
Word Sense Induction using Cluster Ensemble

 Bichuan Zhang, Jiashen Sun

Lingjia Deng, Yun Huang, Jianri Li,
Zhongwan Liu, Pujun Zuo

Center of Intelligence Science and
Technology

School of Computer

Beijing University of Posts and Telecommunications, Beijing, 100876 China

Abstract

In this paper, we describe the implementation
of an unsupervised learning method for
Chinese word sense induction in
CIPS-SIGHAN-2010 bakeoff. We present
three individual clustering algorithms and the
ensemble of them, and discuss in particular
different approaches to represent text and
select features. Our main system based on
cluster ensemble achieves 79.33% in F-score,
the best result of this WSI task. Our
experiments also demonstrate the versatility
and effectiveness of the proposed model on
data sparseness problems.

1 Introduction

Word Sense Induction (WSI) is a particular task
of computational linguistics which consists in
automatically discovering the correct sense for
each instance of a given ambiguous word
(Pinto , 2007). This problem is closely related to
Word Sense Disambiguation (WSD), however,
in WSD the aim is to tag each ambiguous word
in a text with one of the senses known as prior,
whereas in WSI the aim is to induce the different
senses of that word.

The object of the sense induction task of
CIPS-SIGHAN-2010 was to cluster 5,000
instances of 100 different words into senses or
classes. The task data consisted of the
combination of the test and training data (minus
the sense tags) from the Chinese lexical sample
task. Each instance is a context of several
sentences which contains an occurrence of a
given word that serves as the target of sense
induction.

The accuracy of the corpus-based algorithms
for WSD is usually proportional to the amount of
hand-tagged data available, but the construction
of that kind of training data is often difficult for

real applications. WSI overcomes this drawback
by using clustering algorithms which do not need
training data in order to determine the possible
sense for a given ambiguous word.

This paper describes an ensemble-based
unsupervised system for induction and
classification. Given a set of data to be classified,
the system clusters the data by individual clusters,
then operates cluster ensemble to ensure the
result to be robust and accurate accordingly.

The paper is organized as follows. Section 2
gives an description of the general framework of
our system. Sections 3 and 4 present in more
detail the implementation of feature set and
cluster algorithms used for the task, respectively.
Section 5 presents the results obtained, and
Section 6 draws conclusions and some
interesting future work.

2 Methodology in Sense Induction Task

Sense induction is typically treated as an
unsupervised clustering problem. The input to
the clustering algorithm are instances of the
ambiguous word with their accompanying
contexts (represented by co-occurrence vectors)
and the output is a grouping of these instances
into classes corresponding to the induced senses.
In other words, contexts that are grouped
together in the same class represent a specific
word sense.

In this task, an instance to be clustered is
represented as a bag of tokens or characters that
co–occur with the target word. To exploit the
diversity of features, besides the co–occurrence
matrix, we invoke the n-gram such as bi-grams
that occur in the contexts. For assigning a weight
for each term in each instance, a number of
alternatives to tf-idf and entropy have been
investigated.

This representation raises one severe
problem: the high dimensionality of the feature
space and the inherent data sparseness.

Obviously, a single document has a sparse vector
over the set of all terms. The performance of
clustering algorithms will decline dramatically
due to the problems of high dimensionality and
data sparseness. Therefore it is highly desirable
to reduce the feature space dimensionality. We
used two techniques to deal with this problem:
feature selection and feature combination.

Feature selection is a process that chooses a
subset from the original feature set according to
some criterion. The selected feature retains
original physical meaning and provides a better
understanding for the data and learning process.
Depending on whether the class label
information is required, feature selection can be
either unsupervised or supervised. For WSI
should be an unsupervised fashion, the
correlation of each feature with the class label is
computed by distance, information dependence,
or consistency measures.

Feature combination is a process that
combines multiple complementary features based
on different aspects extracted at the selection
step, and forms a new set of features.

The methods mentioned above are not
directly targeted to clustering instances; in this
paper we introduce three cluster algorithms: (a)
EM algorithms (Dempster et al., 1977;
McLachlan and Krishnan, 1997), (b) K-means
(MacQueen, 1967), and (c) LAC (Locally
Adaptive Clustering) (Domeniconi et al., 2004),
and one cluster ensemble method to incorporate
three results together to represent the target
patterns and conduct sense clustering.

We conduct multiple experiments to assess
different methods for feature selection and
feature combination on real unsupervised WSI
problems, and make analysis through three facets:
(a) to what extent feature selection can improve
the clustering quality, (b) how much width of the
smallest window that contains all the
co–occurrence context can be reduced without
losing useful information in text clustering, and
(c) what index weighting methods should be
applied to sense clustering. Besides the feature
exploitation, we studied in more detail the
performance of cluster ensemble method.

3 Feature Extraction

3.1 Preprocessing

Each training or test instance for WSI task
contains up to a few sentences as the surrounding
context of the target word w, and the number of

the sense of w is provided. We assume that the
surrounding context of a target w is informative
to determine the sense of it. Therefore a stream
of induction methods can be designed by
exploiting the context features for WSI.

In our experiment, we consider both tokens
(after word segmentation) and characters
(without word segmentation) in the surrounding
context of target word w as discriminative
features, and these tokens or characters can be in
different sentences from instances of w. Tokens
in the list of stop words and tokens with only one
character (such as punctuation symbols) are
removed from the feature sets. All remaining
terms are gathered to constitute the feature space
of w.

Since the long dependency property, the word
sense could be relying on the context far away
from it. From this point, it seems that more
features will bring more accurate induction, and
all linguistic cues should be incorporated into the
model. However, more features are involved,
more serious sparseness happens. Therefore, it is
important to find a sound trade-off between the
scale and the representativeness of features. We
use the sample data provided by the
CIPS-SIGHAN as a development data to find a
genetic parameter to confine the context scale.
Let ω be the width of the smallest window in an
instance d that contains terms near the target
word, measured in the number of words in the
window. In cases where the terms in the window
do not contain all of the informative terms, we
can set ω to be some enormous number (ω < the
length of sentence). Such proximity-weighted
scoring functions are a departure from pure
cosine similarity and closer to the “soft
conjunctive” semantics.

Token or character is the most straightforward
basic term to be used to represent an instance.
For WSI, in many cases a term is a meaningful
unit with little ambiguity even without
considering context. In this case the bag-of-terms
representation is in fact a bag-of-words, therefore
N-gram model can be used to exploit such
meaningful units. An n-gram is a sequence of n
consecutive characters (or tokens) in an instance.
The advantages of n-grams are: they are
language independent, robust against errors in
instance, and they capture information about
phrases. We performed experiments to show that
for WSI, n-gram features perform significantly
better than the flat features.

There exists many approaches to weight
features in text computing (Aas and Eikvil, 1999).

A simple approach is TF (term frequency) using
the frequency of the word in the document. The
schemes take into account the frequency of the
word throughout all documents in the collection.
A well known variant of TF measure is TF-IDF
weighting which assigns the weight to word i in
document k in proportion to the number of
occurrences of the word in the document, and in
inverse proportion to the number of documents
in the collection for which the word occurs at
least once.

*log()ik ik
i

Na f
n

=

Another approach is Entropy weighting,
Entropy weighting is based on information
theoretic ideas and is the most sophisticated
weighting scheme. It has been proved more
effective than word frequency weighting in text
representing. In the entropy weighting scheme,
the weight for word in document is given
by a

i k
ik.

1

1log(1.0)* 1 log()
log()

N
ij ij

ik ik
j i i

f f
a f

N n n=

⎛ ⎡
= + +⎜ ⎢⎜ ⎣⎝

∑
⎞⎤
⎟⎥ ⎟⎦ ⎠

 Re-parameterization is the process of
constructing new features as combinations or
transformations of the original features. We
investigated Latent Semantic Indexing (LSI)
method in our research and produce a
term-document matrix for each target word. LSI
is based on the assumption that there is some
underlying or latent structure in the pattern of
word usage across documents, and that statistical
techniques can be used to estimate this structure.
However, it is against the primitive goal of the
LSI weighting that LSI performs slightly poorer
compared with the TF, TF-IDF and entropy. The
most likely reason may is that the feature space
we construct is far from high-dimension, while
feature the LSI omitted may be of help for
specific sense induction.

3.2 Feature Selection

A simple features election method used here is
frequency thresholding. Instance frequency is the
number of instance to be clustered in which a
term occurs. We compute the instance frequency
for each unique term in the training corpus and
remove from the feature space those terms whose
instance frequency was less than some
predetermined threshold (in our experiment, the
threshold is 5). The basic assumption is that rare
terms are either non-informative for category
prediction, or not influential in global

performance. The assumption of instance
frequency threshold is more straightforward that
of LSI, and in either case, removal of rare terms
reduces the dimensionality of the feature space.
Improvement in cluster accuracy is also possible
if rare terms happen to be noise terms.

Frequency threshold is the simplest technique
for feature space reduction. It easily scales to
sparse data, with a computational complexity
approximately linear in the number of training
documents. However, it is usually considered an
ad hoc approach to improve efficiency, not a
principled criterion for selecting predictive
features. Also, frequency threshold is typically
not used for aggressive term removal because of
a widely received assumption in information
retrieval. That is, low instance frequency terms
are assumed to be relatively informative and
therefore should not be removed aggressively.
We will re-examine this assumption with respect
to WSI tasks in experiments.

Information gain (IG) is another feature
felection can be easily applied to clustering and
frequently employed as a term-goodness
criterion in the field of machine learning. It
measures the number of bits of information
obtained for cluster prediction by knowing the
presence or absence of a term in an instance.

Since WSI should be conducted in an
unsupervised fashion, that is, the labels are not
provided, the IG method can not be directly used
for WSI task. But IG can be used to find which
kind of features we consider in Section 3.1 are
most informative feature among all the feature
set. We take the training samples as the
development data to seek for the cues of most
informative feature. For each unique term we
compute the information gain and selecte from
the feature space those terms whose information
gain is more than some predetermined threshold.
The computation includes the estimation of the
conditional probabilities of a cluster given a term
and the entropy computations in the definition.

m

i 1
IG(t) = - () log ()i ip c p c

=∑

m

i 1
() (| t) log (| t)i ip t p c p c

=
+ ∑

m

i 1
() (|) log (|)i ip t p c t p c t

=
+ ∑

where t is the token under consideration, ci is
the corresponding cluster.This definition is more
general than the one employed in binary
classification models. We use the more general
form because WSI task have a feature sparse
problem, and we need to measure the goodness

of a feature selection method globally with
respect to all clusters on average.

3.3 Feature combination

Combining all features selected by different
feature set can improve the performance of a
WSI system. In the selection step, we find the
feature that best distinguishes the sense classes,
and iteratively search additional features which
in combination with other chosen features
improve word sense class discrimination. This
process stops once the maximal evaluation
criterion is achieved.

We are trying to disply an empirical
comparison of representative feature
combination methods. We hold that particular
cluster support specific datasets; a test with such
combination of cluster algorithm and feature set
may wrongly show a high accuracy rate unless a
variety of clusterers are chosen and many
statistically different feature sets are used. Also,
as different feature selection methods have a
different bias in selecting features, similar to that
of different clusterers, it is not fair to use certain
combinations of methods and clusterers, and try
to generalize from the results that some feature
selection methods are better than others without
considering the clusterer.

This problem is challenging because the
instances belonging to the same sense class
usually have high intraclass variability. To
overcome the problem of variability, one strategy
is to design feature combination method which
are highly invariant to the variations present
within the sense classes. Invariance is an
improvement, but it is clear that none of the
feature combination method will have the same
discriminative power for all clusterers.

For example, features based on global window
might perform well when instances are shot,
whereas a feature weighting method for this task
should be invariant to the all the WSI corpus.
Therefore it is widely accepted that, instead of
using a single feature type for all target words it
is better to adaptively combine a set of diverse
and complementary features. In our experiment,
we use several combination of features in
multiple views, that is, uni-gram/bi-gram,
global/window, and tfidf/entropy – in order to
discriminate each combination best from all
other clusters.

4 Cluster

There are two main issues in designing cluster

ensembles: (a) the design of the individual
“clusterers” so that they form potentially an
accurate ensemble, and (b) the way the outputs
of the clusterers are combined to obtain the final
partition, called the consensus function. In some
ensemble design methods the two issues are
merged into a single design procedure, e.g.,
when one clusterer is added at a time and the
overall partition is updated accordingly (called
the direct or greedy approach).

In this task we consider the two tasks
separately, and investigate three powerful cluster
methods and corresponding consensus functions.

4.1 EM algorithm

Expectation-maximization algorithm, or EM
algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 1997) is an elegant and powerful
method for finding maximum likelihood
solutions for models with latent variables.

Given a joint distribution (X, Z |)p θ over
observed variables X and latent variables Z,
governed by parameters θ , the goal is to
maximize the likelihood function (X |)p θ
with respect toθ .

1. Choose an initial setting for the

parameters
oldθ ;

2. E step Evaluate ; (Z | X,)oldp θ
3. M step Evaluate newθ given by
 ; = argmax (,)new old

θ
θ ϑ θ θ

where (,) (Z|X,) ln (X,Z|)old old

z

p pϑ θ θ θ θ=∑

4. Check for convergence of either the log
likelihood or the parameter values. If the
convergence criterion is not satisfied, then let

old newθ θ←
and return to step 2.

4.2 K-means

K-means clustering (MacQueen, 1967) is a
method commonly used to automatically
partition a data set into k groups. It proceeds by
selecting k initial cluster centers and then
iteratively refining them as follows:
1. Each instance d is assigned to its closest
cluster center.

i

2. Each cluster center C is updated to be the
mean of its constituent instances.

j

The algorithm converges when there is no
further change in assignment of instances to
clusters. In this work, we initialize the clusters

using instances chosen at random from the data
set. The data sets we used are composed of
numeric feature, for numeric features, we use a
Euclidean distance metric.

4.3 LAC

Domeniconi et al.(2004) proposed an Locally
Adaptive Clustering algorithm (LAC), which
discovers clusters in subspaces spanned by
different combinations of dimensions via local
weightings of features. Dimensions along which
data are loosely correlated receive a small weight,
which has the effect of elongating distances
along that dimension. Features along which data
are strongly correlated receive a large weight,
which has the effect of constricting distances
along that dimension. Thus the learned weights
perform a directional local reshaping of distances
which allows a better separation of clusters, and
therefore the discovery of different patterns in
different subspaces of the original input space.

The clustering result of LAC depends on
two input parameters. The first one is common to
all clustering algorithms: the number of clusters
k to be discovered in the data. The second one
(called h) controls the strength of the incentive to
cluster on more features. The setting of h is
particularly difficult, since no domain knowledge
for its tuning is likely to be available. Thus, it
would be convenient if the clustering process
automatically determined the relevant subspaces.

4.4 Cluster Ensemble

Cluster ensembles offer a solution to challenges
inherent to clustering arising from its ill-posed
nature. Cluster ensembles can provide robust and
stable solutions by leveraging the consensus
across multiple clustering results, while
averaging out emergent spurious structures that
arise due to the various biases to which each
participating algorithm is tuned.

Kuncheva et al. (2006) has shown Cluster
ensembles to be a robust and accurate alternative
to single clustering runs. In the work of
Kuncheva et al. (2006), 24 methods for
designing cluster ensembles are compared using
24 data sets, both artificial and real. Both
diversity within the ensemble and accuracy of
the individual clusterers are important factors,
although not straightforwardly related to the
ensemble accuracy.

The consensus function aggregates the outputs
of the Individual clusterers into a single partition.
Many consensus functions use the consensus

matrix obtained from the adjacency matrices of
the individual clusterers. Let N be the number of
objects in the data set. The adjacency matrix for
clusterer is an N by N matrix with entry k
(,) 1i j = if objects i and j are placed in the
same cluster by clusterer , and (,k) 0i j = ,
otherwise. The overall consensus matrix, M, is
the average of the adjacency matrices of the
clusterers. Its entry gives the proportion of
clusterers which put and

(,)i j
i j in the same cluster.

Here the overall consensus matrix, M, can be
interpreted as similarity between the objects or
the “data”. It appears that the clear winner in the
consensus function “competition” is using the
consensus matrix as data. Therefore, the
consensus functions used in the WSI task invoke
the approach whereby the consensus matrix M is
used as data (features). Each object is
represented by N features, i.e., the j -the feature
for object is the (, entry of M. i)i j

Then we use Group-average agglomerative
clustering (GAAC) to be the consensus functions
clustering the M matrix.

5 Analysis

First, we conducte an ideal case experiment on
the training samples provided by CIPS-SIGHAN
2010, to see whether good terms can help sense
clustering. Specifically, we applied supervised
feature selection methods to choose the best
feature combinations driven by performance
improving on the training features. Then, we
executed the word sense induction task using
features under the prefered feature combinations
and compare the various clustering results output
by three individual cluster.

We then designe cluster ensemble method
with results on three clusters, distributed as M
data consensus matrix.

5.1 Soundex for Feature

We apply feature selection and feature
combination to instances in the preprocessing of
K-means, EM and LAC. The effectiveness of a
combination method is evaluated using the
performance of the cluster algorithm on the
preprocessed WSI. We use the standard
definition of recall and precision as F-score
(Zhao and Karypis, 2005) to evaluate the
clustering result.

As described in Section 3, selection methods
are included in this study, each of which uses a
term-goodness criterion threshold to achieve a

desired degree from the full feature set of WSI
corpus.

Table 2 shows The F-score figures for the
different combinations of knowledge sources and
learning algorithms for the training data set. The
feature columns correspond to:

(i) tfidf: tf-idf weighting
(ii) entro: Entropy weighting
(iii) bi: bi-gram representation
(iv) uni: uni-gram representation

(v) global: using all the terms in the
instance

(vi) winXX: using only terms in the
surrounding context, and the width of
the window is the figure followed by.

As shown in Table 2, the best averaged
F-score for WSI (without combination) is
obtained by global_entro by maintaining a very
consistent result for three cluster algorithm. That
is, the feature weighting method will dominate

Feature k-means LAC EM average
combine_uni_bi_entro_8:2 0.817375775 0.819315654 0.811188742 0.81596
combine_uni_bi_entro_9:1 0.812858111 0.817265352 0.81510355 0.815075
combine_uni_bi_entro_7:3 0.805319576 0.817909374 0.819887132 0.814372
combine_uni_bi_entro_1:1 0.810324177 0.81397143 0.812962625 0.812419
combine_uni_bi_entro_6:4 0.806647971 0.815069965 0.810440791 0.811945
combine_uni_bi_entro_1:9 0.810576944 0.811287122 0.813785918 0.811883
combine_uni_bi_entro_4:6 0.810475113 0.810512846 0.811584054 0.810857
combine_uni_bi_entro_3:7 0.809265111 0.811142052 0.811340668 0.810582
combine_uni_bi_entro_2:8 0.811090379 0.804433939 0.813767918 0.809764
uni_global_entro 0.765063808 0.75954835 0.746212504 0.756942
uni_global_tfidf 0.765011785 0.757537564 0.745006996 0.755852
uni_win30_tfidf 0.764949578 0.757424304 0.744497086 0.755624
uni_win40_tfidf 0.764772672 0.755702292 0.744319609 0.754932
uni_win30_entro 0.764286757 0.755514592 0.742825875 0.754209
uni_win40_tfidf 0.763994795 0.75954835 0.742747114 0.75543
bi_global_entro 0.740026161 0.731310077 0.71651859 0.729285
bi_global_tfidf 0.739555095 0.731264758 0.716031966 0.728951
bi_win30_entro 0.737209909 0.729711844 0.714498518 0.72714
bi_win40_entro 0.715230191 0.713987571 0.699644178 0.709621
bi_win40_tfidf 0.714031488 0.710282928 0.697201196 0.707172
bi_win30_ tfidf 0.740026161 0.731310077 0.71651859 0.729285

Table 1: Feature selection for our system.

the F-score. On the other hand, we should
combine uni_global_entro and bi_global_entro to
improve the cluster performance:

(vii) combine: combining all two feature
(uni and bi) with the at the rate of
the ratio followed by.

From these figures, we found the following
points. First, feature selection can improve the
clustering performance when a certain terms are
combined. For example, any feature combination
methods can achieve about 5% improvement.
Second, as can be seen from Table 1, the best
performances yielded at the combination ratio of
8:2. As can be seen, when more bi-gram terms
are added, the performances of combination
methods drop obviously. In order to find out the
reason, we compared the terms selected at

different ratio. After analysis, we found that
Chinese word senses have their own
characteristics, unigram language model is
suitable for WSI in Chinese; also, in WSI task,
informative term may be in the entire instance
but not appear closest to the target word, the
language model and the width of window is
much more important than the feature weighting
for feature selection. Since entropy weighting
perform better than tf-idf weighting, tf-idf
weighting can be removed with an improvement
in clustering performance on the training dataset.
Hence, it is obvious that combination methods
are much better than single feature set when
processing WSI, and we chose
combine_uni_bi_entro_8:2, i.e., the top 80%

uni-gram features and top 20% features as the
final clustering features.

5.2 The cluster ensembles

As described in Section 5.1, we use two language
models (uni-gram and bi-gram), 4 types of the
context window (20, 30, 40 and global) and 2
feature weighting methods (tf-idf and entropy),
also, 10 combined feature set and 3 cluster
algorithm is introduced; in the other word, we
have at least 78 result, that is 78 consensus
matrix interpreted as “data” to be aggregated.
Thus we can evaluate the statistical significance
of the difference among any ensemble methods
on any cluster result set.

To compare all ensemble methods, we group
the result sets (out of 78) into different feature
representation scheme. Significant difference for
a given feature representation methods, the
ensemble result is observed to check weather
cluster ensembles can be more accurate than
single feature set and to find out which method
appears to be the best choice for the WSI task.

Table 2 shows the ensembles examined in our
experiment. The feature columns correspond to
different group of result set, for example, bi_tfidf
indicates bi-gram model and tf-idf feature
weighting methods are selected, all the 3 cluster
results on win20, win30, win 40 and global
feature sets (12 consensus matrix) are aggregated;
complex_entro indicates that all the feature
representation methods selecting entropy
weighting are chosen.

Results show that the best performance is the
group in which all the outputs of all the
clusterers are combined (the top row in Table 2).

Feature F1-score Scale

complex 0.827566232 78
complex_entro 0.823006644 24
complex_nocomb 0.822970703 48
complex_global 0.821960768 12
uni_complex 0.821931155 24
uni_ entro 0.821931155 15
uni_global 0.821817211 6
complex_combine 0.819456935 30
uni_ tfidf 0.811631894 12
complex_tfidf 0.806807226 24
complex_entro 0.806063712 24
bi_complex 0.801211134 24
bi_entro 0.794939656 12
bi_global 0.788673134 6
bi_tfidf 0.788170215 12

Table 2: Ensemble designs sorted by the total
index of performance

5.3 CIPS-SIGHAN WSI Performance

The goal of this task is to promote the exchange
of ideas among participants and improve the
performance of Chinese WSI systems. The input
consists of 100 target words, each target word
having a set of contexts where the word appears.
The goal is to automatically induce the senses
each word has, and cluster the contexts
accordingly. The evaluation measures provided
is F-Score measure. In order to improve the
overall performance, we used two techniques:
feature combination and Cluster Ensemble.

We chose combinomg global size of window,
entropy weighting, uni-garm and bi-gram at the
ratio of 8:2 as the final feature extraction method.
Three powerful cluster algorithms, EM, K-means
and LAC recieve these features as input, and in
our main system all the outputs of all the
clusterers are combined to process cluster
ensemble. In Table 3 we show four results
obtained by three individual clusters and one
ensemble of them.

Our main system has outperformed the other
systems achieving 79.33%. Performance for
LAC is 78.95%, 0.4% lower the best system. For
EM our F-sore is 78.55%, which is around 0.8%
lower than the best system, the similar result ia
also observed for K-means. The results of our
system are ranked in the top 4 place and
obviously better the other systems.

Name F1-score Rank
BUPT_mainsys 0.7933 1
BUPT_LAC 0.7895 2
BUPT_EM 0.7855 3
BUPT_kmeans 0.7849 4
Table 3: Evaluation (F-score performance)

6 Conclusions

In this paper, we described the implementation of
our systems that participated in word sense
induction task at CIPS-SIGHAN-2010 bakeoff.
Our ensemble model achieved 79.33% in F-score,
78.95% for LAC, 78.55% for EM and 78.49%
for K-means. The result proved that our system
had the ability to fully exploit the informative
feature in senses and the ensemble clusters
enhance this advantage.

One direction of future work is to exploit more
semantic cues for word sense distribution.
Furthermore, in order to represent the short
context of the target word, we should investigate
more powerful model and external knowledge to
expand its linguistic environments.

Acknowledgement

This research has been partially supported by the
National Science Foundation of China (NO.
NSFC90920006). We also thank Xiaojie Wang,
Caixia Yuan and Huixing Jiang for useful
discussion of this work.

References
D. Pinto, P. Rosso, and H. Jim´enez-Salazar. UPV-SI:

Word sense induction using self term expansion. In
Proc. of the 4th International Workshop on
Semantic Evaluations - SemEval 2007. Association
for Computational Linguistics, 2007. pp. 430-433.

Yiming Yang and Jan O. Pedersen. A Comparative
Study on Feature Selection in Text Categorization.
In Proceedings of the 14th International
Conference on Machine Learning (ICML), 1997.
pp. 412-420.

Salton, Gerard, and Chris Buckley. 1987. Term
weighting approaches in automatic text retrieval.
Technical report, Cornell University, Ithaca, NY,
USA.

S. Dumais, Improving the retrieval of information
from external sources, Behavior Research Methods,
Instruments, & Computers, 1991, 23:229-236.

M. W. Berry, S. T. Dumais, and G. W. O'Brien, Using
linear algebra for intelligent information retrieval,
SIAM Rev., 1995, 37:573-595

MacQueen, J. B. (1967). Some methods for
classification and analysis of multivariate
observations. Proceedings of the Fifth Symposium
on Math, Statistics, and Probability, Berkeley, CA:
University of California Press. pp. 281-297.

Dempster,A.P., Laird,N.M and Rubin,D.B. (1977)
Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Statist. Soc. B, 39, 1-38.

MCLACHLAN, G., AND KRISHNAN, T. 1997. The
EM algorithm and extensions. Wiley series in
probability and statistics. JohnWiley & Sons.

Y. Zhao and G. Karypis. 2002. Evaluation of
hierarchical clustering algorithms for document
datasets. In Proceedings of the 11th Conference of
Information and Knowledge Management (CIKM),
pp. 515-524.

K. Aas and L. Eikvil. Text categorisation: A survey.
Technical Report 941, Norwegian Computing
Center, June 1999.

C. Domeniconi, D. Papadopoulos, D. Gunopulos, and
S. Ma. Subspace clustering of high dimensional
data. SIAM International Conference on Data
Mining, 2004.

Kuncheva, L.I., Hadjitodorov, S.T., and Todorova,
L.P. Experimental Comparison of Cluster
Ensemble Methods, The 9th International
Conference on Information Fusion, 2006.

