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Introduction

The Fourth Workshop on Syntax and Structure in Statistical Translation (SSST-4) was held on 28
August 2010 following the Coling 2010 conference in Beijing. Like the first three SSST workshops
in 2007, 2008, and 2009, it aimed to bring together researchers from different communities working in
the rapidly growing field of statistical, tree-structured models of natural language translation.

We were honored to have Martin Kay deliver this year’s invited keynote talk. This field is indebted to
Martin Kay for not one but two of the classic cornerstone ideas that inspired bilingual tree-structured
models for statistical machine translation: first, chart parsing, and second, parallel text alignment.

Tabular approaches to parsing, using dynamic programming and/or memoization, were heavily
influenced by Kay’s (1980) charts (or forests, packed forests, well-formed substring tables, or WFSTs).
Today’s biparsing models—the bilingual generalizations of this influential work—lie at the heart of
numerous alignment and training algorithms for inversion transduction grammars or ITGs—including
all syntax-directed transduction grammars or SDTGs (or synchronous CFGs) of binary rank or ternary
rank, such as those learned by hierarchical phrase-based translation approaches.

At the same time, Kay and Röscheisen’s (1988) seminal work on alignment of parallel texts led the way
in statistical machine translation’s basic paradigm of integrating the simultaneous learning of translation
lexicons with aligning parallel texts. Today’s biparsing models generalize this by simultaneously
learning tree structures as well. Once again, cross-pollination of ideas across different areas and
disciplines, empirical and theoretical, has provided mutual inspiration.

We selected 15 papers for this year’s workshop. Studies emphasizing formal and algorithmic
aspects include a method for intersecting synchronous/transduction grammars (S/TGs) with finite-
state transducers (Dymetman and Cancedda), and a comparison of linear transduction grammars
(LTGs) with ITGs (Saers, Nivre and Wu). Experiments on using syntactic features and constraints
within flat phrase-based translation models include studies by Jiang, Du and Way; by Cao, Finch
and Sumita; by Kolachina, Venkatapathy, Bangalore, Kolachina and PVS; and by Zhechev and van
Genabith. Dependency constraints are also used to improve HMM word alignments for both flat
phrase-based as well as S/TG based translation models (Ma and Way). Extensions to the features and
parameterizations in two S/TG based translation models, as well as methods for merging models, are
studied by Zollman and Vogel. The potential of incorporating LFG-style deep syntax within S/TGs is
explored by Graham and van Genabith. A tree transduction based approach is presented by Khalilov and
Sima’an. Meanwhile, Lo and Wu empirically compare n-gram, syntactic, and semantic structure based
MT evaluation approaches. An encouraging trend is an uptick in work on low-resource language pairs
and from underrepresented regions, including English-Persian (Mohaghegh, Sarrafzadeh and Moir),
Manipuri-English (Singh and Bandyopadhyay), Tunisia (Khemakhem, Jamoussi and Ben hamadou),
and English-Hindi (Venkatapathy, Sangal, Joshi, and Gali).

Once again this year, thanks are due to our authors and our Program Committee for making the SSST
workshop another success.
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Intersecting Hierarchical and Phrase-Based Models of Translation:
Formal Aspects and Algorithms

Marc Dymetman Nicola Cancedda
Xerox Research Centre Europe

{marc.dymetman,nicola.cancedda}@xrce.xerox.com

Abstract

We address the problem of construct-
ing hybrid translation systems by inter-
secting a Hiero-style hierarchical sys-
tem with a phrase-based system and
present formal techniques for doing so.
We model the phrase-based component
by introducing a variant of weighted
finite-state automata, called σ-automata,
provide a self-contained description
of a general algorithm for intersect-
ing weighted synchronous context-free
grammars with finite-state automata, and
extend these constructs to σ-automata.
We end by briefly discussing complexity
properties of the presented algorithms.

1 Introduction

Phrase-based (Och and Ney, 2004; Koehn et
al., 2007) and Hierarchical (Hiero-style) (Chi-
ang, 2007) models are two mainstream ap-
proaches for building Statistical Machine Trans-
lation systems, with different characteristics.
While phrase-based systems allow a direct cap-
ture of correspondences between surface-level
lexical patterns, but at the cost of a simplistic
handling of re-ordering, hierarchical systems are
better able to constrain re-ordering, especially
for distant language pairs, but tend to produce
sparser rules and often lag behind phrase-based
systems for less distant language pairs. It might
therefore make sense to capitalize on the com-
plementary advantages of the two approaches by
combining them in some way.

This paper attempts to lay out the formal
prerequisites for doing so, by developing tech-

niques for intersecting a hierarchical model and
a phrase-based model. In order to do so, one first
difficulty has to be overcome: while hierarchical
systems are based on the mathematically well-
understood formalism of weighted synchronous
CFG’s, phrase-based systems do not correspond
to any classical formal model, although they are
loosely connected to weighted finite state trans-
ducers, but crucially go beyond these by allow-
ing phrase re-orderings.

One might try to address this issue by limiting
a priori the amount of re-ordering, in the spirit
of (Kumar and Byrne, 2005), which would allow
to approximate a phrase-based model by a stan-
dard transducer, but this would introduce further
issues. First, limiting the amount of reorder-
ing in the phrase-based model runs contrary to
the underlying intuitions behind the intersection,
namely that the hierarchical model should be
mainly responsible for controlling re-ordering,
and the phrase-based model mainly responsible
for lexical choice. Second, the transducer result-
ing from the operation could be large. Third,
even if we could represent the phrase-based
model through a finite-state transducer, intersect-
ing this transducer with the synchronous CFG
would actually be intractable in the general case,
as we indicate later.

We then take another route. For a fixed source
sentence x, we show how to construct an au-
tomaton that represents all the (weighted) tar-
get sentences that can be produced by apply-
ing the phrase based model to x. However, this
“σ-automaton” is non-standard in the sense that
each transition is decorated with a set of source
sentence tokens and that the only valid paths are

1



those that do not traverse two sets containing the
same token (in other words, valid paths cannot
“consume” the same source token twice).

The reason we are interested in σ-automata
is the following. First, it is known that inter-
secting a synchronous grammar simultaneously
with the source sentence x and a (standard) target
automaton results in another synchronous gram-
mar; we provide a self-contained description of
an algorithm for performing this intersection, in
the general weighted case, and where x is gener-
alized to an arbitrary source automaton. Second,
we extend this algorithm to σ-automata. The
resulting weighted synchronous grammar repre-
sents, as in Hiero, the “parse forest” (or “hy-
pergraph”) of all weighted derivations (that is
of all translations) that can be built over x, but
where the weights incorporate knowledge of the
phrase-based component; it can therefore form
the basis of a variety of dynamic programming
or sampling algorithms (Chiang, 2007; Blunsom
and Osborne, 2008), as is the case with standard
Hiero-type representations. While in the worst
case the intersected grammar can contain an ex-
ponential number of nonterminals, we argue that
such combinatorial explosion will not happen in
practice, and we also briefly indicate formal con-
ditions under which it will not be allowed to hap-
pen.

2 Intersecting weighted synchronous
CFG’s with weighted automata

We assume that the notions of weighted finite-
state automaton [W-FSA] and weighted syn-
chronous grammar [W-SCFG] are known (for
short descriptions see (Mohri et al., 1996) and
(Chiang, 2006)), and we consider:

1. A W-SCFG G, with associated source
grammar Gs (resp. target grammar Gt); the
terminals of Gs (resp. Gt) vary over the
source vocabulary Vs (resp. target vocab-
ulary Vt).

2. A W-FSA As over the source vocabulary
Vs, with initial state s# and final state s$.

3. A W-FSA At over the target vocabulary Vt,
with initial state t# and final state t$.

The grammar G defines a weighted synchronous
language LG over (Vs, Vt), the automaton As a
weighted language Ls over Vs, and the automa-
ton At a weighted language Lt over Vt. We
then define the intersection language L′ between
these three languages as the synchronous lan-
guage denoted L′ = Ls e LG e Lt over (Vs, Vt)
such that, for any pair (x, y) of a source and a
target sentence, the weight L′(x, y) is defined
by L′(x, y) ≡ Ls(x) · LG(x, y) · Lt(y), where
Ls(x), LG(x, y), Lt(y) are the weights associ-
ated to each of the component languages.

It is natural to ask whether there exists a syn-
chronous grammar G′ generating the language
L′, which we will now show to be the case.1

Our approach is inspired by the construction in
(Bar-Hillel et al., 1961) for the intersection of a
CFG and an FSA and the observation in (Lang,
1994) relating this construction to parse forests,
and also partially from (Satta, 2008), although,
by contrast to that work, our construction, (i)
is done simultaneously rather than as the se-
quence of intersecting As with G, then the re-
sulting grammar with At, (ii) handles weighted
formalisms rather than non-weighted ones.

We will describe the construction of G′ based
on an example, from which the general construc-
tion follows easily. Consider a W-SCFG gram-
mar G for translating between French and En-
glish, with initial nonterminal S, and containing
among others the following rule:

N→ A manque à B / B misses A : θ, (1)

where the source and target right-hand sides are
separated by a slash symbol, and where θ is a
non-negative real weight (interpreted multiplica-
tively) associated with the rule.

Now let’s consider the following “rule
scheme”:

t0
s0Nt3

s4 → t2
s0At3

s1 s1manques2 s2 às3
t0
s3Bt1s4 /

t0
s3Bt1s4

t1missest2 t2s0At3
s1 (2)

1We will actually only need the application of this result
to the case where As is a “degenerate” automaton describ-
ing a single source sentence x, but the general construction
is not harder to do than this special case and the resulting
format for G′ is well-suited to our needs below.
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This scheme consists in an “indexed” version of
the original rule, where the bottom indices si
correspond to states of As (“source states”), and
the top indices ti to states of At (“target states”).
The nonterminals are associated with two source
and two target indices, and for the same nonter-
minal, these four indices have to match across
the source and the target RHS’s of the rule. As
for the original terminals, they are replaced by
“indexed terminals”, where source (resp. tar-
get) terminals have two source (resp. target) in-
dices. The source indices appear sequentially
on the source RHS of the rule, in the pattern
s0, s1, s1, s2, s2 . . . sm−1, sm, with the nonter-
minal on the LHS receiving source indices s0
and sm, and similarly the target indices appear
sequentially on the target RHS of the rule, in the
pattern t0, t1, t1, t2, t2 . . . tn−1, tn, with the non-
terminal on the LHS receiving target indices t0
and tn. To clarify, the operation of associating
indices to terminals and nonterminals can be de-
composed into three steps:

s0Ns4 → s0As1 s1manques2 s2 à s3 s3Bs4 /

B misses A
t0Nt3 → A manque à B /

t0Bt1 t1missest2 t2At3

t0
s0Nt3

s4 → t2
s0At3

s1 s1manques2 s2 à s3
t0
s3Bt1s4 /

t0
s3Bt1s4

t1missest2 t2s0At3
s1

where the first two steps corresponds to handling
the source and target indices separately, and the
third step then assembles the indices in order to
get the same four indices on the two copies of
each RHS nonterminal. The rule scheme (2) now
generates a family of rules, each of which corre-
sponds to an arbitrary instantiation of the source
and target indices to states of the source and tar-
get automata respectively. With every such rule
instantiation, we associate a weight θ′ which is
defined as:

θ′ ≡ θ ·
∏

si s-termsi+1

θAs(si, s-term, si+1)

·
∏

tj t-termtj+1

θAt(tj , t-term, tj+1), (3)

where the first product is over the indexed source
terminals sis-termsi+1 , the second product

over the indexed target terminals tj t-termtj+1 ;
θAs(si, s-term, si+1) is the weight of the transi-
tion (si, s-term, si+1) according to As, and sim-
ilarly for θAt(tj , t-term, tj+1). In these prod-
ucts, it may happen that θAs(si, s-term, si+1) is
null (and similarly for At), and in such a case,
the corresponding rule instantiation is consid-
ered not to be realized. Let us consider the multi-
set of all the weighted rule instantiations for (1)
computed in this way, and for each rule in the
collection, let us “forget” the indices associated
to the terminals. In this way, we obtain a col-
lection of weighted synchronous rules over the
vocabularies Vs and Vt, but where each nonter-
minal is now indexed by four states.2

When we apply this procedure to all the rules
of the grammar G, we obtain a new weighted
synchronous CFG G′, with start symbol t#s#S

t$
s$ ,

for which we have the following Fact, of which
we omit the proof for lack of space.

Fact 1. The synchronous language LG′ associ-
ated with G′ is equal to L′ = Ls e LG e Lt.

The grammar G′ that we have just constructed
does fulfill the goal of representing the bilat-
eral intersection that we were looking for, but
it has a serious defect: most of its nontermi-
nals are improductive, that is, can never pro-
duce a bi-sentence. If a rule refers to such an
improductive nonterminal, it can be eliminated
from the grammar. This is the analogue for a
SCFG of the classical operation of reduction for
CFG’s; while, conceptually, we could start from
G′ and perform the reduction by deleting the
many rules containing improductive nontermi-
nals, it is equivalent but much more efficient to
do the reverse, namely to incrementally add the
productive nonterminals and rules of G′ starting
from an initially empty set of rules, and by pro-
ceeding bottom-up starting from the terminals.
We do not detail this process, which is relatively

2It is possible that the multiset obtained by this simpli-
fying operation contains duplicates of certain rules (pos-
sibly with different weights), due to the non-determinism
of the automata: for instance, two sequences such
as‘s1manques2 s2 às3 ’ and ‘s1manques′2 s′2

às3 ’ become in-
distinguishable after the operation. Rather than producing
multiple instances of rules in this way, one can “conflate”
them together and add their weights.

3



straightforward.3

A note on intersecting SCFGs with transduc-
ers Another way to write Ls e LG e Lt is as
the intersection (Ls × Lt) ∩ LG. (Ls × Lt) can
be seen as a rational language (language gener-
ated by a finite state transducer) of an especially
simple form over Vs × Vt . It is then natural
to ask whether our previous construction can be
generalized to the intersection of G with an arbi-
trary finite-state transducer. However, this is not
the case. Deciding the emptiness problem for
the intersection between two finite state trans-
ducers is already undecidable, by reduction to
Post’s Correspondence problem (Berstel, 1979,
p. 90) and we have extended the proof of this fact
to show that intersection between a synchronous
CFG and a finite state transducer also has an un-
decidable emptiness problem (the proof relies on
the fact that a finite state transducer can be sim-
ulated by a synchronous grammar). A fortiori,
this intersection cannot be represented through
an (effectively constructed) synchronous CFG.

3 Phrase-based models and σ-automata

3.1 σ-automata: definition

Let Vs be a source vocabulary, Vt a target vocab-
ulary. Let x = x1, . . . , xM be a fixed sequence
of words over a certain source vocabulary Vs.
Let us denote by z a token in the sequence x,
and by Z the set of the M tokens in x. A σ-
automaton over x has the general form of a stan-
dard weighted automaton over the target vocabu-
lary, but where the edges are also decorated with
elements ofP(Z), the powerset ofZ (see Fig. 1).
An edge in the σ-automaton between two states
q and q′ then carries a label of the form (α, β),
where α ∈ P(Z) and β ∈ Vt (note that here we
do not allow β to be the empty string ε). A path
from the initial state of the automaton to its fi-
nal state is defined to be valid iff each token of x
appears in exactly one label of the path, but not
necessarily in the same order as in x. As usual,
the output associated with the path is the ordered

3This bottom-up process is analogous to chart-parsing,
but here we have decomposed the construction into first
building a semantics-preserving grammar and then reduc-
ing it, which we think is formally neater.

sequence of target labels on that path, and the
weight of the path is the product of the weights
on its edges.

σ-automata and phrase-based translation
A mainstream phrase-based translation system
such as Moses (Koehn et al., 2007) can be ac-
counted for in terms of σ-automata in the follow-
ing way. To simplify exposition, we assume that
the language model used is a bigram model, but
any n-gram model can be accommodated. Then,
given a source sentence x, decoding works by at-
tempting to construct a sequence of phrase-pairs
of the form (x̃1, ỹ1), ..., (x̃k, ỹk) such that each
x̃i corresponds to a contiguous subsequence of
tokens of x, the x̃i’s do not overlap and com-
pletely cover x, but may appear in a different
order than that of x; the output associated with
the sequence is simply the concatenation of all
the ỹi’s in that sequence.4 The weight associ-
ated with the sequence of phrase-pairs is then
the product (when we work with probabilities
rather than log-probabilities) of the weight of
each (x̃i+1, ỹi+1) in the context of the previous
(x̃i, ỹi), which consists in the product of several
elements: (i) the “out-of-context” weight of the
phrase-pair (x̃i+1, ỹi+1) as determined by its fea-
tures in the phrase table, (ii) the language model
probability of finding ỹi+1 following ỹi,5 (iii)
the contextual weight of (x̃i+1, ỹi+1) relative to
(x̃i, ỹi) corresponding to the distorsion cost of
“jumping” from the token sequence x̃i to the to-
ken sequence x̃i+1 when these two sequences
may not be consecutive in x.6

Such a model can be represented by a σ-
automaton, where each phrase-pair (x̃, ỹ) — for

4We assume here that the phrase-pairs (x̃i, ỹi) are such
that ỹi is not the empty string (this constraint could be re-
moved by an adaptation of the ε-removal operation (Mohri,
2002) to σ-automata).

5This is where the bigram assumption is relevant: for
a trigram model, we may need to encode in the automaton
not only the immediately preceding phrase-pair, but also
the previous one, and so on for higher-order models. An
alternative is to keep the n-gram language model outside
the σ-automaton and intersect it later with the grammar G′

obtained in section 4, possibly using approximation tech-
niques such as cube-pruning (Chiang, 2007).

6Any distorsion model — in particular “lexicalized re-
ordering” — that only depends on comparing two consec-
utive phrase-pairs can be implemented in this way.
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Figure 1: On the top: a σ-automaton with two valid paths shown. Each box denotes a state corresponding to a phrase
pair, while states internal to a phrase pair (such as tcl1 and tcl2) are not boxed. Above each transition we have indicated
the corresponding target word, and below it the corresponding set of source tokens. We use a terminal symbol $ to denote
the end of sentence both on the source and on the target. The solid path corresponds to the output these totally corrupt
lawyers are finished, the dotted path to the output these brown avocadoes are cooked. Note that the source tokens are not
necessarily consumed in the order given by the source, and that, for example, there exists a valid path generating these
are totally corrupt lawyers finished and moving according to h → r → tcl1 → tcl2 → tcl → f ; Note, however, that
this does not mean that if a biphrase such as (marrons avocats, avocado chestnuts) existed in the phrase
table, it would be applicable to the source sentence here: because the source words in this biphrase would not match the
order of the source tokens in the sentence, the biphrase would not be included in the σ-automaton at all. On the bottom:
The target W-FSA automaton At associated with the σ-automaton, where we are ignoring the source tokens (but keeping
the same weights).

x̃ a sequence of tokens in x and (x̃, ỹ) an entry
in the global phrase table — is identified with a
state of the automaton and where the fact that the
phrase-pair (x̃′, ỹ′) = ((x1, ..., xk), (y1, ..., yl))
follows (x̃, ỹ) in the decoding sequence is mod-
eled by introducing l “internal” transitions with
labels (σ, y1), (∅, y2), ..., (∅, yl), where σ =
{x1, ..., xk}, and where the first transition con-
nects the state (x̃, ỹ) to some unique “internal
state” q1, the second transition the state q1 to
some unique internal state q2, and the last tran-
sition qk to the state (x̃′, ỹ′).7 Thus, a state
(x̃′, ỹ′) essentially encodes the previous phrase-
pair used during decoding, and it is easy to see
that it is possible to account for the different
weights associated with the phrase-based model
by weights associated to the transitions of the σ-
automaton.8

7For simplicity, we have chosen to collect the set of all
the source tokens {x1, ..., xk} on the first transition, but we
could distribute it on the l transitions arbitrarily (but keep-
ing the subsets disjoint) without changing the semantics of
what we do. This is because once we have entered one of
the l internal transitions, we will always have to traverse
the remaining internal transitions and collect the full set of
source tokens.

8By creating states such as ((x̃, ỹ), (x̃′, ỹ′)) that en-

Example Let us consider the following French
source sentence x: ces avocats marrons sont
cuits (idiomatic expression for these totally cor-
rupt lawyers are finished). Let’s assume that the
phrase table contains the following phrase pairs:

h: (ces, these)
a: (avocats, avocados)
b: (marrons, brown)
tcl: (avocats marrons,

totally corrupt lawyers)
r: (sont, are)
k: (cuits, cooked)
f: (cuits, finished).

An illustration of the corresponding σ-
automaton SA is shown at the top of Figure 1,
with only a few transitions made explicit, and
with no weights shown.9

code the two previous phrase-pairs used during decoding,
it is possible in principle to account for a trigram language
model, and similarly for higher-order LMs. This is simi-
lar to implementing n-gram language models by automata
whose states encode the n− 1 words previously generated.

9Only two (valid) paths are shown. If we had shown the
full σ-automaton, then the graph would have been “com-
plete” in the sense that for any two box states B,B′, we
would have shown a connection B → B′1... → B′k−1 →
B′, where the B′i are internal states, and k is the length of
the target side of the biphrase B′.
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4 Intersecting a synchronous grammar
with a σ-automaton

Intersection of a W-SCFG with a σ-
automaton If SA is a σ-automaton over
input x, with each valid path in SA we asso-
ciate a weight in the same way as we do for
a weighted automaton. For any target word
sequence in V ∗t we can then associate the sum
of the weights of all valid paths outputting that
sequence. The weighted language LSA,x over
Vt obtained in this way is called the language
associated with SA. Let G be a W-SCFG over
Vs, Vt, and let us denote by LG,x the weighted
language over Vs, Vt corresponding to the
intersection {x} e G e V ∗t , where {x} denotes
the language giving weight 1 to x and weight 0
to other sequences in V ∗s , and V ∗t denotes the
language giving weight 1 to all sequences in V ∗t .
Note that non-null bi-sentences in LG,x have
their source projection equal to x and therefore
LG,x can be identified with a weighted language
over Vt. The intersection of the languages LSA,x
and LG,x is denoted by LSA,x e LG,x.

Example Let us consider the following W-
SCFG (where again, weights are not explicitly
shown, and where we use a terminal symbol $
to denote the end of a sentence, a technicality
needed for making the grammar compatible with
the SA automaton of Figure 1):
S → NP VP $ / NP VP $
NP → ces N A / these A N
VP → sont A / are A
A → marrons / brown
A → marrons / totally corrupt
A → cuits / cooked
A → cuits / finished
N → avocats / avocadoes
N → avocats / lawyers

It is easy to see that, for instance, the sen-
tences: these brown avocadoes are cooked $,
these brown avocadoes are finished $, and these
totally corrupt lawyers are finished $ all belong
to the intersection LSA,x e LG,x, while the sen-
tences these avocadoes brown are cooked $, to-
tally corrupt lawyers are finished these $ belong
only to LSA,x.

Building the intersection We now describe
how to build a W-SCFG that represents the inter-

section LSA,x eLG,x. We base our explanations
on the example just given.

A Relaxation of the Intersection At the
bottom of Figure 1, we show how we can as-
sociate an automaton At with the σ-automaton
SA: we simply “forget” the source-sides of the
labels carried by the transitions, and retain all the
weights. As before, note that we are only show-
ing a subset of the transitions here.

All valid paths for SAmap into valid paths for
At (with the same weights), but the reverse is not
true because some validAt paths can correspond
to traversals of SA that either consume several
time the same source token or do not consume all
source tokens. For instance, the sentence these
brown avocadoes brown are $ belongs to the
language of At, but cannot be produced by SA.
Let’s however consider the intersection {x} e
G e At, where, with a slight abuse of notation,
we have notated {x} the “degenerate” automaton
representing the sentence x, namely the automa-
ton (with weights on all transitions equal to 1):



ces marronsavocats sont cuits $

0 1 2 3 4 5 6

This is a relaxation of the true intersection, but
one that we can represent through a W-SCFG, as
we know from section 2.10

This being noted, we now move to the con-
struction of the full intersection.

The full intersection We discussed in sec-
tion 2 how to modify a synchronous grammar
rule in order to produce the indexed rule scheme
(2) in order to represent the bilateral intersection
of the grammar with two automata. Let us redo
that construction here, in the case of our example

10Note that, in the case of our very simple example, any
target string that belongs to this relaxed intersection (which
consists of the eight sentences these {brown | totally cor-
rupt} {avocadoes | lawyers} are {cooked | finished}) actu-
ally belongs to the full intersection, as none of these sen-
tences corresponds to a path in SA that violates the token-
consumption constraint. More generally, it may often be
the case in practice that the W-SCFG, by itself, provides
enough “control” of the possible target sentences to pre-
vent generation of sentences that would violate the token-
consumption constraints, so that there may be little differ-
ence in practice between performing the relaxed intersec-
tion {x} e G e At and performing the full intersection
{x} eG e LSA,x.
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W-SCFG, of the target automaton represented on
the bottom of Figure 1, and of the source automa-
ton {x}.

The construction is then done in three steps:

s0NPs3 → s0cess1 s1Ns2 s2As3 /

these A N
t0NPt3 → ces N A /

t0theset1 t1At2 t2Nt3

t0
s0NPt3s3 → s0cess1

t2
s1N

t3
s2

t1
s2A

t2
s3 /

t0theset1 t1
s2A

t2
s3

t2
s1N

t3
s2

In order to adapt that construction to the case
where we want the intersection to be with a σ-
automaton, what we need to do is to further spe-
cialize the nonterminals. Rather than specializ-
ing a nonterminal X in the form t

sX
t′
s′ , we spe-

cialize it in the form: tsX
t′,σ
s′ , where σ represents

a set of source tokens that correspond to “collect-
ing” the source tokens in the σ-automaton along
a path connecting the states t and t′.11

We then proceed to define a new rule scheme
associated to our rule, which is obtained as be-
fore in three steps, as follows.

s0NPs3 → s0cess1 s1Ns2 s2As3 /

these A N
t0NPt3,σ03 → ces N A /

t0theset1,σ01 t1At2,σ12 t2Nt3,σ23

t0
s0NPt3,σ03s3 → s0cess1

t2
s1N

t3,σ23
s2

t1
s2A

t2,σ12
s3 /

t0theset1,σ01 t1
s2A

t2,σ12
s3

t2
s1N

t3,σ23
s2

The only difference with our previous tech-
nique is in the addition of the σ’s to the top in-
dices. Let us focus on the second step of the an-
notation process:

t0NPt3,σ03 → ces N A /
t0theset1,σ01 t1At2,σ12 t2Nt3,σ23

11To avoid a possible confusion, it is important to note
right away that σ is not necessarily related to the tokens
appearing between the positions s and s′ in the source sen-
tence (that is, between these states in the associated source
automaton), but is defined solely in terms of the source to-
kens along the t, t′ path. See example with “persons” and
“people” below.

Conceptually, when instanciating this scheme,
the ti’s may range over all possible states of
the σ-automaton, and the σij over all subsets of
the source tokens, but under the following con-
straints: the RHS σ’s (here σ01, σ12, σ23) must
be disjoint and their union must be equal to the σ
on the LHS (here σ03). Additionally, a σ associ-
ated with a target terminal (as σ01 here) must be
equal to the token set associated to the transition
that this terminal realizes between σ-automaton
states (here, this means that σ01 must be equal
to the token set {ces} associated with the transi-
tion between t0, t1 labelled with ‘these’). If we
perform all these instantiations, compute their
weights according to equation (3), and finally re-
move the indices associated with terminals in the
rules (by adding the weights of the rules only dif-
fering by the indices of terminals, as done previ-
ously), we obtain a very large “raw” grammar,
but one for which one can prove direct coun-
terpart of Fact 1. Let us call, as before G′ the
raw W-SCFG obtained, its start symbol being
t#
s#S

t$,σall
s$ , with σall the set of all source tokens

in x.

Fact 2. The synchronous language LG′ associ-
ated with G′ is equal to ({x}, LSA,x e LG,x).

The grammar that is obtained this way, despite
correctly representing the intersection, contains
a lot of useless rules, this being due to the fact
that many nonterminals can not produce any out-
put. The situation is wholly similar to the case
of section 2, and the same bottom-up techniques
can be used for activating nonterminals and rules
bottom-up.

The algorithm is illustrated in Figure 2, where
we have shown the result of the process of acti-
vating in turn the nonterminals (abbreviated by)
N1, A1, A2, NP1, VP1, S1. As a consequence
of these activations, the original grammar rule
NP → ces N A /these A N (for instance)
becomes instantiated as the rule:

#
0 NPtcl,{ces,avocats,marrons}3 →

0ces1
tcl2
1 Ntcl,∅

2
h
2Atcl2,{avocats,marrons}

3 /
#theseh,{ces} h

2Atcl2,{avocats,marrons}
3

tcl2
1 Ntcl,∅

2
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Figure 2: Building the intersection. The bottom of the figure shows some active non-terminals associated with the source
sequence, at the top these same non-terminals associated with a sequence of transitions in the σ-automaton, corresponding
to the target sequence these totally corrupt lawyers are finished $. To avoid cluttering the drawing, we have used the
abbreviations shown on the right. Note that while A1 only spans marrons in the bottom chart, it is actually decorated with
the source token set {avocats,marrons}: such a “disconnect” between the views that the W-SCFG and the σ-automaton
have of the source tokens is not ruled out.

that is, after removal of the indices on terminals:

#
0 NPtcl,{ces,avocats,marrons}3 →
ces tcl2

1 Ntcl,∅
2

h
2Atcl2,{avocats,marrons}

3 /

these h
2Atcl2,{avocats,marrons}

3
tcl2
1 Ntcl,∅

2

Note that while the nonterminal tcl21 Ntcl,∅
2 by

itself consumes no source token (it is associated
with the empty token set), any actual use of this
nonterminal (in this specific rule or possibly in
some other rule using it) does require travers-
ing the internal node tcl2 and therefore all the
internal nodes “belonging” to the biphrase tcl
(because otherwise the path from # to $ would
be disconnected); in particular this involves con-
suming all the tokens on the source side of tcl,
including ‘avocats’.12

Complexity considerations The bilateral in-
tersection that we defined between a W-SCFG

12In particular there is no risk that a derivation relative
to the intersected grammar generates a target containing
two instances of ‘lawyers’, one associated to the expansion
of tcl2

1 Ntcl,∅
2 and consuming no source token, and another

one associated with a different nonterminal and consuming
the source token ‘avocats’: this second instance would in-
volve not traversing tcl1, which is impossible as soon as
tcl2
1 Ntcl,∅

2 is used.

and two W-FSA’s in section 2 can be shown to
be of polynomial complexity in the sense that it
takes polynomial time and space relative to the
sum of the sizes of the two automata and of the
grammar to construct the (reduced) intersected
grammar G′, under the condition that the gram-
mar right-hand sides have length bounded by a
constant.13

The situation here is different, because the
construction of the intersection can in princi-
ple introduce nonterminals indexed not only by
states of the automata, but also by arbitrary sub-
sets of source tokens, and this may lead in ex-
treme cases to an exponential number of rules.
Such problems however can only happen in sit-
uations where, in a nonterminal tsX

t′,σ
s′ , the set

σ is allowed to contain tokens that are “unre-
lated” to the token set {personnes} appearing
between s and s′ in the source automaton. An il-
lustration of such a situation is given by the fol-
lowing example. Suppose that the source sen-

13If this condition is removed, and for the simpler case
where the source (resp. target) automaton encodes a single
sentence x (resp. y), (Satta and Peserico, 2005) have shown
that the problem of deciding whether (x, y) is recognized
by G is NP-hard relative to the sum of the sizes. A conse-
quence is then that the grammar G′ cannot be constructed
in polynomial time unless P = NP .
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tence contains the two tokens personnes and
gens between positions i, i + 1 and j, j + 1 re-
spectively, with i and j far from each other, that
the phrase table contains the two phrase pairs
(personnes, persons) and (gens, people), but
that the synchronous grammar only contains the
two rules X → personnes/people and Y →
gens/persons, with these phrases and rules ex-
hausting the possibilities for translating gens
and personnes; Then the intersected grammar
will contain such nonterminals as tiX

t′,{gens}
i+1 and

r
jY

r′,{personnes}
j+1 , where in the first case the token

set {gens} in the first nonterminal is unrelated to
the tokens appearing between i, i + 1, and simi-
larly in the second case.

Without experimentation on real cases, it
is impossible to say whether such phenomena
would empirically lead to combinatorial explo-
sion or whether the synchronous grammar would
sufficiently constrain the phrase-base component
(whose re-ordering capabilities are responsible
in fine for the potential NP-hardness of the trans-
lation process) to avoid it. Another possible ap-
proach is to prevent a priori a possible combi-
natorial explosion by adding formal constraints
to the intersection mechanism. One such con-
straint is the following: disallow introduction of
t
iX

t′,σ
j when the symmetric difference between

σ and the set of tokens between positions i and
j in the source sentence has cardinality larger
than a small constant. Such a constraint could
be interpreted as keeping the SCFG and phrase-
base components “in sync”, and would be better
adapted to the spirit of our approach than limit-
ing the amount of re-ordering permitted to the
phrase-based component, which would contra-
dict the reason for using a hierarchical compo-
nent in the first place.

5 Conclusion

Intersecting hierarchical and phrase-based mod-
els of translation could allow to capitalize on
complementarities between the two approaches.
Thus, one might train the hierarchical compo-
nent on corpora represented at the part-of-speech
level (or at a level where lexical units are ab-
stracted into some kind of classes) while the

phrase-based component would focus on transla-
tion of lexical material. The present paper does
not have the ambition to demonstrate that such
an approach would improve translation perfor-
mance, but only to provide some formal means
for advancing towards that goal.
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Abstract

We present two contributions to gram-
mar driven translation. First, since both
Inversion Transduction Grammar and
Linear Inversion Transduction Gram-
mars have been shown to produce bet-
ter alignments then the standard word
alignment tool, we investigate how the
trade-off between speed and end-to-end
translation quality extends to the choice
of grammar formalism. Second, we
prove that Linear Transduction Gram-
mars (LTGs) generate the same transduc-
tions as Linear Inversion Transduction
Grammars, and present a scheme for ar-
riving at LTGs by bilingualizing Linear
Grammars. We also present a method for
obtaining Inversion Transduction Gram-
mars from Linear (Inversion) Transduc-
tion Grammars, which can speed up
grammar induction from parallel corpora
dramatically.

1 Introduction

In this paper we introduce Linear Transduction
Grammars (LTGs), which are the bilingual case
of Linear Grammars (LGs). We also show that
LTGs are equal to Linear Inversion Transduction
Grammars (Saers et al., 2010). To be able to in-
duce transduction grammars directly from par-
allel corpora an approximate search for parses is
needed. The trade-off between speed and end-to-
end translation quality is investigated and com-
pared to Inversion Transduction Grammars (Wu,
1997) and the standard tool for word alignment,

GIZA++ (Brown et al., 1993; Vogel et al., 1996;
Och and Ney, 2003). A heuristic for converting
stochastic bracketingLTGs into stochastic brack-
eting ITGs is presented, and fitted into the speed–
quality trade-off.

In section 3 we give an overview of transduc-
tion grammars, introduceLTGs and show that
they are equal toLITGs. In section 4 we give
a short description of the rational for the trans-
duction grammar pruning used. In section 5 we
describe a way of seeding a stochastic bracketing
ITG with the rules and probabilities of a stochas-
tic bracketingLTG. Section 6 describes the setup,
and results are given in section 7. Finally, some
conclusions are offered in section 8

2 Background

Any form of automatic translation that relies on
generalizations of observed translations needs to
align these translations on a sub-sentential level.
The standard way of doing this is by aligning
words, which works well for languages that use
white space separators between words. The stan-
dard method is a combination of the family of
IBM -models (Brown et al., 1993) and Hidden
Markov Models (Vogel et al., 1996). These
methods all arrive at a function (A) from lan-
guage 1 (F ) to language 2 (E). By running the
process in both directions, two functions can be
estimated and then combined to form an align-
ment. The simplest of these combinations are in-
tersection and union, but usually, the intersection
is heuristically extended. Transduction gram-
mars on the other hand, impose a shared struc-
ture on the sentence pairs, thus forcing a consis-
tent alignment in both directions. This method
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has proved successful in the settings it has been
tried (Zhang et al., 2008; Saers and Wu, 2009;
Haghighi et al., 2009; Saers et al., 2009; Saers
et al., 2010). Most efforts focus on cutting down
time complexity so that larger data sets than toy-
examples can be processed.

3 Transduction Grammars

Transduction grammars were first introduced in
Lewis and Stearns (1968), and further devel-
oped in Aho and Ullman (1972). The origi-
nal notation called for regularCFG-rules in lan-
guageF with rephrasedE productions, either in
curly brackets, or comma separated. The bilin-
gual version ofCFGs is called Syntax-Directed
Transduction Grammars (SDTGs). To differenti-
ate identical nonterminal symbols, indices were
used (the bag of nonterminals for the two pro-
ductions are equal by definition).

A → B(1) a B(2) {x B(1) B(2)}
= A → B(1) a B(2), x B(1) B(2)

The semantics of the rules is that one nontermi-
nal rewrites into a bag of nonterminals that is dis-
tributed independently in the two languages, and
interspersed with any number of terminal sym-
bols in the respective languages. As withCFGs,
the terminal symbols can be factored out into
preterminals with the added twist that they are
shared between the two languages, since preter-
minals are formally nonterminals. The above
rule can thus be rephrased as

A → B(1) Xa/x B(2), Xa/x B(1) B(2)

Xa/x → a, x

In this way, rules producing nonterminals and
rules producing terminals can be separated.
Since only nonterminals are allowed to move,
their movement can be represented as the orig-
inal sequence of nonterminals and a permutation
vector as follows:

A → B Xa/x B ; 1, 0, 2

Xa/x → a, x

To keep the reordering as monotone as possible,
the terminalsa andx can be produced separately,

but doing so eliminates any possibility of param-
eterizing their lexical relationship. Instead, the
individual terminals are pair up with the empty
string (ǫ).

A → Xx B Xa B ; 0, 1, 2, 3
Xa → a, ǫ
Xx → ǫ, x

Lexical rules involving the empty string are re-
ferred to as singletons. Whenever a preterminal
is used to pair up two terminal symbols, we refer
to that pair of terminals as abiterminal, which
will be written ase/f .

Any SDTG can be rephrased to contain per-
muted nonterminal productions and biterminal
productions only, and we will call this the nor-
mal form of SDTGs. Note that it is not possi-
ble to produce a two-normal form forSDTGs,
as there are some rules that are not binarizable
(Wu, 1997; Huang et al., 2009). This is an
important point to make, since efficient parsing
for CFGs is based on either restricting parsing
to only handle binary grammars (Cocke, 1969;
Kasami, 1965; Younger, 1967), or rely on on-
the-fly binarization (Earley, 1970). When trans-
lating with a grammar, parsing only has to be
done in F , which is binarizable (since it is a
CFG), and can therefor be computed in polyno-
mial time (O(n3)). Once there is a parse tree
for F , the corresponding tree forE can be eas-
ily constructed. When inducing a grammar from
examples, however, biparsing (finding an anal-
ysis that is consistent across a sentence pair) is
needed. The time complexity for biparsing with
SDTGs isO(n2n+2), which is clearly intractable.

Inversion Transduction Grammars orITGs
(Wu, 1997) are transduction grammars that have
a two-normal form, thus guaranteeing binariz-
ability. Defining the rank of a rule as the number
of nonterminals in the production, and the rank
of a grammar as the highest ranking rule in the
rule set, ITGs area) any SDTG of rank two, b)
anySDTG of rank three orc) anySDTG where no
rule has a permutation vector other than identity
permutation or inversion permutation. It follows
from this definition thatITGs have a two-normal
form, which is usually expressed asSDTG rules,
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with brackets around the production to distin-
guish the different kinds of rules from each other.

A → B C ; 0, 1 = A → [ B C ]
A → B C ; 1, 0 = A → 〈 B C 〉
A → e/f = A → e/f

By guaranteeing binarizability, biparsing time
complexity becomesO(n6).

There is an even more restricted version of
SDTGs called Simple Transduction Grammar
(STG), where no permutation at all is allowed,
which can also biparse a sentence pair inO(n6)
time.

A Linear Transduction Grammar (LTG) is a
bilingual version of a Linear Grammar (LG).

Definition 1. An LG in normal form is a tuple

GL = 〈N,Σ, R, S〉

WhereN is a finite set of nonterminal symbols,
Σ is a finite set of terminal symbols,R is a finite
set of rules andS ∈ N is the designated start
symbol. The rule set is constrained so that

R ⊆ N × (Σ ∪ {ǫ})N(Σ ∪ {ǫ}) ∪ {ǫ}

Whereǫ is the empty string.

To bilingualize a linear grammar, we will take
the same approach as taken when a finite-state
automaton is bilingualized into a finite-state
transducer. That is: to replace all terminal sym-
bols with biterminal symbols.

Definition 2. An LTG in normal form is a tuple

T GL = 〈N,Σ,∆, R, S〉

WhereN is a finite set of nonterminal symbols,
Σ is a finite set of terminal symbols in language
E, ∆ is a finite set of terminal symbols in lan-
guageF , R is a finite set of linear transduction
rules andS ∈ N is the designated start symbol.
The rule set is constrained so that

R ⊆ N × ΨNΨ ∪ {〈ǫ, ǫ〉}

WhereΨ = Σ∪{ǫ}×∆∪{ǫ} andǫ is the empty
string.

Graphically, we will representLTG rules as pro-
duction rules with biterminals:

〈A, 〈x, p〉B〈y, q〉〉 = A → x/p B y/q
〈A, 〈ǫ, ǫ〉〉 = B → ǫ/ǫ

Like STGs, LTGs do not allow any reordering,
and are monotone, but because they are linear,
this has no impact on expressiveness, as we shall
see later.

Linear Inversion Transduction Grammars
(LITGs) were introduced in Saers et al. (2010),
and representITGs that are allowed to have at
most one nonterminal symbol in each produc-
tion. These are attractive because they can bi-
parse a sentence pair inO(n4) time, which can
be further reduced to linear time by severely
pruning the search space. This makes them
tractable for large parallel corpora, and a viable
way to induce transduction grammars from large
parallel corpora.

Definition 3. An LITG in normal form is a tuple

T GLI = 〈N,Σ,∆, R, S〉

WhereN is a finite set of nonterminal symbols,
Σ is a finite set of terminal symbols from lan-
guageE, ∆ is a finite set of terminal symbols
from languageF , R is a set of rules andS ∈ N
is the designated start symbol. The rule set is
constrained so that

R ⊆ N × {[], 〈〉} × ΨN ∪ NΨ ∪ {〈ǫ, ǫ〉}

Where[] represents identity permutation and〈〉
represents inversion permutation,Ψ = Σ∪{ǫ}×
∆ ∪ {ǫ} is a possibly empty biterminal, andǫ is
the empty string.

Graphically, a rule will be represented as anITG

rule:

〈A, [], B〈e, f〉〉 = A → [ B e/f ]
〈A, 〈〉, 〈e, f〉B〉 = A → 〈 e/f B 〉

〈A, [], 〈ǫ, ǫ〉〉 = A → ǫ/ǫ

As with ITGs, productions with only biterminals
will be represented without their permutation, as
any such rule can be trivially rewritten into in-
verted or identity form.

12



Definition 4. An ǫ-free LITG is an LITG where
no rule may rewrite one nonterminal into another
nonterminal only. Formally, the rule set is con-
strained so that

R ∩ N × {[], 〈〉} × ({〈ǫ, ǫ〉}B ∪ B{〈ǫ, ǫ〉}) = ∅

The LITG presented in Saers et al. (2010) is
thus anǫ-free LITG in normal form, since it has
the following thirteen rule forms (of which 8 are
meaningful, 1 is only used to terminate genera-
tion and 4 are redundant):

A → [ e/f B ]
A → 〈 e/f B 〉
A → [ B e/f ]
A → 〈 B e/f 〉
A → [ e/ǫ B ] | A → 〈 e/ǫ B 〉
A → [ B e/ǫ ] | A → 〈 B e/ǫ 〉
A → [ ǫ/f B ] | A → 〈 B ǫ/f 〉
A → [ B ǫ/f ] | A → 〈 ǫ/f B 〉
A → ǫ/ǫ

All the singleton rules can be expressed either in
straight or inverted form, but the result of apply-
ing the two rules are the same.

Lemma 1. Any LITG in normal form can be ex-
pressed as an LTG in normal form.

Proof. The aboveLITG can be rewritten inLTG

form as follows:

A → [ e/f B ] = A → e/f B
A → 〈 e/f B 〉 = A → e/ǫ B ǫ/f
A → [ B e/f ] = A → B e/f
A → 〈 B e/f 〉 = A → ǫ/f B e/ǫ
A → [ e/ǫ B ] = A → e/ǫ B
A → [ B e/ǫ ] = A → B e/ǫ
A → [ ǫ/f B ] = A → ǫ/f B
A → [ B ǫ/f ] = A → B ǫ/f
A → ǫ/ǫ = A → ǫ/ǫ

To account for allLITGs in normal form, the fol-
lowing two non-ǫ-free rules also needs to be ac-
counted for:

A → [ B ] = A → B
A → 〈 B 〉 = A → B

Lemma 2. Any LTG in normal form can be ex-
pressed as an LITG in normal form.

Proof. An LTG in normal form has two rules,
which can be rewritten inLITG form, either as
straight or inverted rules as follows

A → x/p B y/q = A → [ x/p B̄ ]
B̄ → [ B y/q ]

= A → 〈 x/q B̄ 〉
B̄ → 〈 B y/p 〉

A → ǫ/ǫ = A → ǫ/ǫ

Theorem 1. LTGs in normal form and LITGs in
normal form express the same class of transduc-
tions.

Proof. Follows from lemmas 1 and 2.

By theorem 1 everything concerningLTGs is also
applicable toLITGs, and anLTG can be expressed
in LITG form when convenient, and vice versa.

4 Pruning the Alignment Space

The alignment space for a transduction grammar
is the combinations of the parse spaces of the
sentence pair. Lete be theE sentence, andf
be theF sentence. The parse spaces would be
O(|e|2) andO(|f |2) respectively, and the com-
bination of these spaces would beO(|e|2 ×|f |2),
or O(n4) if we assumen to be proportional
to the sentence lengths. In the case ofLTGs,
this space is searched linearly, giving time com-
plexity O(n4), and in the case ofITGs there
is branching within both parse spaces, adding
an order of magnitude each, giving a total time
complexity ofO(n6). There is, in other words,
a tight connection between the alignment space
and the time complexity of the biparsing al-
gorithm. Furthermore, most of this alignment
space is clearly useless. Consider the case where
the entireF sentence is deleted, and the entireE
sentence is simply inserted. Although it is pos-
sible that it is allowed by the grammar, it should
have a negligible probability (since it is clearly a
translation strategy that generalize poorly), and
could, for all practical reasons, be ignored.
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Language pair Bisentences Tokens

Spanish–English 108,073 1,466,132
French–English 95,990 1,340,718
German–English 115,323 1,602,781

Table 1: Size of training data.

Saers et al. (2009) present a scheme for prun-
ing away most of the points in the alignment
space. Parse items are binned according to cov-
erage (the total number of words covered), and
each bin is restricted to carry a maximum ofb
items. Any items that do not fit in the bins are
excluded from further analysis. To decide which
items to keep, inside probability is used. This
pruning scheme effectively linearizes the align-
ment space, as is will be of sizeO(nb), regard-
less of what type grammar is used. AnITG can
thus be biparsed in cubic time, and anLTG in lin-
ear time.

5 Seeding anITG with an LTG

SinceLTGs are a subclass ofITGs, it would be
possible to convert anLTG to a ITG. This could
save a lot of time, sinceLTGs aremuch faster to
induce from corpora thanITGs.

Converting aBLTG to aBITG is fairly straight
forward. Consider theBLTG rule

X → [ e/f X ]

To convert it toBITG in two-normal form, the
biterminal has to be factored out. Replacing
the biterminal with a temporary symbol̄X , and
introducing a rule that rewrites this temporary
symbol to the replaced biterminal produces two
rules:

X → [ X̄ X ]
X̄ → e/f

This is no longer a bracketing grammar since
there are two nonterminals, but equatingX̄ to X
restores this property. An analogous procedure
can be applied in the case where the nonterminal
comes before the biterminal, as well as for the
inverting cases.

When converting stochasticLTGs, the proba-
bility mass of theSLTG rule has to be distributed

to two SITG rules. The fact that theLTG rule
X → ǫ/ǫ lacks correspondence inITGs has to
be weighted in as well. In this paper we took the
maximum entropy approach and distributed the
probability mass uniformly. This means defin-
ing the probability mass functionp′ for the new
SBITG from the probability mass functionp of
the originalSBLTG such that:

p′(X → [ X X ]) =
∑

e/f




√
p(X→[ e/f X ])
1−p(X→ǫ/ǫ)

+√
p(X→[ X e/f ])
1−p(X→ǫ/ǫ)




p′(X → 〈 X X 〉) =
∑

e/f




√
p(X→〈 e/f X 〉)

1−p(X→ǫ/ǫ)

+√
p(X→〈 X e/f 〉)

1−p(X→ǫ/ǫ)




p′(X → e/f) =




√
p(X→[ e/f X ])
1−p(X→ǫ/ǫ)

+√
p(X→[ X e/f ])
1−p(X→ǫ/ǫ)

+√
p(X→〈 e/f X 〉)

1−p(X→ǫ/ǫ)

+√
p(X→〈 X e/f 〉)

1−p(X→ǫ/ǫ)




6 Setup

The aim of this paper is to compare the align-
ments from SBITG and SBLTG to those from
GIZA++, and to study the impact of pruning
on efficiency and translation quality. Initial
grammars will be estimated by counting cooc-
currences in the training corpus, after which
expectation-maximization (EM) will be used to
refine the initial estimate. At the last iteration,
the one-best parse of each sentence will be con-
sidered as the word alignment of that sentence.

In order to keep the experiments comparable,
relatively small corpora will be used. If larger
corpora were used, it would not be possible to get
any results for unprunedSBITGs because of the
prohibitive time complexity. The Europarl cor-
pus (Koehn, 2005) was used as a starting point,
and then all sentence pairs where one of the sen-
tences were longer than 10 tokens were filtered
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Figure 1: Trade-offs between translation quality (as measured byBLEU) and biparsing time (in
seconds plotted on a logarithmic scale) forSBLTGs, SBITGs and the combination.

Beam size
System 1 10 25 50 75 100 ∞

BLEU

SBITG 0.1234 0.2608 0.2655 0.2653 0.2661 0.2671 0.2663
SBLTG 0.2574 0.2645 0.2631 0.2624 0.2625 0.2633 0.2628
GIZA++ 0.2597 0.2597 0.2597 0.2597 0.2597 0.2597 0.2597

NIST

SBITG 3.9705 6.6439 6.7312 6.7101 6.7329 6.7445 6.6793
SBLTG 6.6023 6.6800 6.6657 6.6637 6.6714 6.6863 6.6765
GIZA++ 6.6464 6.6464 6.6464 6.6464 6.6464 6.6464 6.6464

Training times
SBITG 03:10 17:00 38:00 1:20:00 2:00:00 2:40:00 3:20:00
SBLTG 35 1:49 3:40 7:33 9:44 12:13 11:59

Table 2: Results for the Spanish–English translation task.

out (see table 1). TheGIZA++ system was built
according to the instructions for creating a base-
line system for the Fifth Workshop on Statistical
Machine Translation (WMT’10),1 but the above
corpora were used instead of those supplied by
the workshop. This includes word alignment
with GIZA++, a 5-gram language model built
with SRILM (Stolcke, 2002) and parameter tun-
ing with MERT (Och, 2003). To carry out the ac-
tual translations, Moses (Koehn et al., 2007) was
used. TheSBITG andSBLTG systems were built
in exactly the same way, except that the align-
ments fromGIZA++ were replaced by those from
the respective grammars.

In addition to trying out exhaustive biparsing

1http://www.statmt.org/wmt10/

for SBITGs andSBLTGs on three different trans-
lation tasks, several different levels of pruning
were tried (1, 10, 25, 50, 75 and 100). We also
used the grammar induced fromSBLTGs with a
beam size of 25 to seedSBITGs (see section 5),
which were then run for an additional iteration
of EM, also with beam size 25.

All systems are evaluated withBLEU (Pap-
ineni et al., 2002) andNIST (Doddington, 2002).

7 Results

The results for the three different translation
tasks are presented in Tables 2, 3 and 4. It is
interesting to note that the trend they portray is
quite similar. When the beam is very narrow,
GIZA++ is better, but already at beam size 10,
both transduction grammars are superior. Con-

15



Beam size
System 1 10 25 50 75 100 ∞

BLEU

SBITG 0.1268 0.2632 0.2654 0.2669 0.2668 0.2655 0.2663
SBLTG 0.2600 0.2638 0.2651 0.2668 0.2672 0.2662 0.2649
GIZA++ 0.2603 0.2603 0.2603 0.2603 0.2603 0.2603 0.2603

NIST

SBITG 4.0849 6.7136 6.7913 6.8065 6.8068 6.8088 6.8151
SBLTG 6.6814 6.7608 6.7656 6.7992 6.8020 6.7925 6.7784
GIZA++ 6.6907 6.6907 6.6907 6.6907 6.6907 6.6907 6.6907

Training times
SBITG 03:25 17:00 42:00 1:25:00 2:10:00 2:45:00 3:10:00
SBLTG 31 1:41 3:25 7:06 9:35 13:56 10:52

Table 3: Results for the French–English translation task.

Beam size
System 1 10 25 50 75 100 ∞

BLEU

SBITG 0.0926 0.2050 0.2091 0.2090 0.2091 0.2094 0.2113
SBLTG 0.2015 0.2067 0.2066 0.2073 0.2080 0.2066 0.2088
GIZA++ 0.2059 0.2059 0.2059 0.2059 0.2059 0.2059 0.2059

NIST

SBITG 3.4297 5.8743 5.9292 5.8947 5.8955 5.9086 5.9380
SBLTG 5.7799 5.8819 5.8882 5.8963 5.9252 5.8757 5.9311
GIZA++ 5.8668 5.8668 5.8668 5.8668 5.8668 5.8668 5.8668

Training times
SBITG 03:20 17:00 41:00 1:25:00 2:10:00 2:45:00 3:40:00
SBLTG 38 1:58 4:52 8:08 11:42 16:05 13:32

Table 4: Results for the German–English translation task.

sistent with Saers et al. (2009),SBITG has a sharp
rise in quality going from beam size 1 to 10,
and then a gentle slope up to beam size 25, af-
ter which it levels out.SBLTG, on the other hand
start out at a respectable level, and goes up a gen-
tle slope from beam size 1 to 10, after which is
level out. This is an interesting observation, as it
suggests thatSBLTG reaches its optimum with a
lower beam size (although that optimum is lower
than that ofSBITG). The trade-off between qual-
ity and time can now be extended beyond beam
size to include grammar choice. In Figure 1, run
times are plotted againstBLEU scores to illus-

trate this trade-off. It is clear thatSBLTGs are
indeed much faster thanSBITGs, the only excep-
tion is whenSBITGs are run withb = 1, but then
theBLEU score is so low that is is not worth con-
sidering.

The time may seem inconsistent betweenb =
100 and b = ∞ for SBLTG, but the extra time
for the tighter beam is because of beam manage-
ment, which the exhaustive search doesn’t bother
with.

In table 5 we compare the pure approaches
to one where anLTG was trained during 10 it-
erations ofEM and then used to seed (see sec-
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Translation task System BLEU NIST Total time

SBLTG 0.2631 6.6657 36:40
Spanish–English SBITG 0.2655 6.7312 6:20:00

Both 0.2660 6.7124 1:14:40

SBLTG 0.2651 6.7656 34:10
French–English SBITG 0.2654 6.7913 7:00:00

Both 0.2625 6.7609 1:16:10

SBLTG 0.2066 5.8882 48:52
German–English SBITG 0.2091 5.9292 6:50:00

Both 0.2095 5.9224 1:29:40

Table 5: Results for seeding anSBITG with anSBLTG (Both) compared to the pure approach. Total
time refers to 10 iterations ofEM training for SBITG andSBLTG respectively, and 10 iterations of
SBLTG and one iteration ofSBITG training for the combined system.

tion 5) an SBITG, which was then trained for
one iteration ofEM. Although the differences
are fairly small, German–English and Spanish–
English seem to reach the level ofSBITG,
whereas French–English is actually hurt. The
big difference is in time, since the combined sys-
tem needs about a fifth of the time theSBITG-
based system needs. This phenomenon needs to
be more thoroughly examined.

It is also worth noting thatGIZA++ was beaten
by an aligner that used less than 20 minutes (less
than 2 minutes per iteration and at most 10 itera-
tions) to align the corpus.

8 Conclusions

In this paper we have introduced the bilingual
version of linear grammar: Linear Transduc-
tion Grammars, and found that they generate the
same class of transductions as Linear Inversion
Transduction Grammars. We have also com-
pared Stochastic Bracketing versions ofITGs and
LTGs to GIZA++ on three word alignment tasks.
The efficiency issues with transduction gram-
mars have been addressed by pruning, and the
conclusion is that there is a trade-off between
run time and translation quality. A part of the
trade-off is choosing which grammar framework
to use, asLTGs are faster but not as good asITGs.
It also seems possible to take a short-cut in this
trade-off by starting out with anLTG and convert-
ing it to an ITG. We have also showed that it is

possible to beat the translation quality ofGIZA++
with a quite fast transduction grammar.
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Abstract

Inspired by previous source-side syntactic
reordering methods for SMT, this paper
focuses on using automatically learned
syntactic reordering patterns with func-
tional words which indicate structural re-
orderings between the source and target
language. This approach takes advan-
tage of phrase alignments and source-side
parse trees for pattern extraction, and then
filters out those patterns without func-
tional words. Word lattices transformed
by the generated patterns are fed into PB-
SMT systems to incorporate potential re-
orderings from the inputs. Experiments
are carried out on a medium-sized cor-
pus for a Chinese–English SMT task. The
proposed method outperforms the base-
line system by 1.38% relative on a ran-
domly selected testset and 10.45% rela-
tive on the NIST 2008 testset in terms
of BLEU score. Furthermore, a system
with just 61.88% of the patterns filtered
by functional words obtains a comparable
performance with the unfiltered one on the
randomly selected testset, and achieves
1.74% relative improvements on the NIST
2008 testset.

1 Introduction

Previous work has shown that the problem of
structural differences between language pairs in
SMT can be alleviated by source-side syntactic
reordering. Taking account for the integration
with SMT systems, these methods can be divided
into two different kinds of approaches (Elming,

2008): the deterministic reordering and the non-
deterministic reordering approach.

To carry out the deterministic approach, syntac-
tic reordering is performed uniformly on the train-
ing, devset and testset before being fed into the
SMT systems, so that only the reordered source
sentences are dealt with while building during
the SMT system. In this case, most work is fo-
cused on methods to extract and to apply syntac-
tic reordering patterns which come from manually
created rules (Collins et al., 2005; Wang et al.,
2007a), or via an automatic extraction process tak-
ing advantage of parse trees (Collins et al., 2005;
Habash, 2007). Because reordered source sen-
tence cannot be undone by the SMT decoders (Al-
Onaizan et al., 2006), which implies a systematic
error for this approach, classifiers (Chang et al.,
2009b; Du & Way, 2010) are utilized to obtain
high-performance reordering for some specialized
syntactic structures (e.g.DE construction in Chi-
nese).

On the other hand, the non-deterministic ap-
proach leaves the decisions to the decoders to
choose appropriate source-side reorderings. This
is more flexible because both the original and
reordered source sentences are presented in the
inputs. Word lattices generated from syntactic
structures for N-gram-based SMT is presented
in (Crego et al., 2007). In (Zhang et al., 2007a;
Zhang et al., 2007b), chunks and POS tags are
used to extract reordering rules, while the gener-
ated word lattices are weighted by language mod-
els and reordering models. Rules created from a
syntactic parser are also utilized to form weighted
n-best lists which are fed into the decoder (Li et
al., 2007). Furthermore, (Elming, 2008; Elm-
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ing, 2009) uses syntactic rules to score the output
word order, both on English–Danish and English–
Arabic tasks. Syntactic reordering information is
also considered as an extra feature to improve PB-
SMT in (Chang et al., 2009b) for the Chinese–
English task. These results confirmed the effec-
tiveness of syntactic reorderings.

However, for the particular case of Chinese
source inputs, although theDE construction has
been addressed for both PBSMT and HPBSMT
systems in (Chang et al., 2009b; Du & Way,
2010), as indicated by (Wang et al., 2007a), there
are still lots of unexamined structures that im-
ply source-side reordering, especially in the non-
deterministic approach. As specified in (Xue,
2005), these include thebei-construction, ba-
construction, three kinds ofde-construction (in-
cluding DE construction) and general preposition
constructions. Such structures are referred with
functional words in this paper, and all the con-
structions can be identified by their correspond-
ing tags in the Penn Chinese TreeBank. It is in-
teresting to investigate these functional words for
the syntactic reordering task since most of them
tend to produce structural reordering between the
source and target sentences.

Another related work is to filter the bilingual
phrase pairs with closed-class words (Sánchez-
Martı́nez, 2009). By taking account of the word
alignments and word types, the filtering process
reduces the phrase tables by up to a third, but still
provide a system with competitive performance
compared to the baseline. Similarly, our idea is to
use special type of words for the filtering purpose
on the syntactic reordering patterns.

In this paper, our objective is to exploit
these functional words for source-side syntac-
tic reordering of Chinese–English SMT in the
non-deterministic approach. Our assumption is
that syntactic reordering patterns with functional
words are the most effective ones, and others can
be pruned for both speed and performance.

To validate this assumption, three systems are
compared in this paper: a baseline PBSMT sys-
tem, a syntactic reordering system with all pat-
terns extracted from a corpus, and a syntactic re-
ordering system with patterns filtered with func-
tional words. To accomplish this, firstly the lat-

tice scoring approach (Jiang et al., 2010) is uti-
lized to discover non-monotonic phrase align-
ments, and then syntactic reordering patterns are
extracted from source-side parse trees. After that,
functional word tags specified in (Xue, 2005) are
adopted to perform pattern filtering. Finally, both
the unfiltered pattern set and the filtered one are
used to transform inputs into word lattices to
present potential reorderings for improving PB-
SMT system. A comparison between the three
systems is carried out to examine the performance
of syntactic reordering as well as the usefulness of
functional words for pattern filtering.

The rest of this paper is organized as follows:
in section 2 we describe the extraction process of
syntactic reordering patterns, including the lattice
scoring approach and the extraction procedures.
Then section 3 presents the filtering process used
to obtain patterns with functional words. After
that, section 4 shows the generation of word lat-
tices with patterns, and experimental setup and re-
sults included related discussion are presented in
section 5. Finally, we give our conclusion and av-
enues for future work in section 6.

2 Syntactic reordering patterns
extraction

Instead of top-down approaches such as (Wang
et al., 2007a; Chang et al., 2009a), we use a
bottom-up approach similar to (Xia et al., 2004;
Crego et al., 2007) to extract syntactic reordering
patterns from non-monotonic phrase alignments
and source-side parse trees. The following steps
are carried out to extract syntactic reordering pat-
terns: 1) the lattice scoring approach proposed
in (Jiang et al., 2010) is used to obtain phrase
alignments from the training corpus; 2) reorder-
ing regions from the non-monotonic phrase align-
ments are used to identify minimum treelets for
pattern extraction; and 3) the treelets are trans-
formed into syntactic reordering patterns which
are then weighted by their occurrences in the
training corpus. Details of each of these steps are
presented in the rest of this section.

2.1 Lattice scoring for phrase alignments

The lattice scoring approach is proposed in (Jiang
et al., 2010) for the SMT data cleaning task.
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To clean the training corpus, word alignments
are used to obtain approximate decoding results,
which are then used to calculate BLEU (Papineni
et al., 2002) scores to filter out low-scoring sen-
tences pairs. The following steps are taken in
the lattice scoring approach: 1) train an initial
PBSMT model; 2) collect anchor pairs contain-
ing source and target phrase positions from word
alignments generated in the training phase; 3)
build source-side lattices from the anchor pairs
and the translation model; 4) search on the source-
side lattices to obtain approximate decoding re-
sults; 5) calculate BLEU scores for the purpose of
data cleaning.

Note that the source-side lattices in step 3 come
from anchor pairs, so each edge in the lattices con-
tain both the source and target phrase positions.
Thus the outputs of step 4 contain phrase align-
ments on the training corpus. These phrase align-
ments are used to identify non-monotonic areas
for the extraction of reordering patterns.

2.2 Reordering patterns

Non-monotonic regions of the phrase alignments
are examined as potential source-side reorderings.
By taking a bottom-up approach, the reordering
regions are identified and mapped to minimum
treelets on the source parse trees. After that, syn-
tactic reordering patterns are transformed from
these minimum treelets.

In this paper, reordering regionsA andB indi-
cating swapping operations on the source side are
only considered as potential source-side reorder-
ings. Thus, given reordering regionsAB, this im-
plies (1):

AB ⇒ BA (1)

on the source-side word sequences. Referring to
the phrase alignment extraction in the last section,
each non-monotonic phrase alignment produces
one reordering region. Furthermore, for each re-
ordering region identified, all of its sub-areas in-
dicating non-monotonic alignments are also at-
tempted to produce more reordering regions.

To represent the reordering region using syn-
tactic structure, given the extracted reordering re-
gions AB, the following steps are taken to map
them onto the source-side parse trees, and to gen-
erate corresponding patterns:

1. Generate a parse tree for each of the source
sentences. The Berkeley parser (Petrov,
2006) is used in this paper. To obtain sim-
pler tree structures, right-binarization is per-
formed on the parse trees, while tags gener-
ated from binarization are not distinguished
from the original ones (e.g.@V P andV P
are the same).

2. Map reordering regionsAB onto the parse
trees. DenoteNA as the set of leaf nodes in
regionA andNB for regionB. The mapping
is carried out on the parse tree to find amini-
mum treeletT , which satisfies the following
two criteria: 1) there must exist a path from
each node inNA ∪ NB to the root node of
T ; 2) each leaf node ofT can only be the
ancestor of nodes inNA or NB (or none of
them).

3. TraverseT in pre-order to obtain syntactic
reordering patternP . Label all the leaf nodes
of T with A or B as reorder options, which
indicate that the descendants of nodes with
label A are supposed to be swapped with
those with labelB.

Instead of usingsubtrees, we usetreelets to
refer the located parse tree substructures, since
treelets do not necessarily go down to leaf nodes.

Since phrase alignments cannot always be per-
fectly matched with parse trees, we also expand
AB to the right and/or the left side with a limited
number of words to find a minimum treelet. In
this situation, a minimum number of ancestors of
expanded tree nodes are kept inT but they are as-
signed the same labels as those from which they
have been expanded. In this case, the expanded
tree nodes are considered as the context nodes of
syntactic reordering patterns.

Figure 1 illustrates the extraction process. Note
the symbol@ indicates the right-binarization sym-
bols (e.g.@V P in the figure). In the figure, tree
T (surrounded by dashed lines) is the minimum
treelet mapped from the reordering regionAB.
Leaf nodeNP is labeled byA, V P is labeled by
B, and the context nodeP is also labeled byA.
Leaf nodes labeledA or B are collected into node
sequencesLA orLB to indicate the reordering op-
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Figure 1: Reordering pattern extraction

erations. Thus the syntactic reordering patternP
is obtained fromT as in (2):

P = {V P (PP (P NP ) V P )|O = {LA, LB}}
(2)

where the first part ofP is theV P with its tree
structure, and the second partO indicates the re-
ordering scheme, which implies that source words
corresponding with descendants ofLA are sup-
posed to be swapped with those ofLB .

2.3 Pattern weights estimation

We usepreo to represent the chance of reordering
when a treelet is located by a pattern on the parse
tree. It is estimated by the number of reorderings
for each of the occurrences of the pattern as in (3):

preo(P ) =
count{reorderings of P}
count{observation of P} (3)

By contrast, one syntactic patternP usually con-
tains several reordering schemes (specified in for-
mula (2)), each of them weighted as in (4):

w(O,P ) =
count{reorderings of O in P}

count{reorderings of P}
(4)

Generally, a syntactic reordering pattern is ex-
pressed as in (5):

P = {tree | preo | O1, w1, · · · , On, wn} (5)

where tree is the tree structures of the pattern,
preo is the reordering probability,Oi andwi are
the reordering schemes and weights (1 ≤ i ≤ n).

3 Patterns with functional words

Some of the patterns extracted may not benefit
the final system since the extraction process is
controlled by phrase alignments rather than syn-
tactic knowledge. Inspired by the study ofDE
constructions (Chang et al., 2009a; Du & Way,
2010), we assume that syntactic reorderings are
indicated by functional words for the Chinese–
English task. To incorporate the knowledge of
functional words into the extracted patterns, in-
stead of directly specifying the syntactic struc-
ture from the linguistic aspects, we use functional
word tags to filter the extracted patterns. In this
case, we assume that all patterns containing func-
tional words tend to produce meaningful syntactic
reorderings. Thus the filtered patterns carry the re-
ordering information from the phrase alignments
as well as the linguistic knowledge. Thus the
noise produced in phrase alignments and the size
of pattern set can be reduced, so that the speed and
the performance of the system can be improved.

The functional word tags used in this paper are
shown in Table 1, which come from (Xue, 2005).
We choose them as functional words because nor-
mally they imply word reorders between Chinese
and English sentence pairs.

Tag Description
BA ba-construction

DEC de (1st kind) in a relative-clause
DEG associativede (1st kind)
DER de (2nd kind) in V-de const. & V-de-R
DEV de (3rd kind) before VP
LB bei in long bei-construction
P preposition excludingbei andba

SB bei in shortbei-construction

Table 1: Syntactic reordering tags for functional
words

Note that there are three kinds ofde-
constructions, but only the first kind is theDE
construction in (Chang et al., 2009a; Du & Way,
2010). After the filtering process, both the unfil-
tered pattern set and the filtered one are used to
build different syntactic reordering PBSMT sys-
tems for comparison purpose.
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4 Word lattice construction

Both the devset and testset are transformed into
word lattices by the extracted patterns to incor-
porate potential reorderings. Figure 2 illustrates
this process: treeletT ′ is matched with a pat-
tern, then its leaf nodes{a1, · · · am} ∈ LA (span-
ning {w1, · · · , wp}) are swapped with leaf nodes
{b1, · · · , bn} ∈ LB (spanning{v1, · · · , vq}) on
the generated paths in the word lattice.

T’

a1

am b1

bn

... ...

... ...

w1 w2 ... wp v1 v2 vq...

w1 w2 ... wp v1 v2 vq...

w2...

wpv1
v2 ...

... ...

vq w1

Sub parse tree 

matched with 

a pattern

Source side 

sentence

Generated 

lattice

Figure 2: Incorporating potential reorderings into
lattices

We sort the matched patterns bypreo in formula
(5), and only apply a pre-defined number of re-
orderings for each sentence. For each lattice node,
if we denoteE0 as the edge from the original sen-
tence, while patterns{P1, · · · , Pi, · · · , Pk} are ap-
plied to this node, thenE0 is weighted as in (6):

w(E0) = α +
k∑

i=1

{(1 − α)

k
∗ {1 − preo(Pi)}}

(6)
wherepreo(Pi) is the pattern weight in formula
(3), andα is the base probability to avoidE0 be-
ing equal to zero. Suppose{Es, · · · , Es+r−1} are
generated byr reordering schemes ofPi, thenEj

is weighted as in (7):

w(Ej) =
(1 − α)

k
∗preo(Pi)∗

ws−j+1(Pi)∑r
t=1 wt(Pi)

(7)

wherewt(Pi) is the reordering scheme in formula
(5), ands <= j < s + r. Reordering patterns
with the same root lattice node share equal proba-
bilities in formula (6) and (7).

5 Experiments and results

We conducted our experiments on a medium-sized
corpus FBIS (a multilingual paragraph-aligned
corpus with LDC resource number LDC2003E14)
for the Chinese–English SMT task. The Cham-
pollion aligner (Ma, 2006) is utilized to perform
sentence alignment. A total number of 256,911
sentence pairs are obtained, while 2,000 pairs for
devset and 2,000 pairs for testset are randomly se-
lected, which we call FBIS set. The rest of the
data is used as the training corpus.

The baseline system is Moses (Koehn et
al., 2007), and GIZA++1 is used to perform
word alignment. Minimum error rate training
(MERT) (Och, 2003) is carried out for tuning. A
5-gram language model built via SRILM2 is used
for all the experiments in this paper.

Experiments results are reported on two differ-
ent sets: the FBIS set and the NIST set. For the
NIST set, the NIST 2005 testset (1,082 sentences)
is used as the devset, and the NIST 2008 test-
set (1,357 sentences) is used as the testset. The
FBIS set contains only one reference translation
for both devset and testset, while NIST set has
four references.

5.1 Pattern extraction and filtering with
functional words

The lattice scoring approach is carried out with
the same baseline system as specified above to
produce the phrase alignments. The initial PB-
SMT system in the lattice scoring approach is
tuned with the FBIS devset to obtain the weights.
As specified in section 2.1, phrase alignments are
generated in the step 4 of the lattice scoring ap-
proach.

From the generated phrase alignments and
source-side parse trees of the training corpus,
we obtain 48,285 syntactic reordering patterns
(57,861 reordering schemes) with an average
number of 11.02 non-terminals. For computa-
tional efficiency, any patterns with number of non-
terminal less than 3 and more than 9 are pruned.
This procedure leaves 18,169 syntactic reordering
patterns (22,850 reordering schemes) with a aver-

1http://fjoch.com/GIZA++.html
2http://www.speech.sri.com/projects/srilm/
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age number of 7.6 non-terminals. This pattern set
is used to built the syntactic reordering PBSMT
system without pattern filtering, which here after
we call the ‘unfiltered system’.

Using the tags specified in Table 1, the ex-
tracted syntactic reordering patterns without func-
tional words are filtered out, while only 6,926 syn-
tactic reordering patterns (with 9,572 reordering
schemes) are retained. Thus the pattern set are
reduced by 61.88%, and over half of them are
pruned by the functional word tags. The filtered
pattern set is used to build the syntactic reorder-
ing PBSMT system with pattern filtering, which
we refer as the ‘filtered system’.

Type Tag Patterns Percent
ba-const. BA 222 3.20%

bei-const.
LB 97

2.79%
SB 96

de-const. (1st)
DEC 1662

60.11%
DEG 2501

de-const. (2nd) DER 52 0.75%
de-const. (3rd) DEV 178 2.57%

preposition
P 2591 37.41%

excl. ba & bei

Table 2: Statistics on the number of patterns for
each type of functional word

Statistics on the patterns with respect to func-
tional word types are shown in Table 2. The num-
ber of patterns for each functional word in the fil-
tered pattern set are illustrated, and percentages of
functional word types are also reported. Note that
some patterns contain more than one kind of func-
tional word, so that the percentages of functional
word types do not sum to one.

As demonstrated in Table 2, the first kind ofde-
construction takes up 60.11% of the filtered pat-
tern set, and is the main type of patterns used in
our experiment. This indicates that more than half
of the patterns are closely related to theDE con-
struction examined in (Chang et al., 2009b; Du
& Way, 2010). However, the general preposi-
tion construction (excludingbei andba) accounts
for 37.41% of the filtered patterns, which implies
that it is also a major source of syntactic reorder-
ing. By contrast, other constructions have much
smaller amount of percentages, so have a minor

impact on our experiments.

5.2 Word lattice construction

As specified in section 4, for both unfiltered and
the filtered systems, both the devset and testset
are converted into word lattices with the unfiltered
and filtered syntactic reordering patterns respec-
tively. To avoid a dramatic increase in size of the
lattices, the following constraints are applied: for
each source sentence, the maximum number of re-
ordering schemes is 30, and the maximum span of
a pattern is 30.

For the lattice construction, the base probabil-
ity in (6) and (7) is set to 0.05. The two syntac-
tic reordering PBSMT systems also incorporate
the built-in reordering models (distance-based and
lexical reordering) of Moses, and their weights in
the log-linear model are tuned with respect to the
devsets.

The effects of the pattern filtering by functional
words are also reported in Table 3. For both the
FBIS and NIST sets, the average number of nodes
in word lattices are illustrated before and after pat-
tern filtering. From the table, it is clear that the
pattern filtering procedure dramatically reduces
the input size for the PBSMT system. The reduc-
tion is up to 37.99% for the NIST testset.

Data set Unfiltered Filtered Reduced
FBIS dev 183.13 131.38 28.26%
FBIS test 183.68 136.56 25.65%
NIST dev 175.78 115.89 34.07%
NIST test 149.13 92.48 37.99%

Table 3: Comparison of the average number of
nodes in word lattices

5.3 Results on FBIS set

Three systems are compared on the FBIS set:
the baseline PBSMT system, and the syntactic
reordering systems with and without pattern fil-
tering. Since the built-in reordering models of
Moses are enabled, several values of the distor-
tion limit (DL) parameter are chosen to validate
consistency. The evaluation results on the FBIS
set are shown in Table 4.

As shown in Table 4, the syntactic reordering
systems with and without pattern filtering outper-
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System DL BLEU NIST METE

Baseline

0 22.32 6.45 52.51
6 23.67 6.63 54.07
10 24.52 6.66 54.04
12 24.57 6.69 54.31

Unfiltered

0 23.92 6.60 54.30
6 24.57 6.68 54.64
10 24.98 6.71 54.67
12 24.84 6.69 54.65

Filtered

0 23.71 6.60 54.11
6 24.65 6.68 54.61
10 24.87 6.71 54.84
12 24.91 6.7 54.51

Table 4: Results on FBIS testset (DL = distortion
limit, METE=METEOR)

form the baseline system for each of the distortion
limit parameters in terms of the BLEU, NIST and
METEOR scores (scores in bold face). By con-
trast, the filtered systems has a comparable perfor-
mance with the unfiltered system: for some of the
distortion limits, the filtered systems even outper-
forms the unfiltered system (scores in bold face,
e.g. BLEU and NIST for DL=12, METEOR for
DL=10).

The best performance of the baseline system
is obtained with distortion limit 12 (underlined);
the best performance of the unfiltered system is
achieved with distortion limit 10 (underlined);
while for the filtered system, the best BLEU score
is accomplished with distortion limit 12 (under-
lined), and the best NIST and METEOR scores
are shown with distortion limit 10 (underlined).
Thus the unfiltered system outperforms the base-
line by 0.41 (1.67% relative) BLEU points, 0.02
(0.30% relative) NIST points and 0.36 (0.66%
relative) METEOR points. By contrast, the fil-
tered system outperforms the baseline by 0.34
(1.38% relative) BLEU points, 0.02 (0.30% rel-
ative) NIST points and 0.53 (0.98% relative) ME-
TEOR points.

Compared with the unfiltered system, pattern
filtering with functional words degrades perfor-
mance by 0.07 (0.28% relative) in term of BLEU,
but improves the system by 0.17 (0.31% rela-
tive) in term of METEOR, while the two systems
achieved the same best NIST score.

These results indicates that the filtered system
has a comparable performance with the unfiltered
one on the FBIS set, while both of them outper-
form the baseline.

5.4 Results on NIST set

The evaluation results on the NIST set are illus-
trated in Table 5.

System DL BLEU NIST METE

Baseline

0 14.43 5.75 45.03
6 15.61 5.88 45.75
10 15.73 5.78 45.27
12 15.89 6.16 45.88

Unfiltered

0 16.77 6.54 47.16
6 17.25 6.67 47.65
10 17.15 6.64 47.78
12 16.88 6.56 47.17

Filtered

0 16.79 6.64 47.67
6 17.55 6.71 48.06
10 17.51 6.72 48.15
12 17.37 6.72 48.08

Table 5: Results on NIST testset (DL = distortion
limit, METE=METEOR)

From Table 5, the unfiltered system outper-
forms the baseline system for each of the distor-
tion limits in terms of the BLEU, NIST and ME-
TEOR scores (scores in bold face). By contrast,
the filtered system also outperform the unfiltered
system for each of the distortion limits in terms of
the three evaluation methods (scores in bold face).

The best performance of the baseline system
is obtained with distortion limit 12 (underlined),
while the best performance of the unfiltered sys-
tem is obtained with distortion limit 6 for BLEU
and NIST, and 10 for METEOR (underlined). For
the filtered system, the best BLEU score is shown
with distortion limit 6, and the best NIST and ME-
TEOR scores are accomplished with distortion
limit 10 (underlined). Thus the unfiltered system
outperforms the baseline by 1.36 (8.56% relative)
BLEU points, 0.51 (8.28% relative) NIST points
and 1.90 (4.14% relative) METEOR points. By
contrast, the filtered system outperforms the base-
line by 1.66 (10.45% relative) BLEU points, 0.56
(9.52% relative) NIST points and 2.27 (4.95% rel-
ative) METEOR points.
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Compared with the unfiltered system, patterns
with functional words boost the performance by
0.30 (1.74% relative) in term of BLEU, 0.05
(0.75% relative) in term of NIST, and 0.37 (0.77%
relative) in term of METEOR.

These results demonstrate that the pattern filter-
ing improves the syntactic reordering system on
the NIST set, while both of them significantly out-
perform the baseline.

5.5 Discussion

Experiments in the previous sections demonstrate
that: 1) the two syntactic reordering systems im-
prove the PBSMT system by providing potential
reorderings obtained from phrase alignments and
parse trees; 2) patterns with functional words play
a major role in the syntactic reordering process,
and filtering the patterns with functional words
maintains or even improves the system perfor-
mance for Chinese–English SMT task. Further-
more, as shown in the previous section, pattern
filtering prunes the whole pattern set by 61.88%
and also reduces the sizes of word lattices by up
to 37.99%, thus the whole syntactic reordering
procedure for the original inputs as well as the
tuning/decoding steps are sped up dramatically,
which make the proposed methods more useful in
the real world, especially for online SMT systems.

From the statistics on the filtered pattern set
in Table 2, we also argue that the first kind
of de-construction and general preposition (ex-
cluding bei and ba) are the main sources of
Chinese–English syntactic reordering. Previous
work (Chang et al., 2009b; Du & Way, 2010)
showed the advantages of dealing with theDE
construction. In our experiments too, even though
all the patterns are automatically extracted from
phrase alignments, these two constructions still
dominate the filtered pattern set. This result con-
firms the effectiveness of previous work onDE
construction, and also highlights the importance
of the general preposition construction in this task.

6 Conclusion and future work

Syntactic reordering patterns with functional
words are examined in this paper. The aim is to
exploit these functional words within the syntactic
reordering patterns extracted from phrase align-

ments and parse trees. Three systems are com-
pared: a baseline PBSMT system, a syntactic re-
ordering system with all patterns extracted from a
corpus and a syntactic reordering system with pat-
terns filtered with functional words. Evaluation
results on a medium-sized corpus showed that the
two syntactic reordering systems consistently out-
perform the baseline system. The pattern filtering
with functional words prunes 61.88% of patterns,
but still maintains a comparable performance with
the unfiltered one on the randomly select testset,
and even obtains 1.74% relative improvement on
the NIST 2008 testset.

In future work, the structures of patterns con-
taining functional words will be investigated to
obtain fine-grained analysis on such words in this
task. Furthermore, experiments on larger corpora
as well as on other language pairs will also be car-
ried out to validation our method.
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Jakob Elming. 2008. Syntactic reordering integrated
with phrase-based SMT.Coling 2008: 22nd In-
ternational Conference on Computational Linguis-
tics, Proceedings of the conference, pages 209-216,
Manchester, UK.

Jakob Elming, and Nizar Habash. 2009. Syntac-
tic reordering for English-Arabic phrase-based ma-
chine translation.Proceedings of the EACL 2009
Workhop on Computational Approaches to Semitic
Languages, pages 69-77, Athens, Greece.

Nizar Habash. 2007. Syntactic preprocessing for sta-
tistical machine translation.MT Summit XI, pages
215-222, Copenhagen, Denmark.

Jie Jiang, Andy Way, Julie Carson-Berndsen. 2010.
Lattice Score-Based Data Cleaning For Phrase-
Based Statistical Machine Translation.EAMT
2010: 14th Annual Conference of the European As-
sociation for Machine Translation, Saint-Raphaël,
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Abstract 

A typical phrase-based machine transla-
tion (PBMT) system uses phrase pairs 
extracted from word-aligned parallel 
corpora. All phrase pairs that are consis-
tent with word alignments are collected. 
The resulting phrase table is very large 
and includes many non-syntactic phrases 
which may not be necessary. We propose 
to filter the phrase table based on source 
language syntactic constraints. Rather 
than filter out all non-syntactic phrases, 
we only apply syntactic constraints when 
there is phrase segmentation ambiguity 
arising from unaligned words. Our 
method is very simple and yields a 
24.38% phrase pair reduction and a 0.52 
BLEU point improvement when com-
pared to a baseline PBMT system with 
full-size tables. 

1 Introduction 

Both PBMT models (Koehn et al., 2003; Chiang, 
2005) and syntax-based machine translation 
models (Yamada et al., 2000; Quirk et al., 2005; 
Galley et al., 2006; Liu et al., 2006; Marcu et al., 
2006; and numerous others) are the state-of-the- 
art statistical machine translation (SMT) meth-
ods. Over the last several years, an increasing 
amount of work has been done to combine the 
advantages of the two approaches. DeNeefe et al. 
(2007) made a quantitative comparison of the 
phrase pairs that each model has to work with 
and found it is useful to improve the phrasal 
coverage of their string-to-tree model. Liu et al. 
(2007) proposed forest-to-string rules to capture 
the non-syntactic phrases in their tree-to-string 
model. Zhang et al. (2008) proposed a tree se-

quence based tree-to-tree model which can de-
scribe non-syntactic phrases with syntactic struc-
ture information. 

The converse of the above methods is to in-
corporate syntactic information into the PBMT 
model. Zollmann and Venugopal (2006) started 
with a complete set of phrases as extracted by 
traditional PBMT heuristics, and then annotated 
the target side of each phrasal entry with the la-
bel of the constituent node in the target-side 
parse tree that subsumes the span. Marton and 
Resnik (2008) and Cherry (2008) imposed syn-
tactic constraints on the PBMT system by mak-
ing use of prior linguistic knowledge in the form 
of syntax analysis. In their PBMT decoders, a 
candidate translation gets an extra credit if it re-
spects the source side syntactic parse tree but 
may incur a cost if it violates a constituent 
boundary. Xiong et al. (2009) proposed a syn-
tax-driven bracketing model to predict whether a 
phrase (a sequence of contiguous words) is 
bracketable or not using rich syntactic con-
straints. 

In this paper, we try to utilize syntactic 
knowledge to constrain the phrase extraction 
from word-based alignments for PBMT system. 
Rather than filter out all non-syntactic phrases, 
we only apply syntactic constraints when there is 
phrase segmentation ambiguity arising from un-
aligned words. Our method is very simple and 
yields a 24.38% phrase pair reduction and a 0.52 
BLEU point improvement when compared to the 
baseline PBMT system with full-size tables. 

2 Extracting Phrase Pairs from Word-
based Alignments 

In this section, we briefly review a simple and 
effective phrase pair extraction algorithm upon 
which this work builds. 
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The basic translation unit of a PBMT model is 
the phrase pair, which consists of a sequence of 
source words, a sequence of target words and a 
vector of feature values which represents this 
pair’s contribution to the translation model. In 
typical PBMT systems such as MOSES (Koehn, 
2007), phrase pairs are extracted from word-
aligned parallel corpora. Figure 1 shows the 
form of training example. 
 
 
 
 

 
Figure 1: An example parallel sentence pair 

and word alignment 
 

Since there is no phrase segmentation infor-
mation in the word-aligned sentence pair, in 
practice all pairs of “source word sequence ||| 
target word sequence” that are consistent with 
word alignments are collected. The words in a 
legal phrase pair are only aligned to each other, 
and not to words outside (Och et al., 1999). For 
example, given a sentence pair and its word 
alignments shown in Figure1, the following nine 
phrase pairs will be extracted: 
 

Source phrase ||| Target phrase 
f1 ||| e1 
f2 ||| e2 
f4 ||| e3 

f1 f2 ||| e1 e2 
f2 f3 ||| e2 
f3 f4 ||| e3 

f1 f2  f3 ||| e1 e2 
f2 f3 f4 ||| e2 e3 

f1 f2 f3 f4 ||| e1 e2 e3 
 

Table 1: Phrase pairs extracted from the example 
in Figure 1 

 
Note that neither the source phrase nor the 

target phrase can be empty. So “f3 ||| EMPTY” is 
not a legal phrase pair. 

Phrase pairs are extracted over the entire 
training corpus. Given all the collected phrase 
pairs, we can estimate the phrase translation 
probability distribution by relative frequency. 
The collected phrase pairs will also be used to 

build the lexicalized reordering model. For more 
details of the lexicalized reordering model, 
please refer to Tillmann and Zhang (2005) and 
section 2.7.2 of the MOSES’s manual1. 

The main problem of such a phrase pair ex-
traction procedure is the resulting phrase transla-
tion table is very large, especially when a large 
quantity of parallel data is available. This is not 
desirable in real application where speed and 
memory consumption are often critical concerns. 
In addition, some phrase translation pairs are 
generated from training data errors and word 
alignment noise. Therefore, we need to filter the 
phrase table in an appropriate way for both effi-
ciency and translation quality (Johnson et al., 
2007; Yang and Zheng, 2009).  

  f1        f2      f3   f4 
        |           |               | 

  e1        e2            e3 
 

3 Syntactic Constraints on Phrase Pair 
Extraction 

We can divide all the possible phrases into two 
types: syntactic phrases and non-syntactic 
phrases. A “syntactic phrase” is defined as a 
word sequence that is covered by a single sub-
tree in a syntactic parse tree (Imamura, 2002). 
Intuitively, we would think syntactic phrases are 
much more reliable while the non-syntactic 
phrases are useless. However, (Koehn et al., 
2003) showed that restricting phrasal translation 
to only syntactic phrases yields poor translation 
performance – the ability to translate non-
syntactic phrases (such as “there are”, “note 
that”, and “according to”) turns out to be critical 
and pervasive. 

 (Koehn et al., 2003) uses syntactic constraints 
from both the source and target languages, and 
over 80% of all phrase pairs are eliminated. In 
this section, we try to use syntactic knowledge in 
a less restrictive way.  

Firstly, instead of using syntactic restriction 
on both source phrases and target phrases, we 
only apply syntactic restriction to the source 
language side. 

Secondly, we only apply syntactic restriction 
to the source phrase whose first or last word is 
unaligned. 

For example, given a parse tree illustrated in 
Figure 2, we will filter out the phrase pair “f2 f3 
||| e2” since the source phrase “f2 f3” is a non-
syntactic phrase and its last word “f3” is not 
                                                 
1 http://www.statmt.org/moses/ 
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aligned to any target word. The phrase pair “f1 
f2  f3 ||| e1 e2” will  also be eliminated for the 
same reason. But we do keep phrase pairs such 
as “f1 f2 ||| e1 e2” even if its source phrase “f1 
f2” is a non-syntactic phrase. Also, we keep “f3 
f4 ||| e3” since “f3 f4” is a syntactic phrase. Ta-
ble 2 shows the completed set of phrase pairs 
that are extracted with our constraint-based 
method. 

 
Source phrase ||| Target phrase 

f1 ||| e1 
f2 ||| e2 
f4 ||| e3 

f1 f2 ||| e1 e2 
f3 f4 ||| e3 

f2 f3 f4 ||| e2 e3 
f1 f2 f3 f4 ||| e1 e2 e3 

 
Table 2: Phrase pairs extracted from the example 

in Figure 2 
 
 

 
Figure 2: An example parse tree and word-

based alignments 
 
The state-of-the-art alignment tool such as 

GIZA++ 2  can not always find alignments for 
every word in the sentence pair. The possible 
reasons could be: its frequency is too low, noisy 
data, auxiliary words or function words which 
have no obvious correspondence in the opposite 
language. 

In the automatically aligned parallel corpus, 
unaligned words are frequent enough to be no-
ticeable (see section 4.1 in this paper). How to 
decide the translation of unaligned word is left to 
the phrase extraction algorithm. An unaligned 

                                                 
2 http://fjoch.com/GIZA++.html 

source word should be translated together with 
the words on the right of it or the words on the 
left of it. The existing algorithm considers both 
of the two directions. So both “f2 f3 ||| e2” and 
“f3 f4 ||| e3” are extracted. However, it is 
unlikely that “f3” can be translated into both 
“e2” and “e3”.  So our algorithm uses prior syn-
tactic knowledge to keep “f3 f4 ||| e3” and ex-
clude “f2 f3 ||| e2”. 

4 Experiments 

Our SMT system is based on a fairly typical 
phrase-based model (Finch and Sumita, 2008). 
For the training of our SMT model, we use a 
modified training toolkit adapted from the 
MOSES decoder. Our decoder can operate on 
the same principles as the MOSES decoder. 
Minimum error rate training (MERT) with re-
spect to BLEU score is used to tune the de-
coder’s parameters, and it is performed using the 
standard technique of Och (2003). A lexicalized 
reordering model was built by using the “msd-
bidirectional-fe” configuration in our experi-
ments. 

The translation model was created from the 
FBIS parallel corpus. We used a 5-gram lan-
guage model trained with modified Kneser-Ney 
smoothing. The language model was trained on 
the target side of the FBIS corpus and the Xin-
hua news in the GIGAWORD corpus. The de-
velopment and test sets are from the NIST MT08 
evaluation campaign. Table 3 shows the statis-
tics of the corpora used in our experiments. 

N3 

N2

N1 

  f1        f2      f3   f4 
 
  e1       e2             e3 
 

 
Data Sentences Chinese 

words 
English 
words 

Training set 221,994 6,251,554 8,065,629 

Development set 1,664 38,779 46,387 

Test set 1,357 32,377 42,444 

GIGAWORD 19,049,757 - 306,221,306

 
Table 3: Corpora statistics 

 
The Chinese sentences are segmented, POS 

tagged and parsed by the tools described in Kru-
engkrai et al. (2009) and Cao et al. (2007), both 
of which are trained on the Penn Chinese Tree-
bank 6.0.  
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4.1 Experiments on Word Alignments 

We use GIZA++ to align the sentences in both 
the Chinese-English and English-Chinese direc-
tions. Then we combine the alignments using the 
standard “grow-diag-final-and” procedure pro-
vided with MOSES. 

In the combined word alignments, 614,369 or 
9.82% of the Chinese words are unaligned. Ta-
ble 4 shows the top 10 most frequently un-
aligned words. Basically, these words are auxil-
iary words or function words whose usage is 
very flexible. So it would be difficult to auto-
matically align them to the target words.  

 
Unaligned word Frequency 

的 77776 
, 29051 
在 9414 
一 8768 
中 8543 
个 7471 
是 7365 
上 6155 
了 5945 
不 5450 

 
Table 4: Frequently unaligned words from the 

training corpus 

4.2 Experiments on Chinese-English SMT 

In order to confirm that it is advantageous to 
apply appropriate syntactic constraints on phrase 
extraction, we performed three translation ex-
periments by using different ways of phrase ex-
traction.  

In the first experiment, we used the method 
introduced in Section 2 to extract all possible 
phrase translation pairs without using any con-
straints arising from knowledge of syntax.  

The second experiment used source language 
syntactic constraints to filter out all non-
syntactic phrases during phrase pair extraction. 

The third experiment used source language 
syntactic constraints to filter out only non-
syntactic phrases whose first or last source word 
was unaligned.  

With the exception of the above differences in 
phrase translation pair extraction, all the other 

settings were the identical in the three 
experiments. Table 5 summarizes the SMT per-
formance. The evaluation metric is case-
sensitive BLEU-4 (Papineni et al., 2002) which 
estimates the accuracy of translation output with 
respect to a set of reference translations. 

 
Syntactic Con-

straints 
Number of 

distinct phrase pairs BLEU

None 14,195,686 17.26

Full constraint 4,855,108 16.51

Selectively 
constraint 10,733,731 17.78

 
Table 5: Comparison of different constraints on 

phrase pair extraction by translation quality 
 

As shown in the table, it is harmful to fully 
apply syntactic constraints on phrase extraction, 
even just on the source language side. This is 
consistent with the observation of (Koehn et al., 
2003) who applied both source and target con-
straints in German to English translation ex-
periments. 

Clearly, we obtained the best performance if 
we use source language syntactic constraints 
only on phrases whose first or last source word 
is unaligned. In addition, we reduced the number 
of distinct phrase pairs by 24.38% over the base-
line full-size phrase table. 

The results in table 5 show that while some 
non-syntactic phrases are very important to 
maintain the performance of a PBMT system, 
not all of them are necessary. We can achieve 
better performance and a smaller phrase table by 
applying syntactic constraints when there is 
phrase segmentation ambiguity arising from un-
aligned words. 

5 Related Work 

To some extent, our idea is similar to Ma et al. 
(2008), who used an anchor word alignment 
model to find a set of high-precision anchor 
links and then aligned the remaining words rely-
ing on dependency information invoked by the 
acquired anchor links. The similarity is that both 
Ma et al. (2008) and this work utilize structure 
information to find appropriate translations for 
words which are difficult to align. The differ-
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ence is that they used dependency information in 
the word alignment stage while our method uses 
syntactic information during the phrase pair ex-
traction stage. There are also many works which 
leverage syntax information to improve word 
alignments (e.g., Cherry and Lin, 2006; DeNero 
and Klein, 2007; Fossum et al., 2008; Hermja-
kob, 2009). 

Johnson et al., (2007) presented a technique 
for pruning the phrase table in a PBMT system 
using Fisher’s exact test. They compute the sig-
nificance value of each phrase pair and prune the 
table by deleting phrase pairs with significance 
values smaller than a certain threshold. Yang 
and Zheng (2008) extended the work in Johnson 
et al., (2007) to a hierarchical PBMT model, 
which is built on synchronous context free 
grammars (SCFG). Tomeh et al., (2009) de-
scribed an approach for filtering phrase tables in 
a statistical machine translation system, which 
relies on a statistical independence measure 
called Noise, first introduced in (Moore, 2004). 
The difference between the above research and 
this work is they took advantage of some statis-
tical measures while we use syntactic knowledge 
to filter phrase tables. 

6 Conclusion and Future Work 

Phrase pair extraction plays a very important 
role on the performance of PBMT systems. We 
utilize syntactic knowledge to constrain the 
phrase extraction from word-based alignments 
for a PBMT system. Rather than filter out all 
non-syntactic phrases, we only filter out non-
syntactic phrases whose first or last source word 
is unaligned. Our method is very simple and 
yields a 24.38% phrase pair reduction and a 0.52 
BLEU point improvement when compared to the 
baseline PBMT system with full-size tables. 

In the future work, we will use other language 
pairs to test our phrase extraction method so that 
we can discover whether or not it is language 
independent. 
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Abstract

In this paper, we present an approach to
statistical machine translation that com-
bines the power of a discriminative model
(for training a model for Machine Transla-
tion), and the standard beam-search based
decoding technique (for the translation of
an input sentence). A discriminative ap-
proach for learning lexical selection and
reordering utilizes a large set of feature
functions (thereby providing the power to
incorporate greater contextual and linguis-
tic information), which leads to an effec-
tive training of these models. This model
is then used by the standard state-of-art
Moses decoder (Koehn et al., 2007) for the
translation of an input sentence.

We conducted our experiments on
Spanish-English language pair. We used
maximum entropy model in our exper-
iments. We show that the performance
of our approach (using simple lexical
features) is comparable to that of the
state-of-art statistical MT system (Koehn
et al., 2007). When additional syntactic
features (POS tags in this paper) are used,
there is a boost in the performance which
is likely to improve when richer syntactic
features are incorporated in the model.

1 Introduction

The popular approaches to machine translation
use the generative IBM models for training
(Brown et al., 1993; Och et al., 1999). The param-
eters for these models are learnt using the stan-
dard EM Algorithm. The parameters used in these
models are extremely restrictive, that is, a simple,
small and closed set of feature functions is used
to represent the translation process. Also, these
feature functions are local and are word based. In
spite of these limitations, these models perform
very well for the task of word-alignment because
of the restricted search space. However, they per-
form poorly during decoding (or translation) be-
cause of their limitations in the context of a much
larger search space.

To handle the contextual information, phrase-
based models were introduced (Koehn et al.,
2003). The phrase-based models use the word
alignment information from the IBM models and
train source-target phrase pairs for lexical se-
lection (phrase-table) and distortions of source
phrases (reordering-table). These models are still
relatively local, as the target phrases are tightly as-
sociated with their corresponding source phrases.
In contrast to a phrase-based model, a discrim-
inative model has the power to integrate much
richer contextual information into the training
model. Contextual information is extremely use-
ful in making lexical selections of higher quality,
as illustrated by the models for Global Lexical Se-
lection (Bangalore et al., 2007; Venkatapathy and
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Bangalore, 2009).
However, the limitation of global lexical se-

lection models has been sentence construction.
In global lexical selection models, lattice con-
struction and scoring (LCS) is used for the pur-
pose of sentence construction (Bangalore et al.,
2007; Venkatapathy and Bangalore, 2009). In our
work, we address this limitation of global lexi-
cal selection models by using an existing state-of-
art decoder (Koehn et al., 2007) for the purpose
of sentence construction. The translation model
used by this decoder is derived from a discrimina-
tive model, instead of the usual phrase-table and
reordering-table construction algorithms. This al-
lows us to use the effectiveness of an existing
phrase-based decoder while retaining the advan-
tages of the discriminative model. In this paper,
we compare the sentence construction accuracies
of lattice construction and scoring approach (see
section 4.1 for LCS Decoding) and the phrase-
based decoding approach (see section 4.2).

Another advantage of using a discriminative ap-
proach to construct the phrase table and the re-
ordering table is the flexibility it provides to in-
corporate linguistic knowledge in the form of ad-
ditional feature functions. In the past, factored
phrase-based approaches for Machine Translation
have allowed the use of linguistic feature func-
tions. But, they are still bound by the local-
ity of context, and definition of a fixed struc-
ture of dependencies between the factors (Koehn
and Hoang, 2007). Furthermore, factored phrase-
based approaches place constraints both on the
type and number of factors that can be incorpo-
rated into the training. In this paper, though we do
not extensively test this aspect, we show that us-
ing syntactic feature functions does improve the
performance of our approach, which is likely to
improve when much richer syntactic feature func-
tions (such as information about the parse struc-
ture) are incorporated in the model.

As the training model in a standard phrase-
based system is relatively impoverished with re-
spect to contextual/linguistic information, integra-
tion of the discriminative model in the form of
phrase-table and reordering-table with the phrase-
based decoder is highly desirable. We propose to
do this by defining sentence specific tables. For

example, given a source sentence s, the phrase-
table contains all the possible phrase-pairs condi-
tioned on the context of the source sentence s.

In this paper, the key contributions are,

1. We combine a discriminative training model
with a phrase-based decoder. We ob-
tained comparable results with the state-of-
art phrase-based decoder.

2. We evaluate the performance of the lattice
construction and scoring (LCS) approach to
decoding. We observed that even though the
lexical accuracy obtained using LCS is high,
the performance in terms of sentence con-
struction is low when compared to phrase-
based decoder.

3. We show that the incorporation of syntactic
information (POS tags) in our discriminative
model boosts the performance of translation.
In future, we plan to use richer syntactic fea-
ture functions (which the discriminative ap-
proach allows us to incorporate) to evaluate
the approach.

The paper is organized in the following sec-
tions. Section 2 presents the related work. In
section 3, we describe the training of our model.
In section 4, we present the decoding approaches
(both LCS and phrase-based decoder). We de-
scribe the data used in our experiments in section
5. Section 6 consists of the experiments and re-
sults. Finally we conclude the paper in section 7.

2 Related Work

In this section, we present approaches that are di-
rectly related to our approach. In Direct Trans-
lation Model (DTM) proposed for statistical ma-
chine translation by (Papineni et al., 1998; Och
and Ney, 2002), the authors present a discrimi-
native set-up for natural language understanding
(and MT). They use a slightly modified equation
(in comparison to IBM models) as shown in equa-
tion 1. In equation 1, they consider the translation
model from f → e (p(e|f)), instead of the the-
oretically sound (after the application of Bayes’
rule), e → f (p(f |e)) and use grammatical fea-
tures such as the presence of equal number of
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verbs forms etc.

ê = argmax
e

pTM (e|f) ∗ pLM (e) (1)

In their model, they use generic feature func-
tions such as language model, cooccurence fea-
tures such as presence of a lexical relationship in
the lexicon. Their search algorithm limited the use
of complex features.

Direct Translation Model 2 (DTM2) (Itty-
cheriah and Roukos, 2007) expresses the phrase-
based translation task in a unified log-linear prob-
abilistic framework consisting of three compo-
nents:

1. a prior conditional distribution P0

2. a number of feature functions Φi() that cap-
ture the effects of translation and language
model

3. the weights of the features λi that are esti-
mated using MaxEnt training (Berger et al.,
1996) as shown in equation 2.

Pr(e|f) = P0(e, j|f)
Z

exp
∑

i

λiΦi(e, j, f) (2)

In the above equation, j is the skip reordering
factor for the phrase pair captured byΦi() and rep-
resents the jump from the previous source word.
Z represents the per source sentence normaliza-
tion term (Hassan et al., 2009). While a uni-
form prior on the set of futures results in a max-
imum entropy model, choosing other priors out-
put a minimum divergence models. Normalized
phrase count has been used as the prior P0 in the
DTM2 model.
The following decision rule is used to obtain opti-
mal translation.

ê = argmax
e

Pr(e|f)

= argmax
e

M∑

m=1

λmΦm(f, e)
(3)

The DTM2 model differs from other phrase-
based SMT models in that it avoids the redun-
dancy present in other systems by extracting from

a word aligned parallel corpora a set of minimal
phrases such that no two phrases overlap with
each other (Hassan et al., 2009).

The decoding strategy in DTM2 (Ittycheriah
and Roukos, 2007) is similar to a phrase-based de-
coder except that the score of a particular transla-
tion block is obtained from the maximum entropy
model using the set of feature functions. In our
approach, instead of providing the complete scor-
ing function ourselves, we compute the parame-
ters needed by a phrase based decoder, which in
turn uses these parameters appropriately. In com-
parison with the DTM2, we also use minimal non-
overlapping blocks as the entries in the phrase ta-
ble that we generate.

Xiong et al. (2006) present a phrase reordering
model under the ITG constraint using a maximum
entropy framework. They model the reordering
problem as a two-class classification problem, the
classes being straight and inverted. The model is
used to merge the phrases obtained from trans-
lating the segments in a source sentence. The
decoder used is a hierarchical decoder motivated
from the CYK parsing algorithm employing a
beam search algorithm. The maximum entropy
model is presented with features extracted from
the blocks being merged and probabilities are es-
timated using the log-linear equation shown in
(4). The work in addition to lexical features and
collocational features, uses an additional metric
called the information gain ratio (IGR) as a fea-
ture. The authors report an improvement of 4%
BLEU score over the traditional distance based
distortion model upon using the lexical features
alone.

pλ(y|x) =
1

Zλ(x)
exp(

∑

i

λiΦi(x, y)) (4)

3 Training

The training process of our approach has two
steps:

1. training the discriminative models for trans-
lation and reordering.

2. integrating the models into a phrase based
decoder.
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The input to our training step are the word-
alignments between source and target sentences
obtained using GIZA++ (implementation of IBM,
HMM models).

3.1 Training discriminative models
We train two models, one to model the transla-
tion of source blocks, and the other to model the
reordering of source blocks. We call the transla-
tion model a ‘context dependent block translation
model’ for two reasons.

1. It is concerned with the translation of mini-
mal phrasal units called blocks.

2. The context of the source block is used dur-
ing its translation.

The word alignments are used to obtain the set
of possible target blocks, and are added to the tar-
get vocabulary. A target block b is a sequence of n
words that are paired with a sequence ofm source
words (Ittycheriah and Roukos, 2007). In our ap-
proach, we restrict ourselves to target blocks that
are associated with only one source word. How-
ever, this constraint can be easily relaxed.

Similarly, we call the reordering model, a ‘con-
text dependent block distortion model’. For train-
ing, we use the maximum entropy software library
Llama presented in (Haffner, 2006).

3.1.1 Context Dependent Block Translation
Model

In this model, the goal is to predict a target
block given the source word and contextual and
syntactic information. Given a source word and its
lexical context, the model estimates the probabil-
ities of the presence or absence of possible target
blocks (see Figure 1).

The probabilities of the candidate target blocks
are obtained from the maximum entropy model.
The probability pei of a candidate target block ei
is estimated as given in equation 5

pei = P (true|ei, fj , C) (5)

where fj is the source word corresponding to ei
and C is its context.

Using the maximum entropy model, binary
classifiers are trained for every target block in the

context window

source word

word syntactically dependent

SOURCE SENTENCE

target word 1 prob p1

............

target word 2 prob p2

prob pKtarget word K

on source word

Figure 1: Word prediction model

vocabulary. These classifiers predict if a particu-
lar target block should be present given the source
word and its context. This model is similar to the
global lexical selection (GLS) model described in
(Bangalore et al., 2007; Venkatapathy and Banga-
lore, 2009) except that in GLS, the predicted tar-
get blocks are not associated with any particular
source word unlike the case here.

For the set of experiments in this paper, we used
a context of size 6, containing three words to the
left and three words to the right. We also used
the POS tags of words in the context window as
features. In future, we plan to use the words syn-
tactically dependent on a source word as global
context(shown in Figure 1).

3.1.2 Context Dependent Block Distortion
Model

An IBM model 3 like distortion model is
trained to predict the relative position of a source
word in the target given its context. Given a
source word and its context, the model estimates
the probability of particular relative position be-
ing an appropriate position of the source word in
the target (see Figure 2).

context window

source wordSOURCE SENTENCE

0

p0

1

p1

2

p2

w

pw
−1

p−1

−2

p−2

−w

p−w

... ...

word syntactically dependent

on source word

Figure 2: Position prediction model

Using a maximum entropy model similar to
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the one described in the context dependent block
translation model, binary classifiers are trained
for every possible relative position in the target.
These classifiers output a probability distribution
over various relative positions given a source word
and its context.

The word alignments in the training corpus are
used to train the distortion model. While comput-
ing the relative position, the difference in sentence
lengths is also taken into account. Hence, the rela-
tive position of the target block located at position
i corresponding to the source word located at po-
sition j is given in equation 6.

r = round(i ∗ m
n
− j) (6)

where, m is the length of source sentence and n is
the number of target blocks. round is the function
to compute the nearest integer of the argument. If
the source word is not aligned to any target word,
a special symbol ‘INF’ is used to indicate such a
case. In our model, this symbol is also a part of
the target distribution.

The features used to train this model are the
same as those used for the block translation
model. In order to use further lexical information,
we also incorporated information about the target
word for predicting the distribution. The informa-
tion about possible target words is obtained from
the ‘context dependent block translation model’.
The probabilities in this case are measured as
shown in equation 7

pr,ei = P (true|r, ei, fj , C) (7)

3.2 Integration with phrase-based decoder
The discriminative models trained are sentence
specific, i.e. the context of the sentence is used
to make predictions in these models. Hence,
the phrase-based decoder is required to use in-
formation specific to a source sentence. In order
to handle this issue, a different phrase-table and
reordering-table are constructed for every input
sentence. The phrase-table and reordering-table
are constructed using the discriminative models
trained earlier.

In Moses (Koehn et al., 2007), the phrase-
table contains the source phrase, the target phrase
and the various scores associated with the phrase

pair such as phrase translation probability, lexical
weighting, inverse phrase translation probability,
etc.1

In our approach, given a source sentence, the
following steps are followed to construct the
phrase table.

1. Extract source blocks (’words’ in this work)

2. Use the ‘context dependent block translation
model’ to predict the possible target blocks.
The set of possible blocks can be predicted
using two criteria, (1) Probability threshold,
and (2) K-best. Here, we use a threshold
value to prune the set of possible candidates
in the target vocabulary.

3. Use the prediction probabilities to assign
scores to the phrase pairs.

A similar set of steps is used to construct the
reordering-table corresponding to an input sen-
tence in the source language.

4 Decoding

4.1 Decoding with LCS Decoder
The lattice construction and scoring algorithm, as
the name suggests, consists of two steps,

1. Lattice construction

In this step, a lattice representing various
possible target sequences is obtained. In the
approach for global lexical selection (Banga-
lore et al., 2007; Venkatapathy and Banga-
lore, 2009), the input to this step is a bag of
words. The bag of words is used to construct
an initial sequence (a single path lattice). To
this sequence, deletion arcs are added to in-
corporate additional paths (at a cost) that fa-
cilitate deletion of words in the initial se-
quence. This sequence is permuted using a
permutation window in order to construct a
lattice representing possible sequences. The
permutation window is used to control the
search space.

In our experiments, we used a similar process
for sentence construction. Using the con-
text dependent block translation algorithm,

1http://www.statmt.org/moses/?n=FactoredTraining.ScorePhrases
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we obtain a number of translation blocks for
every source word. These blocks are inter-
connected in order to obtain the initial lattice
(see figure 3).

f_(i−1) f_(i) f_(i+1)

t_(i−1,1)

t_(i−1,2)

t_(i−1,3)

t_(i,2)

t_(i,1) t_(i+1,1)

t_(i+1,2)

t_(i+1,3)

.... ...............

SOURCE SENTENCE

INTIAL TARGET LATTICE

Figure 3: Lattice Construction

To control deletions at various source posi-
tions, deletion nodes may be added to the
initial lattice. This lattice is permuted us-
ing a permutation window to construct a lat-
tice representing possible sequences. Hence,
the parameters that dictate lattice construc-
tion are, (1) Threshold for lexical selection,
(2) Using deletion arcs or not, and (3) Per-
mutation window.

2. Scoring

In this step, each of the paths in the lattice
constructed in the earlier step is scored us-
ing a language model (Haffner, 2006), which
is same as the one used in the sentence con-
struction in global lexical selection models.
It is to be noted that we do not use the dis-
criminative reordering model in this decoder,
and only the language model is used to score
various target sequences.

The path with the lowest score is considered
the best possible target sentence for the given
source sentence. Using this decoder, we con-
ducted experiments on the development set by
varying threshold values and the size of the per-
mutation window. The best parameter values ob-
tained using the development set were used for de-
coding the test corpus.

4.2 Decoding with Moses Decoder
In this approach, the phrase-table and the
reordering-table are constructed using the dis-

criminative model for every source sentence (see
section 3.2). These tables are then used by the
state-of-art Moses decoder to obtain correspond-
ing translations.

The various training and decoding parameters
of the discriminative model are computed by ex-
haustively exploring the parameter space, and cor-
respondingly measuring the output quality on the
development set. The best set of parameters were
used for decoding the sentences in the test corpus.
We modified the weights assigned by MOSES to
the translation model, reordering model and lan-
guage model. Experiments were conducted by
performing pruning on the options in the phrase
table and by using the word penalty feature in
MOSES.

We trained a language model of order 5 built on
the entire EUROPARL corpus using the SRILM
package. The method uses improved Kneser-Ney
smoothing algorithm (Chen and Goodman, 1999)
to compute sequence probabilities.

5 Dataset

The experiments were conducted on the Spanish-
English language pair. The latest version of the
Europarl corpus(version-5) was used in this work.
A small set of 200K sentences was selected from
the training set to conduct the experiments. The
test and development sets containing 2525 sen-
tences and 2051 sentences respectively were used,
without making any changes.

Corpus No. of sentences Source Target
Training 200000 59591 36886
Testing 2525 10629 8905

Development 2051 8888 7750
Monolingual 200000 n.a 36886
English (LM)

Table 1: Corpus statistics for Spanish-English cor-
pus.

6 Experiments and Results

The output of our experiments was evaluated us-
ing two metrics, (1) BLEU (Papineni et al., 2002),
and (2) Lexical Accuracy (LexAcc). Lexical ac-
curacy measures the similarity between the un-
ordered bag of words in the reference sentence
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against the unordered bag of words in the hypoth-
esized translation. Lexical accuracy is a measure
of the fidelity of lexical transfer from the source
to the target sentence, independent of the syntax
of the target language (Venkatapathy and Banga-
lore, 2009). We report lexical accuracies to show
the performance of LCS decoding in comparison
with the baseline system.

We first present the results of the state-of-art
phrase-based model (Moses) trained on a paral-
lel corpus. We treat this as our baseline. The re-
ordering feature used is msd-bidirectional, which
allows for all possible reorderings over a speci-
fied distortion limit. The baseline accuracies are
shown in table 2.

Corpus BLEU Lexical Accuracy
Development 0.1734 0.448

Testing 0.1823 0.492

Table 2: Baseline Accuracy

We conduct two types of experiments to test our
approach.

1. Experiments using lexical features (see sec-
tion 6.1), and

2. Experiments using syntactic features (see
section 6.2).

6.1 Experiments using Lexical Features
In this section, we present results of our exper-
iments that use only lexical features. First, we
measure the translation accuracy using LCS de-
coding. On the development set, we explored the
set of decoding parameters (as described in sec-
tion 4.1) to compute the optimal parameter val-
ues. The best lexical accuracy obtained on the de-
velopment set is 0.4321 and the best BLEU score
obtained is 0.0923 at a threshold of 0.17 and a per-
mutation window size of value 3. The accuracies
corresponding to a few other parameter values are
shown in Table 3.

On the test data, we obtained a lexical accu-
racy of 0.4721 and a BLEU score of 0.1023. As
we can observe, the BLEU score obtained using
the LCS decoding technique is low when com-
pared to the BLEU score of the state-of-art sys-
tem. However, the lexical accuracy is comparable

Threshold Perm. Window LexAcc BLEU
0.16 3 0.4274 0.0914
0.17 3 0.4321 0.0923
0.18 3 0.4317 0.0918
0.16 4 0.4297 0.0912
0.17 4 0.4315 0.0915

Table 3: Lexical Accuracies of Lattice-Output us-
ing lexical features alone for various parameter
values

to the lexical accuracy of Moses. This shows that
the discriminative model provides good lexical se-
lection, while the sentence construction technique
does not perform as expected.

Next, we present the results of the Moses based
decoder that uses the discriminative model (see
section 3.2). In our experiments, we did not use
MERT training for tuning the Moses parameters.
Rather, we explore a set of possible parameter val-
ues (i.e. weights of the translation model, reorder-
ing model and the language model) to check the
performance. We show the BLEU scores obtained
on the development set using Moses decoder in
Table 4.

Reordering LM Translation BLEU
weight(d) weight(l) weight(t)

0 0.6 0.3 0.1347
0 0.6 0.6 0.1354

0.3 0.6 0.3 0.1441
0.3 0.6 0.6 0.1468

Table 4: BLEU for different weight values using
lexical features only

On the test set, we obtained a BLEU score of
0.1771. We observe that both the lexical accuracy
and the BLEU scores obtained using the discrim-
inative training model combined with the Moses
decoder are comparable to the state-of-art results.
The summary of the results obtained using three
approaches and lexical feature functions is pre-
sented in Table 5.

6.2 Experiments using Syntactic Features
In this section, we present the effect of incorpo-
rating syntactic features using our model on the
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Approach BLEU LexAcc
State-of-art(MOSES) 0.1823 0.492

LCS decoding 0.1023 0.4721
Moses decoder trained
using a discriminative 0.1771 0.4841

model

Table 5: Translation accuracies using lexical fea-
tures for different approaches

translation accuracies. Table 6 presents the results
of our approach that uses syntactic features at dif-
ferent parameter values. Here, we can observe
that the translation accuracies (both LexAcc and
BLEU) are better than the model that uses only
lexical features.

Reordering LM Translation BLEU
weight(d) weight(l) weight(t)

0 0.6 0.3 0.1661
0 0.6 0.6 0.1724

0.3 0.6 0.3 0.1780
0.3 0.6 0.6 0.1847

Table 6: BLEU for different weight values using
syntactic features

Table 7 shows the comparative performance of
the model using syntactic as well as lexical fea-
tures against the one with lexical features func-
tions only.

Model BLEU LexAcc
Lexical features 0.1771 0.4841

Lexical+Syntactic 0.201 0.5431
features

Table 7: Comparison between translation accura-
cies from models using syntactic and lexical fea-
tures

On the test set, we obtained a BLEU score of
0.20 which is an improvement of 2.3 points over
the model that uses lexical features alone. We also
obtained an increase of 6.1% in lexical accuracy
using this model with syntactic features as com-
pared to the model using lexical features only.

7 Conclusions and Future Work

In this paper, we presented an approach to statisti-
cal machine translation that combines the power
of a discriminative model (for training a model
for Machine Translation), and the standard beam-
search based decoding technique (for the transla-
tion of an input sentence). The key contributions
are:

1. We incorporated a discriminative model in
a phrase-based decoder. We obtained com-
parable results with the state-of-art phrase-
based decoder (see section 6.1). The ad-
vantage in using our approach is that it has
the flexibility to incorporate richer contextual
and linguistic feature functions.

2. We show that the incorporation of syntac-
tic information (POS tags) in our discrimina-
tive model boosted the performance of trans-
lation. The lexical accuracy using our ap-
proach improved by 6.1% when syntactic
features were used in addition to the lexi-
cal features. Similarly, the BLEU score im-
proved by 2.3 points when syntactic features
were used compared to the model that uses
lexical features alone. The accuracies are
likely to improve when richer linguistic fea-
ture functions (that use parse structure) are
incorporated in our approach.

In future, we plan to work on:

1. Experiment with rich syntactic and structural
features (parse tree-based features) using our
approach.

2. Experiment on other language pairs such as
Arabic-English and Hindi-English.

3. Improving LCS decoding algorithm using
syntactic cues in the target (Venkatapathy
and Bangalore, 2007) such as supertags.
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Abstract
With the steadily increasing demand for 
high-quality translation, the localisation 
industry is constantly searching for tech-
nologies that would increase translator 
throughput, with the current focus on the 
use of high-quality Statistical Machine 
Translation (SMT) as a supplement to the 
established Translation Memory (TM) 
technology. In this paper we present a 
novel modular approach that utilises 
state-of-the-art sub-tree alignment to pick 
out pre-translated segments from a TM 
match and seed with them an SMT sys-
tem to produce a final translation. We 
show that the presented system can out-
perform pure SMT when a good TM 
match is found. It can also be used in a 
Computer-Aided Translation (CAT) envi-
ronment to present almost perfect transla-
tions to the human user with markup 
highlighting the segments of the transla-
tion that need to be checked manually for 
correctness.

1. Introduction

As the world becomes increasingly intercon-
nected, the major trend is to try to deliver ideas 
and products to the widest audience possible. 
This requires the localisation of products for as 
many countries and cultures as possible, with 
translation being one of the main parts of the lo-
calisation process. Because of this, the amount of 
data that needs professional high-quality transla-
tion is continuing to increase well beyond the 
capacity of the world’s human translators.

Thus, current efforts in the localisation indus-
try are mostly directed at the reduction of the 
amount of data that needs to be translated from 
scratch by hand. Such efforts mainly include the 
use of Translation Memory (TM) systems, where 
earlier translations are stored in a database and 
offered as suggestions when new data needs to 
be translated. As TM systems were originally 
limited to providing translations only for (al-
most) exact matches of the new data, the integra-
tion of Machine Translation (MT) techniques is 
seen as the only feasible development that has 
the potential to significantly reduce the amount 
of manual translation required.

At the same time, the use of SMT is frowned 
upon by the users of CAT tools as they still do 
not trust the quality of the SMT output. There are 
two main reasons for that. First, currently there is 
no reliable way to automatically ascertain the 
quality of SMT-generated translations, so that the 
user could at a glance make a judgement as to the 
amount of effort that might be needed to post-
edit the suggested translation (Simard and Isa-
belle, 2009). Not having such automatic quality 
metrics also has the side effect of it being impos-
sible for a Translation-Services Provider (TSP) 
company to reliably determine in advance the 
increase in translator productivity due to the use 
of MT and to adjust their resources-allocation 
and cost models correspondingly.

The second major problem for users is that SMT-
generated translations are as a rule only obtained 
for cases where the TM system could not produce 
a good-enough translation (cf. Heyn, 1996). Given 
that the SMT system used is usually trained only 
on the data available in the TM, expectedly it also 
has few examples from which to construct the 
translation, thus producing low quality output.
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In this paper, we combine a TM, SMT and an 
automatic Sub-Tree Alignment (STA) backends 
in a single integrated tool. When a new sentence 
that needs to be translated is supplied, first a 
Fuzzy-Match Score (FMS – see Section 2.2) is 
obtained from the TM backend, together with the 
suggested matching sentence and its translation. 
For sentences that receive a reasonably high 
FMS, the STA backend is used to find the corre-
spondences between the input sentence and the 
TM-suggested translation, marking up the parts 
of the input that are correctly translated by the 
TM. The SMT backend is then employed to ob-
tain the final translation from the marked-up in-
put sentence. In this way we expect to achieve a 
better result compared to using pure SMT.

In Section 2, we present the technical details 
of the design of our system, together with moti-
vation for the particular design choices. Section 3 
details the experimental setup and the data set 
used for the evaluation results in Section 4. We 
present improvements that we plan to investigate 
in further work in Section 5, and provide con-
cluding remarks in Section 6.

2. System Framework

We present a system that uses a TM-match to 
pre-translate parts of the input sentence and 
guide an SMT system to the generation of a 
higher-quality translation.

2.1. Related Approaches

We are not aware of any published research 
where TM output is used to improve the per-
formance of an SMT system in a manner similar 
to the system presented in this paper.

Most closely related to our approach are the 
systems by Biçici and Dymetman (2008) and 
Simard and Isabelle (2009), where the authors 
use the TM output to extract new phrase pairs 
that supplement the SMT phrase table. Such an 
approach, however, does not guarantee that the 
SMT system will select the TM-motivated 
phrases even if a heavy bias is applied to them.

Another related system is presented in (Smith 
and Clark, 2009). Here the authors use a syntax-
based EBMT system to pre-translate and mark-

up parts of the input sentence and then supply 
this marked-up input to an SMT system. This 
differs to our system in two ways. First, Smith 
and Clark use EMBT techniques to obtain partial 
translations of the input from the complete ex-
ample base, while we are only looking at the best 
TM match for the given input. Second, the authors 
use dependency structures for EMBT matching, 
while we employ phrase-based structures.

2.2. Translation Memory Backend

Although the intention is to use a full-scale TM 
system as the translation memory backend, to 
have complete control over the process for this 
initial research we decided to build a simple pro-
totype TM backend ourselves.

We employ a database setup using the Post-
greSQL v.8.4.31 relational database management 
(RDBM) system. The segment pairs from a given 
TM are stored in this database and assigned 
unique IDs for further reference. When a new 
sentence is supplied for translation, the database 
is searched for (near) matches, using an FMS 
based on normalised character-level Levenshtein 
edit distance (Levenshtein, 1965).

Thus for each input sentence, from the data-
base we obtain the matching segment with the 
highest FMS, its translation and the score itself.

2.3. Sub-Tree Alignment Backend

The system presented in this paper uses phrase-
based sub-tree structural alignment (Zhechev, 
2010) to discover parts of the input sentence that 
correspond to parts of the suggested translation 
extracted from the TM database. We chose this 
particular tool, because it can produce aligned 
phrase-based-tree pairs from unannotated (i.e. 
unparsed) data. It can also function fully auto-
matically without the need for any training data. 
The only auxiliary requirement it has is for a 
probabilistic dictionary for the languages that are 
being aligned. As described later in this section, 
in our case this is obtained automatically from the 
TM data during the training of the SMT backend.

The matching between the input sentence and 
the TM-suggested translation is done in a three-
step process. First, the plain TM match and its 

1 http://www.postgresql.org/
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translation are aligned, which produces a sub-
tree-aligned phrase-based tree pair with all non-
terminal nodes labelled ‘X’ (cf. Zhechev, 2010). 
As we are only interested in the relations be-
tween the lexical spans of the non-terminal 
nodes, we can safely ignore their labels. We call 
this first step of our algorithm bilingual alignment.

In the second step, called monolingual align-
ment, the phrase-based tree-annotated version of 
the TM match is aligned to the unannotated input 
sentence. The reuse of the tree structure for the 
TM match allows us to use it in the third step as 
an intermediary to establish the available sub-
tree alignments between the input sentence and 
the translation suggested from the TM.

During this final alignment, we identify 
matched and mismatched portions of the input 
sentence and their possible translations in the 
TM suggestion and, thus, this step is called 
matching. Additionally, the sub-tree alignments 
implicitly provide us with reordering informa-
tion, telling us where the portions of the input 
sentence that we translate should be positioned in 
the final translation.

The alignment process is exemplified in Figure 1. 
The tree marked ‘I’ corresponds to the input sen-
tence, the one marked ‘M’ to the TM match and 
the one marked ‘T’ to the TM translation. Due to 
space constraints, we only display the node ID 
numbers of the non-terminal nodes in the phrase-
structure trees — in reality all nodes carry the 
label ‘X’. These IDs are used to identify the sub-
sentential alignment links. The lexical items cor-
responding to the leaves of the trees are pre-
sented in the table below the graph.

The alignment process can be visually repre-
sented as starting at a linked node in the I tree 
and following the link to the M tree. Then, if 
available, we follow the link to the T tree and 
this leads us to the T-tree node corresponding to 
the I-tree node we started from. In Figure 1, this 
results in the I–T alignments I1–T18, I2–T2, I3–
T1, I4–T32 and I6–T34. The first three links are 
matches, because the lexical items covered by 
the I nodes correspond exactly to the lexical 
items covered by their M node counterparts. 
Such alignments provide us with direct TM 
translations for our input. The last two links in 
the group are mismatched, because there is no 
lexical correspondence between the I and M 

nodes (node I4  corresponds to the phrase sender 
email, while the linked node M10  corresponds to 
sender ’s email). Such alignments can only be 
used to infer reordering information. In particular 
in this case, we can infer that the target word or-
der for the input sentence is address email 
sender, which produces the translation adresse 
électronique de l’ expéditeur.
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6 3

1 2
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36

34 8

1 32

2 24 7

18 6

3 4 5
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1 2
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T
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lation

1 2 3
sender email address

1 2 3 4 5
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1 2 3 4 5 6 7 8

adresse électro-
nique de l’ expé-

diteur du mes-
sage .

Figure 1. Example of sub-tree alignment between 
an input sentence, TM match and TM translation

We decided to use sub-tree-based alignment, 
rather than plain word alignment (e.g. GIZA++ – 
Och and Ney, 2003), due to a number of factors. 
First, sub-tree-based alignment provides much 
better handling of long-distance reorderings, 
while word– and phrase-based alignment models 
always have a fixed limit on reordering distance 
that tends to be relatively low to allow efficient 
computation.

The alignments produced by a sub-tree align-
ment model are also precision-oriented, rather 
than recall-oriented (cf. Tinsley, 2010). This is 
important in our case, where we want to only 
extract those parts of the translation suggested by 
the TM for which we are most certain that they 
are good translations.
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As stated earlier, the only resource necessary 
for the operation of this system is a probabilistic 
bilingual dictionary covering the data that needs 
to be aligned. For the bilingual alignment step, 
such a bilingual dictionary is produced as a by-
product of the training of the SMT backend and 
therefore available. For the monolingual align-
ment step, the required probabilistic dictionary is 
generated by simply listing each unique token 
seen in the source-language data in the TM as 
translating only as itself with probability 1.

2.4. Statistical Machine Translation Backend

Once the matching  step is completed, we have 
identified and marked-up the parts of the input 
sentence for which translations will be extracted 
from the TM suggestions, as well as the parts 
that need to be translated from scratch. The 
lengths of the non-translated segments vary de-
pending on the FMS, but are in general relatively 
short (one to three tokens).

The further processing of the input relies on a 
specific feature of the SMT backend we use, 
namely the Moses system (Koehn et al., 2007). 
We decided to use this particular system as it is 
the most widely adopted open-source SMT sys-
tem, both for academic and commercial pur-
poses. In this approach, we annotate the seg-
ments of the input sentence for which transla-
tions have been found from the TM suggestion 
using XML tags with the translation correspond-
ing to each segment given as an attribute to the 
encapsulating XML tag, similarly to the system 
described in (Smith and Clark, 2009). The SMT 
backend is supplied with marked-up input in the 
form of a string consisting of the concatenation 
of the XML-enclosed translated segments and 
the plain non-translated segments in the target-
language word order, as established by the 
alignment process. The SMT backend is in-
structed to translate this input, while keeping the 
translations supplied via the XML annotation.  
This allows the SMT backend to produce transla-
tions informed by and conforming to actual ex-
amples from the TM, which should result in im-
provements in translation quality.

2.5. Auxilliary Tools

It must be noted that in general the SMT backend 
sees the data it needs to translate in the target-
language word order (e.g. it is asked to translate 
an English sentence that has French word order). 
This, however, does not correspond to the data 
found in the TM, which we use for deriving the 
SMT models. Because of this discrepancy, we 
developed a pre-processing tool that goes over 
the TM data performing bilingual alignment and 
outputting reordered versions of the sentences it 
processes by using the information implicitly 
encoded in the sub-tree alignments. In this way 
we obtain the necessary reordered data to train a 
translation model where the source language al-
ready has the target-language word order. In our 
system we than use this model — together with 
the proper-word-order model — for translation.

One specific aspect of real-world TM data that 
we need to deal with is that they often contain 
meta-tag annotations of various sorts. Namely, 
annotation tags specific to the file format used for 
storing the TM data, XML tags annotating parts 
of the text as appearing in Graphical User Inter-
face (GUI) elements, formatting tags specific to 
the file format the TM data was originally taken 
from, e.g. RTF, OpenDoc, etc. Letting any MT 
system try to deal with these tags in a probabilis-
tic manner can easily result in ill-formed, mis-
translated and/or out-of-order meta-tags in the 
translation.

This motivates the implementation of a rudi-
mentary handling of meta-tags in the system pre-
sented in this paper, in particular handling the 
XML tags found in the TM data we work with, 
as described in Section 3. The tool we developed 
for this purpose simply builds a map of all 
unique XML tags per language and replaces 
them in the data with short placeholders that are 
designed in such a way that they would not inter-
fere with the rest of the TM data.2 A special case 
that the tool has to take care of is when an XML 
tag contains an attribute whose value needs to be 
translated. In such situations, we decided to not 
perform any processing, but rather leave the 
XML tag as is, so that all text may be translated 
as needed. A complete treatment of meta-tags, 
however, is beyond the scope of the current paper.

2 In the current implementation, the XML tags are replaced with the string <tag_id>, where <tag_id> is a unique nu-
meric identifier for the XML tag that is being replaced.

46



We also had to build a dedicated tokeniser/de-
tokeniser pair to handle real world TM data con-
taining meta-tags, e-mail addresses, file paths, 
etc., as described in Section 3. Both tools are 
implemented as a cascade of regular expression 
substitutions in Perl.

Finally, we use a tool to extract the textual 
data from the TM. That is, we strip all tags spe-
cific to the format in which the TM is stored, as 
they can in general be recreated and thus do not 
need to be present during translation. In our par-
ticular case the TM is stored in the XML-based 
TMX format.3

2.6. Complete Workflow
Besides the components described above, we 
also performed two further transformations on 
the data. First, we lowercase the TM data before 
using it to train the SMT backend models. This 
also means that the alignment steps from Section 
2.3 are performed on lowercased data, as the bi-
lingual dictionary used there is obtained during 
the SMT training process.4

Additionally, the SMT and sub-tree alignment 
systems that we use cannot handle certain char-
acters, which we need to mask in the data. For 
the SMT backend, this includes ‘|’, ‘<’ and ‘>’ 
and for the sub-tree aligner, ‘(’ and ‘)’. The rea-
son these characters cannot be handled is that the 
SMT system uses ‘|’ internally to separate data 
fields in the trained models and ‘<’ and ‘>’ can-
not be handled whilst using XML tags to anno-
tate pre-translated portions of the input. The sub-
tree aligner uses ‘(’ and ‘)’ to represent the 
phrase-based tree structures it generates and the 
presence of these characters in the data may cre-
ate ambiguity when parsing the tree structures. 
All these characters are masked by substituting 
in high-Unicode counterparts, namely ‘│’, ‘﹤’, 
‘﹥’, ‘﹙’ and ‘﹚’. Visually, there is a very slight 
distinction and this is intentionally so to simplify 
debugging. However, the fact that the character 
codes are different alleviates the problems dis-
cussed above. Of course, in the final output, the 
masking is reversed and the translation contains 
the regular versions of the characters.
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Figure 2. Pre-Processing Workflow

The complete pre-processing workflow is pre-
sented in Figure 2, where the rectangles with ver-
tical bars represent the use of open-source tools, 
while the plain rectangles represent tools devel-
oped by the authors of this paper.

First, the textual data is extracted from the 
original TM format, producing one plain-text file 
for each language side. These data can either be 
pre-loaded in a PostgreSQL database at this time, 
or during the first run of the translation system.

Next, the meta-tag-handling tool is used to 
generate the substitution tables for the source and 
target languages, as well as new files for each 
language with the tags substituted by the corre-
sponding identifiers (cf. Section 2.5). These files 
are then tokenised, lowercased and all conflicting 
characters are masked, as described above.

The pre-processed files are then used to pro-
duce a file containing pairs of sentences in the 
input format of the sub-tree aligner, as well as to 
generate the probabilistic dictionary required for 

3 http://www.lisa.org/fileadmin/standards/tmx1.4/tmx.htm
4 Currently, we do not use a recaser tool and the translations produced are always in lowercase. This component, however, 
will be added in a future version of the system.

47



the monolingual alignment and to train the SMT 
model on the data in the proper word order. The 
SMT training produces the necessary bilingual 
dictionary for use by the sub-tree aligner, which 
is run to obtain a parallel-treebank version of the 
TM data. The parallel treebank is then used to 
retrieve bilingual alignments for the TM data, 
rather than generate them on the fly during trans-
lation. This is an important design decision, as 
the complexity of the alignment algorithm is high 
for plain-text alignment (cf. Zhechev, 2010).

Once we have generated the bilingual parallel 
treebank, we run the reordering tool, which gen-
erates a new plain-text file for the source lan-
guage, where the sentences are modified to con-
form to the target-language word order, as im-
plied by the data in the parallel treebank. This is 
then matched with the proper-order target-
language file to train the SMT backend for the 
actual use in the translation process.
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Figure 3. Translation Workflow

Once all the necessary files have been gener-
ated and all pre-processing steps have been com-
pleted, the system is ready for use for translation. 
The translation workflow is shown in Figure 3, 
‘I’, ‘M’ and ‘T’ having the same meanings as in 
Figure 1. Here, the first step after an input sen-
tence has been read in is to find the TM match 
with the highest FMS. This is done using the 

original plain non-pre-processed data to simulate 
real-life operation with a proper TM backend.

After the best TM match and its translation are 
extracted from the TM, they — together with the 
input sentence — are pre-processed by tokenisa-
tion, lowercasing, meta-tag and special-character 
substitution. Next, the corresponding tree pair is 
extracted from the bilingual parallel treebank to 
establish the tree structure for the TM source-
language match. This tree structure is then used 
to perform the monolingual alignment, which 
allows us to perform the matching step next. Af-
ter the matching is complete, we generate a final 
translation as described in Section 2.4. Finally, 
the translations are de-tokenised and the XML 
tags and special characters are unmasked.

3. Experimental Setup

We use real-life TM data from an industrial part-
ner. The TM was generated during the translation 
of RTF-formatted customer support documenta-
tion. The data is in TMX format and originally 
contains 108   967 English–French translation 
segments, out of which 14 segments either have 
an empty language side or have an extreme dis-
crepancy in the number of tokens for each lan-
guage side and were therefore discarded.

A particular real-life trait of the data is the 
presence of a large number of XML tags. Run-
ning the tag-mapping tool described in Section 
2.6, we gathered 2 049 distinct tags for the Eng-
lish side of the data and 2  653 for the French 
side. Still, there were certain XML tags that in-
cluded a label argument whose value was trans-
lated from one language to the other. These XML 
tags were left intact so that our system could 
handle the translation correctly.

The TM data also contain a large number of 
file paths, e-mail addresses, URLs and others, 
which makes bespoke tokenisation of the data 
necessary. Our tokenisation tool ensures that 
none of these elements are tokenised, keeps RTF 
formatting sequences non-tokenised and properly 
handles non-masked XML tags, minimising their 
fragmentation.

As translation segments rarely occur more than 
once in a TM, we observe a high number of unique 
tokens (measured after pre-processing) — 41 379 
for English and 49   971 for French — out of 
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108  953 segment pairs. The average sentence 
length is 13.2 for English and 15.0 for French.

For evaluation, we use a data set of 4977 Eng-
lish–French segments from the domain of the 
TM. The sentences in the test set are significantly 
shorter on average, compared to the TM — 9.2 
tokens for English and 10.9 for French.

It must be noted that we used SMT models 
with maximum phrase length of 3 tokens, rather 
than the standard 5 tokens, and for decoding we 
used a 3-gram language model. This results in 
much smaller models than the ones usually used 
in mainstream SMT applications. (The standard 
for some tools goes as far as 7-token phase-
length limit and 7-gram language models)

4. Evaluation Results

For the evaluation of our system, we used a 
number of widely accepted automatic metrics, 
namely BLEU (Papineni et al., 2002), METEOR 
(Banerjee and Lavie, 2005), TER (Snover et al., 
2006) and inverse F-Score based on token-level 
precision and recall.

We setup our system to only fully process in-
put sentences for which a TM match with an 
FMS over 50% was found, although all sen-

tences were translated directly using the SMT 
backend to check the overall pure SMT perform-
ance. The TM-suggested translations were also 
output for all input sentences.

The results of the evaluation are given in Fig-
ure 4, where the tm and direct scores are also 
given for the FMS range [0%; 50%)∪{100%}. 
Across all metrics we see a uniform drop in the 
quality of TM-suggested translations, which is 
what we expected, given that these translations 
contain one or more wrong words. We believe 
that the relatively high scores recorded for the 
TM-suggested translations at the high end of the 
FMS scale are a result of the otherwise perfect 
word order and lexical choice. For n-gram-
match-based metrics like the ones we used such a 
result is expected and predictable. Although the 
inverse F-score results show the potential of our 
setup to translate the outstanding tokens in a 
90%–100% TM match, it appears that the SMT 
system produces word order that does not corre-
spond to the reference translation and because of 
this receives lower scores on the other metrics.

The unexpected drop in scores for perfect TM 
matches is due to discrepancies between the ref-
erence translations in our test set and the transla-
tions stored in the TM. We believe that this issue 

Figure 4. Evaluation results for English-to-French translation, broken down by FMS range
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affects all FMS ranges, albeit to a lower extent 
for non-perfect matches. Unfortunately, the exact 
impact cannot be ascertained without human 
evaluation.

We observe a significant drop-off in translation 
quality for the direct output below FMS 50%. 
This suggests that sentences with such low FMS 
should be translated either by a human translator 
from scratch, or by an SMT system trained on 
different/more data.

Our system (i.e. the xml setup) clearly outper-
forms the direct SMT translation for FMS be-
tween 80 and 100 and has comparable perform-
ance between FMS 70 and 80. Below FMS 70, 
the SMT backend has the best performance. Al-
though these results are positive, we still need to 
investigate why our system has poor perform-
ance at lower FMS ranges. Theoretically, it 
should outperform the SMT backend across all 
ranges, as its output is generated by supplying 
the SMT backend with good pre-translated frag-
ments. The Inverse F-Score graph suggest that 
this is due to worse lexical choice, but only man-
ual evaluation can provide us with clues for solv-
ing the issue.

The discrepancy in the results in the Inverse F-
Score graph with the other metrics suggest that 
the biggest problem for our system is producing 
output in the expected word-order.

5. Future Work

There are a number of possible directions for 
improvement that can be explored.

As mentioned earlier, we plan to integrate our 
system with a full-featured open-source or com-
mercial TM product that will supply the TM 
matches and translations. We expect this to im-
prove our results, as the quality of the TM matches 
will better correspond to the reported FMS.

Such an integration will also be the first neces-
sary step to perform a user study evaluating the 
effect of the use of our system on post-editing 
speeds. We expect the findings of such a study to 
show a significant increase of throughput that 
will significantly reduce the costs of translation 
for large-scale projects.

It would be interesting to also conduct a user 
study where our system is used to additionally 
mark up the segments that need to be edited in 

the final SMT translation. We expect this to pro-
vide additional speedup to the post-editing proc-
ess. Such a study will require tight integration 
between our system and a CAT tool and the 
modular design we presented will facilitate this 
significantly.

The proposed treatment of meta-tags is cur-
rently very rudimentary and may be extended 
with additional features and to handle additional 
types of tags. The design of our system currently 
allows the meta-tag-handling tool to be devel-
oped independently, thus giving the user the 
choice of using a different meta-tag tool for each 
type of data they work with.

In addition, the reordering tool needs to be 
developed further, with emphasis on properly 
handling situations where the appropriate posi-
tion of an input-sentence segment cannot be re-
liably established. In general, further research is 
needed into the reordering errors introduced by 
the SMT system into otherwise good translations.

6. Conclusions

In this paper, we presented a novel modular ap-
proach to the utilisation of Translation Memory 
data to improve the quality of Statistical Machine 
Translation.

The system we developed uses precise sub-
tree-based alignments to reliably determine and 
mark up correspondences between an input sen-
tence and a TM-suggested translation, which en-
sures the utilisation of the high-quality transla-
tion data stored in the TM database. An SMT 
backend then translates the marked-up input sen-
tence to produce a final translation with im-
proved quality.

Our evaluation shows that the system pre-
sented in this paper significantly improves the 
quality of SMT output when using TM matches 
with FMS above 80 and produces results on par 
with the pure SMT output for SMT between 70 
and 80. TM matches with FMS under 70 seem to 
provide insufficient reordering information and 
too few matches to improve on the SMT output. 
Still, further investigation is needed to properly 
diagnose the drop in quality for FMS below 70.

We expect further improvements to the reor-
dering functionality of our system to result in 
higher-quality output even for lower FMS ranges.
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Abstract 

Morphological analysis and disambigua-
tion are crucial stages in a variety of nat-
ural language processing applications 
such as machine translation, especially 
when languages with complex morphol-
ogy are concerned such as Arabic. Arab-
ic is a highly flexional language, in that, 
the same root can lead to various forms 
according to its context. In this paper, we 
present a system which disambiguates 
the output of a morphological analyzer 
for Arabic. The Arabic morphological 
analyzer used consists of a set of all 
possible morphological analyses for each 
word, with the unique correct syntactic 
feature. We want to choose the correct 
features using the features generated by 
the morphological analyzer for the 
French language in the other side. To ob-
tain this data, we used the results of the 
alignment of word trained with GIZA++ 
(Och and Ney, 2003). 

1 Introduction 

Arabic is characterized by a rich morphology. 
Due to the fact that the Arabic script usually 
does not encode short vowels, the degree of 
morphological ambiguity is very high. In addi-
tion to being inflected for gender, number, 
words can be attached to various clitics for con-
junction "و" (and), the definite article "ال" (the), 
prepositions (e.g. "ب" (by/with), "ل" (for), "ك" 
(as)), object pronouns (e.g. "هم" (their/them)). 

The morphological analysis of a word consists 
of determining morphological information about 
each word, such as part-of-speech (i.e., noun, 
verb, particle, etc), voice, gender, number, in-

formation about the clitics, etc. Morphological 
analysis and disambiguation are crucial pre-
processing steps for a variety of natural language 
processing applications, from search and infor-
mation extraction to machine translation. For 
languages with complex morphology these are 
nontrivial processes. 

Arabic words are often ambiguous in their 
morphological analysis. This is due to Arabic’s 
rich system of affixation and clitics and the 
omission of disambiguating short vowels. The 
problem is that many words have different 
meanings depending on their diacritization. This 
leads to ambiguity when processing data for nat-
ural language processing applications such as 
machine translation. This propriety has an im-
portant implication for statistical modeling of the 
Arabic language. 

In this paper, we present a novel morphology 
preprocessing technique for Arabic. We exploit 
the Arabic morphology-French alignment to 
choose a correct morpho-syntactic feature pro-
duced by a morphological analyzer. 

This paper is organized as follows: section 2 
gives a brief description of some related works 
to the introduction of morphological disambigu-
ation. Section 3 presents the used morphological 
analyzer Morph2 for Arabic texts, able to recog-
nize word composition and to provide more spe-
cific morphological information about it. We 
present in section 4 some problems in context 
morpho-syntactic feature choice; in the remaind-
er of this section we discuss the complexity of 
Arabic morphology and the challenge of mor-
phological disambiguation. Section 5 gives a 
short overview of the data and tools used for our 
Arabic word Morpho-syntactic feature disam-
biguation and shows the experimental details of 
our system. Finally, section 6 presents some 
conclusions. 
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2 Related work 

Morphological analysis and disambiguation are 
crucial pre-processing steps for a variety of 
natural language processing applications. 

Previous research has focused on 
disambiguating the output of a morphological 
analyzer. Hajic (2000) is the first to use a 
dictionary as a source of possible morphological 
analyses (and hence tags) for an inflected word 
form. He convincingly shows that for five 
Eastern European languages with complex 
inflection plus English, using a morphological 
analyzer improves performance of a tagger. He 
concludes that for highly inflectional languages 
“the use of an independent morphological 
dictionary is the preferred choice more annotated 
data”. He redefines the tagging task as a choice 
among the tags proposed by the dictionary, using 
a log-linear model trained on specific ambiguity 
classes for individual morphological features. 
Hajic (2000) demonstrates convincingly that 
morphological disambiguation can be aided by a 
morphological analyzer, which, given a word 
without any context, gives us the set of all 
possible morphological tags.  

The only work on Arabic tagging that uses a 
corpus for training and evaluation, (Diab et al., 
2004), does not use a morphological analyzer. 
Diab et al. (2004) perform tokenization, POS 
tagging and base phrase chunking using a SVM 
based learner.  

The Morphological Analysis and 
Disambiguation of Arabic (MADA) system is 
described in (Habash and Rambow, 2005). The 
basic approach used in MADA is inspired by the 
work of Hajic (2000) for tagging 
morphologically rich languages, which was 
extended to Arabic. Habash and Rambow (2005) 
use SVM-classifiers for individual 
morphological features and a simple combining 
scheme for choosing among competing analyses 
proposed by the dictionary. 

3 Arabic word  segmenter 

Arabic is a morphologically complex language. 
Compared with French, an Arabic word can 
sometimes correspond to a whole French sen-
tence (Example : the Arabic word "أتتذآّروننا" cor-
responds in French to the sentence "Est-ce que 

vous vous souvenez de nous", in English: "Do 
you remember us").  

The aim of a morphological analysis step is to 
recognize word composition and to provide spe-
cific morphological information about it. For 
Example : the word "يعرفون" (in French: con-
naîssent, in English: they know) is the result of 
the concatenation of the prefix "ي" indicating the 
present and suffix "ون" indicating the plural 
masculine of the verb "عرف" (in French: con-
naître, in English: to know). The morphological 
analyzer determines for each word the list of all 
its possible morphological features.  

In Arabic language, some conjugated verbs or 
inflected nouns can have the same orthographic 
form due to absence of vowels (Example : non-
voweled Arabic word "فصل" can be a verb in the 
past "َفَصَل" (He dismissed), or a masculine noun 
 or a concatenation of ,(chapter / season) "فَصْلٌ"
the coordinating conjunction " فَ  " (then) with the 
verb "صل": imperative of the verb (bind)). 

In this work, In order to handle the morpho-
logical ambiguities, we decide to use MORPH2 
(Belguith et al., 2006), an Arabic morphological 
analyzer developed at the Miracl laboratory1. 
MORPH2 is based on a knowledge-based com-
putational method. It accepts as input an Arabic 
text, a sentence or a word. Its morphological dis-
ambiguation and analysis method is based on 
five steps: 

• A tokenization process is applied in a 
first step. It consists of two sub-steps. 
First, the text is divided into sentences, 
using the system Star (Belguith et al., 
2005), an Arabic text tokenizer based on 
contextual exploration of punctuation 
marks and conjunctions of coordination. 
The second sub-step detects the different 
words in each sentence. 

• A morphological preprocessing step 
which aims to extract clitics agglutinated 
to the word. A filtering process is then 
applied to check out if the remaining 
word is a particle, a number, a date, or a 
proper noun. 

• An affixal analysis is then applied to de-
termine all possible affixes and roots. It 
aims to identify basic elements belonging 

                                                 
1 http://www.miracl.rnu.tn 
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to the constitution of a word (the root and 
affixes i.e. prefix, infix and suffix). 

• The morphological analysis step consists 
of determining for each word, all its 
possible morpho-syntactic features (i.e, 
part of speech, gender, number, time, 
person, etc.). Morpho-syntactic features 
detection is made up on three stages. The 
first stage identifies the part-of-speech of 
the word (i.e. verb "فعل", noun "اسم", par-
ticle "أداة" and proper noun "اسم علم"). The 
second stage extracts for each part-of-
speech a list of its morpho-syntactic fea-
tures. A filtering of these feature lists is 
made in the third stage. 

• Vocalization and validation step : each 
handled word is fully vocalized accord-
ing to its morpho-syntactic features de-
termined in the previous step.  

 
In our method, each Arabic word, from Arab-

ic data, is replaced by its segmented form, where 
stem, clitic and affix are featured with their 
morphological classes (e.g. proclitic, prefix, 
stem, suffix and enclitic). For example: the word 
 ,"in French: "et nous les avons connu) "فعرفناهم"
in English: "and we have known them") is the 
result of the concatenation of the proclitic "َف" 
(then): coordinating conjunction, the suffix "نا" 
for the present masculine plural, enclitic "هم" (for 
the masculine plural possession pronoun), and 
the rest of the word "عرف" indicating the stem. 
So, the word "فعرفناهم" will be replaced by: 
 

"enclitic _هم   suffix_ نا  Stem_ عرف  proclitic _ف " 

4 Problems in context Morpho-
syntactic feature choice 

As mentioned in section 1, ambiguities in Arabic 
word are mainly caused by the absence of the 
short vowels. Thus, a word can have different 
meanings. There are also the usual homographs 
of uninflected words with/without the same pro-
nunciation, which have different meanings and 
usually different POS’s. For example: the word 
 :in English ,"ذهب" in English: "gold" and ,"ذهب"
"go". In Arabic there are four categories of 
words: noun, proper noun, verbs and particles. 
The absence of short vowels can cause ambigui-
ties within the same category or across different 

categories. For example: the word "بعد" corres-
ponds to many categories (table 1). 

meanings of a word "بعد" Categories 
after Particule 
remoteness Noun 
remove Verb 
go away Verb 

 
Table 1. Different meanings of a word "بعد" 

 
Arabic uses a diverse system of prefixes, suf-

fixes, and pronouns that are attached to the 
words (Soudi, 2007). 

In fact, in Arabic language, the word: "وضع" 
can be a verb in the past (He filed), or a mascu-
line noun (state), or a concatenation of the coor-
dinating conjunction "و" (and) with the verb 
-imperative of the verb (filed). For this rea :"ضع"
son, correct morphological analysis is required 
to resolve structural ambiguities among Arabic 
sentence. 

5 Word Morpho-syntactic feature dis-
ambiguation 

5.1 Training corpus 

The training corpus used in this work is an 
Arabic-French bitext aligned at the sentence 
level. Each Arabic word, from Arabic data, is 
replaced by its segmented form. In the other 
side, the French corpus is part-of-speech (POS) 
tagged by using treetagger tool (Schmid, 1994) 
for annotating text with part-of-speech and 
lemma information. 

5.2 Alignment model 

The aligned model was trained with GIZA++ 
(Och and Ney, 2003), which implements the 
most typical IBM and HMM alignment models. 
The alignment model used consists of IBM-1, 
HMM, IBM-3 and IBM-4. 

5.3 Using treetagger for Arabic Word 
Morpho-syntactic feature disambigua-
tion 

To pre-process the Arabic data, we use the 
MORPH2 morphological analyzer (Belguith et 
al., 2006).  A sample output of the morphologi-
cal analyzer is shown in Figure 1.  
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Figure 1. Possible analyses for the word "بعد" 
 
The obtained output consists of a set of all 

possible morphological analyses for each word, 
with the unique correct analysis. One needs to 
select the right meaning by looking at the con-
text. Given the highly inflection nature of Arab-
ic, resolving ambiguities is syntactically harder 
within the same category. We want to choose the 
correct output using the features generated by 
TreeTagger applied to the French corpus.  

To obtain this correct feature, we needed to 
match data in the segmented Arabic corpus to 
the lexeme and feature representation output by 
TreeTagger. The matching included the results 
of the alignment of word between the segmented 
Arabic corpus and the part-of-speech tagged 
French corpus. 

Example : the word "فعرفناهم" (in French: "et 
nous les avons connu", in English: "and we have 
known them") is segmented by: 

 enclitic" _هم suffix _نا stem _عرف proclitic _ف"
 

The part-of-speech tagged of the French sen-
tence is: 

 

"et_KON nous_PRO:PER les_PRO:PER 
avons_VER:pres connu_VER:pper" 

 
The result of the alignment between these two 

sentences is: 
 

(a)  enclitic _هم suffix   _نا stem      _عرف proclitic     _ف

 
 
 

 
(b) Et nous les avons Connu 
 KON PRO:PER PRO:PER VER:pres VER:pper 
 
Figure 2. (a) Output of morphological analysis 
MORPH2: segmented Arabic sentence, (b) 
French translation and its alignment with seg-
mented morphological analysis 

 
The stem "عرف" is aligned with the word: 

"connu" : the past participle of the verb "con-
naître" (in English : "known"). We can deduce 
that the part of speech of the stem "عرف" is a 
verb.  

Morpho-syntactic features provided by Tree-
Tagger are verb, proper noun, noun, adjective, 
adverb, conjunction, pronoun, preposition, etc. 
The morpho-syntactic feature of Arabic words 
aligned with French words tagged by adjective 
or noun will be replaced by the morpho-
syntactic feature : noun: "اسم". While, the mor-
pho-syntactic feature : adverb, conjunction, or 
prepostion will be replaced by the Arabic mor-
pho-syntactic feature : particle : "أداة".  

We can attest that the use of morpho-syntactic 
features provided by the part-of-speech tagged 
corpus in the other side can remove disambigua-
tion of morpho-syntactic feature of the Arabic 
word provided by a morphological analyser, es-
pecially for agglutinative and inflectional lan-
guages. 

5.4 Experimental results 

In our experiments, on the entire corpus, the 
MORPH2 morphological analyzer makes 1152 
errors (27%). Table 2 shows the results obtained 
with the morphological analyzer MORPH2, 
BASELINE, and the results obtained with the 
Arabic morphology-French alignment, treetag-
ger-to-morph2, where Arabic morphology-
French alignment is used to choose a correct 

64



morpho-syntactic feature produced by a morpho-
logical analyzer  MORPH2. 
 

System Accuracy (%) 
BASELINE 73% 
treetagger-to-
morph2 

88% 

 
Table 2. Results of treetagger-to-morph2 com-
pared against BASELINE on the task of POS 
tagging of Arabic text 

 
Thus one can observe that, for Arabic, the 

treetagger-to-morph2 outperforms the BASE-
LINE tagger with a significant absolute differ-
ence of 15% in tagging accuracy. 

The performance of treetagger-to-morph2 is 
better than the baseline BASELINE. The errors 
encountered result from confusing nouns with 
verbs, particles or vice versa. This is to be 
caused by the presence of homographs of Arabic 
words, which have different meanings and dif-
ferent POS’s. 

6 Conclusion 

Morphological disambiguation of Arabic is a 
difficult task which involves, in theory, thou-
sands of possible tags. 

In this paper, we present a system which dis-
ambiguates the output of a morphological ana-
lyzer for Arabic. Arabic is a morphologically 
rich language, and Morphological analysis and 
disambiguation are crucial stages in a variety of 
natural language processing applications.  

We first applied an Arabic word segmentation 
step, to improve the alignments models. So we 
use the Arabic morphological analyzer 
MORPH2. Then, we proposed to use TreeTag-
ger tool, able to annotate text with part-of-
speech and lemma information, where each 
word from French corpus is agglutinated to its 
part-of-speech (POS). The sentence alignment 
between Arabic and French corpus was trained 
with GIZA++. The core idea is to avoid morpho-
syntactic ambiguity of the Arabic words ob-
tained in the MORPH2 output by using the part 
of speech of corresponding aligned French word. 
We showed that imposing Arabic-French align-
ment dependent constraints on possible se-
quences of analyses improves the morphological 
disambiguation.  

Future work will focus on taking advantage of 
our efficient technique. We are very interested to 
use Word Morpho-syntactic feature disambigua-
tion to build up an efficient French-Arabic trans-
lation system.  
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Abstract

In this paper, we propose a dependency
based statistical system that uses discrim-
inative techniques to train its parameters.
We conducted experiments on an English-
Hindi parallel corpora. The use of syntax
(dependency tree) allows us to address the
large word-reorderings between English
and Hindi. And, discriminative training
allows us to use rich feature sets, includ-
ing linguistic features that are useful in the
machine translation task. We present re-
sults of the experimental implementation
of the system in this paper.

1 Introduction

Syntax based approaches for Machine Translation
(MT) have gained popularity in recent times be-
cause of their ability to handle long distance re-
orderings (Wu, 1997; Yamada and Knight, 2002;
Quirk et al., 2005; Chiang, 2005), especially for
divergent language pairs such as English-Hindi
(or English-Urdu). Languages such as Hindi are
also known for their rich morphology and long
distance agreement of features of syntactically re-
lated units. The morphological richness can be
handled by employing techniques that factor the
lexical items into morphological factors. This
strategy is also useful in the context of English-
Hindi MT (Bharati et al., 1997; Bharati et al.,

1This work was done at LTRC, IIIT-Hyderabad, when he
was a masters student, till July 2008

2002; Ananthakrishnan et al., 2008; Ramanathan
et al., 2009) where there is very limited paral-
lel corpora available, and breaking words into
smaller units helps in reducing sparsity. In or-
der to handle phenomenon such as long-distance
word agreement to achieve accurate generation of
target language words, the inter-dependence be-
tween the factors of syntactically related words
need to be modelled effectively.

Some of the limitations with the syntax based
approaches such as (Yamada and Knight, 2002;
Quirk et al., 2005; Chiang, 2005) are, (1) They
do not offer flexibility for adding linguistically
motivated features, and (2) It is not possible to
use morphological factors in the syntax based ap-
proaches. In a recent work (Shen et al., 2009), lin-
guistic and contextual information was effectively
used in the framework of a hierarchical machine
translation system. In their work, four linguistic
and contextual features are used for accurate se-
lection of translation rules. In our approach in
contrast, linguistically motivated features can be
defined that directly effect the prediction of var-
ious elements in the target during the translation
process. This features use syntactic labels and col-
location statistics in order to allow effective train-
ing of the model.

Some of the other approaches related to our
model are the Direct Translation Model 2 (DTM2)
(Ittycheriah and Roukos, 2007), End-to-End Dis-
criminative Approach to MT (Liang et al., 2006)
and Factored Translation Models (Koehn and
Hoang, 2007). In DTM2, a discriminative trans-
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lation model is defined in the setting of a phrase
based translation system. In their approach, the
features are optimized globally. In contrast to
their approach, we define a discriminative model
for translation in the setting of a syntax based ma-
chine translation system. This allows us to use
both the power of a syntax based approach, as
well as, the power of a large feature space during
translation. In our approach, the weights are op-
timized in order to achieve an accurate prediction
of the individual target nodes, and their relative
positions.

We propose an approach for syntax based sta-
tistical machine translation which models the fol-
lowing aspects of language divergence effectively.

• Word-order variation including long-
distance reordering which is prevalent
between language pairs such as English-
Hindi and English-Japanese.

• Generation of word-forms in the target lan-
guage by predicting the word and its factors.
During prediction, the inter-dependence of
factors of the target word form with the fac-
tors of syntactically related words is consid-
ered.

To accomplish this goal, we visualize the prob-
lem of MT as transformation from a morpho-
logically analyzed source syntactic structure to a
target syntactic structure1 (See Figure 1). The
transformation is factorized into a series of mini-
transformations, which we address as features of
the transformation. The features denote the vari-
ous linguistic modifications in the source structure
to obtain the target syntactic structure. Some of
the examples of features are lexical translation of
a particular source node, the ordering at a particu-
lar source node etc. These features can be entirely
local to a particular node in the syntactic structure
or can span across syntactically related entities.
More about the features (or mini-transformations)
is explained in section 3. The transformation of
a source syntactic structure is scored by taking a
weighted sum of its features 2. Let τ represent

1Note that target structure contains only the target fac-
tors. An accurate and deterministic morphological generator
combines these factors to produce the target word form.

2The features can be either binary-values or real-valued

the transformation of source syntactic structure s,
the score of transformation is computed as repre-
sented in Equation 1.

score(τ |s) =
∑

i

wi ∗ fi(τ, s) (1)

In Equation 1, f ′is are the various features of
transformation and w′

is are the weights of the fea-
tures. The strength of our approach lies in the flex-
ibility it offers in incorporating linguistic features
that are useful in the task of machine translation.
These features are also known as prediction fea-
tures as they map from source language informa-
tion to information in the target language that is
being predicted.

During decoding a source sentence, the goal
is to choose a transformation that has the high-
est score. The source syntactic structure is tra-
versed in a bottom-up fashion and the target syn-
tactic structure is simultaneously built. We used
a bottom-up traversal while decoding because it
builds a contiguous sequence of nodes for the sub-
trees during traversal enabling the application of a
wide variety of language models.

In the training phase, the task is to learn the
weights of features. We use an online large-
margin training algorithm, MIRA (Crammer et
al., 2005), for learning the weights. The weights
are locally updated at every source node during
the bottom-up traversal of the source structure.
For training the translation model, automatically
obtained word-aligned parallel corpus is used. We
used GIZA++ (Och and Ney, 2003) along with the
growing heuristics to word-align the training cor-
pus.

The basic factors of the word used in our exper-
iments are root, part-of-speech, gender, number
and person. In Hindi, common nouns and verbs
have gender information whereas, English doesn’t
contain that information. Apart from the basic
factors, we also consider the role information pro-
vided by labelled dependency parsers. For com-
puting the dependency tree on the source side, We
used stanford parser (Klein and Manning, 2003)
in the experiments presented in this chapter3.

3Stanford parser gives both the phrase-structure tree as
well as dependency relations for a sentence.
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root=mila,   tense=PAST

gnp=m3sg

root=se

gnp=x3sg
root=raam

gnp=m1sg

root=shyaam

gnp=m1sg

root=pay,   tense=PAST

gnp=x3sg,  role=X 

paid/VBD

root=Ram,  gnp=x1sg

Ram/NNP

role=subj

visit/NN

root=visit,  gnp=x3sg

role=obj role=vmod

root=to,     gnp=x3sg

to/TO

root=Shyam,  gnp=x1sg

role=pmod

Shyam/NNP

root=a,    gnp=x3sg

role=nmod

a/DT

Figure 1: Transformation from source structure to target language

The function words such as prepositions and
auxiliary verbs largely express the grammatical
roles/functions of the content words in the sen-
tence. In fact, in many agglutinative languages,
these words are commonly attached to the con-
tent word to form one word form. In this pa-
per, we also conduct experiments where we begin
by grouping the function words with their corre-
sponding function words. These groups of words
are called local-word groups. In these cases, the
function words are considered as factors of the
content words. Section 2 explains more about the
local word groups in English and Hindi.

2 Local Word Groups

Local word groups (LWGs) (Bharati et al., 1998;
Vaidya et al., 2009) consist of a content word and
its associated function words. Local word group-
ing reduces a sentence to a sequence of content
words with the case-markers and tense-markers
acting as their factors. For example, consider
an English sentence ‘People of these island have
adopted Hindi as a means of communication’.
‘have adopted’ is a LWG with root ‘adopt’ and
tense markers being ‘have ed’. Another example
for the LWG will be ‘of communication’ where
‘communication’ is the root, and ‘of’ is the case-
marker. It is to be noted that Local word grouping
is different from chunking, where more than one
content word can be part of a chunk. We obtain lo-
cal word groups in English by processing the out-
put of the stanford parser. In Hindi, the function
words always appear immediately after the con-

tent word4, and it requires simple pattern
matching to obtain the LWGs. The rules ap-

plied are, (1) VM (RB|VAUX)+, and (2) N.* IN.

3 Features

There are three types of transformation features
explored by us, (1) Local Features, (2) Syntactic
Features and, (3) Contextual Features. In this sec-
tion, we describe each of these categories of fea-
tures representing different aspects of transforma-
tion with examples.

3.1 Local Features

The local features capture aspects of local trans-
formation of an atomic treelet in the source
structure to an atomic treelet in the target lan-
guage. Atomic treelet is a semantically non-
decomposible group of one or more nodes in the
syntactic structure. It usually contains only one
node, except for the case of multi-word expres-
sions (MWEs). Figure 2 presents the examples of
local transformation.

Some of the local features used by us in our ex-
periments are (1) dice coefficient, (2) dice coeffi-
cient of roots, (3) dice coefficient of null transla-
tions, (4) treelet translation probability, (5) gnp-
gnp pair, (5) preposition-postposition pair, (6)
tense-tense pair, (7) part-of-speech fertility etc.
Dice coefficients and treelet translation probabil-
ities are measures that express the statistical co-
occurrence of the atomic treelets.

4case-markers are called postpositions
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root=Ram,  gnp=x1sg

Ram/NNP

role=subj

root=pay,   tense=PAST

gnp=x3sg,  role=X 

paid/VBD

visit/NN

root=visit,  gnp=x3sg

role=obj

root=mila,   tense=PAST

gnp=m3sg

root=raam

gnp=m1sg

Figure 2: Local transformations

3.2 Syntactic Features

The syntactic features are used to model the differ-
ence in the word orders of the two languages. At
every node of the source syntactic structure, these
features define the changes in the relative order
of children during the process of transformation.
They heavily use source information such as part-
of-speech tags and syntactic roles of the source
nodes. One of the features used is reorderPostags.

This feature captures the change in relative po-
sitions of children with respect to their parents
during the tree transformation. An example fea-
ture for the transformation given in Figure 1 is
shown in Figure 3.

  IN   NNP

   
   VB    

  NNP

     VB

 TO

Figure 3: Syntactic feature - reorder postags

The feature reorderPostags is in the form of a
complete transfer rule. To handle cases, where the
left-hand side of ‘reorderPostags’ does not match
the syntactic structure of the source tree, the sim-
pler feature functions are used to qualify various
reorderings. Instead of using POS tags, feature
functions can be defined that use syntactic roles.

Apart from the above feature functions, we can
also have features that compute the score of a par-
ticular order of children using syntactic language
models (Gali and Venkatapathy, 2009; Guo et al.,
2008). Different features can be defined that use
different levels of information pertaining to the
atomic treelet and its children.

3.3 Contextual Features
Contextual features model the inter-dependence
of factors of nodes connected by dependency arcs.
These features are used to enable access to global
information for prediction of target nodes (words
and its factors).

One of the features diceCoeffParent, relates the
parent of a source node to the corresponding target
node (see figure 4.

x1

x2

x3 x4

y

dice

Figure 4: Use of Contextual (parent) information
of x2 for generation of y

The use of this feature is expected to address of
the limitations of using ‘atomic treelets’ as the ba-
sic units in contrast to phrase based systems which
consider arbitrary sequences of words as units to
encode the local contextual information. In my
case, We relate the target treelet with the contex-
tual information of the source treelet using feature
functions rather than using larger units. Similar
features are used to connect the context of a source
node to the target node.

Various feature functions are defined to han-
dle interaction between the factors of syntacti-
cally related treelets. The gender-number-person
agreement is a factor that is dependent of gender-
number-person factors of the syntactically related
treelets in Hindi. The rules being learnt here
are simple. However, more complex interac-
tions can also be handled though features such as
prep Tense where, the case-marker in the target is
linked to the tense of parent verb.

4 Decoding

The goal is to compute the most probable target
sentence given a source sentence. First, the source
sentence is analyzed using a morphological ana-
lyzer5, local word grouper (see section 2) and a
dependency parser. Given the source structure,
the task of the decoding algorithm is to choose the
transformation that has the maximum score.

5http://www.cis.upenn.edu/∼xtag/
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The dependency tree of the source language
sentence is traversed in a bottom-up fashion for
building the target language structure. At every
source node during the traversal, the local trans-
formation is first computed. Then, the relative or-
der of its children is then computed using the syn-
tactic features. This results in a target structure
associated with the subtree rooted at the particular
node. The target structure associated with the root
node of the source structure is the result of the best
transformation of the entire source structure.

Hence, the task of computing the best transfor-
mation of the entire source structure is factorized
into the tasks of computing the best transforma-
tions of the source treelets. The equation for com-
puting the score of a transformation, Equation 1,
can be modified as Equation 2 given below.

score(τ |s) =
∑

r

|r| ∗
∑

i

wi ∗ fi(τr, r) (2)

where, τj is the local transformation of the
source treelet r. The best transformation τ̂ of
source sentence s is,

τ̂ = argmaxτ score(τ |s) (3)

5 Training Algorithm

The goal of the training algorithm is to learn the
feature weights from the word aligned corpus. For
word-alignment, we used the IBM Model 5 imple-
mented in GIZA++ along with the growing heuris-
tics (Koehn et al., 2003). The gold atomic treelets
in the source and their transformation is obtained
by mapping the source node to the target using the
word-alignment information. This information is
stored in the form of transformation tables that is
used for the prediction of target atomic treelets,
prepositions and other factors. The transformation
tables are pruned in order to limit the search and
eliminate redundant information. For each source
element, only the top few entries are retained in
the table. This limit ranges from 3 to 20.

We used an online-large margin algorithm,
MIRA (McDonald and Pereira, 2006; Crammer
et al., 2005), for updating the weights. During
parameter optimization, it is sometimes impossi-
ble to achieve the gold transformation for a node
because the pruned transformation tables may not

lead to the target gold prediction for the source
node. In such cases where the gold transforma-
tion is unreachable, the weights are not updated
at all for the source node as it might cause erro-
neous weight updates. We conducted our exper-
iments by considering both the cases, (1) Identi-
fying source nodes with unreachable transforma-
tions, and (2) Updating weights for all the source
nodes (till a maximum iteration limit). The num-
ber of iterations on the entire corpus can also be
fixed. Typically, two iterations have been found to
be sufficient to train the model.

The dependency tree is traversed in a bottom-up
fashion and the weights are updated at each source
node.

6 Experiments and Results

The important aspects of the translation model
proposed in this paper have been implemented.
Some of the components that handle word in-
sertions and non-projective transformations have
not yet been implemented in the decoder, and
should be considered beyond the scope of this
paper. The focus of this work has been to
build a working syntax based statistical machine
translation system, which can act as a plat-
form for further experiments on similar lines.
The system would be available for download
at http://shakti.iiit.ac.in/∼sriram/vaanee.html. To
evaluate this experimental system, a restricted
set of experiments are conducted. The experi-
ments are conducted on the English-Hindi lan-
guage pair using a corpus in tourism domain con-
taining 11300 sentence pairs6.

6.1 Training

6.1.1 Configuration
For training, we used DIT-TOURISM-ALIGN-

TRAIN dataset which is the word-aligned dataset
of 11300 sentence pairs. The word-alignment is
done using GIZA++ (Och and Ney, 2003) toolkit
and then growing heuristics are applied. For
our experiments, we use two growing heuristics,
GROW-DIAG-FINAL-AND and GROW-DIAG-
FINAL as they cover most number of words in
both the sides of the parallel corpora.

6DIT-TOURISM corpus

70



Number of Training Sentences 500

Iterations on Corpus 1-2

Parameter optimization algorithm MIRA

Beam Size 1-20

Maximum update attempts at source node 1-4

Unreachable updates False

Size of transformation tables 3

Table 1: Training Configuration

The training of the model can be performed un-
der different configurations. The configurations
that we used for the training experiments are given
in Table 6.1.1.

6.2 Results

For the complete training, the number of sen-
tences that should be used for the best perfor-
mance of the decoder should be the complete set.
In the paper, we have conducted experiments by
considering 500 training sentences to observe the
best training configuration.

At a source node, the weight vector is itera-
tively updated till the system predicts the gold
transformation. We conducted experiments by fix-
ing the maximum number of update attempts. A
source node, where the gold transformation is not
achieved even after the maximum updates limit,
the update at this source node is termed a update
failure. The source nodes, where the gold trans-
formation is achieved even without making any
updates is known as the correct prediction.

At some of the source nodes, it is not possible
to arrive at the gold target transformation because
of limited size of the training corpus. At such
nodes, we have avoided doing any weight update.
As the desired transformation is unachievable, any
attempt to update the weight vector would cause
noisy weight updates.

We observe various parameters to check the ef-
fectiveness of the training configuration. One of
the parameters (which we refer to as ‘updateHits’)
computes the number of successful updates (S)
performed at the source nodes in contrast to num-
ber of failed updates (F ). Successful updates re-
sult in the prediction of the transformation that is
same as the reference transformation. A failed up-
date doesn’t result in the achievement of the cor-

rect prediction even after the maximum iteration
limit (see section 6.1.1) is reached. At some of the
source nodes, the reference transformations are
unreachable (U ). The goal is to choose the con-
figuration that has least number of average failed
updates (F ) because it implies that the model has
been learnt effectively.

UpdateHit

K m P S F U

1. 1 4 1680 2692 84 4081

2. 5 4 1595 2786 75 4081

3. 10 4 1608 2799 49 4081

4. 20 4 1610 2799 47 4081

Table 2: Training Statistics - Effect of Beam Size

From Table 2, we can see that the bigger beam
size leads to a better training of the model. The
beam size was varied between 1 and 20, and the
number of update failures (F ) was observed to be
least at K=20.

UpdateHit

K m P S F U

1. 20 1 1574 2724 158 4081

2. 20 2 1598 2767 91 4081

3. 20 4 1610 2799 47 4081

Table 3: Training Statistics - Effect of maximum
update attempts

In Table 3, we can see that an higher limit on
the maximum number of update attempts results
in less number of update attempts as expected. A
much higher value of m is not preferable because
the training updates makes noisy updates in case
of difficult nodes i.e., the nodes where target trans-
formation is reachable in theory, but is unreach-
able given the set of features.

UpdateHit

K i P S F U

1. 1 1 1680 2692 84 4081

2. 1 2 1679 2694 83 4081

Table 4: Training Statistics - Effect of number of
iterations

Now, we examine the effect of number of it-
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erations on the quality of the model. In table 4,
we can observe that the number of iterations on
the data has no effect on the quality of the model.
This implies, that the model is adequately learnt
after one pass through the data. This is possible
because of the multiple number of update attempts
allowed at every node. Hence, the weights are up-
dated at a node till the model prediction is consis-
tent with the gold transformation.

Based on the above observations, we consider
the configuration 4 in Table 2 for the decoding ex-
periments.

Now, we present some of the top features
weights leant by the best configuration. The
weights convey that important properties of trans-
formation are being learnt well. Table 5 presents
the weights of the features ‘diceRoot’, ‘dice-
RootChildren’ and ‘diceRootParent’.

Feature Weight

dice 75.67

diceChildren 540.31

diceParent 595.94

treelet translation probability (ttp) 1 0.77

treelet translation probability (ttp) 2 389.62

Table 5: Weights of dice coefficient based features

We see that the dice coefficient based local and
contextual features have a positive impact on the
selection of correct transformations. A feature
that uses a syntactic language model to compute
the perplexity per word has a negative weight of
-1.115.

Table 6 presents the top-5 entries of contex-
tual features that describe the translation of source
argument ’nsubj’ using contextual information
(‘tense’ of its parent).

Feature Weight

roleTenseVib:nsubj+NULL NULL 44.194196513246

roleTenseVib:nsubj+has VBN ne 14.4541356715382

roleTenseVib:nsubj+VBD ne 10.9241093097953

roleTenseVib:nsubj+VBP meM 6.14149937079584

roleTenseVib:nsubj+VBP NULL 4.76795730621754

Table 6: Top weights of a contextual feature :
preposition+Tense-postposition

Table 7 presents the top-10 ordering relative po-
sition feature where the head word is a verb. In
this feature, the relative position (left or right) of
the head and the child is captured. For example, a
feature ‘relPos:amod-NN’, if active, conveys that
an argument with the role ‘amod’ is at the left of
a head word with POS tag ‘NN’.

Feature Weight
relPos:amod-NN 6.70
relPos:NN-appos 1.62

relPos:lrb-NN 1.62

Table 7: Top weights of relPos feature

6.3 Decoding

We computed the translation accuracies using two
metrics, (1) BLEU score (Papineni et al., 2002),
and (2) Lexical Accuracy (or F-Score) on a test
set of 30 sentences. We compared the accuracy
of the experimental system (Vaanee) presented in
this paper, with Moses (state-of-the-art translation
system) and Shakti (rule-based translation system
7) under similar conditions (with using a develop-
ment set to tune the models). The rule-based sys-
tem considered is a general domain system tuned
to the tourism domain. The best BLEU score for
Moses on the test set is 0.118, and the best lexi-
cal accuracy is 0.512. The best BLEU score for
Shakti is 0.054, and the best lexical accuracy is
0.369.

In comparison, the best BLEU score of Vaanee
is 0.067, while the best lexical accuracy is 0.445.
As observed, the decoding results of the experi-
mental system mentioned here are not yet compa-
rable to the state-of-art. The main reasons for the
low translation accuracies are,

1. Poor Quality of the dataset

The dataset currently available for English-
Hindi language pair is noisy. This is an
extremely large limiting factor for a model
which uses rich linguistic information within
the statistical framework.

2. Low Parser accuracy

7http://shakti.iiit.ac.in/
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The parser accuracy on the English-Hindi
dataset is low, the reasons being, (1) Noise,
(2) Length of sentences, and (3) Wide scope
of the tourism domain.

3. Word insertions not implemented yet

4. Non-projectivity not yet handled

5. BLEU is not an appropriate metric

BLEU is not an appropriate metric (Anan-
thakrishnan et al., ) for measuring the trans-
lation accuracy into Indian languages.

6. Model is context free as far as targets words
are concerned. Selection depends on chil-
dren but not parents and siblings

This point concerns the decoding algorithm.
The current algorithm is greedy while chos-
ing the best translation at every source node.
It first explores the K-best local transforma-
tions at a source node. It then makes a greedy
selection of the predicted subtree based on
it’s overall score after considering the predic-
tions at the child nodes, and the relative posi-
tion of the local transformation with respect
the predictions at the child nodes.

The problem in this approach is that, an er-
ror once made at a lower level of the tree
is propogated to the top, causing more mis-
takes. A computationally reasonable solution
to this problem is to maintain a K-best list
of predicted subtrees corresponding to every
source node. This allows rectification of a
mistake made at any stage.

The system, however, performs better than the
rule based system. As observed earlier, the right
type of information is being learnt by the model,
and the approach looks promising. The limitations
expressed here shall be addressed in the future.

7 Conclusion

In this work, we presented a syntax based de-
pendency model to effectively handle problems in
translation from English to Indian languages such
as, (1) Large word order variation, and (2) Ac-
curate generation of word-forms in the target lan-
guage by predicted the word and its factors. The

model that we have proposed, has the flexibility of
adding rich linguistic features.

An experimental version of the system has been
implemented, which is available for download at
http://shakti.iiit.ac.in/∼sriram/vaanee.html. This
can facilitate as a platform for future research in
syntax based statistical machine translation from
English to Indian languages. We also plan to per-
form experiments using this system between Eu-
ropean languages in future.

The performance of the implemented transla-
tion system, is not yet comparable to the state-
of-art results primarily for two reasons, (1) Poor
quality of available data, because of which our
model which uses rich linguistic information
doesn’t perform as expected, and (2) Components
for word insertion and non-projectivity handling
are yet to be implemented in this version of the
system.
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Abstract 
 

 As interaction between speakers of different 
languages continues to increase, the ever-

present problem of language barriers must be 

overcome. For the same reason, automatic 
language translation (Machine Translation) has 

become an attractive area of research and 

development. Statistical Machine Translation 

(SMT) has been used for translation between 
many language pairs, the results of which have 

shown considerable success. The focus of this 

research is on the English/Persian language pair. 
This paper investigates the development and 

evaluation of the performance of a statistical 

machine translation system by building a 
baseline system using subtitles from Persian 

films. We present an overview of previous 

related work in English/Persian machine 

translation, and examine the available corpora 
for this language pair. We finally show the 

results of the experiments of our system using 

an in-house corpus and compare the results we 
obtained when building a language model with 

different sized monolingual corpora. Different 

automatic evaluation metrics like BLEU, NIST 
and IBM-BLEU were used to evaluate the 

performance of the system on half of the corpus 

built. Finally, we look at future work by 

outlining ways of getting highly accurate 
translations as fast as possible. 

 

1    Introduction 
 

Over the 20
th
 century, international interaction, 

travel and business relationships have increased 

enormously. With the entrance of the World 

Wide Web effectively connecting countries 

together over a giant network, this interaction 

reached a new peak. In the area of business and 
commerce, the vast majority of companies 

simply would not work without this global 

connection. However, with this vast global 
benefit comes a global problem: the language 

barrier. As the international connection barriers 

continually break down, the language barrier 
becomes a greater issue. The English language 

is now the world’s lingua franca, and non-

English speaking people are faced with the 

problem of communication, and limited access 
to resources in English.  

      Machine translation is the process of using 

computers for translation from one human 
language to another(Lopez, 2008). This is not a 

recent area of research and development. In fact, 

machine translation was one of the first 
applications of natural language processing, 

with research work dating back to the 

1950s(Cancedda, Dymetman, Foster, & Goutte, 

2009). However, due to the complexity and 
diversity of human language, automated 

translation is one of the hardest problems in 

computer science, and significantly successful 
results are uncommon. 

There are a number of different approaches to 

machine translation. Statistical Machine 

Translation (SMT) however, seems to be the 
preferred approach of many industrial and 

academic research laboratories (Schmidt, 2007). 

The advantages of SMT compared to rule-based 
approaches lie in their adaptability to different 

domains and languages: once a functional 
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system exists, all that has to be done in order to 

make it work with other language pairs or text 
domains is to train it on new data. 

      Research work on statistical machine 

translation systems began in the early 1990s. 

These systems, which are based on phrase-based 
approaches, operate using parallel corpora – 

huge databases of corresponding sentences in 

two languages, and employ statistics and 
probability to learn by example which 

translation of a word or phrase is most likely 

correct. The translation moves directly from 
source language to target language with no 

intermediate transfer step. In recent years, such 

phrase-based MT approaches have become 

popular because they generally show better 
translation results. One major factor for this 

development is the growing availability of large 

monolingual and bilingual text corpora in recent 
years for a number of languages. 

      The focus of this paper is on statistical 

machine translation for the English/Persian 
language pair. The statistical approach has only 

been employed in several experimental 

translation attempts for this language pair, and 

is still largely undeveloped. This project is 
considered to be a challenge for several reasons. 

Firstly, the Persian language structure is very 

different in comparison to English; secondly, 
there has been little previous work done for this 

language pair; and thirdly, effective SMT 

systems rely on very large bilingual corpora, 

however these are not readily available for the 
English/Persian language pair.  

 

1.1 The Persian Language 
 

The Persian language, or Farsi as it is also 

known as, belongs to the Indo-European 

language family and is one of the more 
dominant languages in parts of the Middle East. 

It is in fact the most widely spoken language in 

the Iranian branch of the Indo-Iranian 
languages, being the official language of Iran 

(Persia) and also spoken in several countries 

including Iran, Tajikistan and Afghanistan. 

There also exist large groups and communities 
in Iraq, United Arab Emirates, People's 

Democratic Republic of Yemen, Bahrain, and 

Oman, not to mention communities in the USA.  

      Persian uses a script that is written from 

right to left. It has similarities with Arabic but 
has an extended alphabet and different words 

and/or pronunciations from Arabic.  

      During its long history, the language has 

been influenced by other languages such as 
Arabic, Turkish and even European languages 

such as English and French. Today’s Persian 

contains many words from these languages and 
in some cases words from other languages still 

follow the grammar of their original language 

particularly in building plural, singular or 
different verb forms. Because of the special and 

different nature of the Persian language 

compared to other languages like English, the 

design of SMT systems for Persian requires 
special considerations. 
 

1.2 Related Work 

 
Several MT systems have already been 

constructed for the English/Persian language 

pair.  
One such system is the Shiraz project, (Amtrup, 

Laboratory, & University, 2000). The Shiraz 

MT system is an MT prototype that translates 

text one way from Persian to English. The 
project began in 1997 and the final version was 

delivered in 1999.  

      The Shiraz corpus is a 10 MB manually-
constructed bilingually tagged Persian to 

English dictionary of about 50,000 words, 

developed using on-line material for testing 
purposes in a project at New Mexico State 

University. The system also comprises its own 

syntactic parser and morphological analyzer, 

and is focused on news stories material 
translation as its domain.  

Another English/Persian system was developed 

by (Saedi, Motazadi, & Shamsfard, 2009). This 
system, called PEnTrans, is a bidirectional text 

translator, comprising two main modules 

(PEnT1, and PEnT2) which translate in opposite 
directions (PEnT1 from English to Persian; 

PEnT2 from Persian to English). PEnT1 

employs a combination of both corpus based 

and extended dictionary approaches, and PEnT2 
uses a combination of rule, knowledge and 

corpus based approaches. PEnTrans introduced 

a new WSD method with a hybrid measure 
which evaluates different word senses in a 
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sentence and scores them according to their 

condition in the sentence, together with the 
placement of other words in that sentence. 

      ParsTranslator is a machine translation 

system built to translate English to Persian text. 

It was first released for public use in mid-1997, 
the latest update being PTran version in April 

2004. The ParsTran input uses English text 

typed or from a file. The latest version is able to 
operate for over 1.5 million words and 

terminologies in English. It covers 33 fields of 

sciences, and is a growing translation service, 
with word banks being continually reviewed 

and updated, available at: 

http://www.ParsTranslator.Net/eng/index.htm. 

Another English to Persian MT system is the 
rule-based system developed by (Faili & 

Ghassem-Sani, 2005)This system was based on 

tree adjoining grammar (TAG), and later 
improved by implementing trained decision 

trees as a word sense disambiguation module. 

      Mohaghegh et al. (2009) presented the first 
such attempt to construct a parallel corpus from 

BBC news stories. This corpus is intended to be 

an open corpus in which more text may be 

added as they are collected. This corpus was 
used to construct a prototype for the first 

statistical machine translation system. The 

problems encountered, especially with the 
process of alignment are discussed in this 

research (Mohaghegh & Sarrafzadeh, 2009). 

      Most of these systems have largely used a 

rule based approach, and their BLEU scores on 
a standard data set have not been published. 

Nowadays however, most large companies 

employ the statistical translation approach, 
using exceedingly large amounts of bilingual 

data (aligned sentences in two languages). A 

good example of this is perhaps the most well-
known Persian/English MT system: Google 

Translate recently released option for this 

language pair. Google’s MT system is based on 

the statistical approach, and was made available 
online as a BETA version in June 2009. 

     The Transonics Spoken Dialogue Translator 

is also partially a statistically based machine 
translation system. The complete system itself 

operates using a speech to text converter, 

statistical language translation, and subsequent 
text to speech conversion. The actual translation 

unit operates in two modes: in-domain and out-

of-domain. A classifier attempts to assign a 

concept to an utterance. If the object to be 
translated is within the translation domain, the 

system is capable of significantly accurate 

translations. Where the object is outside the 

translation domain, the SMT method is used. 
Transonics is a translation system for a specific 

domain (medical: doctor-to-patient interviews), 

and only deals with question/answer situations 
(Ettelaie, et al., 2005). 

      Another speech-to-speech English/Persian 

machine translation system is suggested by 
Xiang et al. They present an unsupervised 

training technique to alleviate the problem of 

the lack of bilingual training data by taking 

advantage of available source language 
data(Xiang, Deng, & Gao, 2008).  

       However, there was no large parallel text 

corpus available at the time of development for 
both of these systems. For its specific domain, 

the Transonics translation system relied on a 

dictionary approach for translation, using a 
speech corpus, rather than a parallel text corpus. 

Their Statistical Translation approach was 

merely used as a backup system. 

 

2   Corpus Development for Persian 

 

A corpus is defined as a large compilation of 
written text or audible speech transcript. 

Corpora, both monolingual and bilingual, have 

been used in various applications in 

computational linguistics and machine 
translation. 

      A parallel corpus is effectively two corpora 

in two different languages comprising sentences 
and phrases accurately translated and aligned 

together phrase to phrase. When used in 

machine translation systems, parallel corpora 
must be of a very large size – billions of 

sentences – to be effective. It is for this reason 

that the Persian language poses some difficulty. 

There is an acute shortage of digitally stored 
linguistic material, and few parallel online 

documents, making the construction of a 

parallel Persian corpus is extremely difficult.  
      There are a few parallel Persian corpora that 

do exist. These vary in size, and in the domains 

they cover. One such corpus is FLDB1, which is 
a linguistic corpus consisting of approximately 

3 million words in ASCII format. This corpus 
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was developed and released by (Assi, 1997) at 

the Institute for Humanities and Cultural 
Studies. This corpus version was updated in 

2005, in 1256 character code page, and named 

PLDB2. This new updated version contains 

more than 56 million words, and was 
constructed with contemporary literary books, 

articles, magazines, newspapers, laws and 

regulations, transcriptions of news, reports, and 
telephone speeches for lexicography purposes.  

      Several corpora construction efforts have 

been made based on online Hamshahri 
newspaper archives. These include Ghayoomi 

(2004), with 6 months of Hamshahri archives to 

yield a corpus of 6.5 million words, and 

(Darrudi, Hejazi, & Oroumchian, 2004), with 4 
years’ worth of archives to yield a 37 million-

word corpus. 

      The ‘Peykareh’ or ‘Text Corpus’ is a corpus 
of 38 million words developed by Bijankhan et 

al. available at:  

http://ece.ut.ac.ir/dbrg/bijankhan/  and 
comprises newspapers, books, magazines 

articles, technical books, together with 

transcription of dialogs, monologues, and 

speeches for language modeling purposes. 
Shiraz corpus (Amtrup, et al., 2000)is a 

bilingual tagged corpus of about 3000 aligned 

Persian/English sentences also collected from 
the Hamshahri newspaper online archive and 

manually translated at New Mexico State 

University.  

      Another corpus, TEP (Tehran English-
Persian corpus), available at: 

http://ece.ut.ac.ir/NLP/ resources.htm , consists 

of 21,000 subtitle files obtained from 
www.opensubtitles.org. Subtitle pairs of 

multiple versions of same movie were extracted, 

a total of about 1,200(Itamar & Itai, 2008) then 
aligned the files using their proposed dynamic 

programming method. This method operates by 

using the timing information contained in 

subtitle files so as to align the text accurately. 
The end product yielded a parallel corpus of 

approximately 150,000 sentences which has 

4,100,000 tokens in Persian and 4,400,000 
tokens in English. 

Finally, European Language Resources 

Association (ELRA), available at: 
http://catalog.elra.info/product_info.php?produc

ts_id=1111, have constructed a corpus which 

consists of about 3,500,000 English and Persian 

words aligned at sentence level, to give 
approximately 100,000 sentences distributed 

over 50,021 entries. The corpus was originally 

constructed with SQL Server, but presented in 

access type file. The format for the files is 
Unicode. This corpus consists of several 

different domains, including art, culture, idioms, 

law, literature, medicine, poetry, politics, 
proverbs, religion, and science; it is available 

for sale online. 

 

3   Statistical Machine Translation 
  3.1   General  
 

Statistical machine translation (SMT) can be 
defined as the process of maximizing the 

probability of a sentence s in the source 

language matching a sentence t in the target 
language. In other words, “given a sentence s in 

the source language, we seek the sentence t in 

the target language such that it maximizes P(t | 

s) which is called the conditional probability or 

the chance of t happening given s'' (Koehn, et al., 

2007).
 

     It is also referred to as the most likely 

translation. This can be more formally written 
as shown in equation (1). 

arg max P(t | s)        (1) 

     Using Bayes Rule from equation (2), we can 
write equation (1) for the most likely translation 

as shown in equation (3). 

 
    P (t | s) = P (t) * P(s | t) =P (s)                      

(2) 

 arg max P(t | s) = arg max P(t) * P(s | t)            

(3) 
 

     Where (t) is the target sentence, and (s) is the 

source sentence. P (t) is the target language 
model and P(s | t) is the translation model. The 

argmax operation is the search, which is done 

by a so-called decoder which is a part of a 
statistical machine translation system. 

 

   3.2   Statistical Machine Translation Tools 
 

There are a number of implementations of 

subtasks and algorithms in SMT and even 

software tools that can be used to set up a fully-

featured state-of-the-art SMT system. 
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Moses (Koehn, et al., 2007) is an open-source 

statistical machine translation system
 

which 
allows one to train translation models using 

GIZA++ (Och & Ney, 2004).for any given 

language pair for which a parallel corpus exists. 

This tool was used to build the baseline system 
discussed in this paper. MOSES uses a beam 

search algorithm where the translated output 

sentence is generated left to right in form of 
hypotheses. Beam-search is an efficient search 

algorithm which quickly finds the highest 

probability translation among the exponential 
number of choices.  

      The search begins with an initial state where 

no foreign input words are translated and no 

English output words have been generated. New 
states are created by extending the English 

output with a phrasal translation of that covers 

some of the foreign input words not yet 
translated.  

The algorithm can be used for exhaustively 

searching through all possible translations when 
data gets very large. The search can be 

optimized by discarding hypotheses that cannot 

be part of the path to the best translation. 

Furthermore, by comparing states, one can 
define a beam of good hypotheses and prune out 

hypotheses that fall out of this beam (Dean & 

Ghemawat, 2008). 
 

3.3   Building a Baseline SMT System 
 

To build a good baseline system it is important 
to build a sentence aligned parallel corpus 

which is spell-checked and grammatically 

correct for both the source and target language. 

The alignment of words or phrases turns out to 
be the most difficult problem SMT faces. 

      Words and phrases in the source and target 

languages normally differ in where they are 
placed in a sentence. Words that appear on one 

language side may be dropped on the other. One 

English word may have as its counterpart a 
longer Persian phrase and vice versa. The 

accuracy of SMT relies heavily on the existence 

of large amounts of data which is commonly 

referred to as a parallel corpus. The first step 
taken was to develop the parallel corpus. This 

corpus is intended to be an open corpus in 

which more text can be added as they are 
collected. Sentences were aligned using 

Microsoft’s bi-lingual sentence aligner 

developed by (Moore, 2002). 
The next step we plan to take involves the 

construction of a statistical prototype based on 

the largest available English/Persian parallel 

corpus extracted from the domain of movie 
subtitles. This domain was chosen because the 

maximum number of words that can be 

displayed as a subtitle on the screen is between 
10- 12 which means both training and decoding 

will be a lot faster. Building a parallel corpus 

for any domain is generally the most time 
consuming process as it depends on the 

availability of parallel text. But the domain of 

subtitling makes it easier to get the source 

language in the form of scripts and the target 
language in the form of subtitles in many 

different languages. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
     

Figure1. A typical SMT System 

 

      A language model (LM) is usually trained 

on large amounts of monolingual data in the 

target language to ensure the fluency of the 
language that the sentence is getting translated 

into. Language modeling is not only used in 

machine translation but also used in many 
natural language processing applications such as 

speech recognition, part-of-speech tagging, 

parsing and information retrieval. A statistical 

language model assigns probabilities to a 
sequence of words and tries to capture the 

properties of a language. 

      The Language Model (LM) for this study 
was trained on the BBC Persian News corpus 

and also an in-house corpus from different 

genres. The SRILM toolkit developed was used 
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to train a 5-gram LM for experimentation as in 

(Stolcke, 2002). 
 

4   Experiments and Results 
 

4.1   Experiment setup 
 

We used Moses a  phrase-based SMT 
development tool for constructing our machine 

translation system. This included  n-gram 

language models trained with the SRI language 

modeling tool, GIZA++ alignment tool, Moses 
decoder and the script to induce phrase-based 

translation models from word-based ones.  
 

4.2   Performance evaluation metrics 
 

A lot of research has been done in the field of 

automatic machine translation evaluation. 

Human evaluations of machine translation are 

extensive but expensive. Human evaluations can 
take months to finish and involve human labor 

that cannot be reused which is the main idea 

behind the method of automatic machine 
translation evaluation that is quick, inexpensive, 

and language independent. 

      One of the most popular metrics is called 
BLEU (BiLingual Evaluation Understudy) 

developed at IBM. The closer a MT is to a 

professional human translation, the better it is. 

This is the central idea behind the BLEU metric.  
 NIST is another automatic evaluation metric 

with the following primary differences 

compared to BLEU such as Text pre-processing, 
gentler length penalty, information-weighted N-

gram counts and selective use of N-grams (Li, 

Callison-Burch, Khudanpur, & Thornton, 

2009); (Li, Callison-Burch, Khudanpur, & 
Thornton, 2009). 

 

4.3     Discussion and analysis of the results 
 

      In this study, Moses was used to establish a 

baseline system. This system was trained and 

tested on three in-house corpora, the first 817 
sentences, the second 1011 sentences, and the 

third 2343 sentences. The data available was 

split into a training and test set. Microsoft’s 
bilingual sentence aligner (Moore, 2002) was 

used to align the corpus and training sets. 

Aligning was also performed manually to aid in 

the improvement of the results. As the corpus 

size increased, we performed various 

experiments such as increasing the language 
model in each instance. 

 

 
Table  1. Size of test set and train set (language 

Model) En: English, FA: Farsi 

 
 Evaluation results from these experiments are 

presented in Tables 2, 3 and 4. As expected, 

BLEU scores improved as the size of the corpus 
increased. The BLEU scores themselves were 

significantly low; however this was expected 

due to the small size of the corpus. We plan to 

update and increase the corpus size in the near 
future, which will undoubtedly yield more 

satisfactory results. 

 

Table 2. Result obtained using Language Model  
size=864 

 

 

Table 3. Result obtained using Language Model 
size=1066 

 

Table 4. Result obtained using Language Model 

size=7005 
 

Test No. EN/FA 1 EN/FA 2 EN/FA 3 

Test Sentences 817 1011 2343 

Training 

Sentences 

864 1066 7005 

LM=864 BLEU NIST IBM-BLEU 

Corpus size 

817 

0.1061 1.8218 0.0060 

Corpus size 

1011 

0.0882 1.5338 0.0050 

Corpus size 

2343 

0.0806 1.7364 0.0067 

LM=1066 BLEU NIST IBM-BLEU 

Corpus size 

817 

0.0920 1.6838 0.0060 

Corpus size 

1011 

0.0986 1.5301 0.0050 

Corpus size 

2343 

0.1127 1.6961 0.0069 

LM= 7005 BLEU NIST IBM-BLEU 

Corpus size 

817 

0.0805 1.6721 0.0063 

Corpus size 

1011 

0.0888 1.5512 0.0051 

Corpus size 

2343 

0.1148 1.7554 0.0071 

80



The first test was performed on a corpus of 817 

sentences in Persian and the same number for 
their aligned translation in English. In this 

instance, the training set used was 864 

sentences. Results of this translation were 

evaluated using three evaluation metrics 
(BLEU, NIST, and IBM-BLEU) An excerpt 

from the output of this first experiment is shown 

in figure2 (a). 
      The second test comprised of a 1011 

sentences corpus, with a 1066 sentence training 

set. As can be seen, the evaluation metric results 
improved. 

      The same experiment was repeated for a 

third time, this time with an even larger corpus 

of 2343 sentences, and a training set of 7005 
sentences. The result can be seen in table 4. The 

results obtained in this test were close to those 

in the previous test, apart from a small increase 
in BLEU scores. It must be noted that BLEU is 

only a tool to compare different MT systems. So 

an increase in BLEU scores may not necessarily 
mean an increase in the accuracy of translation.  

The performance of the baseline English-

Persian SMT system was evaluated by 

computing BLEU, IBM-BLEU-NIST (Li, et al., 
2009) scores from different automatic 

evaluation metrics against  different sizes of the 

sentence aligned corpus and different sizes of 
the training set . 

      Tables 2, 3 and 4 show the results obtained 

using corpuses of 817, 1011, and 2343 

sentences respectively. The language model size 
was varied from 864 to 1066 and finally to 7005 

sentences. 

      Moreover as shown in table 3, using a 
corpus and language model of 1011 and 1066 in 

size respectively produces better results. This 

can clearly be noticed from graph in Figure 
2(b). 

  Finally, increasing the size of the corpus to 

2343 and language model constructed using 

7005 sentences produced the best translation 
results as shown in both Figure 2(c) and Table 

4. This data shows that an increased corpus size 

will yield an improved translation quality, but 
only as long as the size of the language model is 

proportional to the corpus size. Literature refers 

to the fact that the size of the corpus, although 
important, does not have as great an effect as 

corpus and language model in the domain of 

translation (Ma & Way, 2009). In the Persian 

language, some problems and difficulties arise 
due to natural language ambiguities, anaphora 

resolution, idioms and differences in the types 

and symbols used for punctuation. These issues 

had to be resolved before any attempt at SMT 
could be made. Needless to stress on the fact 

that the better the alignment the better the 

results of the translation.  

 
(a) 

 
 (b) 

 
(c) 

Figure 3. (a) Results obtained using training 
size=864 (b) Results obtained using training 

size=1066 (c) Results obtained using training 

size=7005 
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5    Future work 

Despite the fact that compared to other 

language pairs, the available parallel corpora 

for the English/Persian language pair is 

significantly smaller, the future of statistical 

machine translation for this language pair 

looks promising. We have been able to 

procure several very large bilingual corpora, 

which we intend to combine with the open 

corpus we used in the original tests. With the 

use of a much larger bilingual corpus, we 

expect to produce a significantly higher 

evaluation metric score. Our planned 

immediate future work will consist of 

combining these corpora together, 

addressing the task of corpus alignment, and 

continuing the use of a web crawler to obtain 

further bilingual text. 
 

6   Conclusion 

This paper presented an overview of some of 

the work in the area of English/Persian MT 
systems that has been done to date, and showed 

a set of experiments in which our SMT system 

was applied to the Persian language using a 

relatively small corpus. The first part of this 
work was to test how well our system translates 

from Persian to English when trained on the 

available corpora and to spot and try and resolve 
problems with the process and the output 

produced. According to the results we obtained, 

it was concluded that a corpus of much greater 
size would be required to produce satisfactory 

results. Our experience with the corpus of 

smaller size shows us that for a large corpus, 

there will be a significant amount of work 
required in aligning sentences.  
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Abstract 

The present work reports the develop-
ment of Manipuri-English bidirectional 
statistical machine translation systems. In 
the English-Manipuri statistical machine 
translation system, the role of the suffixes 
and dependency relations on the source 
side and case markers on the target side 
are identified as important translation 
factors. A parallel corpus of 10350 sen-
tences from news domain is used for 
training and the system is tested with 500 
sentences. Using the proposed translation 
factors, the output of the translation qual-
ity is improved as indicated by baseline 
BLEU score of 13.045 and factored 
BLEU score of 16.873 respectively. Si-
milarly, for the Manipuri English system, 
the role of case markers and POS tags in-
formation at the source side and suffixes 
and dependency relations at the target 
side are identified as useful translation 
factors. The case markers and suffixes 
are not only responsible to determine the 
word classes but also to determine the 
dependency relations. Using these trans-
lation factors, the output of the transla-
tion quality is improved as indicated by 
baseline BLEU score of 13.452 and fac-
tored BLEU score of 17.573 respectively. 
Further, the subjective evaluation indi-
cates the improvement in the fluency and 
adequacy of both the factored SMT out-
puts over the respective baseline systems. 

 

1 Introduction 

Manipuri has little resource for NLP related re-
search and development activities. Manipuri is a 
less privileged Tibeto-Burman language spoken 
by approximately three million people mainly in 
the state of Manipur in India as well as its neigh-
boring states and in the countries of Myanmar 
and Bangladesh. Some of the unique features of 
this language are tone, the agglutinative verb 
morphology and predominance of aspect than 
tense, lack of grammatical gender, number and 
person. Other features are verb final word order 
in a sentence i.e., Subject Object Verb (SOV) 
order, extensive suffix with more limited prefixa-
tion. In Manipuri, identification of most of the 
word classes and sentence types are based on the 
markers. All sentences, except interrogatives end 
with one of these mood markers, which may or 
may not be followed by an enclitic. Basic sen-
tence types in Manipuri are determined through 
illocutionary mood markers, all of which are 
verbal inflectional suffixes, with the exception of 
the interrogatives that end with an enclitic. Two 
important problems in applying statistical ma-
chine translation (SMT) techniques to English-
Manipuri bidirectional MT systems are: (a) the 
wide syntactic divergence between the language 
pairs, and (b) the richer morphology and case 
marking of Manipuri compared to English. The 
first problem manifests itself in poor word-order 
in the output translations, while the second one 
leads to incorrect inflections and case marking. 
The output Manipuri sentences in case of Eng-
lish-Manipuri system suffer badly when mor-
phology and case markers are incorrect in this 
free word order and morphologically rich lan-
guage. 
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The parallel corpora used is in news domain 
which have been collected, cleaned and aligned 
(Singh et al. , 2010b) from the Sangai Express 
newspaper website www.thesangaiexpress.com 
available in both Manipuri and English. A daily 
basis collection was done covering the period 
from May 2008 to November 2008 since there is 
no repository. 

2 Related Works  

Koehn and Hoang (2007) developed a frame-
work for statistical translation models that tightly 
integrates additional morphological, syntactic, or 
semantic information. Statistical Machine Trans-
lation with scarce resources using morpho-
syntactic information is discussed in (Nieβen and 
Ney, 2004). It introduces sentence level restruc-
turing transformations that aim at the assimila-
tion of word order in related sentences and 
exploitation of the bilingual training data by ex-
plicitly taking into account the interdependencies 
of related inflected forms thereby improving the 
translation quality. Popovic and Ney (2006) dis-
cussed SMT with a small amount of bilingual 
training data. Case markers and morphology are 
used to address the crux of fluency in the Eng-
lish-Hindi SMT system (Ramanathan et al., 
2009). Work on translating from rich to poor 
morphology using factored model is reported in 
(Avramidis and Koehn, 2008). In this method of 
enriching input, the case agreement for nouns, 
adjectives and articles are mainly defined by the 
syntactic role of each phrase. Resolution of verb 
conjugation is done by identifying the person of 
a verb and using the linguistic information tag. 
Manipuri to English Example Based Machine 
Translation system is reported in (Singh and 
Bandyopadhyay, 2010a) on news domain. For 
this, POS tagging, morphological analysis, NER 
and chunking are applied on the parallel corpus 
for phrase level alignment. Chunks are aligned 
using a dynamic programming “edit-distance 
style” alignment algorithm. The translation 
process initially looks for an exact match in the 
parallel example base and returns the retrieved 
target output. Otherwise, the maximal match 
source sentence is identified. For word level 
mismatch, the unmatched words in the input are 
either translated from the lexicon or translite-
rated. Unmatched phrases are looked into the 
phrase level parallel example base; the target 

phrase translations are identified and then re-
combined with the retrieved output. English-
Manipuri SMT system using morpho-syntactic 
and semantic information is reported in (Singh 
and Bandyopadhyay, 2010c). In this system, the 
role of the suffixes and dependency relations on 
the source side and case markers on the target 
side are identified as important translation fac-
tors. 

3 Syntactic Reordering 

This is a preprocessing step applied to the in-
put English sentences for English-Manipuri SMT 
system. The program for syntactic reordering 
uses the parse trees generated by Stanford parser

1
 

and applies a handful of reordering rules written 
using perl module Parse::RecDescent. By doing 
this, the SVO order of English is changed to 
SOV order for Manipuri, and post modifiers are 
converted to pre-modifiers. The basic difference 
of Manipuri phrase order compared to English is 
handled by reordering the input sentence follow-
ing the rule (Rao et al., 2000): 
 

SSmV VmOOmCm  C'mS'mS'O'mO'V'mV'  
where,    S: Subject 
O: Object 
V : Verb 
Cm: Clause modifier 
X': Corresponding constituent in Manipuri, 
where X is S, O, or V 
Xm: modifier of X 

 
There are two reasons why the syntactic reor-

dering approach improves over the baseline 
phrase-based SMT system (Wang et al., 2007). 
One obvious benefit is that the word order of the 
transformed source sentence is much closer to 
the target sentence, which reduces the reliance on 
the distortion model to perform reordering during 
decoding. Another potential benefit is that the 
alignment between the two sides will be of high-
er quality because of fewer “distortions” between 
the source and the target, so that the resulting 
phrase table of the reordered system would be 
better. However, a counter argument is that the 
reordering is very error prone, so that the added 
noise in the reordered data actually hurts the 
alignments and hence the phrase tables. 

                                                                 
1 http://nlp.stanford.edu/software/lex-parser.shtml 
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4 Morphology 

The affixes are the determining factor of the 
word class in Manipuri. In this agglutinative lan-
guage the number of verbal suffixes is more than 
that of nominal suffixes. Works on Manipuri 
morphology are found in (Singh and Bandyo-
padhyay, 2006) and (Singh and Bandyopadhyay, 
2008). In this language, a verb must minimally 
consist of a verb root and an inflectional suffix. 
A noun may be optionally affixed by derivational 
morphemes indicating gender, number and quan-
tity. Further, a noun may be prefixed by a pro-
nominal prefix which indicates its possessor. 
Words in Manipuri consist of stems or bound 
roots with suffixes (from one to ten suffixes), 
prefixes (only one per word) and/or enclitics.  

(a) ইব োমচো-না  ব োল-দ ু      কোওই 
Ibomcha-na  Ball-du  kao-i 
Ibomcha-nom Ball-distal kick 
Ibomcha kicks the ball.   

(b) ব োল-দ ু  ইব োমচো-না  কোওই 
Ball-du  Ibomcha-na kao-i 
Ball-distal Ibomcha-nom kick 
Ibomcha kicks the ball.   

The identification of subject and object in both 
the sentences are done by the suffixes না (na) and 

দ ু(du) as given by the examples (a) and (b). The 

case markers convey the right meaning during 
translation though the most acceptable order of 
Manipuri sentence is SOV. In order to produce a 
good translation output all the morphological 
forms of a word and its translations should be 
available in the training data and every word has 
to appear with every possible suffixes. This will 
require a large training data. By learning the gen-
eral rules of morphology, the amount of training 
data could be reduced. Separating lemma and 
suffix allows the system to learn more about the 
different possible word formations.  

 

Manipuri  Gloss English Meaning 
ব োম্নো Tom-na by Tom 
ব োমদগী Tom-dagi from Tom 
ব োমস ু Tom-su Tom also 
ব োমগী Tom-gi of Tom 
ব োমগো Tom-ga with Tom 

Table 1: Some of the inflected forms of names in 

Manipuri and its corresponding English meaning 

 

Table 1 gives some examples of the inflected 
forms of a person name and its corresponding 
English meaning. The Manipuri stemmer sepa-
rates the case markers such as –নো (-na), -দগী (-

dagi), -স ু (-su), -গী (-gi), -গো (-ga) etc. from 

surface forms so that “ব োম” (Tom) from Manipu-

ri side matches with “Tom” at English side help-
ing to overcome the data sparseness. Enclitics in 
Manipuri fall into six categories: determiners, 
case markers, the copula, mood markers, inclu-
sive / exclusive and pragmatic peak markers and 
attitude markers. The role of the enclitics used 
and its meaning differs based on the context. 

5  Factored Model of Translation 

Using factored approach, a tighter integration of 
linguistic information into the translation model 
is done for two reasons

2
: 

 Translation models that operate on more 
general representations, such as lemma in-
stead of surface forms of words, can draw on 
richer statistics and overcome the data 
sparseness problem caused by limited train-
ing data. 

 Many aspects of translation can be best ex-
plained at a morphological, syntactic or se-
mantic level. Having such information 
available to the translation model allows the 
direct modeling of these aspects. For in-
stance, reordering at the sentence level is 
mostly driven by general syntactic principles, 
local agreement constraints that show up in 
morphology, etc.  

5.1 Combination of Components in Fac-

tored Model 

Factored translation model is the combination of 
several components including language model, 
reordering model, translation steps and genera-
tion steps in a log-linear model

3
: 

Z is a normalization constant that is ignored in 
practice. To compute the probability of a transla-
tion e given an input sentence f, we have to eva-
luate each feature function hi. The feature weight 

                                                                 
2http://www.statmt.org/moses/?n=Moses.FactoredModels 
3http://www.statmt.org/moses/?n=Moses.FactoredModels 

 

    

      (1 ) 
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λi in the log linear model is determined by using 
minimum error rate training method (Och, 2003). 

For a translation step component, each feature 
function ht is defined over the phrase pairs (f j,ej) 
given a scoring function τ:  

 

   

  (2) 

For the generation step component, each fea-
ture function hg given a scoring function γ is de-
fined over the output words ek only: 

 

 

 (3) 

  

5.2 Stanford Dependency Parser  

The dependency relations used in the experiment 
are generated by the Stanford dependency parser 
(Marie-Catherine de Marneffe and Manning, 
2008). This parser uses 55 relations to express 
the dependencies among the various words in a 
sentence. The dependencies are all binary rela-
tions: a grammatical relation holds between a 
governor and a dependent. These relations form a 
hierarchical structure with the most general rela-
tion at the root.  

 
Figure 1. Dependency relation graph of the sen-
tence “Sources said that Tom was shot by police” 
generated by Stanford Parser 

There are various argument relations like sub-
ject, object, objects of prepositions and clausal 
complements, modifier relations like adjectival, 
adverbial, participial, infinitival modifiers and 
other relations like coordination, conjunct, exple-
tive and punctuation. Let us consider an example 
“Sources said that Tom was shot by police”. 
Stanford parser produces the dependency rela-

tions, nsubj(said, sources) and agent (shot, po-
lice) . Thus, sources|nsubj and police|agent are 
the factors used. “Tom was shot by police” forms 
the object of the verb “said”. The Stanford parser 
represents these dependencies with the help of a 
clausal complement relation which links “said” 
with “shot” and uses the complementizer relation 
to introduce the subordination conjunction. Fig-
ure 1 shows the dependency relation graph of the 
sentence “Sources said that Tom was shot by po-
lice”. 

5.3 Factorization approach of English-
Manipuri SMT system 

Manipuri case markers are decided by dependen-
cy relation and aspect information of English. 
Figure 2 shows the translation factors used in the 
translation between English and Manipuri.  

 
(i) Tomba drives the car. 

   ত াম্বনা কারদু ত ৌই 
     Tomba-na car-du thou-i 

    (Tomba)  (the car)  (drives) 

Tomba|empty|nsubj drive|s|empty the|empty|det 
car|empty|dobj 

A subject requires a case marker in a clause 
with a perfective form such as –না (na). It can be 

represented as, 
suffix+ dependency relation  case marker  
    s|empty  + empty|dobj  না (na) 

 

(ii) Birds are flying. 

   উচেকশিং পাইশর  
      ucheksing payri 

     (birds are)  (flying) 

      Bird|s|nsubj are|empty|aux fly|ing|empty 
 
Thus, English-Manipuri factorization consists of  
 
 a lemma to lemma translation factor [i.e., 

Bird  উচেক (uchek) ] 
 a suffix + dependency relation  suffix [i.e.,  

s + nsubj  শিং (sing)] 

 a lemma + suffix  surface form generation 
factor  
[i.e., উচেক (uchek) + শিং (sing)  উচেকশিং 
(ucheksing)] 

said 

source

s 
shot 

that 

Tom was 

Police 

nsubj 
ccomp  

complm 

nsubjpass auxpass 

agent 
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Figure 2. English to Manipuri translation factors 

5.4 Factorization approach of Manipuri-

English SMT system 

Manipuri case markers are responsible to identify 
dependency relation and aspect information of 
English. Figure 3 shows the translation factors 
used in the translation between Manipuri and 
English. The Manipuri- English factorization 
consists of: 

 
 Translation factor: lemma to lemma  

[e.g., উচেক (uchek)  Bird] 

 Translation factor: suffix + POS  depen-
dency relation + POS + suffix  
[e.g., শিং (sing) + NN  nsubj + NN + s] 

 Generation factor: lemma + POS + depen-
dency Relation +suffix  surface form gen-
eration factor  
[e.g., উচেক (uchek) + NN  + nsubj + শিং (sing) 

  উচেকশিং (ucheksing ] 

 
 

 

 

 
 

 

 
 

 

 

 

Figure 3. The Manipuri-English translation factors 

5.5 Syntactically enriched output 

High-order sequence models (just like n-gram 
language models over words) are used in order to 
support syntactic coherence of the output (Koehn 
and Hoang, 2007).  

                 Input             Output 
 
          word                                word 
 
 
                3-gram                       Parts-of-speech 
                
                7-gram 

Figure 4. By generating additional linguistic factors 

on the output side, high-order sequence models over 

these factors support syntactical coherence of the out-

put. 

Adding part-of-speech factor on the output 
side and exploiting them with 7-gram sequence 
models (as shown in Figure 4) results in minor 
improvements in BLEU score. 

6 Experimental Setup 

A number of experiments have been carried out 
using factored translation framework and incor-
porating linguistic information. The toolkits used 
in the experiment are: 

 Stanford Dependency Parser
4
 was used to (i) 

generate the dependency relations and (ii) 
syntactic reordering of the input English sen-
tences using Parse::RecDescent module. 

 Moses
5
 toolkit (Koehn, 2007) was used for 

training with GIZA++
6
, decoding and mini-

mum error rate training (Och, 2003) for tun-
ing. 

 SRILM
7
 toolkit (Stolcke, 2002) was used to 

build language models with 10350 Manipuri 
sentences for English-Manipuri system and 
four and a half million English wordforms 
collected from the news domain for Manipu-
ri-English system. 

 English morphological analyzer morpha
8
 

(Minnen et al., 2001) was used and the 

                                                                 
4 http://nlp.stanford.edu/software/lex-parser.shtml 
5 http://www.statmt.org/moses/ 
6 http://www.fjoch.com/GIZA++.html 
7 http://www.speech.sri.com/projects/srilm 
8  
ftp://ftp.informatics.susx.ac.uk/pub/users/johnca/morph.tar.

gz 
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stemmer from Manipuri Morphological ana-
lyzer (Singh and Bandyopadhyay, 2006) was 
used for the Manipuri side.  

 Manipuri POS tagger (Singh et. al., 2008) is 
used to tag the POS (Parts of speech) factors 
of the input Manipuri sentences. 

7 Evaluation 

7.1 English-Manipuri SMT System 

The evaluation of the machine translation sys-
tems developed in the present work is done in 
two approaches using automatic scoring with 
reference translation and subjective evaluation as 
discussed in (Ramanathan et al., 2009). 

Evaluation Metrics: 

 NIST (Doddington, 2002): A high score 
means a better translation by measuring the 
precision of n-gram. 

 BLEU (Papineni et al, 2002): This metric 
gives the precision of n-gram with respect to 
the reference translation but with a brevity 
penalty.  

 

 No of sentences No of words 

Training 10350 296728 

Development 600 16520 
Test 500 15204 

Table 2. Train ing, development and testing corpus 

statistics 

 

Table 2 shows the corpus statistics used in the 
experiment. The corpus is annotated with the 
proposed factors. The following models are de-
veloped for the experiment. 

Baseline: 

The model is developed using the default setting 
values in MOSES.  

Lemma +Suffix: 

It uses lemma and suffix factors on the source 
side, lemma and suffix on the target side for 
lemma to lemma and suffix to suffix translations 
with generation step of lemma plus suffix to sur-
face form. 

Lemma + Suffix + Dependency Relation: 

Lemma, suffix and dependency relations are used 
on the source side.  The translation steps are (a) 
lemma to lemma (b) suffix + dependency rela-
tion to suffix and generation step is lemma + suf-

fix to surface form. Table 3 shows the BLEU and 
NIST scores of the system using these factors. 

Table 4 shows the BLEU and NIST scores of 
the English-Manipuri SMT systems using lexica-
lized and syntactic reordering.  
 

Model BLEU NIST 

Baseline (surface) 13.045 4.25 

Lemma + Suffix 15.237 4.79 

Lemma + Suffix + De-
pendency Relation 

16.873 5.10 

Table 3. Evaluation Scores of English - Manipuri 

SMT System using various translation factors 

 

Model Reordering BLEU NIST 

Baseline 
(surface) 

 13.045 4.25 

Surface Lexicalized 13.501 4.32 
Surface Syntactic 14.142 4.47 

Table 4. Evaluation Scores of English-Manipuri SMT 

system using Lexicalized and Syntactic Reordering  

 

Input/Output of English-Manipuri SMT: 

 
(1a) Input: Going to school is obligatory for stu-
dents. 

   সু্কল  েত্পা  ছাত্রশিংগী ত ৌদ য়াদ্রবা মচ ৌশন | 
    School chatpa shatra-sing-gi touda ya     

    draba mathouni. 

 Baseline output:  সু্কল মচ ৌ েত্পা ওই ছাত্র 

              school mathou chatpa oy shatra 
     gloss : school duty going is student. 
 Syntactic Reorder output: ছাত্র সু্কল েত্পা ত ৌদ য়াদ্রবা 
                 shatra school chatpa touda yadraba 
     gloss: Student school going compulsory.  
 Dependency output: ছাত্রশিং সু্কল েত্পা মচ ৌশন 

     shatrasing schoolda chatpa mathouni 
     gloss: Students going to the school is duty. 
 
(1b) Input: Krishna has a flute in his hand.  
           কৃষ্ণগী     খুত্তা    ত ৌশদ্র   অমা লল | 
                 Krishna-gi khut-ta toudri ama lei. 
 Syntactic Reorder output:  কৃষ্ণ লল খুত্ অমা ত ৌশদ্র  
                           Krishna lei khut ama toudri 
      gloss : Krishna has a hand flute 
 Dependency output: কৃষ্ণগী লল ত ৌশদ্র অমা খুত্তা  
                           krishnagi lei toudri ama  khutta   
      gloss : Krishna has a flute in his hand 
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One of the main aspects required for the fluen-
cy of a sentence is agreement. Certain words 
have to match in gender, case, number, person 
etc. within a sentence. The rules of agreement are 
language dependent and are closely linked to the 
morphological structure of language. Subjective 
evaluations on 100 sentences have been per-
formed for fluency and adequacy by two judges. 
The fluency measures how well formed the sen-
tences are at the output and adequacy measures 
the closeness of the output sentence with the ref-
erence translation. The Table 5 and Table 6 show 
the adequacy and fluency scales used for evalua-
tion and Table 7 shows the scores of the evalua-
tion. 

 

Level Interpretation 

4 Full meaning is conveyed 

3 Most of the meaning is conveyed 

2 Poor meaning is conveyed 

1 No meaning is conveyed 

Table 5. Adequacy scale 

 

Level Interpretation 

4 Flawless with no grammatical error  

3 Good output with minor errors 
2 Disfluent ungrammatical with correct 

phrase 

1 Incomprehensible 

Table 6. Fluency scale 

 

 Sentence 

length 

Fluency Adequacy 

Baseline <=15 
words 

1.95 2.24 

>15 words 1.49 1.75 

Reordered <=15 
words 

2.58 2.75 

>15 words 1.82 1.96 

Dependency 

Relation 

<=15 
words 

2.83 2.91 

>15 words 1.94 2.10 

Table 7. Scale o f Fluency and Adequacy on sentence 

length basis of English-Manipuri SMT system 

7.2 Manipuri-English SMT System 

The system uses the corpus statistics shown in 
Table 2. The corpus is annotated with the pro-
posed factors. The following models are devel-
oped for the experiment. The baseline and 

lemma+suffix systems follow same factors as 
English-Manipuri.  

Lemma + Suffix + POS: 
Lemma, suffix and POS are used on the source 
side.  The translation steps are (a) lemma to 
lemma (b) suffix + POS to POS + suffix + de-
pendency relation and generation step is lemma 
+ suffix + POS + dependency relation to surface 
form. 

 

Model BLUE NIST 

Baseline (surface) 13.452 4.31 
Lemma + Suffix 16.137 4.89 

Lemma + Suffix + POS 17.573 5.15 
Table 8. Evaluation Scores of Manipuri-English SMT 

system using various translation factors 

 

Table 8 shows the BLEU and NIST scores of 
the Manipuri-English systems using the different 
factors. Table 9 shows the scores of using lexica-
lized reordering and POS language model. 

 

Model BLUE NIST 

Baseline + POS LM 14.341 4.52 
Baseline + Lexicalized 13.743 4.46 

Baseline + Lexicalized 
+POS LM 

14.843 4.71 

Table 9. Evaluation Scores of Manipuri-English SMT 

system using Lexicalized reordering and POS Lan-

guage Model 

 

Input/Output of Manipuri-English SMT: 

 
 (2a) Input: সু্কল েত্পা ছাত্রশিংগী ত ৌদ য়াদ্রবা মচ ৌশন | 

     gloss: School chatpa shatra-sing-gi touda 
yadraba mathouni. 
     Going to school is obligatory for students. 
Baseline output: school going to the students 
important 
Lexicalized Reordered output: school going 
important to the students 

Lemma+Suffix+POS+lexicalized reordered 
output: School going important to the students 
 
(2b) Input: কৃষ্ণগী খুত্তা ত ৌশদ্র অমা লল | 

     gloss: Krishna-gi khut-ta toudri ama lei. 
     Krishna has a flute in his hand.  
 Baseline output: Krishna is flute and hand  
Lexicalized Reordered output: Krishna flute 
has his hand  
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Lemma+Suffix+POS+lexicalized reordered 
output: Krishna has flute his hand 

By considering the lemma along with suffix 
and POS factors, the fluency and adequacy of the 
output is better addressed as given by the sample 
input and output (2a) and (2b) over the baseline 
system. Using the Manipuri stemmer, the case 
markers and suffixes are taken into account for 
different possible word forms thereby helping to 
overcome the data sparseness problem. Table 10 
shows the scores of adequacy and fluency of the 
evaluation. 

 

 Sentence 
length 

Fluency Adequacy 

Baseline <=15 
words 

1.93 2.31 

>15 words 1.51 1.76 

Reordered <=15 
words 

2.48 2.85 

>15 words 1.83 1.97 

Lemma + 
Suffix  

+ POS 

<=15 
words 

2.86 2.92 

>15 words 2.01 2.11 

Table 10. Scale of Fluency and Adequacy on sen-

tence length basis of Manipuri-English SMT system 

Subjective evaluations on 100 sentences have 
been performed for fluency and adequacy. In the 
process of subjective evaluation, sentences were 
judged on fluency, adequacy and the number of 
errors in case marking/morphology. It is ob-
served that poor word-order makes the baseline 
output almost incomprehensible, while lexica-
lized reordering solves the problem correctly 
along with parts-of-speech language model (POS 
LM). Statistical significant test is performed to 
judge if a change in score that comes from a 
change in the system reflects a change in overall 
translation quality. It is found that all the differ-
ences are significant at the 99% level. 

8 Discussion 

The factored approach using the proposed factors 
show improved fluency and adequacy at the Ma-
nipuri output for English-Manipuri system as 
shown in the Table 6. Using the Stanford gener-
ated relations shows an improvement in terms of 
fluency and adequacy for shorter sentences than 
the longer ones.  

Input : Khamba pushed the stone with a lever. 
       খম্বনো জম্ফত্নো নংু অদ ুইল্লম্মী | 
Outputs: 
Syntactic Reordered: খম্ব নংু জম্ফত্  অদ ুইল্লল্ল | 

 Khamba nung jamfat adu illi 
gloss:  Khamba stone the lever push 
Dependency: খম্বনো নংু অদ ুজম্ফত্নো ইল্লল্ল | 

 Khambana nung adu jamfatna illi 
gloss: Khamba the stone pushed with lever 
 

By the use of semantic relation, নো (na) is at-

tached to খম্ব (Khamba), which makes the mean-

ing খম্বনো  “by Khamba”  instead of  just খম্ব 

“Khamba”. 
Input : Suddenly the woman burst into tears. 
       খঙব ৌদনো বমৌ অদনুো মল্লি ল্লিন্থরকই | 
Outputs: 
Syntactic Reordered: নিুী থনুো ল্লিরোংগো কপ্পী | 

 Nupi thuna pirang-ga kappi 
gloss: woman soon tears cry 
Dependency:  অথ ুদো নিুীদ ুকপ্লম্মী | 

 Athubada nupidu kaplammi 
gloss: suddenly the woman cried 
 

Here, in this example, the নিুী (nupi) is suf-

fixed by the দু (du), to produce নিুীদ ু“the wom-

an” instead of just নিুী “woman”. 

The factored approach of Manipuri-English 
SMT system also shows improved BLEU and 
NIST scores using the proposed factors as shown 
in Table 8 not only gain in fluency and adequacy 
scores as shown in Table 10.  

9 Conclusion 

A framework for Manipuri and English bidirec-
tional SMT system using factored model is expe-
rimented with a goal to improve the translation 
output and reduce the amount of training data. 
The output of the translation is improved by in-
corporating morphological information and se-
mantic relations by tighter integration. The 
systems are evaluated using automatic scoring 
techniques BLEU and NIST. The subjective 
evaluation of the systems is done to find out the 
fluency and adequacy. The fluency and adequacy 
are also addressed better for the shorter sentences 
than the longer ones using semantic relations. 
The improvement is statistically significant. 
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Abstract

A major challenge in statistical machine
translation is mitigating the word or-
der differences between source and tar-
get strings. While reordering and lexical
translation choices are often conducted in
tandem, source string permutation prior
to translation is attractive for studying re-
ordering using hierarchical and syntactic
structure. This work contributes an ap-
proach for learning source string permu-
tation via transfer of the source syntax
tree. We present a novel discriminative,
probabilistic tree transduction model, and
contribute a set of empirical upperbounds
on translation performance for English-
to-Dutch source string permutation under
sequence and parse tree constraints. Fi-
nally, the translation performance of our
learning model is shown to outperform the
state-of-the-art phrase-based system sig-
nificantly.

1 Introduction

From its beginnings, statistical machine transla-
tion (SMT) has faced a word reordering challenge
that has a major impact on translation quality.
While standard mechanisms embedded in phrase-
based SMT systems, e.g. (Och and Ney, 2004),
deal efficiently with word reordering within a lim-
ited window of words, they are still not expected
to handle all possible reorderings that involve
words beyond this relatively narrow window, e.g.,
(Tillmann and Ney, 2003; Zens and Ney, 2003;
Tillman, 2004). More recent work handles word

order differences between source and target lan-
guages using hierarchical methods that draw on
Inversion Transduction Grammar (ITG), e.g., (Wu
and Wong, 1998; Chiang, 2005). In principle,
the latter approach explores reordering defined by
the choice of swapping the order of sibling sub-
trees under each node in a binary parse-tree of the
source/target sentence.

An alternative approach aims at minimizing the
need for reordering during translation by permut-
ing the source sentence as a pre-translation step,
e.g., (Collins et al., 2005; Xia and McCord, 2004;
Wang et al., 2007; Khalilov, 2009). In effect,
the translation process works with a model for
source permutation (s → s

′
) followed by trans-

lation model (s
′ → t), where s and t are source

and target strings and s
′
is the target-like permuted

source string. In how far can source permutation
reduce the need for reordering in conjunction with
translation is an empirical question.

In this paper we define source permutation as
the problem of learning how to transfer a given
source parse-tree into a parse-tree that minimizes
the divergence from target word-order. We model
the tree transfer τs → τs′ as a sequence of local,
independent transduction operations, each trans-
forming the current intermediate tree τ

s
′
i

into the
next intermediate tree τ

s
′
i+1

, with τs0 = τs and
τs′n

= τs′ . A transduction operation merely per-
mutes the sequence of n > 1 children of a single
node in an intermediate tree, i.e., unlike previous
work, we do not binarize the trees. The number
of permutations is factorial in n, and learning a
sequence of transductions for explaining a source
permutation can be computationally rather chal-
lenging (see (Tromble and Eisner, 2009)). Yet,
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from the limited perspective of source string per-
mutation (s → s

′
), another challenge is to inte-

grate a figure of merit that measures in how far s
′

resembles a plausible target word-order.

We contribute solutions to these challenging
problems. Firstly, we learn the transduction
operations using a discriminative estimate of
P (π(αx) |Nx, αx, contextx), whereNx is the la-
bel of node (address) x, Nx → αx is the context-
free production under x, π(αx) is a permutation of
αx and contextx represents a surrounding syntac-
tic context. As a result, this constrains {π(αx)}
only to those found in the training data, and it
conditions the transduction application probabil-
ity on its specific contexts. Secondly, in every se-
quence s

′
0 = s, . . . , s

′
n = s

′
resulting from a tree

transductions, we prefer those local transductions
on τ

s
′
i−1

that lead to source string permutation s
′
i

that are closer to target word order than s
′
i−1; we

employ s
′

language model probability ratios as a
measure of word order improvement.

In how far does the assumption of source per-
mutation provide any window for improvement
over a phrase-based translation system? We con-
duct experiments on translating from English into
Dutch, two languages which are characterized
by a number of systematic divergences between
them. Initially, we conduct oracle experiments
with varying constraints on source permutation
to set upperbounds on performance relative to
a state-of-the-art system. Translating the oracle
source string permutation (obtained by untangling
the crossing alignments) offers a large margin of
improvement, whereas the oracle parse tree per-
mutation provides a far smaller improvement. A
minor change to the latter to also permute con-
stituents that include words aligned with NULL,
offers further improvement, yet lags bahind bare
string permutation. Subsequently, we present
translation results using our learning approach,
and exhibit a significant improvement in BLEU
score over the state-of-the-art baseline system.
Our analysis shows that syntactic structure can
provide important clues for reordering in trans-
lation, especially for dealing with long distance
cases found in, e.g., English and Dutch. Yet, tree
transduction by merely permuting the order of sis-

ter subtrees might turn out insufficient.

2 Baseline: Phrase-based SMT

Given a word-aligned parallel corpus, phrase-
based systems (Och and Ney, 2002; Koehn et al.,
2003) work with (in principle) arbitrarily large
phrase pairs (also called blocks) acquired from
word-aligned parallel data under a simple defi-
nition of translational equivalence (Zens et al.,
2002). The conditional probabilities of one phrase
given its counterpart are interpolated log-linearly
together with a set of other model estimates:

êI1 = arg max
eI1

{
M∑

m=1

λmhm(eI1, f
J
1 )

}
(1)

where a feature function hm refer to a system
model, and the corresponding λm refers to the rel-
ative weight given to this model. A phrase-based
system employs feature functions for a phrase pair
translation model, a language model, a reordering
model, and a model to score translation hypothesis
according to length. The weights λm are usually
optimized for system performance (Och, 2003) as
measured by BLEU (Papineni et al., 2002). Two
reordering methods are widely used in phrase-
based systems.

Distance-based A simple distance-based re-
ordering model default for Moses system is the
first reordering technique under consideration.
This model provides the decoder with a cost lin-
ear to the distance between words that should be
reordered.

MSD A lexicalized block-oriented data-driven
reordering model (Tillman, 2004) considers three
different orientations: monotone (M), swap (S),
and discontinuous (D). The reordering probabili-
ties are conditioned on the lexical context of each
phrase pair, and decoding works with a block se-
quence generation process with the possibility of
swapping a pair of blocks.

3 Related Work on Source Permutation

The integration of linguistic syntax into SMT
systems offers a potential solution to reordering
problem. For example, syntax is successfully
integrated into hierarchical SMT (Zollmann and
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Venugopal, 2006). Similarly, the tree-to-string
syntax-based transduction approach offers a com-
plete translation framework (Galley et al., 2006).

The idea of augmenting SMT by a reordering
step prior to translation has often been shown to
improve translation quality. Clause restructuring
performed with hand-crafted reordering rules for
German-to-English and Chinese-to-English tasks
are presented in (Collins et al., 2005) and (Wang
et al., 2007), respectively. In (Xia and McCord,
2004; Khalilov, 2009) word reordering is ad-
dressed by exploiting syntactic representations of
source and target texts.

Other reordering models operate provide the
decoder with multiple word orders. For ex-
ample, the MaxEnt reordering model described
in (Xiong et al., 2006) provides a hierarchi-
cal phrasal reordering system integrated within
a CKY-style decoder. In (Galley and Manning,
2008) the authors present an extension of the fa-
mous MSD model (Tillman, 2004) able to handle
long-distance word-block permutations. Coming
up-to-date, in (PVS, 2010) an effective application
of data mining techniques to syntax-driven source
reordering for MT is presented.

Recently, Tromble and Eisner (2009) define
source permutation as learning source permuta-
tions; the model works with a preference matrix
for word pairs, expressing preference for their two
alternative orders, and a corresponding weight
matrix that is fit to the parallel data. The huge
space of permutations is then structured using a
binary synchronous context-free grammar (Binary
ITG) with O(n3) parsing complexity, and the per-
mutation score is calculated recursively over the
tree at every node as the accumulation of the
relative differences between the word-pair scores
taken from the preference matrix. Application to
German-to-English translation exhibits some per-
formance improvement.

Our work is in the general learning direction
taken in (Tromble and Eisner, 2009) but differs
both in defining the space of permutations, using
local probabilistic tree transductions, as well as in
the learning objective aiming at scoring permuta-
tions based on a log-linear interpolation of a lo-
cal syntax-based model with a global string-based
(language) model.

4 Pre-Translation Source Permutation

Given a word-aligned parallel corpus, we define
the source string permutation as the task of learn-
ing to unfold the crossing alignments between
sentence pairs in the parallel corpus. Let be given
a source-target sentence pair s → t with word
alignment set a between their words. Unfold-
ing the crossing instances in a should lead to as
monotone an alignment a

′
as possible between a

permutation s
′

of s and the target string t. Con-
ducting such a “monotonization” on the parallel
corpus gives two parallel corpora: (1) a source-
to-permutation parallel corpus (s → s

′
) and

(2) a source permutation-to-target parallel corpus
(s
′ → t). The latter corpus is word-aligned au-

tomatically again and used for training a phrase-
based translation system, while the former corpus
is used for training our model for pre-translation
source permutation via parse tree transductions.

Figure 1: Example of crossing alignments and
long-distance reordering using a source parse tree.

In itself, the problem of permuting the source
string to unfold the crossing alignments is compu-
tationally intractable (see (Tromble and Eisner,
2009)). However, different kinds of constraints
can be made on unfolding the crossing alignments
in a. A common approach in hierarchical SMT is
to assume that the source string has a binary parse
tree, and the set of eligible permutations is defined
by binary ITG transductions on this tree. This de-
fines permutations that can be obtained only by
at most inverting pairs of children under nodes of
the source tree. Figure 1 exhibits a long distance
reordering of the verb in English-to-Dutch transla-
tion: inverting the order of the children under the
VP node would unfold the crossing alignment.
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4.1 Oracle Performance

As has been shown in the literature (Costa-jussà
and Fonollosa, 2006; Khalilov and Sima’an, 2010;
Wang et al., 2007), source and target texts mono-
tonization leads to a significant improvement in
terms of translation quality. However it is not
known how many alignment crossings can be un-
folded under different parse tree conditions. In or-
der to gauge the impact of corpus monotonization
on translation system performance, we trained a
set of oracle translation systems, which create
target sentences that follow the source language
word order using the word alignment links and
various constraints.

(a) Word alignment.

(b) Parse tree and corre-
sponding alignment.

(c) Word alignment
and ADJP span.

Figure 2: Reordering example.

The set-up of our experiments and corpus char-
acteristics are detailed in Section 5. Table 1 re-
ports translation scores of the oracle systems. No-
tice that all the numbers are calculated on the re-
aligned corpora. Baseline results are provided for
informative purposes.

String permutation The first oracle system
under consideration is created by traversing
the string from left to right and unfolding all
crossing alignment links (we call this system
oracle-string). For example in Figure 2(a),
the oracle-string system generates a string “do
so gladly” swapping the words “do” and
“gladly” without considering the parse tree.
The first line of the table shows the performance
of the oracle-string system with monotone source
and target portions of the corpus.

Oracle under tree constraint We use a syntac-
tic parser for parsing the English source sentences

that provide n-ary constituency parses. Now we
constrain unfolding crossing alignments only to
those alignment links which agree with the struc-
ture of the source-side parse tree and consider the
constituents which include aligned tokens only.
Unfolding a crossing alignment is modeled as per-
muting the children of a node in the parse tree. We
refer to this oracle system as oracle-tree. For ex-
ample provided in Figure 2(b), there is no way to
construct a monotonized version of the sentence
since the word “so” is aligned to NULL and im-
pedes swapping the order of VB and ADJP under
the VP.

Oracle under relaxed tree constraint The
oracle-tree system does not permute the words
which are both (1) not found in the alignment and
(2) are spanned by the sub-trees sibling to the re-
ordering constituents. Now we introduce a re-
laxed version of the parse tree constraint: the or-
der of the children of a node is permuted when
the node covers the reordering constituents and
also when the frontier contains leaf nodes aligned
with NULL (oracle-span). For example, in Fig-
ure 2(c) the English word “so” is not aligned, but
according to the relaxed version, must move to-
gether with the word “gladly” since they share
a parent node (ADJP).

Source BLEU NIST
baseline dist 24.04 6.29
baseline MSD 24.04 6.28
oracle− string 27.02 6.51
oracle− tree 24.09 6.30
oracle− span 24.95 6.37

Table 1: Translation scores of oracle systems.

The main conclusion which can be drawn from
the oracle results is that there is a possibility for
relatively big (≈3 BLEU points) improvement
with complete unfolding of crossing alignments
and very limited (≈0.05 BLEU points) with the
same done under the parse tree constraint. A tree-
based system that allows for permuting unaligned
words that are covered by a dominating parent
node shows more improvement in terms of BLEU
and NIST scores (≈0.9 BLEU points).

The gap between oracle-string and oracle-tree
performance is due to alignment crossings which
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cannot be unfolded under trees (illustrated in Fig-
ure 3), but possibly also due to parse and align-
ment errors.

Figure 3: Example of alignment crossing that does
not agree with the parse tree.

4.2 Source Permutation via Syntactic
Transfer

Given a parallel corpus with string pairs s → t
with word alignment a, we create a source per-
muted parallel corpus s → s

′
by unfolding the

crossing alignments in a: this is done by scanning
the string s from left to right and moving words in-
volved in crossing alignments to positions where
the crossing alignments are unfolded). The source
strings s are parsed, leading to a single parse tree
τs per source string.

Our model aims at learning from the source
permuted parallel corpus s → s

′
a probabilistic

optimization arg maxπ(s) P (π(s) | s, τs). We as-
sume that the set of permutations {π(s)} is de-
fined through a finite set of local transductions
over the tree τs. Hence, we view the permutations
leading from s to s

′
as a sequence of local tree

transductions τ
s
′
0
→ . . . → τs′n

, where s
′
0 = s

and s
′
n = s

′
, and each transduction τ

s
′
i−1
→ τ

s
′
i

is defined using a tree transduction operation that
at most permutes the children of a single node in
τ
s
′
i−1

as defined next.

A local transduction τ
s
′
i−1
→ τ

s
′
i

is modelled
by an operation that applies to a single node with
address x in τ

s
′
i−1

, labeled Nx, and may permute
the ordered sequence of children αx dominated by
node x. This constitutes a direct generalization of
the ITG binary inversion transduction operation.
We assign a conditional probability to each such

local transduction:

P (τ
s
′
i
| τ
s
′
i−1

) ≈ P (π(αx) | Nx → αx, Cx) (2)

where π(αx) is a permutation of αx (the ordered
sequence of node labels under x) and Cx is a local
tree context of node x in tree τ

s
′
i−1

. One wrin-
kle in this definition is that the number of possi-
ble permutations of αx is factorial in the length
of αx. Fortunately, the source permuted training
data exhibits only a fraction of possible permuta-
tions even for longer αx sequences. Furthermore,
by conditioning the probability on local context,
the general applicability of the permutation is re-
strained.

Given this definition, we define the probabil-
ity of the sequence of local tree transductions
τ
s
′
0
→ . . .→ τs′n

as

P (τ
s
′
0
→ . . .→ τs′n

) =
n∏

i=1

P (τ
s
′
i
| τ
s
′
i−1

) (3)

The problem of calculating the most likely per-
mutation under this transduction model is made
difficult by the fact that different transduction se-
quences may lead to the same permutation, which
demands summing over these sequences. Fur-
thermore, because every local transduction condi-
tions on local context of an intermediate tree, this
quickly risks becoming intractable (even when we
use packed forests). In practice we take a prag-
matic approach and greedily select at every inter-
mediate point τ

s
′
i−1
→ τ

s
′
i

the single most likely
local transduction that can be conducted on any
node of the current intermediate tree τ

s
′
i−1

using
an interpolation of the term in Equation 2 with
string probability ratios as follows:

P (π(αx) | Nx → αx, Cx)× P (s
′
i−1)

P (s
′
i)

The rationale behind this log-linear interpolation
is that our source permutation approach aims at
finding the optimal permutation s

′
of s that can

serve as input for a subsequent translation model.
Hence, we aim at tree transductions that are syn-
tactically motivated that also lead to improved
string permutation. In this sense, the tree trans-
duction definitions can be seen as an efficient and
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syntactically informed way to define the space of
possible permutations.

We estimate the string probabilities P (s
′
i) us-

ing 5-gram language models trained on the s
′

side of the source permuted parallel corpus s →
s
′
. We estimate the conditional probability

P (π(αx) | Nx → αx, Cx) using a Maximum-
Entropy framework, where feature functions are
defined to capture the permutation as a class, the
node label Nx and its head POS tag, the child
sequence αx together with the corresponding se-
quence of head POS tags and other features corre-
sponding to different contextual information.

We were particularly interested in those linguis-
tic features that motivate reordering phenomena
from the syntactic and linguistic perspective. The
features that were used for training the permuta-
tion system are extracted for every internal node
of the source tree that has more than one child:

• Local tree topology. Sub-tree instances that
include parent node and the ordered se-
quence of child node labels.

• Dependency features. Features that deter-
mine the POS tag of the head word of the cur-
rent node, together with the sequence of POS
tags of the head words of its child nodes.

• Syntactic features. Three binary features
from this class describe: (1) whether the par-
ent node is a child of the node annotated with
the same syntactic category, (2) whether the
parent node is a descendant of the node an-
notated with the same syntactic category, and
(3) if the current subtree is embedded into a
“SENT-SBAR” sub-tree. The latter feature in-
tends to model the divergence in word order
in relative clauses between Dutch and En-
glish which is illustrated in Figure 1.

In initial experiments we piled up all feature func-
tions into a single model. Preliminary results
showed that the system performance increases if
the set of patterns is split into partial classes con-
ditioned on the current node label. Hence, we
trained four separate MaxEnt models for the cate-
gories with potentially high number of crossing
alignments, namely VP, NP, SENT, and SBAR.

For combinatory models we use the following no-
tations: M4 =

∑
i∈[ NP, VP, SENT, SBAR] Mi and M2 =∑

i∈[VP, SENT] Mi.

5 Experiments and results

The SMT system used in the experiments was
implemented within the open-source MOSES
toolkit (Koehn et al., 2007). Standard train-
ing and weight tuning procedures which were
used to build our system are explained in details
on the MOSES web page1. The MSD model
was used together with a distance-based reorder-
ing model. Word alignment was estimated with
GIZA++ tool2 (Och, 2003), coupled with mk-
cls3 (Och, 1999), which allows for statistical word
clustering for better generalization. An 5-gram
target language model was estimated using the
SRI LM toolkit (Stolcke, 2002) and smoothed
with modified Kneser-Ney discounting. We use
the Stanford parser4 (Klein and Manning, 2003)
as a source-side parsing engine. The parser was
trained on the English treebank set provided with
14 syntactic categories and 48 POS tags. The
evaluation conditions were case-sensitive and in-
cluded punctuation marks. For Maximum En-
tropy modeling we used the maxent toolkit5.

Data The experiment results were obtained us-
ing the English-Dutch corpus of the European Par-
liament Plenary Session transcription (EuroParl).
Training corpus statistics can be found in Table 2.

Dutch English
Sentences 1.2 M 1.2 M

Words 32.9 M 33.0 M
Average sentence length 27.20 27.28

Vocabulary 228 K 104 K

Table 2: Basic statistics of the English-Dutch Eu-
roParl training corpus.

The development and test datasets were ran-
domly chosen from the corpus and consisted of

1http://www.statmt.org/moses/
2code.google.com/p/giza-pp/
3http://www.fjoch.com/mkcls.html
4http://nlp.stanford.edu/software/

lex-parser.shtml
5http://homepages.inf.ed.ac.uk/

lzhang10/maxent_toolkit.html
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500 and 1,000 sentences, respectively. Both were
provided with one reference translation.

Results Evaluation of the system performance
is twofold. In the first step, we analyze the qual-
ity of reordering method itself. In the next step
we look at the automatic translation scores and
evaluate the impact which the choice of reorder-
ing strategy has on the translation quality. In
both stages of evaluation, the results are con-
trasted with the performance shown by the stan-
dard phrase-based SMT system (baseline) and
with oracle results.

Source reordering analysis Table 3 shows the
parameters of the reordered system allowing to as-
sess the effectiveness of reordering permutations,
namely: (1) a total number of crossings found in
the word alignment (#C), (2) the size of the re-
sulting phrase table (PT), (3) BLEU, NIST, and
WER scores obtained using monotonized parallel
corpus (oracle) as a reference.

All the numbers are calculated on the re-aligned
corpora. Calculations are done on the basis of the
100,000 line extraction from the corpus6 and cor-
responding alignment matrix. The baseline rows
show the number of alignment crossings found in
the original (unmonotonized) corpus.

System #C PT Scores
BLEU NIST WER

Oracle
string 54.6K 48.4M - - -
tree 187.3K 30.3M 71.73 17.01 16.77
span 146.9K 33.0M 73.41 17.11 15.73

Baselines
baselines 187.0K 29.8M 71.70 17.07 16.55

Category models
MNP 188.9K 29.7M 71.63 17.07 16.52
MV P 168.1K 29.8M 73.17 17.16 15.99
MSENT 171.0K 29.8M 73.08 17.08 16.10
MSBAR 188.6K 29.8M 72.89 16.90 16.41

Combinatory models
M4 193.2K 29.1M 70.98 16.85 16.78
M2 165.4K 29.9M 73.07 16.92 15.88

Table 3: Main parameters of the tree-based re-
ordering system.

6A smaller portion of the corpus is used for analysis in
order to reduce evaluation time.

Translation scores The evaluation results for
the development and test corpora are reported in
Table 4. They include two baseline configurations
(dist and MSD), oracle results and contrasts them
with the performance shown by different combi-
nations of single-category tree-based reordering
models. Best scores within each experimental sec-
tion are placed in cells filled with grey.

System Dev Test
BLEU BLEU NIST

baseline dist 23.88 24.04 6.29
baseline MSD 24.07 24.04 6.28
oracle-string 26.28 27.02 6.50
oracle-tree 23.84 24.09 6.30
oracle-span 24.79 24.95 6.35
MNP 23.79 23.81 6.27
MV P 24.16 24.55 6.29
MSENT 24.27 24.56 6.32
MSBAR 23.99 24.12 6.27
M4 23.50 23.86 6.29
M2 24.28 24.64 6.33

Table 4: Experimental results.

Analysis The number of crossings
found in word alignment intersection and
BLEU/NIST/WER scores estimated on reordered
data vs. monotonized data report the reordering
algorithm effectiveness. A big gap between num-
ber of crossings and total number of reorderings
per corpus found in oracle-string system7 and
baseline systems demonstrates the possible reduc-
tion of system’s non-monotonicity. The difference
in number of crossings and BLEU/NIST/WER
scores between the oracle-span and the best
performing MaxEnt models (namely, M2) shows
the level of performance of the prediction module.

A number of distinct phrase translation pairs in
the translation table implicitly reveals the general-
ization capabilities of the translation system since
it simplifies the translation task. From the other
hand, increased number of shorter phrases can add
noise in the reordered data and makes decoding
more complex. Hence, the size of phrase table it-
self can not be considered as a robust indicator of
its translation potential.

7The number of crossings for oracle configuration is not
zero since this parameter is calculated on the re-aligned cor-
pus.

98



Table 4 shows that three of six MaxEnt re-
ordering systems outperform baseline systems by
about 0.5-0.6 BLEU points, that is statistically
significant8. The combination of NP, NP, SENT,
and SBAR models do not show good performance
possibly due to increased sparseness of reorder-
ing patterns. However, the system that consider
only the MV P and MSENT models achieves 0.62
BLEU score gain over the baseline configurations.

The main conclusion which can be drawn from
analysis of Tables 3 and 4 is that there is an
evident correlation between characteristics of re-
ordering system and performance demonstrated
by the translation system trained on the corpus
with reordered source part.

Example Figure 4 exemplifies the sentences
that presumably benefits from the monotonization
of the source part of the parallel corpus. The ex-
ample demonstrates a pervading syntactic distinc-
tion between English and Dutch: the reordering of
verb-phrase subconstituents VP NP PP within the
relative clause into PP NP VP.

6 Conclusions and future work

We introduced a tree-based reordering model that
aims at monotonizing the word order of source

8All statistical significance calculations are done for a
95% confidence interval and 1 000 resamples, following the
guidelines from (Koehn, 2004).

and target languages as a pre-translation step. Our
model avoids complete generalization of reorder-
ing instances by using tree contexts and limit-
ing the permutations to data instances. From a
learning perspective, our work shows that navigat-
ing a large space of intermediate tree transforma-
tions can be conducted effectively using both the
source-side syntactic tree and a language model
of the idealized (target-like) source-permuted lan-
guage.

We have shown the potential for translation
quality improvement when target sentences are
created following the source language word or-
der (≈3 BLEU points over the standard phrase-
based SMT) and under parse tree constraint (≈0.9
BLEU points). As can be seen from these re-
sults, our model exhibits competitive translation
performance scores compared with the standard
distance-based and lexical reordering.

The gap between the oracle and our system’s
results leaves room for improvement. We intend
to study extensions of the current tree transfer
model to narrow this performance gap. As a first
step we are combining isolated models for con-
crete syntactic categories and aggregating more
features into the MaxEnt model. Algorithmic im-
provements, such as beam-search and chart pars-
ing, could allow us to apply our method to full
parse-forests as opposed to a single parse tree.

(a) Original parse tree. (b) Reordered parse tree.

Src: that ... to lead the Commission during the next five-year term
Ref.: dat ... om de komende vijf jaar de Commissie te leiden
Baseline MSD: dat ... om het voortouw te nemen in de Commissie tijdens de komende vijf jaar
Rrd src: that ... during the next five-year term the Commission to lead
M2 : dat ... om de Commissie tijdens de komende vijf jaar te leiden

(c) Translations.

Figure 4: Example of tree-based monotonization.
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M. R. Costa-jussà and J. A. R. Fonollosa. 2006.
Statistical machine reordering. In Proceedings of
HLT/EMNLP’06, pages 70–76.

M. Galley and Ch. D. Manning. 2008. A simple and
effective hierarchical phrase reordering model. In
Proceedings of EMNLP’08, pages 848–856.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. De-
Neefe, W. Wang, and I. Thaye. 2006. Scalable in-
ference and training of context-rich syntactic trans-
lation models. In Proc. of COLING/ACL’06, pages
961–968.

M. Khalilov and K. Sima’an. 2010. Source reordering
using maxent classifiers and supertags. In Proc. of
EAMT’10, pages 292–299.

M. Khalilov. 2009. New statistical and syntactic mod-
els for machine translation. Ph.D. thesis, Universi-
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Abstract

In this paper, we extend the HMM word-
to-phrase alignment model with syntac-
tic dependency constraints. The syn-
tactic dependencies between multiple
words in one language are introduced
into the model in a bid to produce co-
herent alignments. Our experimental re-
sults on a variety of Chinese–English
data show that our syntactically con-
strained model can lead to as much as
a 3.24% relative improvement in BLEU
score over current HMM word-to-phrase
alignment models on a Phrase-Based
Statistical Machine Translation system
when the training data is small, and
a comparable performance compared to
IBM model 4 on a Hiero-style system
with larger training data. An intrin-
sic alignment quality evaluation shows
that our alignment model with depen-
dency constraints leads to improvements
in both precision (by 1.74% relative) and
recall (by 1.75% relative) over the model
without dependency information.

1 Introduction

Generative word alignment models including
IBM models (Brown et al., 1993) and HMM
word alignment models (Vogel et al., 1996) have
been widely used in various types of Statisti-
cal Machine Translation (SMT) systems. This
widespread use can be attributed to their robust-
ness and high performance particularly on large-
scale translation tasks. However, the quality

of the alignment yielded from these models is
still far from satisfactory even with significant
amounts of training data; this is particularly true
for radically different languages such as Chinese
and English.

The weakness of most generative models of-
ten lies in the incapability of addressing one to
many (1-to-n), many to one (n-to-1) and many
to many (m-to-n) alignments. Some research di-
rectly addressesm-to-n alignment with phrase
alignment models (Marcu and Wong, 2002).
However, these models are unsuccessful largely
due to intractable estimation (DeNero and Klein,
2008). Recent progress in better parameteri-
sation and approximate inference (Blunsom et
al., 2009) can only augment the performance of
these models to a similar level as the baseline
where bidirectional word alignments are com-
bined with heuristics and subsequently used to
induce translation equivalence (e.g. (Koehn et
al., 2003)). The most widely used word align-
ment models, such as IBM models 3 and 4, can
only model1-to-n alignment; these models are
often called “asymmetric” models. IBM models
3 and 4 model1-to-n alignments using the notion
of “fertility”, which is associated with a “defi-
ciency” problem despite its high performance in
practice.

On the other hand, the HMM word-to-phrase
alignment model tackles1-to-n alignment prob-
lems with simultaneous segmentation and align-
ment while maintaining the efficiency of the
models. Therefore, this model sets a good ex-
ample of addressing the tradeoffs between mod-
elling power and modelling complexity. This
model can also be seen as a more generalised
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case of the HMM word-to-word model (Vogel et
al., 1996; Och and Ney, 2003), since this model
can be reduced to an HMM word-to-word model
by restricting the generated target phrase length
to one. One can further refine existing word
alignment models with syntactic constraints (e.g.
(Cherry and Lin, 2006)). However, most re-
search focuses on the incorporation of syntactic
constraints into discriminative alignment mod-
els. Introducing syntactic information into gen-
erative alignment models is shown to be more
challenging mainly due to the absence of appro-
priate modelling of syntactic constraints and the
“inflexibility” of these generative models.

In this paper, we extend the HMM word-to-
phrase alignment model with syntactic depen-
dencies by presenting a model that can incor-
porate syntactic information while maintaining
the efficiency of the model. This model is based
on the observation that in1-to-n alignments,
the n words bear some syntactic dependencies.
Leveraging such information in the model can
potentially further aid the model in producing
more fine-grained word alignments. The syn-
tactic constraints are specifically imposed on the
n words involved in1-to-n alignments, which
is different from the cohesion constraints (Fox,
2002) as explored by Cherry and Lin (2006),
where knowledge of cross-lingual syntactic pro-
jection is used. As a syntactic extension of the
open-source MTTK implementation (Deng and
Byrne, 2006) of the HMM word-to-phrase align-
ment model, its source code will also be released
as open source in the near future.

The remainder of the paper is organised as fol-
lows. Section 2 describes the HMM word-to-
phrase alignment model. In section 3, we present
the details of the incorporation of syntactic de-
pendencies. Section 4 presents the experimental
setup, and section 5 reports the experimental re-
sults. In section 6, we draw our conclusions and
point out some avenues for future work.

2 HMM Word-to-Phrase Alignment
Model

In HMM word-to-phrase alignment, a sentence
e is segmented into a sequence of consecutive

phrases:e = vK
1 , wherevk represents thekth

phrase in the target sentence. The assumption
that each phrasevk generated as a translation of
one single source word is consecutive is made to
allow efficient parameter estimation. Similarly
to word-to-word alignment models, a variable
aK

1 is introduced to indicate the correspondence
between the target phrase index and a source
word index: k → i = ak indicating a mapping
from a target phrasevk to a source wordfak

. A
random processφk is used to specify the num-
ber of words in each target phrase, subject to the
constraintsJ =

∑K
k=1 φk, implying that the to-

tal number of words in the phrases agrees with
the target sentence lengthJ .

The insertion of target phrases that do not cor-
respond to any source words is also modelled
by allowing a target phrase to be aligned to a
non-existent source wordf0 (NULL). Formally,
to indicate whether each target phrase is aligned
to NULL or not, a set of indicator functions
εK
1 = {ε1, · · · , εK} is introduced (Deng and

Byrne, 2008): ifεk = 0, then NULL → vk; if
εk = 1, thenfak

→ vk.
To summarise, an alignmenta in an HMM

word-to-phrase alignment model consists of the
following elements:

a = (K,φK
1 , aK

1 , εK
1 )

The modelling objective is to define a condi-
tional distribution P (e,a|f) over these align-
ments. Following (Deng and Byrne, 2008),
P (e,a|f) can be decomposed into a phrase count
distribution (1) modelling the segmentation of a
target sentence into phrases (P (K|J, f) ∝ ηK

with scalarη to control the length of the hy-
pothesised phrases), a transition distribution (2)
modelling the dependencies between the current
link and the previous links, and a word-to-phrase
translation distribution (3) to model the degree
to which a word and a phrase are translational to
each other.

P (e,a|f) = P (vK
1 ,K, aK

1 , εK
1 , φK

1 |f)
= P (K|J, f) (1)

P (aK
1 , εK

1 , φK
1 |K,J, f) (2)

P (vK
1 |aK

1 , εK
1 , φK

1 ,K, J, f)(3)
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The word-to-phrase translation distribution
(3) is formalised as in (4):

P (vK
1 |aK

1 , εK
1 , φK

1 ,K, J, f)

=

K∏

k=1

pv(vk|εk · fak
, φk) (4)

Note here that we assume that the translation
of each target phrase is conditionally indepen-
dent of other target phrases given the individual
source words.

If we assume that each word in a target phrase
is translated with a dependence on the previ-
ously translated word in the same phrase given
the source word, we derive the bigram transla-
tion model as follows:

pv(vk|fak
, εk, φk) = pt1(vk[1]|εk, fak

)

φk∏

j=2

pt2(vk[j]|vk[j − 1], εk, fak
)

wherevk[1] is the first word in phrasevk, vk[j]
is thejth word in vk, pt1 is an unigram transla-
tion probability andpt2 is a bigram translation
probability. The intuition is that the first word
in vk is firstly translated byfak

and the transla-
tion of the remaining wordsvk[j] in vk from fak

is dependent on the translation of the previous
word vk[j − 1] from fak

. The use of a bigram
translation model can address the coherence of
the words within the phrasevk so that the qual-
ity of phrase segmentation can be improved.

3 Syntactically Constrained HMM
Word-to-Phrase Alignment Models

3.1 Syntactic Dependencies for
Word-to-Phrase Alignment

As a proof-of-concept, we performed depen-
dency parsing on the GALE gold-standard word
alignment corpus using Maltparser (Nivre et al.,
2007).1 We find that82.54% of the consec-
utive English words have syntactic dependen-
cies and77.46% non-consecutive English words
have syntactic dependencies in1-to-2 Chinese–
English (ZH–EN) word alignment (one Chi-
nese word aligned to two English words). For

1http://maltparser.org/

English–Chinese (EN–ZH) word alignment, we
observe that 75.62% of the consecutive Chinese
words and 71.15% of the non-consecutive Chi-
nese words have syntactic dependencies. Our
model represents an attempt to encode these lin-
guistic intuitions.

3.2 Component Variables and Distributions

We constrain the word-to-phrase alignment
model with a syntactic coherence model. Given
a target phrasevk consisting ofφk words, we
use the dependency labelrk between wordsvk[1]
and vk[φk] to indicate the level of coherence.
The dependency labels are a closed set obtained
from dependency parsers, e.g. using Maltparser,
we have 20 dependency labels for English and
12 for Chinese in our data. Therefore, we have
an additional variablerK

1 associated with the se-
quence of phrasesvK

1 to indicate the syntactic
coherence of each phrase, definingP (e,a|f) as
below:

P (rK
1 , vK

1 ,K, aK
1 , εK

1 , φK
1 |f) = P (K|J, f)

P (aK
1 , φK

1 , εK
1 |K,J, f)P (vK

1 |aK
1 , εK

1 , φK
1 ,K, J, f)

P (rK
1 |aK

1 , εK
1 , φK

1 , vK
1 ,K, J, f) (5)

The syntactic coherence distribution (5) is
simplified as in (6):

P (rK
1 |aK

1 , εK
1 , φK

1 , vK
1 ,K, J, f)

=
K∏

k=1

pr(rk; ε, fak
, φk) (6)

Note that the coherence of each target phrase
is conditionally independent of the coherence of
other target phrases given the source wordsfak

and the number of words in the current phrase
φk. We name the model in (5) the SSH model.
SSH is an abbreviation of Syntactically con-
strained Segmental HMM, given the fact that
the HMM word-to-phrase alignment model is a
Segmental HMM model (SH) (Ostendorf et al.,
1996; Murphy, 2002).

As our syntactic coherence model utilises syn-
tactic dependencies which require the presence
of at least two words in target phrasevk, we
therefore model the cases ofφk = 1 andφk ≥ 2
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separately. We rewrite (6) as follows:

pr(rk; ε, fak
, φk) ={

pφk=1(rk; ε, fak
) if φk = 1

pφk≥2(rk; ε, fak
) if φk ≥ 2

where pφk=1 defines the syntactic coherence
when the target phrase only contains one word
(φk = 1) and pφk≥2 defines the syntactic co-
herence of a target phrase composed of multiple
words (φk ≥ 2). We definepφk=1 as follows:

pφk=1(rk; ε, fak
) ∝ pn(φk = 1; ε, fak

)

where the coherence of the target phrase (word)
vk is defined to be proportional to the probability
of target phrase lengthφk = 1 given the source
wordfak

. The intuition behind this model is that
the syntactic coherence is strong iff the probabil-
ity of the sourcefak

fertility φk = 1 is high.
For pφk≥2, which measures the syntactic co-

herence of a target phrase consisting of more
than two words, we use the dependency labelrk

between wordsvk[1] andvk[φk] to indicate the
level of coherence. A distribution over the values
rk ∈ R = {SBJ, ADJ, · · · } (R is the set of de-
pendency types for a specific language) is main-
tained as a table for each source word associated
with all the possible lengthsφ ∈ {2, · · · ,N})
of the target phrase it can generate, e.g. we set
N = 4 for ZH–EN alignment andN = 2 for
EN–ZH alignment in our experiments.

Given a target phrasevk containingφk(φk ≥
2) words, it is possible that there are no depen-
dencies between the first wordvk[1] and the last
word vk[φk]. To account for this fact, we intro-
duce a indicator functionϕ as in below:

ϕ(vk[1], φk) =





1 if vk[1] andvk[φk]have

syntactic dependencies

0 otherwise

We can thereafter introduce a distributionpϕ(ϕ),
where pϕ(ϕ = 0) = ζ (0 ≤ ζ ≤ 1) and
pϕ(ϕ = 0) = 1− ζ, with ζ indicating how likely
it is that the first and final words in a target phrase
do not have any syntactic dependencies. We can
setζ to a small number to favour target phrases

satisfying the syntactic constraints and to a larger
number otherwise. The introduction of this vari-
able enables us to tune the model towards our
different end goals. We can now definepφk≥2

as:

pφk≥2(rk; ε, fak
) = p(rk|ϕ; ε, fak

)pϕ(ϕ)

where we insist thatp(rk|ϕ; ε, fak
) = 1 if

ϕ = 0 (the first and last words in the target
phrase do not have syntactic dependencies) to
reflect the fact that in most arbitrary consecu-
tive word sequences the first and last words do
not have syntactic dependencies, and otherwise
p(rk|ϕ; ε, fak

) if ϕ = 1 (the first and last words
in the target phrase have syntactic dependen-
cies).

3.3 Parameter Estimation

The Forward-Backward Algorithm (Baum,
1972), a version of the EM algorithm (Dempster
et al., 1977), is specifically designed for unsu-
pervised parameter estimation of HMM models.
The Forward statisticαj(i, φ, ε) in our model
can be calculated recursively over the trellis as
follows:

αj(i, φ, ε) = {
∑

i′,φ′,ε′
αj−φ(i′, φ′, ε′)pa(i|i′, ε; I)}

pn(φ; ε, fi)ηpt1(ej−φ+1|ε, fi)

j∏

j′=j−φ+2

pt2(ej′ |ej′−1, ε, fi)pr(rk; ε, fi, φ)

which sums up the probabilities of every path
that could lead to the cell〈j, i, φ〉. Note that the
syntactic coherence termpr(rk; ε, fi, φ) can ef-
ficiently be added into the Forward procedure.
Similarly, the Backward statisticβj(i, φ, ε) is
calculated over the trellis as below:

βj(i, φ, ε) =
∑

i′,φ′,ε′
βj+φ′(i′, φ′, ε′)pa(i

′|i, h′; I)

pn(φ′; ε′, fi′)ηpt1(ej+1|ε′, fi′)

j+φ′∏

j′=j+2

pt2(ej′ |ej′−1, ε
′, fi′)pr(rk; ε

′, fi′ , φ
′)

Note also that the syntactic coherence term
pr(rk; ε

′, fi′ , φ
′) can be integrated into the Back-

ward procedure efficiently.
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Posterior probability can be calculated based
on the Forward and Backward probabilities.

3.4 EM Parameter Updates

The Expectation step accumulates fractional
counts using the posterior probabilities for each
parameter during the Forward-Backward passes,
and the Maximisation step normalises the counts
in order to generate updated parameters.

The E-step for the syntactic coherence model
proceeds as follows:

c(r′; f, φ′) =
∑

(f ,e)∈T

∑

i,j,φ,fi=f

γj(i, φ, ε = 1)

δ(φ, φ′)δ(ϕj(e, φ), r′)

whereγj(i, φ, ε) is the posterior probability that
a target phrasetjj−φ+1 is aligned to source word
fi, andϕj(e, φ) is the syntactic dependency label
betweenej−φ+1 and ej . The M-step performs
normalisation, as below:

pr(r
′; f, φ′) =

c(r′; f, φ′)∑
r c(r; f, φ′)

Other component parameters can be estimated
in a similar manner.

4 Experimental Setup

4.1 Data

We built the baseline word alignment and
Phrase-Based SMT (PB-SMT) systems using ex-
isting open-source toolkits for the purposes of
fair comparison. A collection of GALE data
(LDC2006E26) consisting of 103K (2.9 million
English running words) sentence pairs was firstly
used as a proof of concept (“small”), and FBIS
data containing 238K sentence pairs (8 million
English running words) was added to construct a
“medium” scale experiment. To investigate the
intrinsic quality of the alignment, a collection
of parallel sentences (12K sentence pairs) for
which we have manually annotated word align-
ment was added to both “small” and “medium”
scale experiments. Multiple-Translation Chinese
Part 1 (MTC1) from LDC was used for Mini-
mum Error-Rate Training (MERT) (Och, 2003),
and MTC2, 3 and 4 were used as development

test sets. Finally the test set from NIST 2006
evaluation campaign was used as the final test
set.

The Chinese data was segmented using the
LDC word segmenter. The maximum-entropy-
based POS tagger MXPOST (Ratnaparkhi, 1996)
was used to tag both English and Chinese texts.
The syntactic dependencies for both English and
Chinese were obtained using the state-of-the-art
Maltparser dependency parser, which achieved
84% and 88% labelled attachment scores for
Chinese and English respectively.

4.2 Word Alignment

The GIZA ++ (Och and Ney, 2003) implementa-
tion of IBM Model 4 (Brown et al., 1993) is used
as the baseline for word alignment. Model 4 is
incrementally trained by performing5 iterations
of Model 1, 5 iterations of HMM,3 iterations
of Model 3, and3 iterations of Model 4. We
compared our model against the MTTK (Deng
and Byrne, 2006) implementation of the HMM
word-to-phrase alignment model. The model
training includes10 iterations of Model 1,5 it-
erations of Model 2,5 iterations of HMM word-
to-word alignment,20 iterations (5 iterations re-
spectively for phrase lengths 2, 3 and 4 with un-
igram translation probability, and phrase length
4 with bigram translation probability) of HMM
word-to-phrase alignment for ZH–EN alignment
and 5 iterations (5 iterations for phrase length
2 with uniform translation probability) of HMM
word-to-phrase alignment for EN–ZH. This con-
figuration is empirically established as the best
for Chinese–English word alignment. To allow
for a fair comparison between IBM Model 4
and HMM word-to-phrase alignment models, we
also restrict the maximum fertility in IBM model
4 to 4 for ZH–EN and 2 for EN–ZH (the default
is 9 in GIZA ++ for both ZH–EN and EN–ZH).
“grow-diag-final” heuristic described in (Koehn
et al., 2003) is used to derive the refined align-
ment from bidirectional alignments.

4.3 MT system

The baseline in our experiments is a standard
log-linear PB-SMT system. With the word align-
ment obtained using the method described in
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section 4.2, we perform phrase-extraction using
heuristics described in (Koehn et al., 2003), Min-
imum Error-Rate Training (MERT) (Och, 2003)
optimising the BLEU metric, a 5-gram language
model with Kneser-Ney smoothing (Kneser and
Ney, 1995) trained with SRILM (Stolcke, 2002)
on the English side of the training data, and
MOSES (Koehn et al., 2007) for decoding. A
Hiero-style decoder Joshua (Li et al., 2009) is
also used in our experiments. All significance
tests are performed using approximate randomi-
sation (Noreen, 1989) atp = 0.05.

5 Experimental Results

5.1 Alignment Model Tuning

In order to find the value ofζ in the SSH model
that yields the best MT performance, we used
three development test sets using a PB-SMT sys-
tem trained on the small data condition. Figure 1
shows the results on each development test set
using different configurations of the alignment
models. For each system, we obtain the mean
of the BLEU scores (Papineni et al., 2002) on
the three development test sets, and derive the
optimal value forζ of 0.4, which we use here-
after for final testing. It is worth mentioning
that while IBM model 4 (M4) outperforms other
models including the HMM word-to-word (H)
and word-to-phrase (SH) alignment model in our
current setup, using the default IBM model 4 set-
ting (maximum fertility 9) yields an inferior per-
formance (as much as 8.5% relative) compared
to other models.
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Figure 1: BLEU score on development test set
using PB-SMT system

PB-SMT Hiero
small medium small medium

H 0.1440 0.2591 0.1373 0.2595
SH 0.1418 0.2517 0.1372 0.2609
SSH 0.1464 0.2518 0.1356 0.2624
M4 0.1566 0.2627 0.1486 0.2660

Table 1: Performance of PB-SMT using different
alignment models on NIST06 test set

5.2 Translation Results

Table 1 shows the performance of PB-SMT and
Hiero systems using a small amount of data for
alignment model training on the NIST06 test set.
For the PB-SMT system trained on the small data
set, using SSH word alignment leads to a 3.24%
relative improvement over SH, which is statis-
tically significant. SSH also leads to a slight
gain over the HMM word-to-word alignment
model (H). However, when the PB-SMT system
is trained on larger data sets, there are no sig-
nificant differences between SH and SSH. Addi-
tionally, both SH and SSH models underperform
H on the medium data condition, indicating that
the performance of the alignment model tuned
on the PB-SMT system with small training data
does not carry over to PB-SMT systems with
larger training data (cf. Figure 1). IBM model
4 demonstrates stronger performance over other
models for both small and medium data condi-
tions.

For the Hiero system trained on a small data
set, no significant differences are observed be-
tween SSH, SH and H. On a larger training set,
we observe that SSH alignment leads to better
performance compared to SH. Both SH and SSH
alignments achieved higher translation quality
than H. Note that while IBM model 4 outper-
forms other models on a small data condition, the
difference between IBM model 4 and SSH is not
statistically significant on a medium data condi-
tion. It is also worth pointing out that the SSH
model yields significant improvement over IBM
model 4 with the default fertility setting, indicat-
ing that varying the fertility limit in IBM model
4 has a significant impact on translation quality.

In summary, the SSH model which incorpo-
rates syntactic dependencies into the SH model
achieves consistently better performance than
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ZH–EN EN–ZH
P R P R

H 0.5306 0.3752 0.5282 0.3014
SH 0.5378 0.3802 0.5523 0.3151
SSH 0.5384 0.3807 0.5619 0.3206
M4 0.5638 0.3986 0.5988 0.3416

Table 2: Intrinsic evaluation of the alignment us-
ing different alignment models

SH in both PB-SMT and Hiero systems under
both small and large data conditions. For a
PB-SMT system trained on the small data set,
the SSH model leads to significant gains over
the baseline SH model. The results also en-
tail an observation concerning the suitability of
different alignment models for different types
of SMT systems; trained on a large data set,
our SSH alignment model is more suitable to
a Hiero-style system than a PB-SMT system,
as evidenced by a lower performance compared
to IBM model 4 using a PB-SMT system, and
a comparable performance compared to IBM
model 4 using a Hiero system.

5.3 Intrinsic Evaluation

In order to further investigate the intrinsic qual-
ity of the word alignment, we compute the Preci-
sion (P), Recall (R) and F-score (F) of the align-
ments obtained using different alignment mod-
els. As the models investigated here are asym-
metric models, we conducted intrinsic evalua-
tion for both alignment directions, i.e. ZH–EN
word alignment where one Chinese word can be
aligned to multiple English words, and EN–ZH
word alignment where one English word can be
aligned to multiple Chinese words.

Table 2 shows the results of the intrinsic eval-
uation of ZH–EN and EN–ZH word alignment
on a small data set (results on the medium data
set follow the same trend but are left out due
to space limitations). Note that the P and R
are all quite low, demonstrating the difficulty of
Chinese–English word alignment in the news do-
main. For the ZH–EN direction, using the SSH
model does not lead to significant gains over SH
in P or R. For the EN–ZH direction, the SSH
model leads to a 1.74% relative improvement in
P, and a 1.75% relative improvement in R over

the SH model. Both SH and SSH lead to gains
over H for both ZH–EN and EN–ZH directions,
while gains in the EN–ZH direction appear to be
more pronounced. IBM model 4 achieves signif-
icantly higher P over other models while the gap
in R is narrow.

Relating Table 2 to Table 1, we observe that
the HMM word-to-word alignment model (H)
can still achieve good MT performance despite
the lower P and R compared to other mod-
els. This provides additional support to previ-
ous findings (Fraser and Marcu, 2007b) that the
intrinsic quality of word alignment does not nec-
essarily correlate with the performance of the re-
sulted MT system.

5.4 Alignment Characteristics

In order to further understand the characteristics
of the alignment that each model produces, we
investigated several statistics of the alignment re-
sults which can hopefully reveal the capabilities
and limitations of each model.

5.4.1 Pairwise Comparison

Given the asymmetric property of these align-
ment models, we can evaluate the quality of the
links for each word and compare the alignment
links across different models. For example, in
ZH–EN word alignment, we can compute the
links for each Chinese word and compare those
links across different models. Additionally, we
can compute the pairwise agreement in align-
ing each Chinese word for any two alignment
models. Similarly, we can compute the pairwise
agreement in aligning each English word in the
EN–ZH alignment direction.

For ZH–EN word alignment, we observe that
the SH and SSH models reach a 85.94% agree-
ment, which is not surprising given the fact that
SSH is a syntactic extension over SH, while IBM
model 4 and SSH reach the smallest agreement
(only 65.09%). We also observe that there is a
higher agreement between SSH and H (76.64%)
than IBM model 4 and H (69.58%). This can be
attributed to the fact that SSH is still a form of
HMM model while IBM model 4 is not. A simi-
lar trend is observed for EN–ZH word alignment.
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ZH–EN EN–ZH
1-to-0 1-to-1 1-to-n 1-to-0 1-to-1 1-to-n

con. non-con. con. non-con.
HMM 0.3774 0.4693 0.0709 0.0824 0.4438 0.4243 0.0648 0.0671
SH 0.3533 0.4898 0.0843 0.0726 0.4095 0.4597 0.0491 0.0817
SSH 0.3613 0.5092 0.0624 0.0671 0.3990 0.4835 0.0302 0.0872
M4 0.2666 0.5561 0.0985 0.0788 0.3967 0.4850 0.0592 0.0591

Table 3: Alignment types using different alignment models

5.4.2 Alignment Types

Again, by taking advantage of the asymmet-
ric property of these alignment models, we can
compute different types of alignment. For both
ZH–EN (EN–ZH) alignment, we divide the links
for each Chinese (English) word into1-to-0
where each Chinese (English) word is aligned
to the empty word “NULL” in English (Chi-
nese),1-to-1 where each Chinese (English) word
is aligned to only one word in English (Chinese),
and1-to-n where each Chinese (English) word
is aligned ton (n ≥ 2) words in English (Chi-
nese). For1-to-n links, depending on whether
the n words are consecutive, we have consecu-
tive (con.) and non-consecutive (non-con.)1-to-
n links.

Table 3 shows the alignment types in the
medium data track. We can observe that for
ZH–EN word alignment, both SH and SSH pro-
duce far more1-to-0 links than Model 4. It can
also be seen that Model 4 tends to produce more
consecutive1-to-n links than non-consecutive1-
to-n links. On the other hand, the SSH model
tends to produce more non-consecutive1-to-n
links than consecutive ones. Compared to SH,
SSH tends to produce more1-to-1 links than1-
to-n links, indicating that adding syntactic de-
pendency constraints biases the model towards
only producing1-to-n links when then words
follow coherence constraint, i.e. the first and last
word in the chunk have syntactic dependencies.
For example, among the 6.24% consecutive ZH–
EN 1-to-n links produced by SSH, 43.22% of
them follow the coherence constraint compared
to just 39.89% in SH. These properties can have
significant implications for the performance of
our MT systems given that we use the grow-
diag-final heuristics to derive the symmetrised
word alignment based on bidirectional asymmet-

ric word alignments.

6 Conclusions and Future Work

In this paper, we extended the HMM word-to-
phrase word alignment model to handle syntac-
tic dependencies. We found that our model was
consistently better than that without syntactic de-
pendencies according to both intrinsic and ex-
trinsic evaluation. Our model is shown to be ben-
eficial to PB-SMT under a small data condition
and to a Hiero-style system under a larger data
condition.

As to future work, we firstly plan to investi-
gate the impact of parsing quality on our model,
and the use of different heuristics to combine
word alignments. Secondly, the syntactic co-
herence model itself is very simple, in that it
only covers the syntactic dependency between
the first and last word in a phrase. Accordingly,
we intend to extend this model to cover more so-
phisticated syntactic relations within the phrase.
Furthermore, given that we can construct dif-
ferent MT systems using different word align-
ments, multiple system combination can be con-
ducted to avail of the advantages of different sys-
tems. We also plan to compare our model with
other alignment models, e.g. (Fraser and Marcu,
2007a), and test this approach on more data and
on different language pairs and translation direc-
tions.
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Abstract

We propose several improvements to the
hierarchical phrase-based MT model of
Chiang (2005) and its syntax-based exten-
sion by Zollmann and Venugopal (2006).
We add a source-span variance model
that, for each rule utilized in a prob-
abilistic synchronous context-free gram-
mar (PSCFG) derivation, gives a confi-
dence estimate in the rule based on the
number of source words spanned by the
rule and its substituted child rules, with
the distributions of these source span sizes
estimated during training time.

We further propose different methods of
combining hierarchical and syntax-based
PSCFG models, by merging the grammars
as well as by interpolating the translation
models.

Finally, we compare syntax-augmented
MT, which extracts rules based on target-
side syntax, to a corresponding variant
based on source-side syntax, and experi-
ment with a model extension that jointly
takes source and target syntax into ac-
count.

1 Introduction

The Probabilistic Synchronous Context Free
Grammar (PSCFG) formalism suggests an intu-
itive approach to model the long-distance and lex-
ically sensitive reordering phenomena that often
occur across language pairs considered for statis-
tical machine translation. As in monolingual pars-
ing, nonterminal symbols in translation rules are

used to generalize beyond purely lexical opera-
tions. Labels on these nonterminal symbols are
often used to enforce syntactic constraints in the
generation of bilingual sentences and imply con-
ditional independence assumptions in the statis-
tical translation model. Several techniques have
been recently proposed to automatically iden-
tify and estimate parameters for PSCFGs (or re-
lated synchronous grammars) from parallel cor-
pora (Galley et al., 2004; Chiang, 2005; Zollmann
and Venugopal, 2006; Liu et al., 2006; Marcu et
al., 2006).

In this work, we propose several improvements
to the hierarchical phrase-based MT model of
Chiang (2005) and its syntax-based extension by
Zollmann and Venugopal (2006). We add a source
span variance model that, for each rule utilized
in a probabilistic synchronous context-free gram-
mar (PSCFG) derivation, gives a confidence es-
timate in the rule based on the number of source
words spanned by the rule and its substituted child
rules, with the distributions of these source span
sizes estimated during training (i.e., rule extrac-
tion) time.

We further propose different methods of com-
bining hierarchical and syntax-based PSCFG
models, by merging the grammars as well as by
interpolating the translation models.

Finally, we compare syntax-augmented MT,
which extracts rules based on target-side syntax,
to a corresponding variant based on source-side
syntax, and experiment with a model extension
based on source and target syntax.

We evaluate the different models on the
NIST large resource Chinese-to-English transla-
tion task.
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2 Related work

Chiang et al. (2008) introduce structural dis-
tortion features into a hierarchical phrase-based
model, aimed at modeling nonterminal reordering
given source span length, by estimating for each
possible source span length ` a Bernoulli distribu-
tion p(R|`) where R takes value one if reorder-
ing takes place and zero otherwise. Maximum-
likelihood estimation of the distribution amounts
to simply counting the relative frequency of non-
terminal reorderings over all extracted rule in-
stances that incurred a substitution of span length
`. In a more fine-grained approach they add a sep-
arate binary feature 〈R, `〉 for each combination of
reordering truth value R and span length ` (where
all ` ≥ 10 are merged into a single value), and
then tune the feature weights discriminatively on a
development set. Our approach differs from Chi-
ang et al. (2008) in that we estimate one source
span length distribution for each substitution site
of each grammar rule, resulting in unique distri-
butions for each rule, estimated from all instances
of the rule in the training data. This enables our
model to condition reordering range on the in-
dividual rules used in a derivation, and even al-
lows to distinguish between two rules r1 and r2
that both reorder arguments with identical mean
span lengths `, but where the span lengths encoun-
tered in extracted instances of r1 are all close to `,
whereas span length instances for r2 vary widely.

Chen and Eisele (2010) propose a hypbrid ap-
proach between hierarchical phrase based MT
and a rule based MT system, reporting improve-
ment over each individual model on an English-
to-German translation task. Essentially, the rule
based system is converted to a single-nonterminal
PSCFG, and hence can be combined with the
hierarchical model, another single-nonterminal
PSCFG, by taking the union of the rule sets
and augmenting the feature vectors, adding zero-
values for rules that only exist in one of the two
grammars. We face the challenge of combining
the single-nonterminal hierarchical grammar with
a multi-nonterminal syntax-augmented grammar.
Thus one hierarchical rule typically corresponds
to many syntax-augmented rules. The SAMT sys-
tem used by Zollmann et al. (2008) adds hierar-

chical rules separately to the syntax-augmented
grammar, resulting in a backbone grammar of
well-estimated hierarchical rules supporting the
sparser syntactic rules. They allow the model
preference between hierarchical and syntax rules
to be learned from development data by adding
an indicator feature to all rules, which is one
for hierarchical rules and zero for syntax rules.
However, no empirical comparison is given be-
tween the purely syntax-augmented and the hy-
brid grammar. We aim to fill this gap by experi-
menting with both models, and further refine the
hybrid approach by adding interpolated probabil-
ity models to the syntax rules.

Chiang (2010) augments a hierarchical phrase-
based MT model with binary syntax features rep-
resenting the source and target syntactic con-
stituents of a given rule’s instantiations during
training, thus taking source and target syntax
into account while avoiding the data-sparseness
and decoding-complexity problems of multi-
nonterminal PSCFG models. In our approach, the
source- and target-side syntax directly determines
the grammar, resulting in a nonterminal set de-
rived from the labels underlying the source- and
target-language treebanks.

3 PSCFG-based translation

Given a source language sentence f , statistical
machine translation defines the translation task as
selecting the most likely target translation e under
a model P (e|f), i.e.:

ê(f) = argmax
e

P (e|f) = argmax
e

m∑

i=1

hi(e, f)λi

where the argmax operation denotes a search
through a structured space of translation outputs
in the target language, hi(e, f) are bilingual fea-
tures of e and f and monolingual features of
e, and weights λi are typically trained discrim-
inatively to maximize translation quality (based
on automatic metrics) on held out data, e.g., us-
ing minimum-error-rate training (MERT) (Och,
2003).

In PSCFG-based systems, the search space is
structured by automatically extracted rules that
model both translation and re-ordering operations.
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Most large scale systems approximate the search
above by simply searching for the most likely
derivation of rules, rather than searching for the
most likely translated output. There are efficient
algorithms to perform this search (Kasami, 1965;
Chappelier and Rajman, 1998) that have been ex-
tended to efficiently integrate n-gram language
model features (Chiang, 2007; Venugopal et al.,
2007; Huang and Chiang, 2007; Zollmann et al.,
2008; Petrov et al., 2008).

In this work we experiment with PSCFGs
that have been automatically learned from word-
aligned parallel corpora. PSCFGs are defined by a
source terminal set (source vocabulary) TS , a tar-
get terminal set (target vocabulary) TT , a shared
nonterminal set N and rules of the form: X →
〈γ, α,w〉 where

• X ∈ N is a labeled nonterminal referred to as
the left-hand-side of the rule.
• γ ∈ (N ∪ TS)∗ is the source side of the rule.
• α ∈ (N ∪ TT )∗ is the target side of the rule.
• w ∈ [0,∞) is a non-negative real-valued

weight assigned to the rule; in our model, w is
the exponential function of the inner product of
features h and weights λ.

3.1 Hierarchical phrase-based MT
Building upon the success of phrase-based meth-
ods, Chiang (2005) presents a PSCFG model of
translation that uses the bilingual phrase pairs
of phrase-based MT as starting point to learn
hierarchical rules. For each training sentence
pair’s set of extracted phrase pairs, the set of in-
duced PSCFG rules can be generated as follows:
First, each phrase pair is assigned a generic X-
nonterminal as left-hand-side, making it an initial
rule. We can now recursively generalize each al-
ready obtained rule (initial or including nontermi-
nals)

N → f1 . . . fm/e1 . . . en

for which there is an initial rule

M → fi . . . fu/ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, to
obtain a new rule

N → f i−1
1 Xkf

m
u+1/e

j−1
1 Xke

n
v+1

where e.g. f i−1
1 is short-hand for f1 . . . fi−1, and

where k is an index for the nonterminal X that
indicates the one-to-one correspondence between
the new X tokens on the two sides (it is not in
the space of word indices like i, j, u, v,m, n). The
recursive form of this generalization operation al-
lows the generation of rules with multiple nonter-
minal pairs.

Chiang (2005) uses features analogous to the
ones used in phrase-based translation: a lan-
guage model neg-log probability, a ‘rule given
source-side’ neg-log-probability, a ‘rule given
target-side’ neg-log-probability, source- and tar-
get conditioned ‘lexical’ neg-log-probabilities
based on word-to-word co-occurrences (Koehn et
al., 2003), as well as rule, target word, and glue
operation counters. We follow Venugopal and
Zollmann (2009) to further add a rareness penalty,

1/ count(r)

where count(r) is the occurrence count of rule
r in the training corpus, allowing the system to
learn penalization of low-frequency rules, as well
as three indicator features firing if the rule has
one, two unswapped, and two swapped nontermi-
nal pairs, respectively.1

3.2 Syntax Augmented MT
Syntax Augmented MT (SAMT) (Zollmann and
Venugopal, 2006) extends Chiang (2005) to in-
clude nonterminal symbols from target language
phrase structure parse trees. Each target sentence
in the training corpus is parsed with a stochas-
tic parser to produce constituent labels for target
spans. Phrase pairs (extracted from a particular
sentence pair) are assigned left-hand-side nonter-
minal symbols based on the target side parse tree
constituent spans.

Phrase pairs whose target side corresponds to
a constituent span are assigned that constituent’s
label as their left-hand-side nonterminal. If the
target side of the phrase pair is not spanned by
a single constituent in the corresponding parse
tree, we use the labels of subsuming, subsumed,
and neighboring parse tree constituents to assign

1Penalization or reward of purely-lexical rules can be in-
directly learned by trading off these features with the rule
counter feature.
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an extended label of the form C1 + C2, C1/C2,
or C2\C1 (the latter two being motivated from
the operations in combinatory categorial gram-
mar (CCG) (Steedman, 2000)), indicating that the
phrase pair’s target side spans two adjacent syn-
tactic categories (e.g., she went: NP+VB), a par-
tial syntactic category C1 missing aC2 at the right
(e.g., the great: NP/NN), or a partial C1 missing
a C2 at the left (e.g., great wall: DT\NP), respec-
tively. The label assignment is attempted in the or-
der just described, i.e., assembling labels based on
‘+’ concatenation of two subsumed constituents is
preferred, as smaller constituents tend to be more
accurately labeled. If no label is assignable by ei-
ther of these three methods, a default label ‘FAIL’
is assigned.

In addition to the features used in hierarchical
phrase-based MT, SAMT introduces a relative-
frequency estimated probability of the rule given
its left-hand-side nonterminal.

4 Modeling Source Span Length of
PSCFG Rule Substitution Sites

Extracting a rule with k right-hand-side nonter-
minal pairs, i.e., substitution sites, (from now on
called order-k rule) by the method described in
Section 3 involves k + 1 phrase pairs: one phrase
pair used as initial rule and k phrase pairs that are
sub phrase pairs of the first and replaced by non-
terminal pairs. Conversely, during translation, ap-
plying this rule amounts to combining k hypothe-
ses from k different chart cells, each represented
by a source span and a nonterminal, to form a new
hypothesis and file it into a chart cell. Intuitively,
we want the source span lengths of these k + 1
chart cells to be close to the source side lengths of
the k+1 phrase pairs from the training corpus that
were involved in extracting the rule. Of course,
each rule generally was extracted from multiple
training corpus locations, with different involved
phrase pairs of different lengths. We therefore
model k + 1 source span length distributions for
each order-k rule in the grammar.

Ignoring the discreteness of source span length
for the sake of easier estimation, we assume the
distribution to be log-normal. This is motivated
by the fact that source span length is positive and
that we expect its deviation between instances of

the same rule to be greater for long phrase pairs
than for short ones.

We can now add k̂ + 1 features to the transla-
tion framework, where k̂ is the maximum num-
ber of PSCFG rule nonterminal pairs, in our case
two. Each feature is computed during translation
time. Ideally, it should represent the probabil-
ity of the hypothesized rule given the respective
chart cell span length. However, as each com-
peting rule underlies a different distribution, this
would require a Bayesian setting, in which priors
over distributions are specified. In this prelimi-
nary work we take a simpler approach: Based on
the rule’s span distribution, we compute the prob-
ability that a span length no likelier than the one
encountered was generated from the distribution.
This probability thus yields a confidence estimate
for the rule. More formally, let µ be the mean and
σ the standard deviation of the logarithm of the
span length random variableX concerned, and let
x be the span length encountered during decoding.
Then the computed confidence estimate is given
by

P (| ln(X)− µ| ≥ | ln(x)− µ|)
= 2 ∗ Z (−(| ln(x)− µ|)/σ)

where Z is the cumulative density function of the
normal distribution with mean zero and variance
one.

The confidence estimate is one if the encoun-
tered span length is equal to the mean of the dis-
tribution, and decreases as the encountered span
length deviates further from the mean. The sever-
ity of that decline is determined by the distribution
variance: the higher the variance, the less a devia-
tion from the mean is penalized.

Mean and variance of log source span length are
sufficient statistics of the log-normal distribution.
As we extract rules in a distributed fashion, we
use a straightforward parallelization of the online
algorithm of Welford (1962) and its improvement
by West (1979) to compute the sample variance
over all instances of a rule.
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5 Merging a Hierarchical and a
Syntax-Based Model

While syntax-based grammars allow for more re-
fined statistical models and guide the search by
constraining substitution possibilitites in a gram-
mar derivation, grammar sizes tend to be much
greater than for hierarchical grammars. Therefore
the average occurrence count of a syntax rule is
much lower than that of a hierarchical rule, and
thus estimated probabilitites are less reliable.

We propose to augment the syntax-based “rule
given source side” and “rule given target side” dis-
tributions by hierarchical counterparts obtained by
marginalizing over the left-hand-side and right-
hand-side rule nonterminals. For example, the
hierarchical equivalent of the “rule given source
side” probability is obtained by summing occur-
rence counts over all rules that have the same
source and target terminals and substitution posi-
tions but possibly differ in the left- and/or right-
hand side nonterminal labels, divided by the sum
of occurrence counts of all rules that have the
same source side terminals and source side substi-
tution positions. Similarly, an alternative rareness
penalty based on the combined frequency of all
rules with the same terminals and substitution po-
sitions is obtained.

Using these syntax and hierarchical features
side by side amounts to interpolation of the re-
spective probability models in log-space, with
minimum-error-rate training (MERT) determining
the optimal interpolation coefficient. We also add
respective models interpolated with coefficient .5
in probability-space as additional features to the
system.

We further experiment with adding hierarchical
rules separately to the syntax-augmented gram-
mar, as proposed in Zollmann et al. (2008), with
the respective syntax-specific features set to zero.
A ‘hierarchical-indicator’ feature is added to all
rules, which is one for hierarchical rules and zero
for syntax rules, allowing the joint model to trade
of hierarchical against syntactic rules. During
translation, the hierarchical and syntax worlds are
bridged by glue rules, which allow monotonic
concatenation of hierarchical and syntactic partial
sentence hypotheses. We separate the glue feature

used in hierarchical and syntax-augmented trans-
lation into a glue feature that only fires when a hi-
erarchical rule is glued, and a distinct glue feature
firing when gluing a syntax-augmented rule.

6 Extension of SAMT to a bilingually
parsed corpus

Syntax-based MT models have been proposed
both based on target-side syntactic annotations
(Galley et al., 2004; Zollmann and Venugopal,
2006) as well source-side annotations (Liu et al.,
2006). Syntactic annotations for both source and
target language are available for popular language
pairs such as Chinese-English. In this case, our
grammar extraction procedure can be easily ex-
tended to impose both source and target con-
straints on the eligible substitutions simultane-
ously.

Let Nf be the nonterminal label that would be
assigned to a given initial rule when utilizing the
source-side parse tree, and Ne the assigned label
according to the target-side parse. Then our bilin-
gual model assigns ‘Nf + Ne’ to the initial rule.
The extraction of complex rules proceeds as be-
fore. The number of nonterminals in this model,
based on a source-model label set of size s and a
target label set of size t, is thus given by st.

7 Experiments

We evaluate our approaches by comparing trans-
lation quality according to the IBM-BLEU (Pap-
ineni et al., 2002) metric on the NIST Chinese-
to-English translation task using MT04 as devel-
opment set to train the model parameters λ, and
MT05, MT06 and MT08 as test sets.

We perform PSCFG rule extraction and de-
coding using the open-source “SAMT” system
(Venugopal and Zollmann, 2009), using the pro-
vided implementations for the hierarchical and
syntax-augmented grammars. For all systems, we
use the bottom-up chart parsing decoder imple-
mented in the SAMT toolkit with a reordering
limit of 15 source words, and correspondingly ex-
tract rules from initial phrase pairs of maximum
source length 15. All rules have at most two non-
terminal symbols, which must be non-consecutive
on the source side, and rules must contain at least
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one source-side terminal symbol.
For parameter tuning, we use the L0-

regularized minimum-error-rate training tool pro-
vided by the SAMT toolkit.

The parallel training data comprises of 9.6M
sentence pairs (206M Chinese Words, 228M En-
glish words). The source and target language
parses for the syntax-augmented grammar were
generated by the Stanford parser (Klein and Man-
ning, 2003).

The results are given in Table 1. The source
span models (indicated by +span) achieve small
test set improvements of 0.15 BLEU points on av-
erage for the hierarchical and 0.26 BLEU points
for the syntax-augmented system, but these are
not statistically significant.

Augmenting a syntax-augmented grammar
with hierarchical features (“Syntax+hiermodels”)
results in average test set improvements of 0.5
BLEU points. These improvements are not sta-
tistically significant either, but persist across all
three test sets. This demonstrates the benefit of
more reliable feature estimation. Further aug-
menting the hierarchical rules to the grammar
(“Syntax+hiermodels+hierrules”) does not yield
additional improvements.

The use of bilingual syntactic parses (‘Syn-
tax/src&tgt’) turns out detrimental to translation
quality. We assume this is due to the huge number
of nonterminals in these grammars and the great
amount of badly-estimated low-occurrence-count
rules. Perhaps merging this grammar with a regu-
lar syntax-augmented grammar could yield better
results.

We also experimented with a source-parse
based model (‘Syntax/src’). While not being able
to match translation quality of its target-based
counterpart, the model still outperforms the hier-
archical system on all test sets.

8 Conclusion

We proposed several improvements to the hierar-
chical phrase-based MT model of Chiang (2005)
and its syntax-based extension by Zollmann and
Venugopal (2006). We added a source span length
model that, for each rule utilized in a probabilis-
tic synchronous context-free grammar (PSCFG)
derivation, gives a confidence estimate in the rule

based on the number of source words spanned by
the rule and its substituted child rules, resulting in
small improvements for hierarchical phrase-based
as well as syntax-augmented MT.

We further demonstrated the utility of combin-
ing hierarchical and syntax-based PSCFG models
and grammars.

Finally, we compared syntax-augmented MT,
which extracts rules based on target-side syntax,
to a corresponding variant based on source-side
syntax, showing that target syntax is more ben-
efitial, and unsuccessfully experimented with a
model extension that jointly takes source and tar-
get syntax into account.

Hierarchical phrase-based MT suffers from
spurious ambiguity: A single translation for a
given source sentence can usually be accom-
plished by many different PSCFG derivations.
This problem is exacerbated by syntax-augmented
MT with its thousands of nonterminals, and made
even worse by its joint source-and-target exten-
sion. Future research should apply the work of
Blunsom et al. (2008) and Blunsom and Osborne
(2008), who marginalize over derivations to find
the most probable translation rather than the most
probable derivation, to these multi-nonterminal
grammars.

All source code underlying this work is avail-
able under the GNU Lesser General Public Li-
cense as part of the ‘SAMT’ system at:
www.cs.cmu.edu/˜zollmann/samt
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Abstract

Hierarchical Models increase the re-
ordering capabilities of MT systems
by introducing non-terminal symbols to
phrases that map source language (SL)
words/phrases to the correct position
in the target language (TL) translation.
Building translations via discontiguous
TL phrases increases the difficulty of lan-
guage modeling, however, introducing the
need for heuristic techniques such as cube
pruning (Chiang, 2005), for example.
An additional possibility to aid language
modeling in hierarchical systems is to use
a language model that models fluency of
words not using their local context in the
string, as in traditional language models,
but instead using the deeper context of
a word. In this paper, we explore the
potential of deep syntax language mod-
els providing an interesting comparison
with the traditional string-based language
model. We include an experimental evalu-
ation that compares the two kinds of mod-
els independently of any MT system to in-
vestigate the possible potential of integrat-
ing a deep syntax language model into Hi-
erarchical SMT systems.

1 Introduction

In Phrase-Based Models of Machine Translation
all phrases consistent with the word alignment
are extracted (Koehn et al., 2003), with shorter
phrases needed for high coverage of unseen data
and longer phrases providing improved fluency in

target language translations. Hierarchical Mod-
els (Chiang, 2007; Chiang, 2005) build on Phrase-
Based Models by relaxing the constraint that
phrases must be contiguous sequences of words
and allow a short phrase (or phrases) nested within
a longer phrase to be replaced by a non-terminal
symbol forming a new hierarchical phrase. Tra-
ditional language models use the local context of
words to estimate the probability of the sentence
and introducing hierarchical phrases that generate
discontiguous sequences of TL words increases
the difficulty of computing language model proba-
bilities during decoding and require sophisticated
heuristic language modeling techniques (Chiang,
2007; Chiang, 2005).

Leaving aside heuristic language modeling for
a moment, the difficulty of integrating a tradi-
tional string-based language model into the de-
coding process in a hierarchical system, highlights
a slight incongruity between the translation model
and language model in Hierarchical Models. Ac-
cording to the translation model, the best way to
build a fluent TL translation is via discontiguous
phrases, while the language model can only pro-
vide information about the fluency of contiguous
sequences of words. Intuitively, a language model
that models fluency between discontiguous words
may be well-suited to hierarchical models. Deep
syntax language models condition the probability
of a word on its deep context, i.e. words linked to
it via dependency relations, as opposed to preced-
ing words in the string. During decoding in Hi-
erarchical Models, words missing a context in the
string due to being preceded by a non-terminal,
might however be in a dependency relation with
a word that is already present in the string and
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this context could add useful information about
the fluency of the hypothesis as its constructed.

In addition, using the deep context of a word
provides a deeper notion of fluency than the lo-
cal context provides on its own and this might be
useful to improve such things as lexical choice in
SMT systems. Good lexical choice is very im-
portant and the deeper context of a word, if avail-
able, may provide more meaningful information
and result in better lexical choice. Integrating
such a model into a Hierarchical SMT system is
not straightforward, however, and we believe be-
fore embarking on this its worthwhile to evalu-
ate the model independently of any MT system.
We therefore provide an experimental evaluation
of the model and in order to provide an interesting
comparison, we evaluate a traditional string-based
language model on the same data.

2 Related Work

The idea of using a language model based on deep
syntax is not new to SMT. Shen et al. (2008) use
a dependency-based language model in a string
to dependency tree SMT system for Chinese-
English translation, using information from the
deeper structure about dependency relations be-
tween words, in addition to the position of the
words in the string, including information about
whether context words were positioned on the left
or right of a word. Bojar and Hajič (2008) use a
deep syntax language model in an English-Czech
dependency tree-to-tree transfer system, and in-
clude three separate bigram language models: a
reverse, direct and joint model. The model in our
evaluation is similar to their direct bigram model,
but is not restricted to bigrams.

Riezler and Maxwell (2006) use a trigram deep
syntax language model in German-English depen-
dency tree-to-tree transfer to re-rank decoder out-
put. The language model of Riezler and Maxwell
(2006) is similar to the model in our evaluation,
but differs in that it is restricted to a trigram model
trained on LFG f-structures. In addition, as lan-
guage modeling is not the main focus of their
work, they provide little detail on the language
model they use, except to say that it is based on
“log-probability of strings of predicates from root
to frontier of target f-structure, estimated from

predicate trigrams in English f-structures”(Rie-
zler and Maxwell, 2006). An important prop-
erty of LFG f-structures (and deep syntactic struc-
tures in general) was possibly overlooked here.
F-structures can contain more than one path of
predicates from the root to a frontier that in-
clude the same ngram, and this occurs when the
underlying graph includes unary branching fol-
lowed by branching with arity greater than one.
In such cases, the language model probability as
described in Riezler and Maxwell (2006) is incor-
rect as the probability of these ngrams will be in-
cluded multiple times. In our definition of a deep
syntax language model, we ensure that such du-
plicate ngrams are omitted in training and testing.
In addition, Wu (1998) use a bigram deep syntax
language model in a stochastic inversion transduc-
tion grammar for English to Chinese. None of the
related research we discuss here has included an
evaluation of the deep syntax language model they
employ in isolation from the MT system, however.

3 Deep Syntax

The deep syntax language model we describe is
not restricted to any individual theory of deep
syntax. For clarity, however, we restrict our ex-
amples to LFG, which is also the deep syntax
theory we use for our evaluation. The Lexical
Functional Grammar (LFG) (Kaplan and Bres-
nan, 1982; Kaplan, 1995; Bresnan, 2001; Dalrym-
ple, 2001) functional structure (f-structure) is an
attribute-value encoding of bi-lexical labeled de-
pendencies, such assubject, object and adjunct
for example, with morpho-syntactic atomic at-
tributes encoding information such asmoodand
tenseof verbs, andperson, numberandcasefor
nouns. Figure 1 shows the LFG f-structure for En-
glish sentence“Today congress passed Obama’s
health care bill.”1

Encoded within the f-structure is a directed
graph and our language model uses a simplified
acyclic unlabeled version of this graph. Figure
1(b) shows the graph structure encoded within the
f-structure of Figure 1(a). We discuss the simpli-
fication procedure later in Section 5.

1Morpho-syntactic information/ atomic features are omit-
ted from the diagram.
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(a) 


PRED pass

SUBJ
[

PRED congress
]

OBJ


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PRED bill

SPEC

[
POSS

[
PRED Obama

]]

MOD

[
PRED care

MOD
[

PRED health
]
]




ADJ
[

PRED today
]




(b) <s>

pass

today congress bill

</s> </s> obama care

</s> health

</s>

Figure 1:“Today congress passed Obama’s health care bill.”

4 Language Model

We use a simplified approximation of the deep
syntactic structure,de, that encodes the unlabeled
dependencies between the words of the sentence,
to estimate a deep syntax language model prob-
ability. Traditional string-based language mod-
els combine the probability of each word in the
sentence,wi, given its preceding context, the se-
quence of words fromw1 to wi−1, as shown in
Equation 1.

p(w1, w2, ..., wl) =
l∏

i=1

p(wi|w1, ..., wi−1) (1)

In a similar way, a deep syntax language model
probability combines the probability of each word
in the structure,wi, given its context within the
structure, the sequence of words fromwr, the
head of the sentence, towm(i), as shown in Equa-
tion 2, with functionm used to map the index of a
word in the structure to the index of its head.2

p(de) =
l∏

i=1

p(wi|wr, ..., wm(m(i))wm(i)) (2)

In order to combat data sparseness, we apply
the Markov assumption, as is done in traditional
string-based language modeling, and simplify the
probability by only including a limited length of
history when estimating the probability of each

2We refer to the lexicalized nodes in the dependency
structure aswords, alternatively the termpredicatecan be
used.

word in the structure. For example, a trigram deep
syntax language model conditions the probability
of each word on the sequence of words consisting
of the head of the head of the wordfollowed by
the head of the wordas follows:

p(de) =
l∏

i=1

P (wi|wm(m(i)) , wm(i)) (3)

In addition, similar to string-based language
modeling, we add a start symbol,<s>, at the
root of the structure and end symbols,</s>, at
the leaves to include the probability of a word be-
ing the head of the sentence and the probability
of words occurring as leaf nodes in the structure.
Figure 2(a) shows an example of how a trigram
deep syntax language model probability is com-
puted for the example sentence in Figure 1(a).

5 Simplified Approximation of the Deep
Syntactic Representation

We describe the deep syntactic structure,de, as
an approximation since a parser is employed to
automatically produce it and there is therefore no
certainty that we use the actual/correct deep syn-
tactic representation for the sentence. In addi-
tion, the functionm requires that each node in the
structure has exactly one head, however, structure-
sharing can occur within deep syntactic structures
resulting in a single word legitimately having two
heads. In such cases we use a simplification of
the graph in the deep syntactic structure. Fig-
ure 3 shows an f-structure in which thesubject

120



(a) Deep Syntax LM (b) Traditional LM

p(e) ≈ p( pass| <s>)∗ p(e) ≈ p( passed| today congress)∗
p( today| <s> pass)∗ p( today| <s>)∗
p(</s> | pass today)∗
p( congress| <s> pass)∗ p( congress| <s> today)∗
p(</s> | pass congress)∗
p( bill | <s> pass)∗ p( bill | health care)∗
p( obama| pass bill)∗ p( obama| congress passed)∗
p(</s> | bill obama)∗
p( care| pass bill)∗ p( care| s health)∗
p( health| bill care)∗ p( health| ’ s )∗
p(</s> | care health)

p( ’ | passed Obama)∗
p( s | obama ’)∗
p( . | care bill)∗
p(</s> | bill . )

Figure 2: Example Comparison of Deep Syntax and TraditionalLanguage Models

of both like, be and presidentis hillary. In our
simplified structure, the dependency relations be-
tweenbeandhillary andpresidentandhillary are
dropped. We discuss how we do this later in Sec-
tion 6. Similar to our simplification for structure
sharing, we also simplify structures that contain
cycles by discarding edges that cause loops in the
structure.

6 Implementation

SRILM (Stolcke, 2002) can be used to compute
a language model from ngram counts (the-read
option of thengram-countcommand). Implemen-
tation to train the language model, therefore, sim-
ply requires accurately extracting counts from the
deep syntax parsed training corpus. To simplify
the structures to acyclic graphs, nodes are labeled
with an increasing index number via a depth first
traversal. This allows each arc causing a loop in
the graph or argument sharing to be identified by
a simple comparison of index numbers, as the in-
dex number of its start node will be greater than
that of its end node. The algorithm we use to
extract ngrams from the dependency structures is
straightforward: we simply carry out a depth-first
traversal of the graph to construct paths of words
that stretch from the root of the graph to words
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Figure 3: “Hillary liked being president at the
U.N.”
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Figure 4: “Nobody agreed with points two and
three.”

at the leaves and then extract the required order
ngrams from each path. As mentioned earlier,
some ngrams can belong to more than one path.
Figure 4 shows an example structure containing
unary branching followed by binary branching in
which the sequence of symbols and words“ <s>
agree with point and”belong to the path ending
in two </s> and three</s>. In order to ensure
that only distinct ngrams are extracted we assign
each word in the structure a unique id number
and include this in the extracted ngrams. Paths
are split into ngrams and duplicate ngrams result-
ing from their occurrence in more than one path
are discarded. Its also possible for ngrams to le-
gitimately be repeated in a deep structure, and in
such cases we do not discard these ngrams. Legit-
imately repeating ngrams are easily identified as
the id numbers attached to words will be differ-
ent.

7 Deep Syntax and Lexical Choice in
SMT

Correct lexical choice in machine translation is
extremely important and PB-SMT systems rely

on the language model to ensure, that when two
phrases are combined with each other, that the
model can rank combined phrases that are flu-
ent higher than less fluent combinations. Con-
ditioning the probability of each word on its
deep context has the potential to provide a
more meaningful context than the local context
within the string. A comparison of the proba-
bilities of individual words in the deep syntax
model and traditional language model in Figure
2 clearly shows this. For instance, let us con-
sider how the language model in a German to
English SMT system is used to help rank the
following two translationstoday congress passed
... and today convention passed ...(the word
Kongressin German can be translated into ei-
ther congressor convention in English). In
the deep syntax model, the important compet-
ing probabilities are (i)p(congress|<s>pass)
and (ii) p(convention|<s>pass), where (i)
can be interpreted as the probability of the
word congress modifying pass when pass is
the head of the entire sentence and, simi-
larly (ii) the probability of the wordconven-
tion modifying pass when pass is the head of
the entire sentence. In the traditional string-
based language model, the equivalent compet-
ing probabilities are (i)p(congress|<s>today),
the probability ofcongressfollowing todaywhen
today is the start of the sentence and (ii)
p(convention|<s>today), probability of con-
vention following today when today is the start
of the sentence, showing that the deep syntax
language model is able to use more meaningful
context for good lexical choice when estimating
the probability of wordscongressandconvention
compared to the traditional language model.

In addition, the deep syntax language model
will encounter less data sparseness problems for
some words than a string-based language model.
In many languages words occur that can legiti-
mately be moved to different positions within the
string without any change to dependencies be-
tween words. For example, sentential adverbs
in English, can legitimately change position in
a sentence, without affecting the underlying de-
pendencies between words. The wordtoday in
“Today congress passed Obama’s health bill”
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can appear as“Congress passed Obama’s health
bill today” and“Congress today passed Obama’s
health bill” . Any sentence in the training cor-
pus in which the wordpassis modified bytoday
will result in a bigram being counted for the two
words, regardless of the position oftodaywithin
each sentence.

In addition, some surface form words such as
auxiliary verbs for example, are not represented
as predicates in the deep syntactic structure. For
lexical choice, its not really the choice of auxiliary
verbs that is most important, but rather the choice
of an appropriate lexical item for the main verb
(that belongs to the auxiliary verb). Omitting aux-
iliary verbs during language modeling could aid
good lexical choice, by focusing on the choice of
a main verb without the effect of what auxiliary
verb is used with it.

For some words, however, the probability in the
string-based language model provides as good if
not better context than the deep syntax model, but
only for the few words that happen to be preceded
by words that are important to its lexical choice,
and this reinforces the idea that SMT systems can
benefit from using both a deep syntax and string-
based language model. For example, the proba-
bility of bill in Figures 2(a) and 2(b) is computed
in the deep syntax model asp(bill| <s> pass)
and in the string-based model usingp(bill|health
care), and for this word the local context seems to
provide more important information than the deep
context when it comes to lexical choice. The deep
model nevertheless adds some useful information,
as it includes the probability ofbill being an argu-
ment ofpasswhenpassis the head of a sentence.

In traditional language modeling, the special
start symbol is added at the beginning of a sen-
tence so that the probability of the first word ap-
pearing as the first word of a sentence can be
included when estimating the probability. With
similar motivation, we add a start symbol to the
deep syntactic representation so that the probabil-
ity of the head of the sentence occurring as the
head of a sentence can be included. For exam-
ple, p(be| <s>) will have a high probability as
the verbbe is the head of many sentences of En-
glish, whereasp(colorless| <s>) will have a low
probability since it is unlikely to occur as the head.

We also add end symbols at the leaf nodes in the
structure to include the probability of these words
appearing at that position in a structure. For in-
stance, a noun followed by its determiner such as
p(</s> |attorney a) would have a high probabil-
ity compared to a conjunction followed by a verb
p(</s> |and be).

8 Evaluation

We carry out an experimental evaluation to inves-
tigate the potential of the deep syntax language
model we describe in this paper independently of
any machine translation system. We train a 5-
gram deep syntax language model on 7M English
f-structures, and evaluate it by computing the per-
plexity and ngram coverage statistics on a held-
out test set of parsed fluent English sentences. In
order to provide an interesting comparison, we
also train a traditional string-based 5-gram lan-
guage model on the same training data and test
it on the same held-out test set of English sen-
tences. A deep syntax language model comes with
the obvious disadvantage that any data it is trained
on must be in-coverage of the parser, whereas a
string-based language model can be trained on any
available data of the appropriate language. Since
parser coverage is not the focus of our work, we
eliminate its effects from the evaluation by select-
ing the training and test data for both the string-
based and deep syntax language models on the ba-
sis that they are in fact in-coverage of the parser.

8.1 Language Model Training

Our training data consists of English sentences
from the WMT09 monolingual training corpus
with sentence length range of 5-20 words that are
in coverage of the parsing resources (Kaplan et al.,
2004; Riezler et al., 2002) resulting in approxi-
mately 7M sentences. Preparation of training and
test data for the traditional language model con-
sisted of tokenization and lower casing. Parsing
was carried out with XLE (Kaplan et al., 2002)
and an English LFG grammar (Kaplan et al.,
2004; Riezler et al., 2002). The parser produces
a packed representation of all possible parses ac-
cording to the LFG grammar and we select only
the single best parse for language model training
by means of a disambiguation model (Kaplan et
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Corpus Tokens Ave. Tokens Vocab
per Sent.

strings 138.6M 19 345K
LFG lemmas/predicates 118.4M 16 280K

Table 1: Language model statistics for string-based and deep syntax language models, statistics are for
string tokens and LFG lemmas for the same set of 7.29M Englishsentences

al., 2004; Riezler et al., 2002). Ngrams were auto-
matically extracted from the f-structures and low-
ercased. SRILM (Stolcke, 2002) was used to com-
pute both language models. Table 1 shows statis-
tics on the number of words and lemmas used to
train each model.

8.2 Testing

The test set consisted of 789 sentences selected
from WMT09 additional development sets3 con-
taining English Europarl text and again was se-
lected on the basis of sentences being in-coverage
of the parsing resources. SRILM (Stolcke, 2002)
was used to compute test set perplexity and ngram
coverage statistics for each order model.

Since the deep syntax language model adds end
of sentence markers to leaf nodes in the structures,
the number of (so-called) end of sentence markers
in the test set for the deep syntax model is much
higher than in the string-based model. We there-
fore also compute statistics for each model when
end of sentence markers are omitted from training
and testing.4 In addition, since the vast majority
of punctuation is not represented as predicates in
LFG f-structures, we also test the string-based lan-
guage model when punctuation has been removed.

8.3 Results

Table 2 shows perplexity scores and ngram cover-
age statistics for each order and type of language
model. Note that perplexity scores for the string-
based and deep syntax language models are not
directly comparable because each model has a dif-
ferent vocabulary. Although both models train on
an identical set of sentences, the data is in a dif-
ferent format for each model, as the string-based

3test2006.en and test2007.en
4When we include end of sentence marker probabilities

we also include them for normalization, and omit them from
normalization when their probabilities are omitted.

model is trained on surface form tokens, whereas
the deep syntax model uses lemmas. Ngram cov-
erage statistics provide a better comparison.

Unigram coverage for all models is high with
all models achieving close to 100% coverage on
the held-out test set. Bigram coverage is high-
est for the deep syntax language model when eos
markers are included (94.71%) with next high-
est coverage achieved by the string-based model
that includes eos markers (93.09%). When eos
markers are omitted bigram coverage goes down
slightly to 92.44% for the deep syntax model and
to 92.83% for the string-based model, and when
punctuation is also omitted from the string-based
model, coverage goes down again to 91.57%.

Trigram coverage statistics for the test set main-
tain the same rank between models as in the bi-
gram coverage, from highest to lowest as follows:
DS+eos at 64.71%, SB+eos at 58.75%, SB-eos
at 56.89%, DS-eos at 53.67%, SB-eos-punc at
53.45%. For 4-gram and 5-gram coverage a sim-
ilar coverage ranking is seen, but with DS-eos
(4gram at 17.17%, 5gram at 3.59%) and SB-eos-
punc (4gram at 20.24%, 5gram at 5.76%) swap-
ping rank position.

8.4 Discussion

Ngram coverage statistics for the DS-eos and
SB-eos-punc models provide the fairest com-
parison, with the deep syntax model achiev-
ing higher coverage than the string-based model
for bigrams (+0.87%) and trigrams (+0.22%),
marginally lower coverage coverage of unigrams
(-0.02%) and lower coverage of 4-grams (-3.07%)
and 5-grams (2.17%) compared to the string-
based model.

Perplexity scores for the deep syntax model
when eos symbols are included are low (79 for the
5gram model) and this is caused by eos markers
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1-gram 2-gram 3-gram 4-gram 5-gram
cov. ppl cov. ppl cov. ppl cov. ppl cov. ppl

SB-eos 99.61% 1045 92.83% 297 56.89% 251 23.32% 268 7.19% 279
SB-eos-punc 99.58% 1357 91.57% 382 53.45% 327 20.24% 348 5.76% 360
DS-eos 99.56% 1005 92.44% 422 53.67% 412 17.17% 446 3.59% 453
SB+eos 99.63% 900 93.09% 227 58.75% 194 25.48% 207 8.35% 215
DS+eos 99.70% 211 94.71% 77 64.71% 73 29.86% 78 8.75% 79

Table 2: Ngram coverage and perplexity (ppl) on held-out test set. Note: DS = deep syntax, SB string-
based, eos = end of sentence markers

in the test set in general being assigned relatively
high probabilities by the model, and since several
occur per sentence, the perplexity increases when
the are omitted (453 for the 5gram model).

Tables 3 and 4 show the most frequently en-
countered trigrams in the test data for each type
of model. A comparison shows how different the
two models are and highlights the potential of the
deep syntax language model to aid lexical choice
in SMT systems. Many of the most frequently oc-
curring trigram probabilities for the deep syntax
model are for arguments of the main verb of the
sentence, conditioned on the main verb, and in-
cluding such probabilities in a system could im-
prove fluency by using information about which
words are in a dependency relation together ex-
plicitely in the model. In addition, a frequent tri-
gram in the held-out data is<s> be also, where
the word also is a sentential adverb modifying
be. Trigrams for sentential adverbs are likely to
be less effected by data sparseness in the deep
syntax model compared to the string-based model
which could result in the deep syntax model im-
proving fluency with respect to combinations of
main verbs and their modifying adverbs. The most
frequent trigram in the deep syntax test set is<s>
and be, in which the head of the sentence is the
conjunctionandwith argumentbe. In this type of
syntactic construction in English, its often the case
that the conjunction and verb will be distant from
each other in the sentence, for example:Nobody
was there except the old lady and without thinking
we quickly left. (wherewasandand are in a de-
pendency relation). Using a deep syntax language
model could therefore improve lexical choice for
such words, since they are too distant for a string-

3-gram No. Occ. Prob.

<s> and be 42 0.1251
<s> be this 21 0.0110

<s> must we 19 0.0347
<s> would i 19 0.0414

<s> be in 17 0.0326
<s> be that 14 0.0122

be debate the 13 0.0947
<s> be debate 13 0.0003

<s> can not 12 0.0348
<s> and president 11 0.0002

<s> would like 11 0.0136
<s> would be 11 0.0835

<s> be also 10 0.0075

Table 3: Most frequent trigrams in test set for deep
syntax model

based model.

9 Conclusions

We presented a comparison of a deep syntax
language and traditional string-based language
model. Results showed that the deep syntax lan-
guage model achieves similar ngram coverage to
the string-based model on a held out test set.
We highlighted the potential of integrating such
a model into SMT systems for improving lexical
choice by using a deeper context for probabilities
of words compared to a string-based model.
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