-
plies rules governing the length of first and subse-
quent mentions. There are back-off rules for when
the predicted type/case is not available. An ambi-
guity checker avoids the use of a pronoun if there
has been an intervening reference to a person of
the same gender.

JU: The JU baseline system is similar to our
NEG-Base-freq system described above. The sub-

1Note that this is a change fromGREC’09.

mitted JU system adds features to the set ofREF

attributes available from the corpus, including in-
dices for paragraph, sentence and word. It also
adds features to theREFEX attributes available from
the corpus, in order to distinguish between several
REFEXs that match the predictedREG08-TYPE and
CASE combination.

XRCE: The XRCE system uses a conditional
random field model in combination with the Sam-
pleRank algorithm for learning model parameters.
The feature functions used include unary ones
(>100 features encoding the attributes provided in
the corpus as well as position within sentence, ad-
jacentPOStags, etc.) and binary ones (distance to
previous mention, distribution of type and case).
Some binary feature functions are activated only
if the previous mention was a name and control
overuse of pronouns.

4.3 Evaluation results

Participants computed evaluation scores on the de-
velopment set, using the geval code provided by us
which computes Word String Accuracy,REG’08-
Type Recall and Precision, string-edit distance and
BLEU. The following is a summary of teams’ self-
reported scores:

Recall Precision WSA

UMUS 0.816 0.829 0.813
UMUS’09 0.830 0.830 0.786
XRCE 0.771 0.771 0.702
UDel 0.758 0.758 0.650
JU 0.66 0.63 0.54

REG08-Type Recall and Precision results for Test
SetNEG-a (version a of the test set with just one
REFEX for eachREF) are shown in Table 4. As
would be expected, results on the test data are
somewhat worse than on the development data.
Also included in this table are results for the 4
baseline systems, and it is clear that selecting the
most frequentRE type and case combination given
SEMCAT, SYNFUNC and SYNCAT (as done by the
Base-freq system) provides a strong baseline, al-
though it is a much better predictor for Composer
and Inventor texts than Chef texts.

The last 6 columns in Table 4 contain Recall (R)
and Precision (P) results for the three subdomains.
For most of the systems results are slightly better
for Composers than for Chefs. A contributing fac-
tor to this may be the fact that Chef texts tend to
be much more colloquial. A striking detail is the
collapse in scores in the Inventors subdomain for
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System
REG08-Type Precision and Recall Scores against Corpus (Test SetNEG-a)

All Chefs Composers Inventors
Precision Recall P R P R P R

UMUS 80.71 A 78.31 A 79.19 75.44 80.88 78.68 81.66 80.05
UMUS’09 80.17 A 77.06 A 75.16 70.71 82.25 79.54 80.66 78.08
XRCE 74.26 A 71.38 A 68.55 64.50 75.44 72.96 76.84 74.38
JU 66.98 A B 64.38 A B 79.56 74.85 84.32 81.55 26.97 26.11
Base-freq 61.52 A B C 59.60 A B C 51.86 49.41 65.74 63.95 62.12 60.59
UDel-NEG 60.92 A B C 58.56 A B C 55.35 52.07 62.43 60.37 62.85 60.84
Base-rand 43.32 B C 42.00 B C 40.43 38.76 43.00 41.77 46.21 45.07
Base-name 40.60 C 39.09 C 47.80 44.97 40.32 39.06 35.28 34.24
Base-1st 40.25 C 39.64 C 47.88 46.75 39.71 39.20 34.91 34.48

Table 4:REG08-Type Precision and Recall scores against corpus version of Test Set for complete set and
for subdomains; homogeneous subsets (TukeyHSD, alpha = .05) for complete set only.

System
REG08-Type Precision and Recall Scores against human topline (Test SetNEG-b)

All Chefs Composers Inventors
Precision Recall P R P R P R

Corpus 82.67 A 84.01 A 82.25 84.24 83.26 84.47 82.02 83.04
UMUS 81.64 A 80.49 A 82.92 80.91 80.59 79.54 82.41 81.80
UMUS’09 80.46 A 78.59 A B 80.50 77.58 80.62 79.10 80.15 78.55
XRCE 73.76 A B 72.04 A B C 73.58 70.91 74.11 72.71 73.28 71.82
UDel-NEG 65.54 A B C 64.01 A B C D 66.04 63.64 66.12 64.88 64.12 62.84
Base-freq 65.38 A B C 64.37 A B C D 59.94 58.48 68.97 68.07 63.64 62.84
JU 63.73 A B C 62.25 A B C D 76.42 73.64 76.04 74.60 32.32 31.67
Base-name 55.22 B C 54.01 B C D 56.29 54.24 58.05 57.04 49.49 48.63
Base-1st 54.68 B C 54.68 C D 55.45 55.45 57.68 57.68 48.88 48.88
Base-rand 48.46 C 47.75 D 48.77 47.88 47.13 46.44 50.51 49.88

Table 5:REG08-Type Recall and Precision scores against human topline version of Test Set for complete
set and for subdomains; homogeneous subsets (TukeyHSD, alpha = .05) for complete set only.

the JU system. As a side effect, the resulting vari-
ation led to fewer significant differences between
systems being found in the results than would have
been the case otherwise.

We carried out univariateANOVAs with System
as the fixed factor, andREG08-Type Recall as the
dependent variable in oneANOVA , and REG08-
Type Precision in the other. The F-ratio for Recall
wasF(9,990) = 13.253, p < 0.001.2 The F-ratio
for Precision wasF(9,990) = 12.670, p < 0.001.
The columns containing single capital letters in
Table 4 show the homogeneous subsets of systems
as determined by a post-hoc TukeyHSD analysis.
Systems whose scores are not significantly differ-
ent (at the .05 level) share a letter.

Table 5 shows analogous results computed
against Test SetNEG-b (which has three versions
of each text). Table 5 includes results for the cor-
pus texts, also computed against the three ver-
sions of each text in test setGREC-NEG-b. We
performed univariateANOVAs with System as the
fixed factor, and Recall as the dependent variable
in one, and Precision in the other. The result for
Recall wasF(9,990) = 5.248, p < .001), and for
PrecisionF(9,990) = 5.038, p < .001. We again
compared the mean scores with Tukey’sHSD.

2We included the corpus texts themselves in the analysis,
hence 9 degrees of freedom (10 systems).

One would generally expect results on test set
NEG-b to be better than onNEG-a. This is the case
for all baseline systems and some of the participat-
ing systems, but not all. TheJU system in particu-
lar drops in score (and rank).

We also computed Word String Accuracy and
the other string similarity metrics described in
Section 3 for theGREC-NEG Task. The result-
ing scores for Test SetNEG-a are shown in Ta-
ble 6. Ranks for peer systems relative to each other
are very similar to the results for REG08-Type re-
ported above.

We performed a univariateANOVA with System
as the fixed factor, and Word String Accuracy as
the dependent variable. The F-ratio for System
wasF(9,990) = 41.308, p < 0.001; the homoge-
neous subsets resulting from the TukeyHSD post-
hoc analysis are shown in columns 3–7 of Table 6.

Table 7 shows analogous results for human
topline Test SetNEG-b (which has three versions
of each text). We carried out the same kind of
ANOVA as for Test SetNEG-a; the result for Sys-
tem on Word String Accuracy wasF(9,990) =

35.123, p < 0.001. System rankings are the same
as for Test SetNEG-a (the differences betweenJU

and Base-freq, which swap ranks, are not signif-
icant); scores across the board (again, except for
the JU system) are somewhat higher, because of
the way scores are computed for version b test
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System
String similarity against Corpus (Test SetNEG-a)

Word String Accuracy
BLEU-3 NIST SE norm.SE

All Chefs Composers Inventors
UMUS 78.51 A 76.42 79.29 78.88 0.7968 7.4986 0.6063 0.2019
UMUS’09 75.05 A 69.18 77.66 75.32 0.7615 6.9865 0.6806 0.2233
XRCE 65.25 A 61.01 66.12 67.18 0.7031 6.0264 0.8969 0.3131
JU 60.71 A 72.96 76.63 23.41 0.5720 5.7264 1.1810 0.3671
Base-freq 57.10 A B 50.31 60.65 56.49 0.5913 4.9860 1.2249 0.4191
UDel-NEG 38.21 B C 37.42 39.20 37.15 0.5498 5.0211 1.6222 0.5869
Base-name 28.48 C D 35.53 27.51 24.43 0.4966 4.9355 1.8017 0.6662
Base-rand 8.22 D E 8.49 7.10 9.92 0.1728 1.2501 2.4290 0.8928
Base-1st 4.69 E 3.46 5.47 4.33 0.1990 2.4018 2.9906 0.8152

Table 6: Word String Accuracy,BLEU, NIST, and string-edit scores, computed on Test SetNEG-a (sys-
tems in order of Word String Accuracy); homogeneous subsets (TukeyHSD, alpha = .05) for String
Accuracy only.

System
String similarity against human topline (Test SetNEG-b)

Word String Accuracy
BLEU-3 NIST SE norm.SE

All Chefs Composers Inventors
Corpus 81.90 A 83.33 82.25 80.15 0.9499 9.1087 0.7082 0.2517
UMUS 77.29 A B 79.25 76.48 77.10 0.9296 8.1746 0.8383 0.2906
UMUS’09 74.84 A B C 73.58 75.59 74.55 0.8968 7.5005 0.9096 0.3083
XRCE 63.95 A B C 66.35 63.02 63.61 0.7960 6.0780 1.1577 0.4060
Base-freq 59.84 B C D 55.97 62.72 58.02 0.7393 5.4920 1.3949 0.4717
JU 56.31 C D E 68.87 66.86 27.99 0.5765 5.8764 1.5114 0.4720
UDel-NEG 41.60 D E 44.34 40.38 41.48 0.6503 5.9571 1.7138 0.6057
Base-name 37.27 E 42.14 36.83 34.10 0.6480 6.6551 1.7299 0.6287
Base-rand 10.45 F 10.06 9.91 11.70 0.2468 1.4828 2.4869 0.8884
Base-1st 8.58 F 5.66 10.95 6.87 0.2824 3.5790 2.9226 0.7868

Table 7: Word String Accuracy,BLEU, NIST, and string-edit scores, computed on Test SetNEG-b (sys-
tems in order of Word String Accuracy); homogeneous subsets (TukeyHSD, alpha = .05) for String
Accuracy.

sets: a score is the highest score a system achieves
(at text-level) against any of the three versions of
a test set text that is taken into account.

Results forBLEU-3, NIST and the two string-
edit distance metrics are shown in the rightmost 4
columns of Tables 6 and 7. With the exception of
Base-freq/Basename on Test SetNEG-b, systems
whose Word String Accuracy scores differ signif-
icantly are assigned the same relative ranks by all
other string-similarity metrics as by Word String
Accuracy.

In the human intrinsic evaluation, evaluators
rated system outputs in terms of whether they pre-
ferred them over the original Wikipedia texts. As
a result of the experiment we had (for each system
and each evaluation criterion) a set of scores rang-
ing from -10.0 to +10.0, where 0 meant no pref-
erence, negative scores meant a preference for the
Wikipedia text, and positive scores a preference
for the system-produced text.

The second column of the left half of Table 8
summarises the Clarity scores for each system in
terms of their mean; if the mean is negative the
evaluators overall preferred the Wikipedia texts,
if it is positive evaluators overall preferred the
system. The more negative the score, the more
strongly evaluators preferred the Wikipedia texts.

Columns 8–10 show corresponding counts of how
many times each system was preferred (+), dis-
preferred (−), and neither (0).

The other half of Table 8 shows corresponding
results for Fluency.

We ran a factorial multivariateANOVA with Flu-
ency and Clarity as the dependent variables. In the
first version of theANOVA , the fixed factors were
System, Evaluator and WikipediaSide (indicating
whether the Wikipedia text was shown on the left
or right during evaluation). This showed no signif-
icant effect of WikipediaSide on either Fluency or
Clarity, and no significant interaction between any
of the factors. There was also no significant effect
of Evaluator on Fluency, and only a weakly sig-
nificant effect of Evaluator on Clarity. We ran the
ANOVA again, this time with just System as the
fixed factor. The F-ratio for System on Fluency
wasF(9,290) = 22.911, p < .001, and for System
on Clarity it wasF(9,290) = 13.051, p < .001.
Post-hoc Tukey’sHSD tests revealed the signif-
icant pairwise differences indicated by the letter
columns in Table 8.

Correlation between individual Clarity and Flu-
ency ratings as estimated with Pearson’s coeffi-
cient wasr = 0.66, p < 0.01, indicating that the
two criteria covary to some extent.
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Clarity Fluency
System Mean + 0 − System Mean + 0 −

Corpus 0.000 A 1 28 1 Corpus 0.133 A 1 29 0
UMUS -2.023 A B 1 13 16 UMUS -1.640 A B 4 12 14
UMUS’09 -2.527 A B C 0 15 15 UMUS’09 -2.130 A B 3 11 16
Base-name -2.900 B C 1 7 22 XRCE -3.587 B C 2 8 20
Base-1st -3.160 B C 4 3 23 JU -4.057 B C D 0 10 20
XRCE -3.500 B C D 1 9 20 Base-freq -4.990 C D 1 3 26
JU -3.577 B C D 0 10 20 Base-name -6.620 D E 0 1 29
UDel-NEG -5.137 C D E 0 1 29 Base-1st -7.823 E 1 0 29
Base-freq -6.190 D E 0 2 28 Base-rand -7.950 E 1 0 29
Base-rand -7.663 E 1 0 29 UDel-NEG -7.970 E 0 1 29

Table 8:GREC-NEG: Results for Clarity and Fluency preference judgement experiment. Mean = mean of
individual scores (where scores ranged from -10.0 to + 10.0);+ = number of times system was preferred;
− = number of times corpus text (Wikipedia) was preferred;0 = number of times neither was preferred.

The relative ranks of the peer systems are the
same in terms of both Fluency and Clarity. How-
ever, there are interesting differences in the ranks
of the baseline systems. For Clarity, Base-name
and Base-1st are scored fairly highly (presumably
because both tend to pick named references which
are clear if not always fluent), but both go back
to not being significantly better than Base-rand in
the Fluency rankings. Base-freq does badly in the
Clarity scores, but is significantly better than the
bottom three systems in terms of Fluency.

5 GREC-NER

5.1 Task

TheGREC-NER task is a straightforward combined
named-entity recognition and coreference resolu-
tion task, restricted to people entities. The aim for
participating systems is to identify all those types
of mentions of people that we have annotated in
the GREC-People corpus, and to insertREF and
REFEX tags with coreferenceIDs into the texts.

5.2 Systems

Baselines: We used the coreference resolvers
included in the LingPipe3 and OpenNLP Tools4

packages as baseline systems.

Poly-co: The Poly-co system starts by applying
a POS tagger to the input text. A Conditional
Random Fields classifier (trained on an automat-
ically annotated Wikipedia corpus) is then used
to detect named mentions, using word andPOS

based features. Logical rules then detect pro-
noun mentions, using named-entity, word andPOS

features. Coreference of named mentions is de-
termined by clustering with a similarity measure
based on words,POS tags and sentence position,

3http://alias-i.com/lingpipe/
4http://opennlp.sf.net

applied to mentions in order of their appearance.
Coreference of pronouns is determined with the
Hobbs algorithm for anaphora resolution.

UDel-NER: The UDel-NER system starts by (1)
parsing the input text with the Stanford Parser,
from which it extracts syntactic functions of words
and relationships between them; and (2) separately
applying the Stanford Named Entity Recognizer.
Pronoun and common noun mentions are identi-
fied using lists of all English pronouns and of com-
mon nouns which could conceivably be used to
refer to people (occupations like ‘painter’, fam-
ily relations like ‘grandmother’, etc.). Values for
all REF andREFEX attributes except coreferenceID

are obtained. Finally, the system applies a coref-
erence resolution tool which compares each refer-
ence to all previous references in reverse order, on
the basis of case, gender, number, syntactic func-
tion, andREG’08-Type.

5.3 Results

The coreference resolution accuracy scores for the
GREC-NER systems are shown in Table 9. The two
participating systems are both significantly better
than the two baslines in terms of their mean coref-
erence resolution accuracy scores.

6 GREC-Full

6.1 Task

The aim for GREC-Full systems was to improve
the referential clarity and fluency of input texts.
Participants were free to do this in whichever way
they chose. Participants were encouraged, though
not required, to create systems which replace re-
ferring expressions as and where necessary to pro-
duce as clear and fluent a text as possible. This
task could be viewed as composed of three sub-
tasks: (1) named entity recognition (as inGREC-
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Test set
Mean B-3 CEAF MUC

UDel-NER 72.71 A 80.51 77.53 60.09
Poly-co 66.99 A 76.92 70.29 53.77
LingPipe 58.23 B 71.19 61.58 41.92
OpenNLP 54.03 B 67.61 59.17 35.32

Table 9: MUC-6, CEAF and B-3 scores forGREC-NER systems. Systems shown in order of average
scores.

NER); (2) a conversion tool to give lists of possi-
ble referring expressions for each entity; and (3)
named entity generation (as inGREC-NEG).

6.2 Systems

All GREC-Full systems in our evaluations are com-
posed of aGREC-NER and aGREC-NEG system.
We created three baseline systems. Two of these
we created by combining the twoGREC-NER base-
line systems with the randomGREC-NEG base-
line system (Base-rand). For this purpose we cre-
ated a simple conversion utility which adds default
REFEXs. The third baseline system combines the
UDel-NER system with Base-rand.

The only team that submitted both aGREC-NER

and a GREC-NEG system wasUDel. All other
GREC-Full systems therefore combine the efforts
of two teams (for overview of system combina-
tions, please refer to Table 1). The two system
combinations involving theUDel-NER system did
not require a conversion utility, becauseUDel-NER

already outputs fullGREC-People format.

6.3 Results

NIST and BLEU scores computed against the
Wikipedia texts for theGREC-Full systems are
shown in Table 10. Note that these have been
computed on the complete texts, not just the refer-
ential expressions (which explains the highBLEU

scores). The scores in the second row (Corpus,
test set vers.) are obtained by comparing the test
set versions of the corpus texts (in which some of
the references have been replaced with standard-
ised named references, as explained in Section 2)
against the Wikipedia texts. The two halves of the
table show scores computed against version a of
the test set (the original Wikipedia texts) on the
left, and against version b of the test set (which has
three versions of each text with human-selected
REs) on the right.

In the human intrinsic evaluation ofGREC-Full
systems, evaluators again rated system outputs in
terms of whether they preferred them over the

original Wikipedia texts. Table 11 shows the re-
sults in the same format as in Table 8 for the
GREC-NEG systems.

We ran the same two factorial multivariate
ANOVAs with Fluency and Clarity as the depen-
dent variables. In the first version of theANOVA ,
there were no effects of Evaluator (apart from
a mild one on Clarity) and WikipediaSide and
no significant interaction between any of the fac-
tors. There was no effect of Evaluator on Fluency
and only a mild effect of Evaluator on Clarity.
The secondANOVA just had System as the fixed
factor. The F-ratio for Fluency wasF(6,140) =

13.054, p < .001, and for System on Clarity it
wasF(6,140) = 14.07, p < .001. Post-hoc Tukey’s
HSD tests revealed the significant pairwise differ-
ences indicated by the letter columns in Table 11.

Correlation between individual Clarity and Flu-
ency ratings as estimated with Pearson’s coeffi-
cient wasr = 0.696, p < .01, indicating that the
two criteria covary to some extent.

Apart from UDel-Full and OpenNLP/Base-rand
switching places, system ranks are the same for
Fluency and Clarity. Moreover, system ranks
are very similar to those produced by the string-
similarity scores above. UDel-Full is a much
harder task thanGREC-NEG and it is a very good
result indeed for a system to be preferred over
Wikipedia once or twice and to be rated equally
good as Wikipedia 4–7 times.

7 Concluding Remarks

GREC’10 has, for the first time, produced systems
which can do end-to-end named-entity generation,
moreover most of which can do it well enough for
human judges do rate them as good as Wikipedia
or better around one third of the time.

This was the second time theGREC-NEG Task
was run, and the first timeGREC-NER andGREC-
Full were run. As in 2009, many more teams reg-
istered than were able to submit a system by the
deadline, but we hope that theGREC data (which
is now freely available) will lead to many more re-
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Test SetNEG-Full-a Test SetNEG-Full-b
System Mean text-levelBLEU-4 BLEU-4 NIST System Mean text-levelBLEU-4 BLEU-4 NIST

Corpus 1.00 A 1.000 13.71 Corpus .991 A 0.985 13.74
Corpus (test set vers.) .941 B 0.923 12.92 Corpus (test set vers.) .946 B 0.929 13.20
UDel/UMUS .934 B C 0.925 13.13 UDel/UMUS .939 B C 0.928 13.29
UDel/XRCE .921 B C 0.898 12.98 UDel/XRCE .928 B C 0.907 13.15
UDel-Full .905 C 0.870 12.59 UDel-Full .912 C 0.882 12.82
UDel/Base-rand .812 D 0.809 12.17 UDel/Base-rand .823 D 0.821 12.43
OpenNLP/Base-rand .809 D 0.775 11.49 OpenNLP/Base-rand .817 D 0.785 11.72
LingPipe/Base-rand .752 E 0.753 11.48 LingPipe/Base-rand .763 E 0.764 11.70

Table 10:GREC-FULL: Mean text-levelBLEU-4 scores, system-levelBLEU-4 andNIST scores.

Clarity Fluency
System Mean + 0 − System Mean + 0 −

Corpus -0.033 A 1 20 0 Corpus 0 A 0 30 0
UDel/XRCE -2.209 A B 0 6 15 UDel/XRCE -3.424 B 1 4 16
UDel/UMUS -2.638 A B 1 6 14 UDel/UMUS -4.057 B C 2 5 14
UDel-Full -2.833 B 0 7 14 OpenNLP/Base-rand -4.671 B C 2 4 15
OpenNLP/Base-rand -3.486 B 1 7 13 UDel-Full -4.967 B C 0 4 16
UDel/Base-rand -4.667 B 0 5 16 UDel/Base-rand -6.800 C D 0 2 19
LingPipe/Base-rand -7.829 C 0 0 21 LingPipe/Base-rand -8.405 D 0 0 21

Table 11: GREC-FULL: Results for Clarity and Fluency preference judgement experiment. Mean =
mean of individual scores (where scores ranged from -10.0 to + 10.0);+ = number of times system was
preferred;− = number of times corpus text (Wikipedia) was preferred;0 = number of times neither was
preferred.

sults being produced and reported over time.
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Abstract

The problem of Named Entity Generation
is expressed as a conditional probability
model over a structured domain. By defin-
ing a factor-graph model over the men-
tions of a text, we obtain a compact pa-
rameterization of what is learned using the
SampleRank algorithm.

1 Introduction

This document describes the participa-
tion of the Xerox Research Centre Eu-
rope team in the GREC-NEG’10 challenge
(http://www.nltg.brighton.ac.uk/research/gen
chal10/grec/)

2 Model

Conditional random fields are conditional prob-
ability models that define a distribution over
a complex output space. In the context of
the Named-Entity Generation challenge, the
output space is the set of possible referring
expressions for all the possible mentions of the
text. For example, assuming that we have the
following text with holes (numbers are entity IDs):

#1 was a Scottish mathematician,
son of #2. #1 is most remembered
as the inventor of logarithms
and Napier’s bones.

Then the possibilities associated with the entity #1
are:

1. John Napier of Merchistoun,

2. Napier,

3. he,

4. who,

and the possibilities associated with the entity #2
are:

1. Sir Archibald Napier of Merchiston,

2. he,

3. who.

Then, the output space isY = {1, 2, 3, 4} ×
{1, 2, 3} × {1, 2, 3, 4}, representing all the possi-
ble combination of choices for the mentions. The
solutiony = (1, 1, 3) corresponds to inserting the
texts ‘John Napier of Merchiston’, ‘Sir Archibald
Napier of Merchiston’ and ‘he’ in the holes of the
text in the same order. This is the combination
that is the closest to the original text, but a human
could also consider that solutiony = (1, 1, 2) as
being equally valid.

Denotingx the input, i.e. the text with the typed
holes, the objective of the task is to find the combi-
nationy ∈ Y that is as close as possible to natural
texts.

We model the distribution ofy givenx by a fac-
tor graph: p(y|x) ∝

∏
c∈C φc(x, y), whereC is

the set of factors defined over the input and output
variables. In this work, we considered 3 types of
exponential potentials:

• Unary potentials defined on each individual
outputyi. They include more than 100 fea-
tures corresponding to the position of the
mention in the sentence, the previous and
next part of speech (POS), the syntactic cat-
egory and funciton of the mention, the type
and case of the corresponding referring ex-
pression, etc.

• Binary potentials over contiguous mentions
include the distance between them, and the
joint distribution of the types and cases.

• Binary potentials that are activated only be-
tween mentions and the previous time the
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same entity was referred to by a name. The
purpose of this is to reduce the use of pro-
nouns referring to a person when the men-
tions are distant to each other.

To learn the parameter of the factor graph, we used
the SampleRank algorithm (Wick et al., 2009)
which casts the prediction problem as a stochas-
tic search algorithms. During learning, an optimal
ranking function is estimated.

3 Results

Using the evaluation software supplied by the
GREC-NEG organizers, we obtained the folloing
performances:

total slots : 907
reg08 type matches : 693
reg08 type accuracy : 0.764057331863286
reg08 type matches
including embedded : 723

reg08 type precision : 0.770788912579957
reg08 type recall : 0.770788912579957
total peer REFs : 938
total reference REFs : 938
string matches : 637
string accuracy : 0.702315325248071
mean edit distance : 0.724366041896362
mean normalised
edit distance : 0.279965348873838

BLEU 1 score : 0.7206
BLEU 2 score : 0.7685
BLEU 3 score : 0.7702
BLEU 4 score : 0.754
NIST score : 5.1208
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Abstract

We describe our contribution to the Gen-
eration Challenge 2010 for the tasks
of Named Entity Recognition and co-
reference detection (GREC-NER). To ex-
tract the NE and the referring expressions,
we employ a combination of a Part of
Speech Tagger and the Conditional Ran-
dom Fields (CRF) learning technique. We
finally experiment an original algorithm
to detect co-references. We conclude
with discussion about our system perfor-
mances.

1 Introduction

Three submission tracks are proposed in Genera-
tion Challenges 2010. GREC-NEG, where partic-
ipating systems select a referring expression (RE)
from a given list. GREC-NER where partic-
ipating systems must recognize all mentions of
people in a text and identify which mentions co-
refer. And GREC-Full, end-to-end RE regener-
ation task; participating systems must identify all
mentions of people and then aim to generate im-
proved REs for the mentions. In this paper we
present an unsupervised CRF based Named Entity
Recognition (NER) system applied to the GREC-
NER Task.

2 System description

The proposed system follows a pipelined architec-
ture (each module processes the information pro-
vided by the previous one). First, a Part of Speech
(POS) tagger is applied to the corpus. Then, the
combination of words and POS tags are used by
a CRF classifier to detect Named Entities (NE).
Next, logical rules based on combination of POS
tags, words and NE labels are used to detect pro-
nouns related to persons. Finally, an algorithm

1This work is granted by Unima Inc and Prompt Québec

identifies, among the person entities that have
been detected, the ones that co-refer and cluster
them. At the end, all collected information is ag-
gregated in a XML file conform to GREC-NER
specifications.

2.1 Part of speech
The part of speech labeling is done with the En-
glish version of Treetagger1. It is completed by
a step where every NAM tag associated to a first
nname is replaced by a FNAME tag, using a lex-
ical resource of first names (see table 2, column
POS Tag). The first name tag improves the NE
detection model while it improves the estimation
of conditional probabilities for words describing a
person, encountered by a NER system.

Word from Corpus POS Tag NE Tag
Adrianne FNAM PERS
Calvo NAM PERS
enrolled VVD UNK
at IN UNK
Johnson NAM ORG
Wales NAM ORG
College NAM ORG

Table 2: Sample of word list with POS Tagging
and NE tagging

2.2 Named entity and pronoun labeling
The Named Entity Recognition (NER) system
is an implementation of the CRF based system
(Béchet and Charton, 2010) that has been used
in the French NER evaluation campaign ESTER
2 (Galliano et al., 2009)2. For the present task,
training of the NER tool is fully unsupervised as
it does not use the GREC training corpus. It is
trained in English with an automatically NE an-
notated version of the Wikipedia Corpus (the full
system configuration is described in (Charton and

1The Tree-tagger is a tool for annotating text with part-
of-speech and lemma information. http://www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger/

2Referenced in this paper as LIA
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Poly-co Score B3 CEAF MUC
Set Precision Recall FScore Precision Recall FScore Precision Recall FScore
Full set 91.48 85.89 88,60 85.40 85.40 85.40 92.15 86.95 89.47
Chef 91.12 87.84 89.45 86.53 86.53 86.53 91.86 88.55 90.18
Composers 92.01 87.14 89.51 86.87 86.87 86.87 92.11 87.02 89.49
Inventors 91.27 82.63 86.74 82.73 82.73 82.73 92.48 85.29 88.74

Table 1: System results obtained on dev-set

Torres-Moreno, 2010)). It is able to label PERS3,
ORG, LOC, TIME, DATE. We measured a spe-
cific precision of 0,93 on PERS NE detection ap-
plied to the English ACE4 evaluation set.

Following the NE detection process, detection
rules are used to label each personal pronoun with
the PERS tag. Boolean AND rules are applied
to triples {word, POS tag, NE tag}, where word
= {he, him, she, her ...}, POS tag=NN, and NE
tag=UNK . This rule structure is adopted to avoid
the PERS labeling of pronouns included in an ex-
pression or in a previously tagged NE (i.e a music
album or a movie title, using word She, and pre-
viously labeled with PROD NE tag). Finally, each
PERS labeled entity is numbered by order of ap-
parition and is associated with the sentences refer-
ence number where it appears (consecutive PERS
labeled words, not separated by punctuation mark,
receive the same index number).

2.3 Entities clustering by unstacking

In the final stage, our system determines which
entities co-refer. First, a clustering process is
achieved. The principle of the algorithm is as
follows: entities characteristics (words, POS tags,
sentence position) are indexed in a stack, ordered
according to their chronological apparition in the
text (the entity at the top of the stack is the first one
that has been detected in the document). At the
beginning of the process, the entity that is at the
top of the stack is removed and constitutes the first
item of a cluster. This entity is compared sequen-
tially, by using similarity rules, with every other
entities contained in the stack. When there is a
match, entity is transfered to the currently instan-
tiated cluster and removed from the stack. When
the end of the stack is reached, remaining entities
are reordered and the process iterates form the be-
ginning. This operation is repeated until the stack
is empty.

Comparison of entities in the stack is done in

3PERS tag is commonly used in NER Task to describe
labels applied to people, ORG describe organisations, LOC
is for places.

4ACE is the former NIST NER evaluation campaign.

two ways according to the nature of the entity.
We consider a candidate entity Ec from stack
S. According to iteration k, the current clus-
ter is Ck. Each element of the sequence Ec (i.e
Chester FNAME Carton NAM) is compared to the
sequences previously transfered in Ck during the
exploration process of the stack. If Ec ⊆

⋃
Ck, it

is included in cluster Ck and removed from S. Fi-
nally inclusion of pronouns from S in Ec is done
by resolving the anaphora, according to the Hobbs
algorithm, as described in (Jurafsky et al., 2000)5.

3 Results and conclusions

Table 1 shows our results on dev-set. We ob-
tain good precision on the 3 subsets. Our system
slightly underperforms the recall. This can be ex-
plained by a good performance in the NE detection
process, but a difficulty in some cases for the clus-
tering algorithm to group entities. We have ob-
served in the Inventors dev-set some difficulties,
due to strong variation of surface forms for spe-
cific entities. We plan to experiment the use of
an external resource of surface forms for person
names extracted from Wikipedia to improve our
system in such specific case.
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Abstract 

 

This paper presents the experiments carried 

out at Jadavpur University as part of the par-

ticipation in the GREC Named Entity Genera-

tion Challenge 2010. The Baseline system is 

based on the SEMCAT, SYNCAT and SYN-

FUNC features of REF and REG08-TYPE and 

CASE features of REFEX elements. The dis-

course level system is based on the additional 

positional features: paragraph number, sen-

tence number, word position in the sentence 

and mention number of a particular named ent-

ity in the document. The inclusion of discourse 

level features has improved the performance 

of the system. 

1 Baseline System 

The baseline system is based on the following 

linguistic features of REF elements: SEMCAT 

(Semantic Category), SYNCAT (Syntactic Cate-

gory) and SYNFUNC (Syntactic Function) (Anja 

Belz, 2010) and the following linguistic features 

of REFEX elements: REG08-TYPE (Entity type) 

and CASE (Case marker). The baseline system 

has been separately trained on the training set 

data for the three domains: chefs, composers and 

inventors. The system has been tested on each 

development set by identifying the most probable 

REFEX element among the possible alternatives 

based on the REF element feature combination. 

The probability assigned to a REFEX element 

corresponding to a certain feature combination of 

REF element is calculated as follows:  

( )
i

i

D

REFEX

v D

REF

N
p R

N
=  

where ( )
v

p R is the probability of the targeted 

REFEX element to be assigned, iD

REF
N is the total 

number of occurrences of REF element feature 

combinations, 
i

D denotes the domain i.e., Chefs, 

Composers and Inventors and iD

REF
N denotes the 

total number of occurrences of the REFEX ele-

ment corresponding to the REF feature combina-

tion. 

It has been observed that many times the most 

probable REFEX element as identified from the 

training set is not present among the alternative 

REFEX elements. In these cases the system as-

signs the next highest probable REFEX element 

learnt from the training set that matches with one 

of the REFEX elements among the alternatives. 

In some cases more than one REFEX element get 

same probability in the training set. In these cas-

es, the REFEX element that occurs earlier in the 

alternative set is assigned. The experimental re-

sult of Baseline system is reported in Table 1. 

 Chefs Composers Inventors 

Precision 0.63 0.68 0.70 

Recall 0.69 0.60 0.64 

F-Measure 0.66 0.64 0.68 

Table 1: Result of Baseline System 

2 Discourse Level System 

The discourse level features like paragraph num-

ber, sentence number and position of a particular 

word in a sentence have been added with the fea-

tures considered in the baseline system. As men-

tioned in Section 1, more than one REFEX ele-

ment can have the same probability value. This 

happens as REFEX elements are identified by 

two features only REG08-TYPE and CASE.  

 Nam

e 

Pro-

noun 

Com-

mon 

Emp-

ty 

Chefs 2317 3071 55 646 

Composers 2616 4037 92 858 

Inventors 1959 2826 75 621 

Table 2: Distribution of REFEX Types among 

three domains. 

The above problem occurs mainly for Name 

type. Pronouns are very frequent in all the three 

domains but they have small number of varia-

tions as: he, her, him, himself, his, she, who, 

whom and whose. Common type REFEX ele-
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ments are too infrequent in the training set and 

they are very hard to generalize. Empty type has 

only one REFEX value as: “_”.  The distribution 

of the various REFEX types among the three 

domains in the training set is shown in Table 2. 

2.1 Analysis of Name type entities 

Table 2 shows that name types are very frequent 

in all the three domains. Name type entities are 

further differentiated by adding more features 

derived from the analysis of the name type ele-

ment.  

Firstly, the full name of each named entity has 

been identified by Entity identification number 

(id), maximum length among all occurrences of 

that named entity and case marker as plain. For 

example, in Figure 1, the REFEX element of id 3 

has been chosen as a full name of entity “0” as it 

has the longest string with case “plain”. 

After identification of full name of each RE-

FEX entity, the following features are identified 

for each occurrence of an entity:: Complete 

Name Genitive (CNG), Complete Name (CN), 

First Name Genitive (FNG), First Name (FN), 

Last Name Genitive (LNG), Last Name (LN), 

Middle Name Genitive (MNG) and Middle 

Name (MN). These features are binary in nature 

and for each occurrence of an entity only one of 

the above features will be true. 

Pronouns are kept as the REFEX element fea-

ture with its surface level pattern as they have 

only 9 variations. Common types are considered 

with tag level “common” as they hard to general-

ize. Empty types are tagged as “empty” as they 

have only one tag value “_”.  

1 

<REFEX ENTITY="0" REG08-

TYPE="name" CASE="genitive">Alain 

Senderens's</REFEX> 

CNG 

2 

<REFEX ENTITY="0" REG08-

TYPE="name" 

CASE="genitive">Senderens's</REFEX> 

LNG 

3 

<REFEX ENTITY="0" REG08-

TYPE="name" CASE="plain">Alain 

Senderens</REFEX> 

CN 

4 

<REFEX ENTITY="0" REG08-

TYPE="name" 

CASE="plain">Senderens</REFEX> 

LN 

Figure 1: Example of Full Name Identification 

3 Experimental Results 

The experimental results of the discourse level 

system on the development set are reported in the 

Table 3 and Table 4 respectively. Table 3 reports 

the results when the system has been trained sep-

arately with domain specific training set and Ta-

ble 4 reports the results when the training has 

been carried out on the complete training set.  

The comparison of the results of the baseline 

and the discourse level system shows an overall 

improvement. But there are some interesting ob-

servations when comparing the results in Table 3 

and Table 4. Currently detailed analyses of the 

results are being carried out.

 Chefs Composers Inventors 

P R F P R F P R F 

Name 0.69 0.74 0.71 0.78 0.61 0.69 0.77 0.67 0.71 

Pronoun 0.81 0.76 0.79 0.70 0.84 0.76 0.76 0.87 0.81 

Common 0.76 0.87 0.81 0.37 0.44 0.40 0.44 0.65 0.68 

Empty 0.92 0.88 0.90 0.86 0.92 0.89 0.72 0.65 0.68 

 

Table 3: Experimental Results of Discourse Level System on the Development Set (Training with 

Domain Specific Training Set) 

 

 Reg08 Type 

   String  

Accuracy 

BLEU 
NIST 

String Edit 

Distance 

Precision Recall 
Mean 

Mean 

Normalized 1 2 3 4 

Chefs 0.66 0.70 0.57 0.68 0.70 0.76 0.81 3.70 0.77 0.38 

Composers 0.63 0.67 0.56 0.61 0.57 0.54 0.50 3.34 1.07 0.40 

Inventors 0.60 0.62 0.50 0.55 0.54 0.52 0.49 2.90 1.25 0.47 

Total 0.63 0.66 0.54 0.61 0.58 0.57 0.55 3.83 1.03 0.42 

 

Table 4: Table 4: Experimental Results of Discourse Level System on the Development Set (Training 

with Complete Training Set) 
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Abstract
We present the UMUS (Université du
Maine/Universität Stuttgart) submission
for the NEG task at GREC’10. We re-
fined and tuned our 2009 system but we
still rely on predicting generic labels and
then choosing from the list of expressions
that match those labels. We handled recur-
sive expressions with care by generating
specific labels for all the possible embed-
dings. The resulting system performs at a
type accuracy of 0.84 an a string accuracy
of 0.81 on the development set.

1 Introduction

The Named Entity Generation (NEG) task con-
sists in choosing a referential expression (com-
plete name, last name, pronoun, possessive pro-
noun, elision...) for all person entities in a text.
Texts are biographies of chefs, composers and in-
ventors from Wikipedia. For each reference, a list
of expressions is given from which the system has
to choose. This task is challenging because of the
following aspects:

1. The data is imperfect as it is a patchwork of
multiple authors’ writing.

2. The problem is hard to handle with a classi-
fier because text is predicted, not classes.

3. The problem has a complex graph structure.

4. Some decisions are recursive for embedded
references, i.e. “his father”.

5. Syntactic/semantic features cannot be ex-
tracted with a classical parser because the
word sequence is latent.

We do not deal with all of these challenges but
we try to mitigate their impact. Our system ex-
tends our approach for GREC’09 (Favre and Bon-
het, 2009). We use a sequence classifier to predict
generic labels for the possible expressions.

2 Labels for classification

Each referential expression (REFEX) is given a la-
bel consisting of sub-elements:

• The REG08 TYPE as given in the REFEX
(name, common, pronoun, empty...)

• The CASE as given in the REFEX (plain,
genitive, accusative...)

• If the expression is a pronoun, then one of
“he, him, his, who, whom, whose, that”, after
gender and number normalization.

• “self” if the expression contains “self”.

• “short” if the expression is a one-word long
name or common name.

• “nesting” if the expression is recursive.

For recursive expressions, a special handling is ap-
plied: All possible assignments of the embedded
entities are generated with labels corresponding
to the concatenation of the involved entities’ la-
bels. If the embedding is on the right (left) side
of the expression, “right” (“left”) is added to the
label. Non-sensical labels (i.e. “he father”) are not
seen in the training data, and therefore not hypoth-
esized.

3 Features

Each reference is characterized with the following
features:

• SYNFUNC, SEMCAT, SYNCAT: syntactic
function, semantic category, syntactic cate-
gory, as given in REF node.

• CHANGE, CHANGE+SYNFUNC: previous
reference is for a different entity, possibly
with syntactic function.

• PREV GENDER NUMBER: if the refer-
ence is from a different entity, can be “same”
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or “different”. The attribute is being com-
pared is “male”, “female” or “plural”, deter-
mined by looking at the possible expressions.

• FIRST TIME: denotes if it’s the first time
that the entity is seen. For plural entities, the
entity is considered new if at least one of the
involved entities is new.

• BEG PARAGRAPH: the first entity of a
paragraph.

• {PREV,NEXT} PUNCT: the punctuation
immediately before (after) the entity. Can be
“sentence” if the punctuation is one of “.?!”,
“comma” for “,;”, “parenthesis” for “()[]”
and “quote”.

• {PREV,NEXT} SENT: whether or not a sen-
tence boundary occurs after (before) the pre-
vious (next) reference.

• {PREV,NEXT} WORD {1,2}GRAM: cor-
responding word n-gram. Words are ex-
tracted up to the previous/next reference or
the start/end of a sentence, with parenthe-
sized content removed. Words are lower-
cased tokens made of letters and numbers.

• {PREV,NEXT} TAG: most likely part-of-
speech tag for the previous/next word, skip-
ping adverbs.

• {PREV,NEXT} BE: any form of the verb “to
be” is used after (before) the previous (next)
reference.

• EMBEDS PREV: the entity being embedded
was referred to just before.

• EMBEDS ALL KNOWN: all the entities be-
ing embedded have been seen before.

4 Sequence classifier

We rely on Conditional Random Fields1 (Lafferty
et al., 2001) for predicting one label (as defined
previously) per reference. We lay the problem as
one sequence of decisions per entity to prevent, for
instance, the use of the same name twice in a row.
Last year, we generated one sequence per docu-
ment with all entities, but it was less intuitive. To
the features extracted for each reference, we add
the features of the previous and next reference, ac-
cording to label unigrams and label bigrams. The
c hyperparameter and the frequency cutoff of the
classifier are optimized on the dev set. Note that

1CRF++, http://crfpp.sourceforge.net

for processing the test set, we added the develop-
ment data to the training set.

5 Text generation

For each reference, the given expressions are
ranked by classifier-estimated posterior probabil-
ity and the best one is used for output. In case
multiple expressions have the same labeling (and
the same score), we use the longest one and iter-
ate through the list for each subsequent use (useful
for repeated common names). If an expression is
more than 4 words, it’s flagged for not being used
a second time (only ad-hoc rule in the system).

6 Results

Evaluation scores for the output are presented in
Table 1. The source code of our systems is made
available to the community at http://code.google
.com/p/icsicrf-grecneg.

Sys. T.acc Prec. Rec. S.acc Bleu Nist
Old 0.826 0.830 0.830 0.786 0.811 5.758
New 0.844 0.829 0.816 0.813 0.817 6.021

Table 1: Results on the dev set comparing our sys-
tem from last year (old) to the refined one (new),
according to REG08 TYPE accuracy (T.acc), pre-
cision and recall, String accuracy (S.acc), BLEU1
an NIST.

About 50% of the errors are caused by the se-
lection of pronouns instead of a name. The selec-
tion of the pronoun or name seems to depend on
the writing style since a few authors prefer nearly
always the name. The misuse of names instead
of pronouns is second most error with about 15%.
The complex structured named entities are respon-
sible for about 9% of the errors. The selection of
the right name such as given name, family name or
both seems to be more difficult. The next frequent
errors are confusions between pronouns, elisions,
common names, and names.
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Abstract

This report describes the methods and re-
sults of a system developed for the GREC
Named Entity Challenge 2010. We de-
tail the refinements made to our 2009 sub-
mission and present the output of the self-
evaluation on the development data set.

1 Introduction

The GREC Named Entity Challenge 2010 (NEG)
is an NLG shared task whereby submitted systems
must select a referring expression from a list of
options for each mention of each person in a text.
The corpus is a collection of 2,000 introductory
sections from Wikipedia articles about individual
people in which all mentions of person entities
have been annotated. An in-depth description of
the task, along with the evaluation results from the
previous year, is provided by Belz et al. (2009).

Our 2009 submission (Greenbacker and Mc-
Coy, 2009a) was an extension of the system we
developed for the GREC Main Subject Refer-
ence Generation Challenge (MSR) (Greenbacker
and McCoy, 2009b). Although our system per-
formed reasonably-well in predicting REG08-
Type in the NEG task, our string accuracy scores
were disappointingly-low, especially when com-
pared to the other competing systems and our own
performance in the MSR task. As suggested by the
evaluators (Belz et al., 2009), this was due in large
part to our reliance on the list of REs being in a
particular order, which had changed for the NEG
task.

2 Method

The first improvement we made to our existing
methods related to the manner by which we se-
lected the specific RE to employ. In 2009, we
trained a series of decision trees to predict REG08-
Type based on our psycholinguistically-inspired

feature set (described in (Greenbacker and Mc-
Coy, 2009c)), and then simply chose the first op-
tion in the list of REs matching the predicted type.
For 2010, we incorporated the case of each RE
into our target attribute so that the decision tree
classifier would predict both the type and case for
the given reference. Then, we applied a series
of rules governing the length of initial and sub-
sequent REs involving a person’s name (following
Nenkova and McKeown (2003)), as well as ‘back-
offs’ if the predicted type or case were not avail-
able.

Another improvement we made involved our
method of determining whether the use of a pro-
noun would introduce ambiguity in a given con-
text. Previously, we searched for references to
other people entities since the most recent mention
of the entity at hand, and if any were found, we
assumed these would cause the use of a pronoun
to be ambiguous. However, this failed to account
for the fact that personal pronouns in English are
gender-specific (ie. the mention of a male individ-
ual would not make the use of “she” ambiguous).
So, we refined this by determining the gender of
each named entity (by seeing which personal pro-
nouns were associated with it in the list of REs),
and only noting ambiguity when the current entity
and candidate interfering antecedent were of the
same gender.

Other small changes from 2009 include an ex-
panded abbreviation set in the sentence segmenter,
separate decision trees for the main subject and
other entities, and fixing how we handled embed-
ded REF elements with unspecified mention IDs.

3 Results

Scores for REG08-Type precision & recall, string
accuracy, and string-edit distance are presented in
Figure 1. These were computed on the entire de-
velopment set, as well as the three subsets, us-
ing the geval.pl self-evaluation tool provided in the
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NEG participants’ pack.
While we were able to achieve an improvement

of nearly 50% over our 2009 scores in string ac-
curacy, we saw less than a 1% gain in overall
REG08-Type performance.

Metric Score
Type Precision/Recall 0.757995735607676
String Accuracy 0.650496141124587
Mean Edit Distance 0.875413450937156
Normalized Distance 0.319266300067796

(a) Scores on the entire development set.

Metric Score
Type Precision/Recall 0.735294117647059
String Accuracy 0.623287671232877
Mean Edit Distance 0.839041095890411
Normalized Distance 0.345490867579909

(b) Scores on the ‘Chefs’ subset.

Metric Score
Type Precision/Recall 0.790769230769231
String Accuracy 0.683544303797468
Mean Edit Distance 0.882911392405063
Normalized Distance 0.279837251356239

(c) Scores on the ‘Composers’ subset.

Metric Score
Type Precision/Recall 0.745928338762215
String Accuracy 0.642140468227425
Mean Edit Distance 0.903010033444816
Normalized Distance 0.335326519731057

(d) Scores on the ‘Inventors’ subset.

Figure 1: Scores on the development set obtained
via the geval.pl self-evaluation tool. REG08-Type
precision and recall were equal in all four sets.

4 Conclusions

The fact that our string accuracy scores improved
over our 2009 submission far more than REG08-
Type prediction is hardly surprising. Our efforts
during this iteration of the NEG task were primar-
ily focused on enhancing our methods of choosing
the best RE once the reference type was selected.

We remain several points below the best-
performing team from 2009 (ICSI-Berkeley), pos-
sibly due to the inclusion of additional items in
their feature set, or the use of Conditional Ran-
dom Fields as their learning technique (Favre and
Bohnet, 2009).

5 Future Work

Moving forward, we hope to expand our feature
set by including the morphology of words immedi-
ately surrounding the reference, as well as a more
extensive reference history, as suggested by (Favre
and Bohnet, 2009). We suspect that these features
may play a significant role in determining the type
of referenced used, the prediction of which acts as
a ‘bottleneck’ in generating exact REs.

We would also like to compare the efficacy of
several different machine learning techiques as ap-
plied to our feature set and the NEG task.
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Abstract

This report describes the methods and re-
sults of a system developed for the GREC
Named Entity Recognition and GREC
Named Entity Regeneration Challenges
2010. We explain our process of automat-
ically annotating surface text, as well as
how we use this output to select improved
referring expressions for named entities.

1 Introduction

Generation of References in Context (GREC) is a
set of shared task challenges in NLG involving a
corpus of introductory sentences from Wikipedia
articles. The Named Entity Recognition (GREC-
NER) task requires participants to recognize all
mentions of people in a document and indicate
which mentions corefer. In the Named Entity Re-
generation (GREC-Full) task, submitted systems
attempt to improve the clarity and fluency of a
text by generating improved referring expressions
(REs) for all references to people. Participants are
encouraged to use the output from GREC-NER as
input for the GREC-Full task. To provide ample
opportunities for improvement, a certain portion
of REs in the corpus have been replaced by more-
specified named references. Ideally, the GREC-
Full output will be more fluent and have greater
referential clarity than the GREC-NER input.

2 Method

The first step in our process to complete the
GREC-NER task is to prepare the corpus for in-
put into the parser by stripping all XML tags and
segmenting the text into sentences. This is accom-
plished with a simple script based on common ab-
breviations and sentence-final punctuation.

Next, the files are run through the Stanford
Parser (The Stanford Natural Language Process-
ing Group, 2010), providing a typed dependency

representation of the input text from which we ex-
tract the syntactic functions (SYNFUNC) of, and
relationships between, words in the sentence.

The unmarked segmented text is also used
as input for the Stanford Named Entity Recog-
nizer (The Stanford Natural Language Processing
Group, 2009). We eliminate named entity tags for
locations and organizations, leaving only person
entities behind. We find the pronouns and com-
mon nouns (e.g. “grandmother”) referring to per-
son entities that the NER tool does not tag. We
also identify the REG08-Type and case for each
RE. Entities found by the NER tool are marked
as names, and the additional REs we identified
are marked as either pronouns or common nouns.
Case values are determined by analyzing the as-
signed type and any type dependency representa-
tion (provided by the parser) involving the entity.
At this stage we also note the gender of each pro-
noun and common noun, the plurality of each ref-
erence, and begin to deal with embedded entities.

The next step identifies which tagged mentions
corefer. We implemented a coreference resolu-
tion tool using a shallow rule-based approach in-
spired by Lappin and Leass (1994) and Bontcheva
et al. (2002). Each mention is compared to all
previously-seen entities on the basis of case, gen-
der, SYNFUNC, plurality, and type. Each en-
tity is then evaluated in order of appearance and
compared to all previous entities starting with the
most recent and working back to the first in the
text. We apply rules to each of these pairs based
on the REG08-Type attribute of the current en-
tity. Names and common nouns are analyzed us-
ing string and word token matching. We collected
extensive, cross-cultural lists of male and female
first names to help identify the gender of named
entities, which we use together with SYNFUNC
values for pronoun resolution. Separate rules gov-
ern gender-neutral pronouns such as “who.” By
the end of this stage, we have all of the resources
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MUC-6 CEAF B-CUBED
Corpus F prec. recall F prec. recall F prec. recall
Entire Set 71.984 69.657 74.471 68.893 68.893 68.893 72.882 74.309 71.509
Chefs 71.094 65.942 77.119 65.722 65.722 65.722 71.245 69.352 73.244
Composers 68.866 66.800 71.064 68.672 68.672 68.672 71.929 73.490 70.433
Inventors 76.170 77.155 75.210 72.650 72.650 72.650 75.443 80.721 70.812

Table 1: Self-evaluation scores for GREC-NER.

necessary to complete the GREC-NER task.

As a post-processing step, we remove all extra
(non-GREC) tags used in previous steps, re-order
the remaining attributes in the proper sequence,
add the list of REs (ALT-REFEX), and write the
final output following the GREC format. At this
point, the GREC-NER task is concluded and its
output is used as input for the GREC-Full task.

To improve the fluency and clarity of the text
by regenerating the referring expressions, we rely
on the system we developed for the GREC Named
Entity Challenge 2010 (NEG), a refined version
of our 2009 submission (Greenbacker and Mc-
Coy, 2009a). This system trains decision trees
on a psycholinguistically-inspired feature set (de-
scribed by Greenbacker and McCoy (2009b)) ex-
tracted from a training corpus. It predicts the most
appropriate reference type and case for the given
context, and selects the best match from the list of
available REs. For the GREC-Full task, however,
instead of using the files annotated by the GREC
organizers as input, we use the files we annotated
automatically in the GREC-NER task. By keep-
ing the GREC-NER output in the GREC format,
our NEG system was able to successfully run un-
modified and generate our output for GREC-Full.

3 Results

Scores calculated by the GREC self-evaluation
tools are provided in Table 1 for GREC-NER and
in Table 2 for GREC-Full.

Corpus NIST BLEU-4
Entire Set 8.1500 0.7953
Chefs 7.5937 0.7895
Composers 7.5381 0.8026
Inventors 7.5722 0.7936

Table 2: Self-evaluation scores for GREC-Full.

4 Conclusions

Until we compare our results with others teams or
an oracle, it is difficult to gauge our performance.
However, at this first iteration of these tasks, we’re
pleased just to have end-to-end RE regeneration
working to completion with meaningful output.

5 Future Work

Future improvements to our coreference resolu-
tion approach involve analyzing adjacent text, uti-
lizing more of the parser output, and applying ma-
chine learning to our GREC-NER methods.
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Abstract

We describe the second installment of the
Challenge on Generating Instructions in
Virtual Environments (GIVE-2), a shared
task for the NLG community which took
place in 2009-10. We evaluated seven
NLG systems by connecting them to 1825
users over the Internet, and report the re-
sults of this evaluation in terms of objec-
tive and subjective measures.

1 Introduction

This paper reports on the methodology and results
of the Second Challenge on Generating Instruc-
tions in Virtual Environments (GIVE-2), which
we ran from August 2009 to May 2010. GIVE
is a shared task for the NLG community which
we ran for the first time in 2008-09 (Koller et al.,
2010). An NLG system in this task must generate
instructions which guide a human user in solving
a treasure-hunt task in a virtual 3D world, in real
time. For the evaluation, we connect these NLG
systems to users over the Internet, which makes
it possible to collect large amounts of evaluation
data cheaply.

While the GIVE-1 challenge was a success, in
that it evaluated five NLG systems on data from
1143 game runs in the virtual environments, it
was limited in that users could only move and
turn in discrete steps in the virtual environments.
This made the NLG task easier than intended; one
of the best-performing GIVE-1 systems generated
instructions of the form “move three steps for-
ward”. The primary change in GIVE-2 compared
to GIVE-1 is that users could now move and turn
freely, which makes expressions like “three steps”
meaningless, and makes it hard to predict the pre-
cise effect of instructing a user to “turn left”.

We evaluated seven NLG systems from six in-
stitutions in GIVE-2 over a period of three months

from February to May 2010. During this time,
we collected 1825 games that were played by
users from 39 countries, which is an increase of
over 50% over the data we collected in GIVE-
1. We evaluated each system both on objec-
tive measures (success rate, completion time, etc.)
and subjective measures which were collected by
asking the users to fill in a questionnaire. We
completely revised the questionnaire for the sec-
ond challenge, which now consists of relatively
fine-grained questions that can be combined into
more high-level groups for reporting. We also in-
troduced several new objective measures, includ-
ing the point in the game in which users lost
or cancelled, and an experimental “back-to-base”
task intended to measure how much users learned
about the virtual world while interacting with the
NLG system.

Plan of the paper. The paper is structured as fol-
lows. In Section 2, we describe and motivate the
GIVE-2 Challenge. In section 3, we describe the
evaluation method and infrastructure. Section 4
reports on the evaluation results. Finally, we con-
clude and discuss future work in Section 5.

2 The GIVE Challenge

GIVE-2 is the second installment of the GIVE
Challenge (“Generating Instructions in Virtual En-
vironments”), which we ran for the first time in
2008-09. In the GIVE scenario, subjects try to
solve a treasure hunt in a virtual 3D world that they
have not seen before. The computer has a com-
plete symbolic representation of the virtual world.
The challenge for the NLG system is to gener-
ate, in real time, natural-language instructions that
will guide the users to the successful completion
of their task.

Users participating in the GIVE evaluation
start the 3D game from our website at www.
give-challenge.org. They then see a 3D
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Figure 1: What the user sees when playing with
the GIVE Challenge.

game window as in Fig. 1, which displays instruc-
tions and allows them to move around in the world
and manipulate objects. The first room is a tuto-
rial room where users learn how to interact with
the system; they then enter one of three evaluation
worlds, where instructions for solving the treasure
hunt are generated by an NLG system. Users can
either finish a game successfully, lose it by trig-
gering an alarm, or cancel the game. This result is
stored in a database for later analysis, along with a
complete log of the game.

In each game world we used in GIVE-2, players
must pick up a trophy, which is in a wall safe be-
hind a picture. In order to access the trophy, they
must first push a button to move the picture to the
side, and then push another sequence of buttons to
open the safe. One floor tile is alarmed, and play-
ers lose the game if they step on this tile without
deactivating the alarm first. There are also a num-
ber of distractor buttons which either do nothing
when pressed or set off an alarm. These distractor
buttons are intended to make the game harder and,
more importantly, to require appropriate reference
to objects in the game world. Finally, game worlds
contained a number of objects such as chairs and
flowers that did not bear on the task, but were
available for use as landmarks in spatial descrip-
tions generated by the NLG systems.

The crucial difference between this task and
the (very similar) GIVE-1 task was that in GIVE-
2, players could move and turn freely in the vir-
tual world. This is in contrast to GIVE-1, where
players could only turn by 90 degree increments,
and jump forward and backward by discrete steps.
This feature of the way the game controls were set

up made it possible for some systems to do very
well in GIVE-1 with only minimal intelligence,
using exclusively instructions such as “turn right”
and “move three steps forward”. Such instructions
are unrealistic – they could not be carried over to
instruction-giving in the real world –, and our aim
was to make GIVE harder for systems that relied
on them.

3 Method

Following the approach from the GIVE-1 Chal-
lenge (Koller et al., 2010), we connected the NLG
systems to users over the Internet. In each game
run, one user and one NLG system were paired up,
with the system trying to guide the user to success
in a specific game world.

3.1 Software infrastructure

We adapted the GIVE-1 software to the GIVE-2
setting. The GIVE software infrastructure (Koller
et al., 2009a) consists of three different mod-
ules: The client, which is the program which the
user runs on their machine to interact with the
virtual world (see Fig. 1); a collection of NLG
servers, which generate instructions in real-time
and send them to the client; and a matchmaker,
which chooses a random NLG server and virtual
world for each incoming connection from a client
and stores the game results in a database.

The most visible change compared to GIVE-1
was to modify the client so it permitted free move-
ment in the virtual world. This change further ne-
cessitated a number of modifications to the inter-
nal representation of the world. To support the de-
velopment of virtual worlds for GIVE, we changed
the file format for world descriptions to be much
more readable, and provided an automatic tool
for displaying virtual worlds graphically (see the
screenshots in Fig. 2).

3.2 Recruiting subjects

Participants were recruited using email distribu-
tion lists and press releases posted on the Internet
and in traditional newspapers. We further adver-
tised GIVE at the Cebit computer expo as part of
the Saarland University booth. Recruiting anony-
mous experimental subjects over the Internet car-
ries known risks (Gosling et al., 2004), but we
showed in GIVE-1 that the results obtained for
the GIVE Challenge are comparable and more in-
formative than those obtained from a laboratory-
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World 1 World 2 World 3

Figure 2: The three GIVE-2 evaluation worlds.

based experiment (Koller et al., 2009b).
We also tried to leverage social networks for re-

cruiting participants by implementing and adver-
tising a Facebook application. Because of a soft-
ware bug, only about 50 participants could be re-
cruited in this way. Thus tapping the true poten-
tial of social networks for recruiting participants
remains a task for the next installment of GIVE.

3.3 Evaluation worlds
Fig. 2 shows the three virtual worlds we used in the
GIVE-2 evaluation. Overall, the worlds were more
difficult than the worlds used in GIVE-1, where
some NLG-systems had success rates around 80%
in some of the worlds. As for GIVE-1, the three
worlds were designed to pose different challenges
to the NLG systems. World 1 was intended to be
more similar to the development world and last
year’s worlds. It did have rooms with more than
one button of the same color, however, these but-
tons were not located close together. World 2 con-
tained several situations which required more so-
phisticated referring expressions, such as rooms
with several buttons of the same color (some of
them close together) and a grid of buttons. Fi-
nally, World 3 was designed to exercise the sys-
tems’ navigation instructions: one room contained
a “maze” of alarm tiles, and another room two
long rows of buttons hidden in “booths” so that
they were not all visible at the same time.

3.4 Timeline
After the GIVE-2 Challenge was publicized in
June 2009, fifteen researchers and research teams
declared their interest in participating. We dis-

tributed a first version of the software to these
teams in August 2009. In the end, six teams sub-
mitted NLG systems (two more than in GIVE-1);
one team submitted two independent NLG sys-
tems, bringing the total number of NLG systems
up to seven (two more than in GIVE-1). These
were connected to a central matchmaker that ran
for a bit under three months, from 23 February to
17 May 2010.

3.5 NLG systems

Seven NLG systems were evaluated in GIVE-2:

• one system from the Dublin Institute of Tech-
nology (“D” in the discussion below);

• one system from Trinity College Dublin
(“T”);

• one system from the Universidad Com-
plutense de Madrid (“M”);

• one system from the University of Heidelberg
(“H”);

• one system from Saarland University (“S”);
• and two systems from INRIA Grand-Est in

Nancy (“NA” and “NM”).

Detailed descriptions of these systems as well
as each team’s own analysis of the evalua-
tion results can be found at http://www.
give-challenge.org/research.

4 Results

We now report the results of GIVE-2. We start
with some basic demographics; then we discuss
objective and subjective evaluation measures. The
data for the objective measures are extracted from
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the logs of the interactions; whereas the data for
the subjective measures are obtained from a ques-
tionnaire which asked subjects to rate various as-
pects of the NLG system they interacted with.

Notice that some of our evaluation measures are
in tension with each other: For instance, a sys-
tem which gives very low-level instructions may
allow the user to complete the task more quickly
(there is less chance of user errors), but it will re-
quire more instructions than a system that aggre-
gates these. This is intentional, and emphasizes
our desire to make GIVE a friendly comparative
challenge rather than a competition with a clear
winner.

4.1 Demographics

Over the course of three months, we collected
1825 valid games. This is an increase of almost
60% over the number of valid games we collected
in GIVE-1. A game counted as valid if the game
client did not crash, the game was not marked as a
test game by the developers, and the player com-
pleted the tutorial.

Of these games, 79.0% were played by males
and 9.6% by females; a further 11.4% did not
specify their gender. These numbers are compa-
rable to GIVE-1. About 42% of users connected
from an IP address in Germany; 12% from the US,
8% from France, 6% from Great Britain, and the
rest from 35 further countries. About 91% of the
participants who answered the question self-rated
their English language proficiency as “good” or
better. About 65% of users connected from vari-
ous versions of Windows, the rest were split about
evenly between Linux and MacOS.

4.2 Objective measures

The objective measures are summarize in Fig. 3.
In addition to calculating the percentage of games
users completed successfully when being guided
by the different systems, we measured the time
until task completion, the distance traveled until
task completion, and the number of actions (such
as pushing a button to open a door) executed. Fur-
thermore, we counted how many instructions users
received from each system, and how many words
these instructions contained on average. All objec-
tive measures were collected completely unobtru-
sively, without requiring any action on the user’s
part. To ensure comparability, we only counted
successfully completed games.

task success: Did the player get the trophy?

duration: Time in seconds from the end of the tu-
torial until the retrieval of the trophy.

distance: Distance traveled (measured in distance
units of the virtual environment).

actions: Number of object manipulation actions.

instructions: Number of instructions produced
by the NLG system.

words per instruction: Average number of
words the NLG system used per instruction.

Figure 3: Objective measures.

Fig. 4 shows the results of these objective mea-
sures. Task success is reported as the percent-
age of successfully completed games. The other
measures are reported as the mean number of sec-
onds/distance units/actions/instructions/words per
instruction, respectively. The figure also assigns
systems to groups A, B, etc. for each evaluation
measure. For example, users interacting with sys-
tems in group A had a higher task success rate,
needed less time, etc. than users interacting with
systems in group B. If two systems do not share
the same letter, the difference between these two
systems is significant with p < 0.05. Significance
was tested using a χ2-test for task success and
ANOVAs for the other objective measures. These
were followed by post-hoc tests (pairwise χ2 and
Tukey) to compare the NLG systems pairwise.

In terms of task success, the systems fall pretty
neatly into four groups. Note that systems D and
T had very low task success rates. That means
that, for these systems, the results for the other ob-
jective measures may not be reliable because they
are based on just a handful of games. Another
aspect in which systems clearly differed is how
many words they used per instruction. Interest-
ingly, the three systems with the best task success
rates also produced the most succinct instructions.
The distinctions between systems in terms of the
other measures is less clear.

4.3 Subjective measures
The subjective measures were obtained from re-
sponses to a questionnaire that was presented to
users after each game. The questionnaire asked
users to rate different statements about the NLG
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D H M NA NM S T

task
success

9% 11% 13% 47% 30% 40% 3%
A A

B
C C C
D D

duration

888 470 407 344 435 467 266
A A A A A
B B B B B

C

distance
231 164 126 162 167 150 89

A A A A A A
B B B B B

actions
25 22 17 17 18 17 14
A A A A A A A

instructions
349 209 463 224 244 244 78
A A A A A A
B B

words per
instruction

15 11 16 6 10 6 18
A A

B
C

D
E E

Figure 4: Results for the objective measures.

system using a continuous slider. The slider posi-
tion was translated to a number between -100 and
100. Figs. 7 and 6 show the statements that users
were asked to rate as well as the results. These
results are based on all games, independent of the
success. We report the mean rating for each item,
and, as before, systems that do not share a letter,
were found to be significantly different (p < 0.05).
We used ANOVAs and post-hoc Tukey tests to test
for significance. Note that some items make a pos-
itive statement about the NLG system (e.g., Q1)
and some make a negative statement (e.g., Q2).
For negative statements, we report the reversed
scores, so that in Figs. 7 and 6 greater numbers are
always better, and systems in group A are always
better than systems in group B.

In addition to the items Q1–Q22, the ques-
tionnaire contained a statement about the over-
all instruction quality: “Overall, the system gave
me good directions.” Furthermore notice that the
other items fall into two categories: items that as-
sess the quality of the instructions (Q1–Q15) and
items that assess the emotional affect of the in-
teraction (Q16–Q22). The ratings in these cate-

D H M NA NM S T

overall
quality
question

-33 -18 -12 36 18 19 -25
A

B B
C C C C

quality
measures
(summed)

-183 -148 -18 373 239 206 -44
A A A

B B B B
emotional
affect
measures
(summed)

-130 -103 -90 20 -5 0 -88
A A A A

B B B B B
C C C C C

Figure 5: Results for item assessing overall in-
struction quality and the aggregated quality and
emotional affect measures.

gories can be aggregated into just two ratings by
summing over them. Fig. 5 shows the results for
the overall question and the aggregated ratings for
quality measures and emotional affect measures.
The three systems with the highest task success
rate get rated highest for overall instruction qual-
ity. The aggregated quality measure also singles
out the same group of three systems.

4.4 Further analysis

In addition to the differences between NLG sys-
tems, some other factors also influence the out-
comes of our objective and subjective measures.
As in GIVE-1, we find that there is a significant
difference in task success rate for different evalua-
tion worlds and between users with different levels
of English proficiency. Fig. 8 illustrates the effect
of the different evaluation worlds on the task suc-
cess rate for different systems, and Fig. 9 shows
the effect that a player’s English skills have on the
task success rate. As in GIVE-1, some systems
seem to be more robust than others with respect to
changes in these factors.

None of the other factors we looked at (gender,
age, and computer expertise) have a significant ef-
fect on the task success rate. With a few excep-
tions the other objective measures were not influ-
enced by these demographic factors either. How-
ever, we do find a significant effect of age on the
time and number of actions a player needs to re-
trieve the trophy: younger players are faster and
need fewer actions. And we find that women travel
a significantly shorter distance than men on their
way to the trophy. Interestingly, we do not find
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Q1: The system used words and phrases
that were easy to understand.
45 26 41 62 54 58 46

A A A A
B B B B
C C C

Q2: I had to re-read instructions to under-
stand what I needed to do.
-26 -9 3 40 8 19 0

A
B B B B

C C C
D D

Q3: The system gave me useful feedback
about my progress.
-17 -30 -31 9 11 -13 -27

A A
B B B B
C C C C

Q4: I was confused about what to do next.

-35 -27 -18 29 9 5 -31
A

B B
C C C C

Q5: I was confused about which direction
to go in.
-32 -20 -16 21 8 3 -25

A A
B B

C C C C

Q6: I had no difficulty with identifying
the objects the system described for me.
-21 -11 -5 18 13 20 -21

A A A
B B

C C C C

Q7: The system gave me a lot of unnec-
essary information.
-22 -9 6 15 10 10 -6

A A A A
B B B B

C C C
D D D

D H M NA NM S T

Q8: The system gave me too much infor-
mation all at once.
-28 -8 9 31 8 21 15

A A A
B B B B

C C

Q9: The system immediately offered help
when I was in trouble.
-15 -13 -13 32 3 -5 -23

A
B B B B B
C C C C

Q10: The system sent instructions too
late.
15 15 9 38 39 14 8

A A
B B B B B

Q11: The system’s instructions were de-
livered too early.
15 5 21 39 12 30 28

A A A
B B B B
C C C C
D D D D

Q12: The system’s instructions were vis-
ible long enough for me to read them.
-67 -21 -19 6 -14 0 -18

A A
B B B

C C C C
D

Q13: The system’s instructions were
clearly worded.
-20 -9 1 32 23 26 6

A A A
B B B

C C C
D D

Q14: The system’s instructions sounded
robotic.
16 -6 8 -4 -1 5 1
A A A A A A

B B B B B B

Q15: The system’s instructions were
repetitive.
-28 -26 -11 -31 -28 -26 -23
A A A A A
B B B B B B

Figure 7: Results for the subjective measures assessing the quality of the instructions.
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Q16: I really wanted to find that trophy.

-10 -13 -9 -11 -8 -7 -12
A A A A A A A

Q17: I lost track of time while solving the
overall task.
-13 -18 -21 -16 -18 -11 -20
A A A A A A A

Q18: I enjoyed solving the overall task.

-21 -23 -20 -8 -4 -5 -21
A A A A A A
B B B B B

Q19: Interacting with the system was re-
ally annoying.
-14 -20 -12 8 -2 -2 -14

A A A
B B B B B
C C C C

Q20: I would recommend this game to a
friend.
-36 -39 -31 -30 -25 -24 -31
A A A A A A A

Q21: The system was very friendly.

0 -1 5 30 20 19 5
A A A

B B B B
C C C C
D D D D

Q22: I felt I could trust the system’s in-
structions.
-21 -6 -3 37 23 21 -13

A A A
B B B B

Figure 6: Results for the subjective measures as-
sessing the emotional affect of the instructions.

Figure 8: Effect of the evaluation worlds on the
success rate of the NLG systems.

Figure 9: Effect of the players’ English skills on
the success rate of the NLG systems.

a significant effect of gender on the time players
need to retrieve the trophy as in GIVE-1 (although
the mean duration is somewhat higher for female
than for male players; 481 vs. 438 seconds).

5 Conclusion

In this paper, we have described the setup and re-
sults of the Second GIVE Challenge. Altogether,
we collected 1825 valid games for seven NLG sys-
tems over a period of three months. Given that this
is a 50% increase over GIVE-1, we feel that this
further justifies our basic experimental methodol-
ogy. As we are writing this, we are preparing de-
tailed results and analyses for each participating
team, which we hope will help them understand
and improve the performance of their systems.

The success rate is substantially worse in GIVE-
2 than in GIVE-1. This is probably due to the
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Figure 10: Points at which players lose/cancel.

harder task (free movement) explained in Sec-
tion 2 and to the more complex evaluation worlds
(see Section 3.3). It was our intention to make
GIVE-2 more difficult, although we did not antic-
ipate such a dramatic drop in performance. GIVE-
2.5 next year will use the same task as GIVE-2 and
we hope to see an increase in task success as the
participating research teams learn from this year’s
results.

It is also noticeable that players gave mostly
negative ratings in response to statements about
immersion and engagement (Q16-Q20). We dis-
cussed last year how to make the task more engag-
ing on the one hand and how to manage expecta-
tions on the other hand, but none of the suggested
solutions ended up being implemented. It seems
that we need to revisit this issue.

Another indication that the task may not be able
to capture participants is that the vast majority of
cancelled and lost games end in the very begin-
ning. To analyze at what point players lose or give
up, we divide the game into phases demarcated
by manipulations of buttons that belong to the 6-
button safe sequence. Fig. 10 illustrates in which
phase of the game players lose or cancel.

We are currently preparing the GIVE-2.5 Chal-
lenge, which will take place in 2010-11. GIVE-2.5
will be very similar to GIVE-2, so that GIVE-2
systems will be able to participate with only mi-
nor changes. In order to support the development
of GIVE-2.5 systems, we have collected a multi-
lingual corpus of written English and German in-
structions in the GIVE-2 environment (Gargett et
al., 2010). We expect that GIVE-3 will then extend
the GIVE task substantially, perhaps in the direc-
tion of full dialogue or of multimodal interaction.

Acknowledgments. GIVE-2 was only possible
through the support and hard work of a number of
colleagues, especially Konstantina Garoufi (who
handled the website and other publicity-related is-
sues), Ielka van der Sluis (who contributed to the
design of the GIVE-2 questionnaire), and several
student assistants who programmed parts of the
GIVE-2 system. We thank the press offices of
Saarland University, the University of Edinburgh,
and Macquarie University for their helpful press
releases. We also thank the organizers of Gener-
ation Challenges 2010 and INLG 2010 for their
support and the opportunity to present our results,
and the seven participating research teams for their
contributions.
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Abstract 

 

The paper briefly describes the First 

Shared Task Evaluation Challenge on 

Question Generation that took place in 

Spring 2010. The campaign included two 

tasks: Task A – Question Generation from 

Paragraphs and Task B – Question Gener-

ation from Sentences. An overview of 

each of the tasks is provided. 

1 Introduction 

Question Generation is an essential component 

of learning environments, help systems, informa-

tion seeking systems, multi-modal conversations 

between virtual agents, and a myriad of other 

applications (Lauer, Peacock, and Graesser, 

1992; Piwek et al., 2007). 

Question Generation has been recently defined 

as the task (Rus & Graesser, 2009) of automati-

cally generating questions from some form of 

input. The input could vary from information in a 

database to a deep semantic representation to raw 

text. 

The first Shared Task Evaluation Challenge on 

Question Generation (QG-STEC) follows a long 

tradition of STECs in Natural Language 

Processing (see the annual tasks run by the Con-

ference on Natural Language Learning - 

CoNLL). In particular, the idea of a QG-STEC 

was inspired by the recent activity in the Natural 

Language Generation (NLG) community to offer 

shared task evaluation campaigns as a potential 

avenue to provide a focus for research in NLG 

and to increase the visibility of NLG in the wider 

Natural Language Processing (NLP) community 

(White and Dale, 2008). It should be noted that 

the QG is currently perceived as a discourse 

processing task rather than a traditional NLG 

task (Rus & Graesser, 2009). 

Two core aspects of a question are the goal of 

the question and its importance. It is difficult to 

determine whether a particular question is good 

without knowing the context in which it is posed; 

ideally one would like to have information about 

what counts as important and what the goals are 

in the current context. This suggests that a STEC 

on QG should be tied to a particular application, 

e.g. tutoring systems. However, an application-

specific STEC would limit the pool of potential 

participants to those interested in the target ap-

plication. Therefore, the challenge was to find a 

framework in which the goal and importance are 

intrinsic to the source of questions and less tied 

to a particular context/application. One possibili-

ty was to have the general goal of asking ques-

tions about salient items in a source of informa-

tion, e.g. core ideas in a paragraph of text. Our 

tasks have been defined with this concept in 

mind. Adopting the basic principle of applica-

tion-independence has the advantage of escaping 

the problem of a limited pool of participants (to 

those interested in a particular application had 

that application been chosen as the target for a 

QG STEC). 

Another decision aimed at attracting as many 

participants as possible and promoting a more 

fair comparison environment was the input for 

the QG tasks. Adopting a specific representation 

for the input would have favored some partici-

pants already familiar with such a representation. 

Therefore, we have adopted as a second guiding 
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principle for the first QG-STEC tasks: no repre-

sentational commitment. That is, we wanted to 

have as generic an input as possible. The input to 

both task A and B in the first QG STEC is raw 

text. 

The First Workshop on Question Generation 

(www.questiongeneration.org) has identified 

four categories of QG tasks (Rus & Graesser, 

2009): Text-to-Question, Tutorial Dialogue,  As-

sessment, and Query-to-Question. The two tasks 

in the first QG STEC are part of the Text-to-

Question category or part of the Text-to-text 

Natural Language Generation task categories 

(Dale & White, 2007). It is important to say that 

the two tasks offered in the first QG STEC were 

selected among 5 candidate tasks by the mem-

bers of the QG community. A preference poll 

was conducted and the most preferred tasks, 

Question Generation from Paragraphs (Task A) 

and Question Generation from Sentences (Task 

B), were chosen to be offered in the first QG 

STEC. The other three candidate tasks were: 

Ranking Automatically Generated Questions 

(Michael Heilman and Noah Smith), Concept 

Identification and Ordering (Rodney Nielsen and 

Lee Becker), and Question Type Identification 

(Vasile Rus and Arthur Graesser). 

There is overlap between Task A and B. This 

was intentional with the aim of encouraging 

people preferring one task to participate in the 

other. The overlap consists of the specific ques-

tions in Task A which are more or less similar 

with the type of questions targeted by Task B. 

Overall, we had 1 submission for Task A and 

4 submissions for Task B. We also had an addi-

tional submission on development data for Task 

A. 

2 TASK A: Question Generation from 

Paragraphs 

2.1 Task Definition 

The Question Generation from Paragraphs 

(QGP) task challenges participants to generate a 

list of 6 questions from a given input paragraph. 

The six questions should be at three scope levels: 

1 x broad (entire input paragraph), 2 x medium 

(multiple sentences), and 3 x specific (sentence 

or less). The scope is defined by the portion of 

the paragraph that answers the question. 

The Question Generation from Paragraphs 

(QGP) task has been defined such that it is appli-

cation-independent. Application-independent 

means questions will be judged based on content 

analysis of the input paragraph; questions whose 

answers span more input text are ranked higher. 

Table 1 shows an example paragraph, while in 

Table 2 we list six interesting, application-

independent questions that could be generated. 

We will use the paragraph and questions to de-

scribe the judging criteria. 

A set of five scores, one for each criterion 

(specificity, syntax, semantics, question type cor-

rectness, diversity), and a composite score will 

be assigned to each question. Each question at 

each position will be assigned a composite score 

ranging from 1 (first/top ranked, best) to 4 (worst 

rank), 1 meaning the question is at the right level 

of specificity given its rank (e.g. the broadest 

question that the whole paragraph answers will 

get a score of 1 if in the first position) and also it 

is syntactically and semantically correct as well 

as unique/diverse from other generated questions 

in the set. 

Ranking of questions based on scope assures a 

maximum score for the six questions of 1, 2, 2, 3, 

3 and 3, respectively. A top-rank score of 1 is 

assigned to a broad scope question that is also 

syntactically and semantically correct or accept-

able, i.e. if it is semantically ineligible then a de-

cision about its scope cannot be made and thus a 

worst-rank score of 4 is assigned. A maximum 

score of 2 is assigned to medium-scope questions 

while a maximum score of 3 is assigned to spe-

cific questions. The best configuration of scores 

(1, 2, 2, 3, 3, 3) would only be possible for para-

graphs that could trigger the required number of 

questions at each scope level, which may not 

always be the case. 

2.2 Data Sources and Annotation 

The primary source of input paragraphs were: 

Wikipedia, OpenLearn, Yahoo!Answers. We 

collected 20 paragraphs from each of these three 

sources. We collected both a development data 

set (65 paragraphs) and a test data set (60 para-

graphs). For the development data set we ma-

nually generated and scored 6 questions per pa-

ragraph for a total of 6 x 65 = 390 questions. 

Paragraphs were selected such that they are self-

contained (no need for previous context to be 

interpreted, e.g. will have no unresolved pro-

nouns) and contain around 5-7 sentences for a 

total of 100-200 tokens (excluding punctuation). 

In addition, we aimed for a diversity of topics of 

general interest. 

We also provided discourse relations based on 

HILDA, a freely available automatic discourse 

parser (duVerle & Prendinger, 2009). 
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Table 1.  Example of input paragraph (from  http://en.wikipedia.org/wiki/Abraham_lincoln).  

Input Paragraph 

Abraham Lincoln (February 12, 1809 – April 15, 1865), the 16th President of the 

United States, successfully led his country through its greatest internal crisis, the 

American Civil War, preserving the Union and ending slavery. As an outspoken op-

ponent of the expansion of slavery in the United States, Lincoln won the Republican 

Party nomination in 1860 and was elected president later that year. His tenure in 

office was occupied primarily with the defeat of the secessionist Confederate States 

of America in the American Civil War. He introduced measures that resulted in the 

abolition of slavery, issuing his Emancipation Proclamation in 1863 and promoting 

the passage of the Thirteenth Amendment to the Constitution. As the civil war was 

drawing to a close, Lincoln became the first American president to be assassinated. 

Table 2.  Examples of questions and scores for the paragraph in Table 1.  

Questions Scope 

Who is Abraham Lincoln? General 

What major measures did President Lincoln introduce? Medium 

How did President Lincoln die? Medium 

When was Abraham Lincoln elected president? Specific 

When was President Lincoln assassinated? Specific 

What party did Abraham Lincoln belong to? Specific 

 

 

3 TASK B: Question Generation from 

Sentences 

3.1 Task Definition 

Participants were given a set of inputs, with 

each input consisting of: 

 a single sentence and 

 a specific target question type (e.g., 

WHO?, WHY?, HOW?, WHEN?). 

For each input, the task was to generate 2 

questions of the specified target question type. 

Input sentences, 60 in total, were selected 

from OpenLearn, Wikipedia and Yahoo! An-

swers (20 inputs from each source). Extremely 

short or long sentences were not included. Prior 

to receiving the actual test data, participants were 

provided with a development data set consisting 

of sentences from the aforementioned sources 

and, for one or more target question types, ex-

amples of questions. These questions were 

manually authored and cross-checked by the 

team organizing Task B. 

The following example is taken from the de-

velopment data set. Each instance has a unique 

identifier and information on the source it was 

extracted from. The <text> element contains the 

input sentence and the <question> elements con-

tain possible questions. The <question> element 

has the type attribute for specification of the tar-

get question type. 
<instance id="3">  

 <id>OpenLearn</id>  

 <source>A103_5</source>  

 <text> 

The poet Rudyard Kipl-

ing lost his only son in 

the trenches in 1915. 

 </text>  

 <question type="who"> 

Who lost his only son 

in the trenches in 1915? 

 </question> 

 <question type="when"> 

When did Rudyard Kipl-

ing lose his son? 

 </question> 

 <question type="how many"> 

How many sons did Ru-

dyard Kipling have? 

 </question> 

</instance> 
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Note that input sentences were provided as 

raw text. Annotations were not provided. There 

are a variety of NLP open-source tools available 

to potential participants and the choice of tools 

and how these tools are used was considered a 

fundamental part of the challenge. 

This task was restricted to the following ques-

tion types: WHO, WHERE, WHEN, WHICH, 

WHAT, WHY, HOW MANY/LONG, YES/NO. 

Participants were provided with this list and 

definitions of each of the items in it. 

3.2 Evaluation criteria for System Outputs 

and Human Judges 

The evaluation criteria fulfilled two roles. Firstly, 

they were provided to the participants as a speci-

fication of the kind of questions that their sys-

tems should aim to generate. Secondly, they also 

played the role of guidelines for the judges of 

system outputs in the evaluation exercise. 

For this task, five criteria were identified: relev-

ance, question type, syntactic correctness and 

fluency, ambiguity, and variety. All criteria are 

associated with a scale from 1 to N (where N is 

2, 3 or 4), with 1 being the best score and N the 

worst score. 

The procedure for applying these criteria is as 

follows: 

 Each of the criteria is applied independ-

ently of the other criteria to each of the 

generated questions (except for the stipu-

lation provided below). 

We need some specific stipulations for cases 

where no question is returned in response to an 

input. For each target question type, two ques-

tions are expected. Consequently, we have the 

following two possibilities regarding missing 

questions: 

 No question is returned for a particular 

target question type: for each of the 

missing questions, the worst score is 

recorded for all criteria. 

 Only one question is returned: For the 

missing question, the worst score is as-

signed on all criteria. The question that is 

present is scored following the criteria, 

with the exception of the VARIETY cri-

terion for which the lowest possible 

score is assigned. 

We compute the overall score on a specific crite-

rion. We can also compute a score which aggre-

gates the overall scores for the criteria. 

4 Conclusions  

The submissions to the first QG STEC are now 

being evaluated using peer-review mechanism in 

which participants blindly evaluate their peers 

questions. At least two reviews per submissions 

are performed with the results to be made public 

at the 3
rd

 Workshop on Question Generation that 

will take place in June 2010. 
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Abstract

We invite the research community to con-
sider challenges for NLG which arise from
uncertainty. NLG systems should be able
to adapt to their audience and the genera-
tion environment in general, but often the
important features for adaptation are not
known precisely. We explore generation
challenges which could employ simulated
environments to study NLG which is adap-
tive under uncertainty, and suggest possi-
ble metrics for such tasks. It would be par-
ticularly interesting to explore how differ-
ent planning approaches to NLG perform
in challenges involving uncertainty in the
generation environment.

1 Introduction

We would like to highlight the design of NLG sys-
tems for environments where there may be incom-
plete or faulty information, where actions may not
always have the same results, and where there may
be tradeoffs between the different possible out-
comes of actions and plans.

There are various sources of uncertainty in sys-
tems which employ NLG techniques, for example:

• the current state of the user / audience (e.g.
their knowledge, preferred vocabulary, goals,
preferences....),

• the likely user reaction to the generated out-
put,

• the behaviour of related components (e.g. a
surface realiser, or TTS module),

• noise in the environment (for spoken output),

• ambiguity of the generated output.

The problem here is to generate output that
takes these types of uncertainty into account ap-
propriately. For example, you may need to choose
a referring expression for a user, even though you
are not sure whether they are an expert or novice in
the domain. In addition, the next time you speak
to that user, you need to adapt to new informa-
tion you have gained about them (Janarthanam and
Lemon, 2010). The issue of uncertainty for refer-
ring expression generation has been discussed be-
fore by (Reiter, 1991; Horacek, 2005).

Another example is in planning an Information
Presentation for a user, when you cannot know
with certainty how they will respond to it (Rieser
and Lemon, 2009; Rieser et al., 2010). In the worst
case, you may even be uncertain about the user’s
goals or information needs (as in “POMDP” ap-
proaches to dialogue management (Young et al.,
2009; Henderson and Lemon, 2008a)), but you
still need to generate output for them in an appro-
priate way.

In particular, in interactive applications of NLG:

• each NLG action changes the environment
state or context,

• the effect of each NLG action is uncertain.

Several recent approaches describe NLG tasks
as different kinds of planning, e.g. (Koller and Pet-
rick, 2008; Rieser et al., 2010; Janarthanam and
Lemon, 2010), or as contextual decision making
according to a cost function (van Deemter, 2009).
It would be very interesting to explore how differ-
ent approaches perform in NLG problems where
different types of uncertainty are present in the
generation environment.

In the following we discuss possible genera-
tion challenges arising from such considerations,
which we hope will lead to work on an agreed
shared challenge in this research community. In
section 2 we briefly review recent work showing
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that simulated environments can be used to evalu-
ate generation under uncertainty, and in section 3
we discuss some possible metrics for such tasks.
Section 4 concludes by considering how a useful
generation challenge could be constructed using
similar methods.

2 Generation in Uncertain Simulated
Environments

Finding the best (or “optimal”) way to generate
under uncertainty requires exploring the possible
outcomes of actions in stochastic environments.
Therefore, related research on Dialogue Strategy
learning has used data-driven simulated environ-
ments as a cheap and efficient way to explore un-
certainty (Lemon and Pietquin, 2007). However,
building good simulated environments is a chal-
lenge in its own right, as we illustrate in the fol-
lowing using the examples of Information Presen-
tation and Referring Expression Generation. We
also point out the additional challenges these sim-
ulations have to face when being used for NLG.

2.1 User Simulations for Information
Presentation

User Simulations can provide a model of proba-
ble, but uncertain, user reactions to NLG actions,
and we propose that they are a useful potential
direction for exploring and evaluate different ap-
proaches to handling uncertainty in generation.

User Simulations are commonly used to train
strategies for Dialogue Management, see for ex-
ample (Young et al., 2007). A user simulation for
Information Presentation is very similar, in that it
is a predictive model of the most likely next user
act. 1 However, this NLG predicted user act does
not actually change the overall dialogue state (e.g.
by filling slots) but it only changes the generator
state. In other words, this NLG user simulation
tells us what the user is most likely to do next, if
we were to stop generating now.

In addition to the challenges of building user
simulations for learning Dialogue policies, e.g.
modelling, evaluation, and available data sets
(Lemon and Pietquin, 2007), a crucial decision for
NLG is the level of detail needed to train sensible

1Similar to the internal user models applied in recent
work on POMDP (Partially Observable Markov Decision
Process) dialogue managers (Young et al., 2007; Henderson
and Lemon, 2008b; Gasic et al., 2008) for estimation of user
act probabilities.

policies. While high-level dialogue act descrip-
tions may be sufficient for dialogue policies, NLG
decisions may require a much finer level of detail.
The finer the required detail of user reactions, the
more data is needed to build data-driven simula-
tions.

For content selection in Information Presen-
tation tasks (choosing presentation strategy and
number of attributes), for example, the level of de-
scription can still be fairly abstract. We were most
interested in probability distributions over the fol-
lowing possible user reactions:

1. select: the user chooses one of the pre-
sented items, e.g. “Yes, I’ll take that one.”.
This reply type indicates that the informa-
tion presentation was sufficient for the user
to make a choice.

2. addInfo: The user provides more at-
tributes, e.g. “I want something cheap.”. This
reply type indicates that the user has more
specific requests, which s/he wants to specify
after being presented with the current infor-
mation.

3. requestMoreInfo: The user asks for
more information, e.g. “Can you recommend
me one?”, “What is the price range of the
last item?”. This reply type indicates that the
system failed to present the information the
user was looking for.

4. askRepeat: The user asks the system to
repeat the same message again, e.g. “Can you
repeat?”. This reply type indicates that the
utterance was either too long or confusing for
the user to remember, or the TTS quality was
not good enough, or both.

5. silence: The user does not say anything.
In this case it is up to the system to take ini-
tiative.

6. hangup: The user closes the interaction.

We have built user simulations using n-gram
models of system (s) and user (u) acts, as first
introduced by (Eckert et al., 1997). In order to
account for data sparsity, we apply different dis-
counting (“smoothing”) techniques including au-
tomatic back-off, using the CMU Statistical Lan-
guage Modelling toolkit (Clarkson and Rosenfeld,
1997). For example we have constructed a bi-
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gram model2 for the users’ reactions to the sys-
tem’s IP structure decisions (P (au,t|IPs,t)), and
a tri-gram (i.e. IP structure + attribute choice)
model for predicting user reactions to the system’s
combined IP structure and attribute selection deci-
sions: P (au,t|IPs,t, attributess,t).

We have evaluated the performance of these
models by measuring dialogue similarity to the
original data, based on the Kullback-Leibler (KL)
divergence, as also used by e.g. (Cuayáhuitl et al.,
2005; Jung et al., 2009; Janarthanam and Lemon,
2009). We compared the raw probabilities as ob-
served in the data with the probabilities generated
by our n-gram models using different discounting
techniques for each context. All the models have a
small divergence from the original data (especially
the bi-gram model), suggesting that they are rea-
sonable simulations for training and testing NLG
policies (Rieser et al., 2010).

2.2 Other Simulated Components

In some systems, NLG decisions may also depend
on related components, such as the database, sub-
sequent generation steps, or the Text-to-Speech
module for spoken generation. Building simula-
tions for these components to capture their inher-
ent uncertainty, again, is an interesting challenge.

For example, one might want to adapt the gen-
erated output according to the predicted TTS qual-
ity. Therefore, one needs a model of the expected/
predicted TTS quality for a TTS engine (Boidin et
al., 2009).

Furthermore, NLG decisions might be inputs
to a stochastic sentence realiser, such as SPaRKy
(Stent et al., 2004). However, one might not have
a fully trained stochastic sentence realiser for this
domain (yet). In (Rieser et al., 2010) we therefore
modelled the variance as observed in the top rank-
ing SPaRKy examples.

2.3 Generating Referring Expressions under
uncertainty

In this section, we present an example user simu-
lation (US) model, that simulates the dialogue be-
haviour of users who react to referring expressions
depending on their domain knowledge. These ex-
ternal simulation models are different from inter-
nal user models used by dialogue systems. In

2Where au,t is the predicted next user action at time t,
IPs,t was the system’s Information Presentation action at t,
and attributess,t is the set of attributes selected by the sys-
tem at t.

particular, such models must be sensitive to a
system’s choices of referring expressions. The
simulation has a statistical distribution of in-built
knowledge profiles that determines the dialogue
behaviour of the user being simulated. Uncer-
tainty arises because if the user does not know a
referring expression, then he is more likely to re-
quest clarification. If the user is able to interpret
the referring expressions and identify the refer-
ences then he is more likely to follow the system’s
instruction. This behaviour is simulated by the ac-
tion selection models described below.

The user simulation (US) receives the system
action As,t and its referring expression choices
RECs,t at each turn. The US responds with a user
action Au,t (u denoting user). This can either be a
clarification request (cr) or an instruction response
(ir). We used two kinds of action selection mod-
els: a corpus-driven statistical model and a hand-
coded rule-based model.

2.4 Corpus-driven action selection model
The user simulation (US) receives the system
action As,t and its referring expression choices
RECs,t at each turn. The US responds with a user
action Au,t (u denoting user). This can either be a
clarification request (cr) or an instruction response
(ir). The US produces a clarification request cr
based on the class of the referent C(Ri), type of
the referring expression Ti, and the current domain
knowledge of the user for the referring expression
DKu,t(Ri, Ti). Domain entities whose jargon ex-
pressions raised clarification requests in the cor-
pus were listed and those that had more than the
mean number of clarification requests were clas-
sified as difficult and others as easy enti-
ties (for example, “power adaptor” is easy - all
users understood this expression, “broadband fil-
ter” is difficult). Clarification requests are
produced using the following model.

P (Au,t = cr(Ri, Ti)|C(Ri), Ti, DKu,t(Ri, Ti))

where (Ri, Ti) ∈ RECs,t

One should note that the actual literal expres-
sion is not used in the transaction. Only the entity
that it is referring to (Ri) and its type (Ti) are used.
However, the above model simulates the process
of interpreting and resolving the expression and
identifying the domain entity of interest in the in-
struction. The user identification of the entity is
signified when there is no clarification request pro-
duced (i.e. Au,t = none). When no clarification
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request is produced, the environment action EAu,t

is generated using the following model.

P (EAu,t|As,t) if Au,t! = cr(Ri, Ti)

Finally, the user action is an instruction re-
sponse which is determined by the system ac-
tion As,t. Instruction responses can be ei-
ther provide info, acknowledgement or other
based on the system’s instruction.

P (Au,t = ir|EAu,t, As,t)

All the above models were trained on our cor-
pus data using maximum likelihood estimation
and smoothed using a variant of Witten-Bell dis-
counting. According to the data, clarification re-
quests are much more likely when jargon expres-
sions are used to refer to the referents that be-
long to the difficult class and which the user
doesn’t know about. When the system uses ex-
pressions that the user knows, the user gener-
ally responds to the instruction given by the sys-
tem. These user simulation models have been
evaluated and found to produce behaviour that is
very similar to the original corpus data, using the
Kullback-Leibler divergence metric (Janarthanam
and Lemon, 2010).

3 Metrics

Here we discuss some possible evaluation met-
rics that will allow different approaches to NLG
under uncertainty to be compared. We envisage
that other metrics should be explored, in particular
those measuring adaptivity of various types.

3.1 Adaptive Information Presentation
Given a suitable corpus, a data-driven evaluation
function can be constructed, using a stepwise lin-
ear regression, following the PARADISE frame-
work (Walker et al., 2000).

For example, in (Rieser et al., 2010) we
build a model which selects the features which
significantly influenced the users’ ratings for
NLG strategies in a Wizard-of-Oz study. We
also assign a value to the user’s reactions
(valueUserReaction), similar to optimising task
success for DM (Young et al., 2007). This re-
flects the fact that good Information Presentation
strategies should help the user to select an item
(valueUserReaction = +100) or provide more
constraints addInfo (valueUserReaction =
±0), but the user should not do anything else
(valueUserReaction = −100). The regression

in equation 1 (R2 = .26) indicates that users’ rat-
ings are influenced by higher level and lower level
features: Users like to be focused on a small set
of database hits (where #DBhits ranges over [1-
100]), which will enable them to choose an item
(valueUserReaction), while keeping the IP ut-
terances short (where #sentence was in the range
[2-18]):

Reward = (−1.2)×#DBhits (1)

+(.121)× valueUserReaction

−(1.43)×#sentence

3.2 Measuring Adaptivity of Referring
Expressions

We have also designed a metric for the goal of
adapting referring expressions to each user’s do-
main knowledge. We present the Adaptation Ac-
curacy score AA that calculates how accurately
the agent chose the expressions for each referent
r, with respect to the user’s knowledge. Appro-
priateness of an expression is based on the user’s
knowledge of the expression. So, when the user
knows the jargon expression for r, the appropri-
ate expression to use is jargon, and if s/he doesn’t
know the jargon, an descriptive expression is ap-
propriate. Although the user’s domain knowledge
is dynamically changing due to learning, we base
appropriateness on the initial state, because our
objective is to adapt to the initial state of the user
DKu,initial. However, in reality, designers might
want their system to account for user’s changing
knowledge as well. We calculate accuracy per ref-
erent RAr as the ratio of number of appropriate
expressions to the total number of instances of the
referent in the dialogue. We then calculate the
overall mean accuracy over all referents as shown
below.

RAr = #(appropriate expressions(r))
#(instances(r))

AdaptationAccuracyAA = 1
#(r)ΣrRAr

4 Conclusion

We have invited the research community to con-
sider challenges for NLG which arise from uncer-
tainty. We argue that NLG systems, like dialogue
managers, should be able to adapt to their audi-
ence and the generation environment. However,
often the important features for adaptation are not
precisely known. We then summarised 2 potential
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directions for such challenges – example genera-
tion tasks which employ simulated uncertain en-
vironments to study adaptive NLG, and discussed
some possible metrics for such tasks. We hope
that this will lead to discussions on a shared chal-
lenge allowing comparison of different approaches
to NLG with respect to how well they handle un-
certainty.
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Abstract

In this paper, we propose a new shared task
called HOO: Helping Our Own. The aim is
to use tools and techniques developed in com-
putational linguistics to help people writing
about computational linguistics. We describe
a text-to-text generation scenario that poses
challenging research questions, and delivers
practical outcomes that are useful in the first
case to our own community and potentially
much more widely. Two specific factors make
us optimistic that this task will generate useful
outcomes: one is the availability of the ACL
Anthology, a large corpus of the target text
type; the other is that CL researchers who are
non-native speakers of English will be moti-
vated to use prototype systems, providing in-
formed and precise feedback in large quantity.
We lay out our plans in detail and invite com-
ment and critique with the aim of improving
the nature of the planned exercise.

1 Introduction

A forbidding challenge for many scientists whose
first language is not English is the writing of ac-
ceptable English prose. There is a concern—
perhaps sometimes imagined, but real enough to be
a worry—that papers submitted to conferences and
journals may be rejected because the use of language
is jarring and makes it harder for the reader to follow
what the author intended. While this can be a prob-
lem for native speakers as well, non-native speakers
typically face a greater obstacle.

The Association for Computational Linguistics’

mentoring service is one part of a response.1 A men-
toring service can address a wider range of problems
than those related purely to writing; but a key moti-
vation behind such services is that an author’s mate-
rial should be judged on its research content, not on
the author’s skills in English.

This problem will surface in any discipline where
authors are required to provide material in a lan-
guage other than their mother tongue. However, as
a discipline, computational linguistics holds a priv-
ileged position: as scientists, language (of different
varieties) is our object of study, and as technologists,
language tasks form our agenda. Many of the re-
search problems we focus on could assist with writ-
ing problems. There is already existing work that
addresses specific problems in this area (see, for ex-
ample, (Tetreault and Chodorow, 2008)), but to be
genuinely useful, we require a solution to the writing
problem as a whole, integrating existing solutions to
sub-problems with new solutions for problems as yet
unexplored.

Our proposal, then, is to initiate a shared task that
attempts to tackle the problem head-on; we want to
‘help our own’ by developing tools which can help
non-native speakers of English (NNSs) (and maybe
some native ones) write academic English prose of
the kind that helps a paper get accepted.

The kinds of assistance we are concerned
with here go beyond that which is provided by
commonly-available spelling checkers and grammar
checkers such as those found in Microsoft Word
(Heidorn, 2000). The task can be simply expressed
as a text-to-text generation exercise:

1See http://acl2010.org/mentoring.htm.
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Given a text, make edits to the text to im-
prove the quality of the English it con-
tains.

This simple characterisation masks a number of
questions that must be answered in order to fully
specify a task. We turn to these questions in Sec-
tion 3, after first elaborating on why we think this
task is likely to deliver useful results.

2 Why This Will Work

2.1 Potential Users

We believe this initiative has a strong chance of suc-
ceeding simply because there will be an abundance
of committed, serious and well-informed users to
give feedback on proposed solutions. A famil-
iar problem for technological developments in aca-
demic research is that of capturing the time and in-
terest of potential users of the technology, to obtain
feedback about what works in a real world task set-
ting, with an appropriate level of engagement.

It is very important to NNS researchers that their
papers are not rejected because the English is not
good or clear enough. They expect to invest large
amounts of time in honing the linguistic aspects of
their papers. One of us vividly recalls an explana-
tion by a researcher that, prior to submitting a pa-
per, he took his draft and submitted each sentence
in turn, in quotation marks (to force exact matches
only), to Google. If there were no Google hits, it
was unlikely that the sentence was satisfactory En-
glish and it needed reworking; if there were hits, the
hits needed checking to ascertain whether they ap-
peared to be written by another non-native speaker.2

To give that researcher a tool that improves on this
situation should not be too great a challenge.

For HOO, we envisage that the researchers them-
selves, as well as their colleagues, will want to use
the prototype systems when preparing their confer-
ence and journal submissions. They will have the
skills and motivation to integrate the use of proto-
types into their paper-writing.

2See the Microsoft ESL Assistant at
http://www.eslassistant.com as an embodiment of
a similar idea.

2.2 The ACL Anthology

Over a number of years, the ACL has sponsored
the ongoing development of the ACL Anthology, a
large collection of papers in the domain of computa-
tional linguistics. This provides an excellent source
for the construction of language models for the task
described here. The more recently-prepared ACL
Anthology Reference Corpus (Bird et al., 2008), in
which 10,921 of the Anthology texts (around 40 mil-
lion words) have been made available in plain text
form, has also been made accessible via the Sketch
Engine, a leading corpus query tool.3

The corpus is not perfect, of course: not every-
thing in the ACL Anthology is written in flawless
English; the ARC was prepared in 2007, so new top-
ics, vocabulary and ideas in CL will not be repre-
sented; and the fact that the texts have been auto-
matically extracted from PDF files means that there
are errors from the conversion process.

3 The Task in More Detail

3.1 How Do We Measure Quality?

To be able to evaluate the performance of systems
which attempt to improve the quality of a text,
we require some means of measuring text quality.
One approach would be to develop measures, or
make use of existing measures, of characteristics
of text quality such as well-formedness and read-
ability (see, for example, (Dale and Chall, 1948;
Flesch, 1948; McLaughlin, 1969; Coleman and
Liau, 1975)). Given a text and a version of that text
that had been subjected to rewriting, we could then
compare both texts using these metrics. However,
there is always a concern that the metrics may not re-
ally measure what they are intended to measure (see,
for example, (Le Vie Jr, 2000)); readability metrics
have often been criticised for not being good mea-
sures of actual readability. The measures also tend
to be aggregate measures (for example, providing an
average readability level across an entire text), when
the kinds of changes that we are interested in evalu-
ating are often very local in nature.

Given these concerns, we opt for a different route:
for the initial pilot run of the proposed task, we in-
tend to provide a set of development data consisting

3See http://sketchengine.co.uk/open.
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of 10 conference papers in two versions: an original
version of the paper, and an improved version where
errors in expression and language use have been cor-
rected. We envisage that participants will focus on
developing techniques that attempt to replicate the
kinds of corrections found in the improved versions
of the papers. For evaluation, we will provide a fur-
ther ten papers in their original versions, and each
participant’s results will then be compared against a
held-back set of corrected versions for these papers.
We would expect the evaluation to assess the follow-
ing:

• Has the existence of each error annotated in the
manually revised versions been correctly iden-
tified?

• Have the spans or extents of the errors been ac-
curately identified?

• Has the type of error, as marked in the annota-
tions, been correctly identified?

• How close is the automatically-produced cor-
rection to the manually-produced correction?

• What corrections are proposed that do not cor-
respond to errors identified in the manually-
corrected text?

With respect to this last point: we anticipate looking
closely at all such machine-proposed-errors, since
some may indeed be legitimate. Either the human
annotators may have missed them, or may not have
considered them significant enough to be marked. If
there are many such cases, we will need to review
how we handle ‘prima facie false positives’ in the
evaluation metrics.

Evaluation of the aspects described above can
be achieved automatically; there is also scope, of
course, for human evaluation of the overall relative
quality of the system-generated texts, although this
is of course labour intensive.

3.2 Where Does the Source Data Come From?
We have two candidates which we aim to explore
as sources of data for the exercise. It is almost cer-
tain the first of these two options will yield mate-
rial which is denser in errors, and closer to the kinds
of source material that any practical application will

have to work with; however, the pragmatics of the
situation mean that we may have to fall back on our
second option.

First, we intend to approach the Mentoring Chairs
for the ACL conferences over the last few years with
our proposal; then, with their permission, we ap-
proach the authors of papers that were submitted for
mentoring. If these authors are willing, we use their
initial submissions to the mentoring process as the
original document set.

If this approach yields an insufficient number of
papers (it may be that some authors are not willing
to have their drafts made available in this way, and
it would not be possible to make them anonymous)
then we will source candidate papers from the ACL
Anthology. The process we have in mind is this:

• Identify a paper whose authors are non-native
English speakers.

• If a quick reading of the paper reveals a mod-
erately high density of correctable errors with
in the first page, that paper becomes a candi-
date for the data set; if it contains very few cor-
rectable errors, the paper is ruled as inappropri-
ate.

• Repeat this process until we have a sufficiently
large data set.

We then contact the authors to determine whether
they are happy for their papers to be used in this ex-
ercise. If they are not, the paper is dropped and the
next paper’s author is asked.

3.3 Where do the Corrections Come From?

For the initial pilot, two copy-editors (who may or
may not be the authors of this paper) hand-correct
the papers in both the development and evaluation
data sets. For a full-size exercise there should be
more than two such annotators, just as there should
be more than ten papers in each of the development
and evaluation sets, but our priority here is to test the
model before investing further in it.

The copy-editors will then compare corrections,
and discuss differences. The possible cases are:

1. One annotator identifies a correction that the
other does not.
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2. Both annotators identify different corrections
for the same input text fragment.

We propose to deal with instances of the first type as
follows:

• The two annotators will confer to determine
whether one has simply made a mistake—as
many authors can testify, no proofreader will
find all the errors in a text.

• If agreement on the presence or absence of an
error cannot be reached, the instance will be
dealt with as described below for cases of the
second type, with absence of an error being
considered a ‘null correction’.

Instances of the second type will be handled as fol-
lows:

• If both annotators agree that both alternatives
are acceptable, then both alternatives will be
provided in the gold standard.

• If no agreement can be reached, then neither
alternative will be provided in the gold standard
(which effectively means that a null correction
is recorded).

Other strategies, such as using a third annotator as
a tie-breaker, can be utilised if the task generates a
critical mass of interest and volunteer labour.

3.4 What Kinds of Corrections?

Papers can go through very significant changes and
revisions during the course of their production: large
portions of the material can be added or removed,
the macro-structure can be re-organised substan-
tially, arguments can be refined or recast. Ideally, a
writing advisor might help with large-scale concerns
such as these; however, we aim to start at a much
simpler level, focussing on what is sometimes re-
ferred to as a ‘light copy-edit’. This involves a range
of phenomena which can be considered sentence-
internal:

• domain- and genre-specific spelling errors, in-
cluding casing errors;

• dispreferred or suboptimal lexical choices;

• basic grammatical errors, including common
ESL problems like incorrect preposition and
determiner usage;

• reduction of syntactic complexity;

• stylistic infelicities which, while not grammati-
cally incorrect, are unwieldy and impact on flu-
ency and ease of reading.

The above are all identifiable and correctable within
the context of a single sentence; however, we also in-
tend to correct inconsistencies across the document
as whole:

• consistency of appropriate tense usage;

• spelling and hyphenation instances where there
is no obvious correct answer, but a uniformity
is required.

We envisage that the process of marking up the gold-
standard texts will allow us to develop more formal
guidelines and taxonomic descriptions for use sub-
sequent to the pilot exercise. There are, of course,
existing approaches to error markup that can pro-
vide a starting point here, in particular the schemes
used in the large-scale exercises in learner error
annotation undertaken at CECL, Louvain-la-Neuve
(Dagneaux et al., 1996) and at Cambridge ESOL
(Nicholls, 2003).

3.5 How Should the Task be Approached?

There are many ways in which the task could be ad-
dressed; it is open to both rule-based and statistical
solutions. An obvious way to view the task is as a
machine translation problem from poor English to
better English; however, supervised machine learn-
ing approaches may be ruled out by the absence of
an appropriately large training corpus, something we
may not see until the task has generated significant
momentum (or more volunteer annotators at an early
stage!).

There is clearly a wealth of existing research on
grammar and style checking that can be brought
to bear. Although grammar and style checking
has been in the commercial domain now for three
decades, the task may provide a framework for the
first comparative test of many of these applications.
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Because the nature of errors is so diverse, this
task offers the opportunity to exercise a broad range
of approaches to the problem, and also allows for
narrowly-focussed solutions that attempt to address
specific problems with high accuracy.

4 Some Potential Problems

Our proposal is not without possible problems and
detrimental side effects.

Clearly there are ethical issues that need to be
considered carefully; even if an author is happy for
their data to be used in this way, one might find ret-
rospective embarrassment at eponynmous error de-
scriptions entering the common vocabulary in the
field—it’s one thing to be acknowledged for Kneser-
Ney smoothing, but perhaps less appealing to be fa-
mous for the Dale-Kilgarriff adjunct error.

Our suggestion that the ACL Anthology might be
used as a source for language modelling brings its
own downsides: in particular, if anything is likely
to increase the oft-complained-about sameness of
CL papers, this will! There is also an ethical is-
sue around the fine line between what such systems
will do and plagiarism; one might foresee the advent
of a new scholastic crime labelled ‘machine-assisted
style plagiarism’.

There are no doubt other issues we have not yet
considered; again, feedback on potential pitfalls is
eagerly sought.

5 Next Steps

Our aim is to obtain feedback on this proposal from
conference participants and others, with the aim of
refining our plan in the coming months. If we sense
that there is a reasonable degree of interest in the
task, we would aim to publish the initial data set well
before the end of the year, with a first evaluation tak-
ing place in 2011.

In the name of better writing, CLers of the world
unite—you have nothing to lose but your worst sen-
tences!
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Abstract

In many areas of NLP reuse of utility tools
such as parsers and POS taggers is now
common, but this is still rare in NLG. The
subfield of surface realisation has perhaps
come closest, but at present we still lack
a basis on which different surface realis-
ers could be compared, chiefly because of
the wide variety of different input repre-
sentations used by different realisers. This
paper outlines an idea for a shared task in
surface realisation, where inputs are pro-
vided in a common-ground representation
formalism which participants map to the
types of input required by their system.
These inputs are derived from existing an-
notated corpora developed for language
analysis (parsing etc.). Outputs (realisa-
tions) are evaluated by automatic compari-
son against the human-authored text in the
corpora as well as by human assessors.

1 Background

When reading a paper reporting a new NLP sys-
tem, it is common these days to find that the
authors have taken an NLP utility tool off the
shelf and reused it. Researchers frequently reuse
parsers, POS-taggers, named entity recognisers,
coreference resolvers, and many other tools. Not
only is there a real choice between a range of dif-
ferent systems performing the same task, there are
also evaluation methodologies to help determine
what the state of the art is.

Natural Language Generation (NLG) has not

so far developed generic tools and methods for
comparing them to the same extent as Natural
Language Analysis (NLA) has. The subfield of
NLG that has perhaps come closest to developing
generic tools is surface realisation. Wide-coverage
surface realisers such as PENMAN/NIGEL (Mann
and Mathiesen, 1983), FUF/SURGE (Elhadad and
Robin, 1996) and REALPRO (Lavoie and Ram-
bow, 1997) were intended to be more or less off-
the-shelf plug-and-play modules. But they tended
to require a significant amount of work to adapt
and integrate, and required highly specific inputs
incorporating up to several hundred features that
needed to be set.

With the advent of statistical techniques in NLG

surface realisers appeared for which it was far sim-
pler to supply inputs, as information not provided
in the inputs could be added on the basis of like-
lihood. An early example, the Japan-Gloss sys-
tem (Knight et al., 1995) replaced PENMAN’s de-
fault settings with statistical decisions. The Halo-
gen/Nitrogen developers (Langkilde and Knight,
1998a) allowed inputs to be arbitrarily underspec-
ified, and any decision not made before the realiser
was decided simply by highest likelihood accord-
ing to a language model, automatically trainable
from raw corpora.

The Halogen/Nitrogen work sparked an interest
in statistical NLG which led to a range of surface
realisation methods that used corpus frequencies
in one way or another (Varges and Mellish, 2001;
White, 2004; Velldal et al., 2004; Paiva and Evans,
2005). Some surface realisation work looked at
directly applying statistical models during a lin-
guistically informed generation process to prune
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the search space (White, 2004; Carroll and Oepen,
2005).

While statistical techniques have led to realisers
that are more (re)usable, we currently still have
no way of determining what the state of the art
is. A significant subset of statistical realisation
work (Langkilde, 2002; Callaway, 2003; Nakan-
ishi et al., 2005; Zhong and Stent, 2005; Cahill and
van Genabith, 2006; White and Rajkumar, 2009)
has recently produced results for regenerating the
Penn Treebank. The basic approach in all this
work is to remove information from the Penn Tree-
bank parses (the word strings themselves as well
as some of the parse information), and then con-
vert and use these underspecified representations
as inputs to the surface realiser whose task it is to
reproduce the original treebank sentence. Results
are typically evaluated using BLEU, and, roughly
speaking, BLEU scores go down as more informa-
tion is removed.

While publications of work along these lines do
refer to each other and (tentatively) compare BLEU

scores, the results are not in fact directly compara-
ble, because of the differences in the input repre-
sentations automatically derived from Penn Tree-
bank annotations. In particular, the extent to which
they are underspecified varies from one system to
the next.

The idea we would like to put forward with
this short paper is to develop a shared task in sur-
face realisation based on common inputs and an-
notated corpora of paired inputs and outputs de-
rived from various resources from NLA that build
on the Penn Treebank. Inputs are provided in a
common-ground representation formalism which
participants map to the types of input required by
their system. These inputs are automatically de-
rived from the Penn Treebank and the various lay-
ers of annotation (syntactic, semantic, discourse)
that have been developed for the documents in it.
Outputs (realisations) are evaluated by automatic
comparison against the human-authored text in the
corpora as well as by by human assessors.

In the short term, such a shared task would
make existing and new approaches directly com-
parable by evaluation on the benchmark data asso-
ciated with the shared task. In the long term, the
common-ground input representation may lead to
a standardised level of representation that can act
as a link between surface realisers and preceding
modules, and can make it possible to use alterna-

tive surface realisers as drop-in replacements for
each other.

2 Towards Common Inputs

One hugely challenging aspect in developing a
Surface Realisation task is developing a common
input representation that all, or at least a major-
ity of, surface realisation researchers are happy to
work with. While many different formalisms have
been used for input representations to surface re-
alisers, one cannot simply use e.g. van Genabith
et al.’s automatically generated LFG f-structures,
White et al’s CCG logical forms, Nivre’s depen-
dencies, Miyao et al.’s HPSG predicate-argument
structures or Copestake’s MRSs etc., as each of
them would introduce a bias in favour of one type
of system.

One possible solution is to develop a meta-
representation which contains, perhaps on multi-
ple layers of representation, all the information
needed to map to any of a given set of realiser in-
put representations, a common-ground representa-
tion that acts as a kind of interlingua for translating
between different input representations.

An important issue in deriving input repre-
sentations from semantically, syntactically and
discourse-annotated corpora is deciding what in-
formation not to include. A concern is that mak-
ing such decisions by committee may be difficult.
One way to make it easier might be to define sev-
eral versions of the task, where each version uses
inputs of different levels of specificity.

Basing a common input representation on what
can feasibly be obtained from non-NLG resources
would put everyone on reasonably common foot-
ing. If, moreover, the common input representa-
tions can be automatically derived from annota-
tions in existing resources, then data can be pro-
duced in sufficient quantities to make it feasible
for participants to automatically learn mappings
from the system-neutral input to their own input.

The above could be achieved by doing some-
thing along the lines of the CoNLL’08 shared task
on Joint Parsing of Syntactic and Semantic De-
pendencies, for which the organisers combined the
Penn Treebank, Propbank, Nombank and the BBN

Named Entity corpus into a dependency represen-
tation. Brief descriptions of these resources and
more details on this idea are provided in Section 4
below.
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3 Evaluation

As many NLG researchers have argued, there is
usually not a single right answer in NLG, but var-
ious answers, some better than others, and NLG

tasks should take this into account. If a surface
realisation task is focused on single-best realiza-
tions, then it will not encourage research on pro-
ducing all possible good realizations, or multiple
acceptable realizations in a ranked list, etc. It
may not be the best approach to encourage sys-
tems that try to make a single, safe choice; in-
stead, perhaps one should encourage approaches
that can tell when multiple choices would be ok,
and if some would be better than others.

In the long term we need to develop task defi-
nitions, data resources and evaluation methodolo-
gies that properly take into account the one-to-
many nature of NLG, but in the short term it may be
more realistic to reuse existing non-NLG resources
(which do not provide alternative realisations) and
to adapt existing evaluation methodologies includ-
ing intrinsic assessment of Fluency, Clarity and
Appropriateness by trained evaluators, and auto-
matic intrinsic methods such as BLEU and NIST.
One simple way of adapting the latter, for exam-
ple, could be to calculate scores for the n best re-
alisations produced by a realiser and then to com-
pute a weighted average where scores for reali-
sations are weighted in inverse proportion to the
ranks given to the realisations by the realiser.

4 Data

There is a wide variety of different annotated re-
sources that could be of use in a shared task in sur-
face realisation. Many of these include documents
originally included in the Penn Treebank, and thus
make it possible in principle to combine the var-
ious levels of annotation into a single common-
ground representation. The following is a (non-
exhaustive) list of such resources:

1. Penn Treebank-3 (Marcus et al., 1999): one
million words of hand-parsed 1989 Wall
Street Journal material annotated in Treebank
II style. The Treebank bracketing style al-
lows extraction of simple predicate/argument
structure. In addition to Treebank-1 mate-
rial, Treebank-3 contains documents from the
Switchboard and Brown corpora.

2. Propbank (Palmer et al., 2005): This is a se-
mantic annotation of the Wall Street Journal

section of Penn Treebank-2. More specifi-
cally, each verb occurring in the Treebank has
been treated as a semantic predicate and the
surrounding text has been annotated for ar-
guments and adjuncts of the predicate. The
verbs have also been tagged with coarse
grained senses and with inflectional informa-
tion.

3. NomBank 1.0 (Meyers et al., 2004): Nom-
Bank is an annotation project at New York
University that provides argument structure
for common nouns in the Penn Treebank.
NomBank marks the sets of arguments that
occur with nouns in PropBank I, just as the
latter records such information for verbs.

4. BBN Pronoun Coreference and Entity Type
Corpus (Weischedel and Brunstein, 2005):
supplements the Wall Street Journal corpus,
adding annotation of pronoun coreference,
and a variety of entity and numeric types.

5. FrameNet (Johnson et al., 2002): 150,000
sentences annotated for semantic roles and
possible syntactic realisations. The annotated
sentences come from a variety of sources, in-
cluding some PropBank texts.

6. OntoNotes 2.0 (Weischedel et al., 2008):
OntoNotes 1.0 contains 674k words of Chi-
nese and 500k words of English newswire
and broadcast news data. OntoNotes follows
the Penn Treebank for syntax and PropBank
for predicate-argument structure. Its seman-
tic representation will include word sense
disambiguation for nouns and verbs, with
each word sense connected to an ontology,
and coreference. The current goal is to anno-
tate over a million words each of English and
Chinese, and half a million words of Arabic
over five years.

There are other resources which may be use-
ful. Zettelmoyer and Collins (2009) have man-
ually converted the original SQL meaning an-
notations of the ATIS corpus (et al., 1994)—
some 4,637 sentences—into lambda-calculus ex-
pressions which were used for training and testing
their semantic parser. This resource might make a
good out-of-domain test set for generation systems
trained on WSJ data.

FrameNet, used for semantic parsing, see for
example Gildea and Jurafsky (2002), identifies a

Sixth International Natural Language Generation Conference (INLG 2010)

269



sentence’s frame elements and assigns semantic
roles to the frame elements. FrameNet data (Baker
and Sato, 2003) was used for training and test sets
in one of the SensEval-3 shared tasks in 2004 (Au-
tomatic Labeling of Semantic Roles). There has
been some work combining FrameNet with other
lexical resources. For example, Shi and Mihal-
cea (2005) integrated FrameNet with VerbNet and
WordNet for the purpose of enabling more robust
semantic parsing.

The Semlink project (http://verbs.colorado.
edu/semlink/) aims to integrate Propbank,
FrameNet, WordNet and VerbNet.

Other relevant work includes Moldovan and
Rus (Moldovan and Rus, 2001; Rus, 2002) who
developed a technique for parsing into logical
forms and used this to transform WordNet concept
definitions into logical forms. The same method
(with additional manual correction) was used to
produce the test set for another SensEval-3 shared
task (Identification of Logic Forms in English).

4.1 CoNLL 2008 Shared Task Data

Perhaps the most immediately promising resource
is is the CoNLL shared task data from 2008 (Sur-
deanu et al., 2008) which has syntactic depen-
dency annotations, named-entity boundaries and
the semantic dependencies model roles of both
verbal and nominal predicates. The data consist
of excerpts from Penn Treebank-3, BBN Pronoun
Coreference and Entity Type Corpus, PropBank I
and NomBank 1.0. In CoNLL ’08, the data was
used to train and test systems for the task of pro-
ducing a joint semantic and syntactic dependency
analysis of English sentences (the 2009 CoNLL

Shared Task extended this to multi-lingual data).
It seems feasible that we could reuse the CoNLL

data for a prototype Surface Realisation task,
adapting it and inversing the direction of the task,
i.e. mapping from syntactic-semantic dependency
representations to word strings.

5 Developing the Task

The first step in developing a Surface Realisa-
tion task could be to get together a working
group of surface realisation researchers to develop
a common-ground input representation automati-
cally derivable from a set of existing resources.
As part of this task a prototype corpus exempli-
fying inputs/outputs and annotations could be de-
veloped. At the end of this stage it would be use-

ful to write a white paper and circulate it and the
prototype corpus among the NLG (and wider NLP)
community for feedback and input.

After a further stage of development, it may be
feasible to run a prototype surface realisation task
at Generation Challenges 2011, combined with a
session for discussion and roadmapping. Depend-
ing on the outcome of all of this, a full-blown task
might be feasible by 2012. Some of this work will
need funding to be feasible, and the authors of this
paper are in the process of applying for financial
support for these plans.

6 Concluding Remarks

In this paper we have provided an overview of ex-
isting resources that could potentially be used for
a surface realisation task, and have outlined ideas
for how such a task might work. The core idea
is to develop a common-ground input representa-
tion which participants map to the types of input
required by their system. These inputs are derived
from existing annotated corpora developed for lan-
guage analysis. Outputs (realisations) are evalu-
ated by automatic comparison against the human-
authored text in the corpora as well as by by hu-
man assessors. Evaluation methods are adapted to
take account of the one-to-many nature of the re-
alisation mapping.

The ideas outlined in this paper began as a pro-
longed email exchange, interspersed with discus-
sions at conferences, among the authors. This pa-
per summarises our ideas as they have evolved so
far, to enable feedback and input from other re-
searchers interested in this type of task.
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Charton, Éric . . . . . . . . . . . . . . . . . . . . 233
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