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Abstract

In this paper we describe the machine
learning systems that we submitted to the
CoNLL-2010 Shared Task on Learning to
Detect Hedges and Their Scope in Nat-
ural Language Text. Task 1 on detect-
ing uncertain information was performed
by an SVM-based system to process the
Wikipedia data and by a memory-based
system to process the biological data.
Task 2 on resolving in-sentence scopes of
hedge cues, was performed by a memory-
based system that relies on information
from syntactic dependencies. This system
scored the highest F1 (57.32) of Task 2.

1 Introduction

In this paper we describe the machine learning
systems that CLiPS! submitted to the closed track
of the CoNLL-2010 Shared Task on Learning to
Detect Hedges and Their Scope in Natural Lan-
guage Text (Farkas et al., 2010).2 The task con-
sists of two subtasks: detecting whether a sentence
contains uncertain information (Task 1), and re-
solving in-sentence scopes of hedge cues (Task 2).

To solve Task 1, systems are required to classify
sentences into two classes, “Certain” or “Uncer-
tain”, depending on whether the sentence contains
factual or uncertain information. Three annotated
training sets are provided: Wikipedia paragraphs
(WIKI), biological abstracts (BIO-ABS) and bio-
logical full articles (BIO-ART). The two test sets
consist of WIKI and BIO-ART data.

Task 2 requires identifying hedge cues and find-
ing their scope in biomedical texts. Finding the
scope of a hedge cue means determining at sen-
tence level which words in the sentence are af-
fected by the hedge cue. For a sentence like the

"Web page: http://www.clips.ua.ac.be

2Web page: http://www.inf.u-szeged.hu/rgai
/conll12010st
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one in (1) extracted from the BIO-ART training
corpus, systems have to identify likely and sug-
gested as hedge cues, and they have to find that
likely scopes over the full sentence, and that sug-
gested scopes over by the role of murine MIB in
TNF« signaling. A scope will be correctly re-
solved only if both the cue and the scope are cor-
rectly identified.

(1) <xcope id=2> The conservation from Drosophila to
mammals of these two structurally distinct but
functionally similar E3 ubiquitin ligases is <cue
ref=2>likely </cue> to reflect a combination of
evolutionary advantages associated with: (i)
specialized expression pattern, as evidenced by the
cell-specific expression of the neur gene in sensory
organ precursor cells [52]; (ii) specialized function, as
<xcope id=1> <cue ref=1>suggested</cue> by the
role of murine MIB in TNFe signaling</xcope> [32];
(iii) regulation of protein stability, localization, and/or
activity</xcope>.

Systems are to be trained on BIO-ABS and
BIO-ART and tested on BIO-ART. Example (1)
shows that sentences in the BIO-ART dataset can
be quite complex because of their length, because
of their structure - very often they contain enu-
merations, and because they contain bibliographic
references and references to tables and figures.
Handling these phenomena is necessary to detect
scopes correctly in the setting of this task. Note
that the scope of suggested above does not include
the bibliographic reference [32], whereas the scope
of likely includes all the bibliographic references,
and that the scope of likely does not include the
final punctuation mark.

In the case of the BIO data, we approach Task
1 as a prerequisite for Task 2. Therefore we treat
them as two consecutive classification tasks: a first
one that consists of classifying the tokens of a sen-
tence as being at the beginning of a hedge sig-
nal, inside or outside. This allows the system to
find multiword hedge cues. We tag a sentence as
uncertain if at least a hedge cue is found in the
sentence. The second classification task consists
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of classifying the tokens of a sentence as being
the first element of the scope, the last, or nei-
ther. This happens as many times as there are
hedge cues in the sentence. The two classification
tasks are implemented using memory-based learn-
ers. Memory-based language processing (Daele-
mans and van den Bosch, 2005) is based on the
idea that NLP problems can be solved by reuse of
solved examples of the problem stored in memory.
Given a new problem, the most similar examples
are retrieved, and a solution is extrapolated from
them.

Section 2 is devoted to related work. In Sec-
tion 3 we describe how the data have been prepro-
cessed. In Section 4 and Section 5 we present the
systems that perform Task 1 and Task 2. Finally,
Section 6 puts forward some conclusions.

2 Related work

Hedging has been broadly treated from a theoret-
ical perspective. The term hedging is originally
due to Lakoff (1972). Palmer (1986) defines a
term related to hedging, epistemic modality, which
expresses the speaker’s degree of commitment to
the truth of a proposition. Hyland (1998) focuses
specifically on scientific texts. He proposes a prag-
matic classification of hedge expressions based on
an exhaustive analysis of a corpus. The catalogue
of hedging cues includes modal auxiliaries, epis-
temic lexical verbs, epistemic adjectives, adverbs,
nouns, and a variety of non—lexical cues. Light
et al. (2004) analyse the use of speculative lan-
guage in MEDLINE abstracts. Some NLP appli-
cations incorporate modality information (Fried-
man et al., 1994; Di Marco and Mercer, 2005).
As for annotated corpora, Thompson et al. (2008)
report on a list of words and phrases that express
modality in biomedical texts and put forward a cat-
egorisation scheme. Additionally, the BioScope
corpus (Vincze et al., 2008) consists of a collec-
tion of clinical free-texts, biological full papers,
and biological abstracts annotated with negation
and speculation cues and their scope.

Although only a few pieces of research have fo-
cused on processing negation, the two tasks of the
CoNLL-2010 Shared Task have been addressed
previously. As for Task 1, Medlock and Briscoe
(2007) provide a definition of what they consider
to be hedge instances and define hedge classifi-
cation as a weakly supervised machine learning
task. The method they use to derive a learning
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model from a seed corpus is based on iteratively
predicting labels for unlabeled training samples.
They report experiments with SVMs on a dataset
that they make publicly available’. The experi-
ments achieve a recall/precision break even point
(BEP) of 0.76. They apply a bag-of-words ap-
proach to sample representation. Medlock (2008)
presents an extension of this work by experiment-
ing with more features (part-of-speech, lemmas,
and bigrams). With a lemma representation the
system achieves a peak performance of 0.80 BEP,
and with bigrams of 0.82 BEP. Szarvas (2008) fol-
lows Medlock and Briscoe (2007) in classifying
sentences as being speculative or non-speculative.
Szarvas develops a MaxEnt system that incor-
porates bigrams and trigrams in the feature rep-
resentation and performs a complex feature se-
lection procedure in order to reduce the number
of keyword candidates. It achieves up to 0.85
BEP and 85.08 F1 by using an external dictio-
nary. Kilicoglu and Bergler (2008) apply a lin-
guistically motivated approach to the same clas-
sification task by using knowledge from existing
lexical resources and incorporating syntactic pat-
terns. Additionally, hedge cues are weighted by
automatically assigning an information gain mea-
sure and by assigning weights semi—automatically
depending on their types and centrality to hedging.
The system achieves results of 0.85 BEP.

As for Task 2, previous work (Morante and
Daelemans, 2009; Ozgiir and Radev, 2009) has
focused on finding the scope of hedge cues in
the BioScope corpus (Vincze et al., 2008). Both
systems approach the task in two steps, identify-
ing the hedge cues and finding their scope. The
main difference between the two systems is that
Morante and Daelemans (2009) perform the sec-
ond phase with a machine learner, whereas Ozgur
and Radev (2009) perform the second phase with
a rule-based system that exploits syntactic infor-
mation.

The approach to resolving the scopes of hedge
cues that we present in this paper is similar to
the approach followed in Morante and Daelemans
(2009) in that the task is modelled in the same
way. A difference between the two systems is that
this system uses only one classifier to solve Task
2, whereas the system described in Morante and
Daelemans (2009) used three classifiers and a met-

? Available at
http://www.benmedlock.co.uk/hedgeclassif.html.



alearner. Another difference is that the system in
Morante and Daelemans (2009) used shallow syn-
tactic features, whereas this system uses features
from both shallow and dependency syntax. A third
difference is that that system did not use a lexicon
of cues, whereas this system uses a lexicon gener-
ated from the training data.

3 Preprocessing

As a first step, we preprocess the data in order
to extract features for the machine learners. We
convert the xml files into a token-per-token rep-
resentation, following the standard CoNLL for-
mat (Buchholz and Marsi, 2006), where sentences
are separated by a blank line and fields are sepa-
rated by a single tab character. A sentence consists
of a sequence of tokens, each one starting on a new
line.

The WIKI data are processed with the Memory
Based Shallow Parser (MBSP) (Daelemans and
van den Bosch, 2005) in order to obtain lemmas,
part-of-speech (PoS) tags, and syntactic chunks,
and with the MaltParser (Nivre, 2006) in order to
obtain dependency trees. The BIO data are pro-
cessed with the GDep parser (Sagae and Tsujii,
2007) in order to get the same information.

# WORD LEMMA PoS CHUNK NE D LABEL C S
1 The The DT B-NP O 3 NMOD O OO
2 structural  structural 1 I-NP O 3 NMOD O OO
3 evidence evidence NN I-NP O 4 SUB O OO
4 lends lend VBZ B-VP O 0 ROOT B FO
5 strong strong 1 BNP O 6 NMOD I OO
6 support support NN I-NP O 4 OBJ] 1 OO
7 to to TO B-PP O 6 NMOD O OO
8 the the DT B-NP O 11 NMOD O OO
9 inferred inferred 1 I-NP O 11 NMOD B OF
10 domain domain NN I-NP O 11 NMOD O OO
11 pair pair NN I-NP O 7 PMOD O LL
12, s s (0] O 4 P O 00
13 resulting  result VBG B-VP O 4 VMOD O OO
14 in in IN B-PP O 13 VMOD O OO
15 a a DT B-NP O 18 NMOD O OO
16 high high 1 IINP O 18 NMOD O OO
17 confidence confidence NN I-NP O 18 NMOD O OO
18 set set NN IINP O 14 PMOD O OO
19 of of IN B-PP O 18 NMOD O OO
20 domain domain NN B-NP O 21 NMOD O OO
21 pairs pair NNS I-NP O 19 PMOD O OO
22 . (0] O 4 P O 00

Table 1: Preprocessed sentence.

Table 1 shows a preprocessed sentence with the
following information per token: the token num-
ber in the sentence, word, lemma, PoS tag, chunk
tag, named entity tag, head of token in the depen-
dency tree, dependency label, cue tag, and scope
tags separated by a space, for as many cues as
there are in the sentence.

In order to check whether the conversion from
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the xml format to the CoNLL format is a source
of error propagation, we convert the gold CoNLL
files into xml format and we run the scorer pro-
vided by the task organisers. The results obtained
are listed in Table 2.

Task 1 Task 2
WIKI BIO-ART BIO-ABS |BIO-ART BIO-ABS
[Fl 100.00  100.00 100.00 99.10 99.66

Table 2: Evaluation of the conversion from xml to
CoNLL format.

4 Task 1: Detecting uncertain
information

In Task 1 sentences have to be classified as con-
taining uncertain or unreliable information or not.
The task is performed differently for the WIKI and
for the BIO data, since we are interested in finding
the hedge cues in the BIO data, as a first step to-
wards Task 2.

4.1 Wikipedia system (WIKI)

In the WIKI data a sentence is marked as uncertain
if it contains at least one weasel, or cue for uncer-
tainty. The list of weasels is quite extensive and
contains a high number of unique occurrences. For
example, the training data contain 3133 weasels
and 1984 weasel types, of which 63% are unique.
This means that a machine learner will have diffi-
culties in performing the classification task. Even
so, some generic structures can be discovered
in the list of weasels. For example, the differ-
ent weasels A few people and A few sprawling
grounds follow a pattern. We manually select the
42 most frequent informative tokens* from the list
of weasels in the training partition. In the remain-
der of this section we will refer to these tokens as
weasel cues.

Because of the wide range of weasels, we opt
for predicting the (un)certainty of a sentence, in-
stead of identifying the weasels. The sentence
classification is done in three steps: instance cre-
ation, SVM classification and sentence labeling.

“Weasel cues: few, number, variety, bit, great, majority,
range, variety, all, almost, arguably, certain, commonly, gen-
erally, largely, little, many, may, most, much, numerous, of-
ten, one, other, others, perhaps, plenty of, popular, possibly,
probably, quite, relatively, reportedly, several, some, suggest,
there be, the well-known, various, very, wide, widely.



4.1.1 Instance creation

Although we only want to predict the (un)certainty
of a sentence as a whole, we classify every token
in the sentence separately. After parsing the data
we create one instance per token, with the excep-
tion of tokens that have a part-of-speech from the
list: #, $, :, LS, RP, UH, WP$, or WRB. The ex-
clusion of these tokens is meant to simplify the
classification task.

The features used by the system during classifi-
cation are the following:

e About the token: word, lemma, PoS tag, chunk tag,
dependency head, and dependency label.

About the token context: lemma, PoS tag, chunk tag
and dependency label of the two tokens to the left and
right of the token in focus in the string of words of the
sentence.

About the weasel cues: a binary marker that indicates
whether the token in focus is a weasel cue or not, and a
number defining the number of weasel cues that there
are in the entire sentence.

These instances with 24 non-binary features
carry the positive class label if the sentence is un-
certain. We use a binarization script that rewrites
the instance to a format that can be used with a
support vector machine and during this process,
feature values that occur less than 2 times are
omitted.

4.1.2 SVM classification

To label the instances of the unseen data we use
SVM!9" (Joachims, 2002). We performed some
experiments with different settings and decided
to only change the type of kernel from the de-
fault linear kernel to a polynomial kernel. For
the Wikipedia training data, the training of the
246,876 instances with 68417 features took ap-
proximately 22.5 hours on a 32 bit, 2.2GHz, 2GB
RAM Mac OS X machine.

4.1.3 Sentence labeling

In this last step, we collect all instances from the
same sentence and inspect the predicted labels for
every token. If more than 5% of the instances are
marked as uncertain, the whole sentence is marked
as uncertain. The idea behind the setup is that
many tokens are very ambiguous in respect to un-
certainty because they do not carry any informa-
tion. Fewer tokens are still ambiguous, but contain
some information, and a small set of tokens are al-
most unambiguous. This small set of informative
tokens does not have to coincide with weasels nor

43

weasels cues. The result is that we cannot predict
the actual weasels in a sentence, but we get an in-
dication of the presence of tokens that are common
in uncertain sentences.

4.2 Biological system (BIO)

The system that processes the BIO data is different
from the system that processes the WIKI data. The
BIO system uses a classifier that predicts whether
a token is at the beginning of a hedge signal, inside
or outside. So, instances represent tokens. The in-
stance features encode the following information:

e About the token: word, lemma, PoS tag, chunk tag, and
dependency label.

About the context to the left and right in the string of
words of the sentence: word of the two previous and
three next tokens, lemma and dependency label of pre-
vious and next tokens, deplabel, and chunk tag and PoS
of next token. A binary feature indicating whether the
next token has an SBAR chunk tag.

About the context in the syntactic dependency tree:
chain of PoS tags, chunk tags and dependency label
of children of token; word, lemma, PoS tag, chunk tag,
and dependency label of father; combined tag with the
lemma of the token and the lemma of its father; chain
of dependency labels from token to ROOT. Lemma of
next token, if next token is syntactic child of token. If
token is a verb, lemma of the head of the token that is
its subject.

Dictionary features. We extract a list of hedge cues
from the training corpus. Based on this list, two binary
features indicate whether token and next token are po-
tential cues.

Lemmas of the first noun, first verb and first adjective
in the sentence.

The classifier is the decision tree IGTree as im-
plemented in TIMBL (version 6.2) >(Daelemans
et al., 2009), a fast heuristic approximation of k-
nn, that makes a heuristic approximation of near-
est neighbor search by a top down traversal of the
tree. It was parameterised by using overlap as the
similarity metric and information gain for feature
weighting. Running the system on the test data
takes 10.44 seconds in a 64 bit 2.8GHz 8GB RAM
Intel Xeon machine with 4 cores.

4.3 Results

All the results published in the paper are calcu-
lated with the official scorer provided by the task
organisers. We provide precision (P), recall (R)
and F1. The official results of Task 1 are pre-
sented in Table 3. We produce in-domain and

STIMBL: http://ilk.uvt.nl/timbl



cross-domain results. The BIO in-domain re-
sults have been produced with the BIO system,
by training on the training data BIO-ABS+BIO-
ART, and testing on the test data BIO-ART. The
WIKI in-domain results have been produced by
the WIKI system by training on WIKI and test-
ing on WIKI. The BIO cross-domain results have
been produced with the BIO system, by train-
ing on BIO-ABS+BIO-ART+WIKI and testing on
BIO-ART. The WIKI cross-domain results have
been produced with the WIKI system by train-
ing on BIO-ABS+BIO-ART+WIKI and testing on
WIKI. Training the SVM with BIO-ABS+BIO-
ART+WIKI augmented the training time exponen-
tially and the system did not finish on time for sub-
mission. We report post-evaluation results.

In-domain Cross-domain

P R F1 P R F1
WIKI | 80.55 44.49 57.32 | 80.64* 44.94* 57.71%
BIO |81.15 8228 81.71|80.54 8329 81.89

Table 3: Uncertainty detection results (Task 1 -
closed track). Post-evaluation results are marked
with *.

In-domain results confirm that uncertain sen-
tences in Wikipedia text are more difficult to detect
than uncertain sentences in biological text. This
is caused by a loss in recall of the WIKI system.
Compared to results obtained by other systems
participating in the CoNLL-2010 Shared Task, the
BIO system performs 4.47 F1 lower than the best
system, and the WIKI system performs 2.85 F1
lower. This indicates that there is room for im-
provement. As for cross-domain results, we can-
not conclude that the cross-domain data harm the
performance of the system, but we cannot state
either that the cross-domain data improve the re-
sults. Since we performed Task 1 as a step towards
Task 2, it is interesting to know what is the per-
formance of the system in identifying hedge cues.
Results are shown in Table 4. One of the main
sources of errors in detecting the cues are due to
the cue or. Of the 52 occurrences in the test corpus
BIO-ART, the system produces 3 true positives, 8
false positives and 49 false negatives.

Cross-domain
P R F1
78.14 75.45 76.77

In-domain
P R F1
78.75 T74.69 76.67

[ Bio

Table 4: Cue matching results (Task 1 - closed
track).
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5 Task 2: Resolution of in-sentence
scopes of hedge cues

Task 2 consists of resolving in-sentence scopes of
hedge cues in biological texts. The system per-
forms this task in two steps, classification and
postprocessing, taking as input the output of the
system that finds cues.

5.1 Classification

In the classification step a memory-based classi-
fier classifies tokens as being the first token in the
scope sequence, the last, or neither, for as many
cues as there are in the sentence. An instance rep-
resents a pair of a predicted hedge cue and a token.
All tokens in a sentence are paired with all hedge
cues that occur in the sentence.

The classifier used is an IB1 memory—based al-
gorithm as implemented in TiMBL (version 6.2)°
(Daelemans et al., 2009), a memory-based classi-
fier based on the k-nearest neighbor rule (Cover
and Hart, 1967). The IB1 algorithm is parame-
terised by using overlap as the similarity metric,
gain ratio for feature weighting, using 7 k-nearest
neighbors, and weighting the class vote of neigh-
bors as a function of their inverse linear distance.
Running the system on the test data takes 53 min-
utes in a 64 bit 2.8GHz 8GB RAM Intel Xeon ma-
chine with 4 cores.

The features extracted to perform the classifi-
cation task are listed below. Because, as noted
by Ozgiir and Radev (2009) and stated in the an-
notation guidelines of the BioScope corpus’, the
scope of a cue can be determined from its lemma,
PoS tag, and from the syntactic construction of the
clause (passive voice vs. active, coordination, sub-
ordination), we use, among others, features that
encode information from the dependency tree.

e About the cue: chain of words, PoS label, dependency
label, chunk label, chunk type; word, PoS tag, chunk
tag, and chunk type of the three previous and next to-
kens in the string of words in the sentence; first and
last word, chain of PoS tags, and chain of words of the
chunk where cue is embedded, and the same features
for the two previous and two next chunks; binary fea-
ture indicating whether cue is the first, last or other to-
ken in sentence; binary feature indicating whether cue
is in a clause with a copulative construction; PoS tag
and dependency label of the head of cue in the depen-
dency tree; binary feature indicating whether cue is lo-
cated before or after its syntactic head in the string of

®TiMBL: http://ilk.uvt.nl/timbl.

"Available at: http://www.inf.u-szeged.hu/
rgai/project/nlp/bioscope/Annotation%20
guidelines2.1.pdf.



words of the sentence; feature indicating whether cue
is followed by an S-BAR or a coordinate construction.

About the token: word, PoS tag, dependency label,
chunk tag, chunk type; word, PoS tag, chunk tag, and
chunk type of the three previous and three next tokens
in the string of words of the sentence; chain of PoS
tag and lemmas of two and three tokens to the right of
token in the string of words of the sentence; first and
last word, chain of PoS tags, and chain of words of the
chunk where token is embedded, and the same features
for the two previous and two next chunks; PoS tag and
deplabel of head of token in the dependency tree; bi-
nary feature indicating whether token is part of a cue.

About the token in relation to cue: binary features indi-
cating whether token is located before or after cue and
before or after the syntactic head of cue in the string
of words of the sentence; chain of PoS tags between
cue and token in the string of words of the sentence;
normalised distance between cue and token (number of
tokens in between divided by total number of tokens);
chain of chunks between cue and token; feature indi-
cating whether token is located before cue, after cue or
wihtin cue.

About the dependency tree: feature indicating who is
ancestor (cue, token, other); chain of dependency la-
bels and chain of PoS tags from cue to common an-
cestor, and from token to common ancestor, if there is
a common ancestor; chain of dependency labels and
chain of PoS from token to cue, if cue is ancestor of to-
ken; chain of dependency labels and chain of PoS from
cue to token, if token is ancestor of cue; chain of de-
pendency labels and PoS from cue to ROOT and from
token to ROOT.

Features indicating whether token is a candidate to be
the first token of scope (FEAT-FIRST), and whether
token is a candidate to be the last token of the scope
(FEAT-LAST). These features are calculated by a
heuristics that takes into account detailed information
of the dependency tree. The value of FEAT-FIRST de-
pends on whether the clause is in active or in passive
voice, on the PoS of the cue, and on the lemma in some
cases (for example, verbs appear, seem). The value of
FEAT-LAST depends on the PoS of the cue.

5.2 Postprocessing

In the corpora provided for this task, scopes are
annotated as continuous sequences of tokens that
include the cue. However, the classifiers only pre-
dict the first and last element of the scope. In or-
der to guarantee that all scopes are continuous se-
quences of tokens we apply a first postprocessing
step (P-SCOPE) that builds the sequence of scope
based on the following rules:

1. If one token has been predicted as FIRST and one as
LAST, the sequence is formed by the tokens between
FIRST and LAST.

If one token has been predicted as FIRST and none has
been predicted as LAST, the sequence is formed by the
tokens between FIRST and the first token that has value
1 for FEAT-LAST.
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. If one token has been predicted as FIRST and more
than one as LAST, the sequence is formed by the tokens
between FIRST and the first token predicted as LAST
that is located after cue.

If one token has been predicted as LAST and none as
FIRST, the sequence will start at the hedge cue and it
will finish at the token predicted as LAST.

If no token has been predicted as FIRST and more than
one as LAST, the sequence will start at the hedge cue
and will end at the first token predicted as LAST after
the hedge signal.

If one token has been predicted as LAST and more than
one as FIRST, the sequence will start at the cue.

If no tokens have been predicted as FIRST and no to-
kens have been predicted as LAST, the sequence will
start at the hedge cue and will end at the first token that
has value 1 for FEAT-LAST.

The system predicts 987 scopes in total. Of
these, 1 FIRST and 1 LAST are predicted in 762
cases; a different number of predictions is made
for FIRST and for LAST in 217 cases; no FIRST
and no LAST are predicted in 5 cases, and 2
FIRST and 2 LAST are predicted in 3 cases. In 52
cases no FIRST is predicted, in 93 cases no LAST
is predicted.

Additionally, as exemplified in Example 1 in
Section 1, bibliographic references and references
to tables and figures do not always fall under the
scope of cues, when the references appear at the
end of the scope sequence. If references that ap-
pear at the end of the sentence have been predicted
by the classifier within the scope of the cue, these
references are set out of the scope in a second post-
processing step (P-REF).

5.3 Results

The official results of Task 2 are presented in Ta-
ble 5. The system scores 57.32 F1, which is the
highest score of the systems that participated in
this task.

In-domain
P R F1
[ BIO | 59.62 55.18 57.32

Table 5: Scope resolution official results (Task 2 -
closed track).

In order to know what is the effect of the post-
processing steps, we evaluate the output of the
system before performing step P-REF and before
performing step P-SCOPE. Table 6 shows the re-
sults of the evaluation. Without P-REF, the perfor-
mance decreases in 7.30 F1. This is caused by the



fact that a considerable proportion of scopes end
in a reference to bibliography, tables, or figures.
Without P-SCOPE it decreases 4.50 F1 more. This
is caused, mostly, by the cases in which the classi-
fier does not predict the LAST class.

In-domain
P R F1
BIO before P-REF 51.98 4820 50.02
BIO before P-SCOPE | 48.82 4443 46.52

Table 6: Scope resolution results before postpro-
cessing steps.

It is not really possible to compare the scores
obtained in this task to existing research previous
to the CoNLL-2010 Shared Task, namely the re-
sults obtained by Ozgiir and Radev (2009) on the
BioScope corpus with a rule-based system and by
Morante and Daelemans (2009) on the same cor-
pus with a combination of classifiers. Ozgiir and
Radev (2009) report accuracy scores (61.13 on full
text), but no F measures are reported. Morante and
Daelemans (2009) report percentage of correct
scopes for the full text data set (42.37), obtained
by training on the abstracts data set, whereas the
results presented in Table 5 are reported in F mea-
sures and obtained in by training and testing on
other corpora. Additionally, the system has been
trained on a corpus that contains abstracts and full
text articles, instead of only abstracts. However,
it is possible to confirm that, even with informa-
tion on dependency syntax, resolving the scopes of
hedge cues in biological texts is not a trivial task.
The scores obtained in this task are much lower
than the scores obtained in other tasks that involve
semantic processing, like semantic role labeling.

The errors of the system in Task 2 are caused
by different factors. First, there is error propaga-
tion from the system that finds cues. Second, the
system heavily relies on information from the syn-
tactic dependency tree. The parser used to prepro-
cess the data (GDep) has been trained on abstracts,
instead of full articles, which means that the per-
formance on full articles will be lower, since sen-
tence are longer and more complex. Third, en-
coding the information of the dependency tree
in features for the learner is not a straightfor-
ward process. In particular, some errors in resolv-
ing the scope are caused by keeping subordinate
clauses within the scope, as in sentence (2), where,
apart from not identifying speculated as a cue, the
system wrongly includes resulting in fewer high-
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confidence sequence assignments within the scope
of may. This error is caused in the instance con-
struction phase, because token assignments gets
value 1 for feature FEAT-LAST and token algo-
rithm gets value 0, whereas it should have been
otherwise.

(@)

We speculated that the presence of multiple isotope
peaks per fragment ion in the high resolution Orbitrap
MS/MS scans <xcope id=1><cue ref=1>may
</cue> degrade the sensitivity of the search
algorithm, resulting in fewer high-confidence
sequence assignments</xcope>.

Additionally, the test corpus contains an article
about the annotation of a corpus of hedge cues,
thus, an article that contains metalanguage. Our
system can not deal with sentences like the one in
(3), in which all cues with their scopes are false
positives.

3

For example, the word <xcope id=1><cue ref=1>
may</cue> in sentence 1</xcope>) <xcope id=2>
<cue ref=2>indicates that</cue> there is some
uncertainty about the truth of the event, whilst the
phrase Our results show that in 2) <xcope id=3>
<cue ref=3>indicates that</cue>> there is
experimental evidence to back up the event described
by encodes</xcope></xcope>.

6 Conclusions and future research

In this paper we presented the machine learning
systems that we submitted to the CoNLL-2010
Shared Task on Learning to Detect Hedges and
Their Scope in Natural Language Text. The BIO
data were processed by memory-based systems in
Task 1 and Task 2. The system that performs Task
2 relies on information from syntactic dependen-
cies. This system scored the highest F1 (57.32) of
Task 2.

As for Task 1, in-domain results confirm that
uncertain sentences in Wikipedia text are more dif-
ficult to detect than uncertain sentences in biolog-
ical text. One of the reasons is that the number of
weasels is much higher and diverse than the num-
ber of hedge cues. BIO cross-domain results show
that adding WIKI data to the training set causes a
slight decrease in precision and a slight increase
in recall. The errors of the BIO system show that
some cues, like or are difficult to identify, because
they are ambiguous. As for Task 2, results indi-
cate that resolving the scopes of hedge cues in bi-
ological texts is not a trivial task. The scores ob-
tained in this task are much lower than the scores
obtained in other tasks that involve semantic pro-
cessing, like semantic role labeling. The results



are influenced by propagation of errors from iden-
tifying cues, errors in the dependency tree, the ex-
traction process of syntactic information from the
dependency tree to encode it in the features, and
the presence of metalanguage on hedge cues in the
test corpus. Future research will focus on improv-
ing the identification of hedge cues and on using
different machine learning techniques to resolve
the scope of cues.

Acknowledgements

The research reported in this paper was made pos-
sible through financial support from the University
of Antwerp (GOA project BIOGRAPH).

References

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the CoNLL-X Shared Task, New
York. SIGNLL.

Thomas M. Cover and Peter E. Hart. 1967. Nearest
neighbor pattern classification. Institute of Electri-
cal and Electronics Engineers Transactions on In-
formation Theory, 13:21-27.

Walter Daelemans and Antal van den Bosch. 2005.
Memory-based language processing. Cambridge
University Press, Cambridge, UK.

Walter Daelemans, Jakub Zavrel, Ko Van der Sloot, and
Antal Van den Bosch. 2009. TiMBL: Tilburg Mem-
ory Based Learner, version 6.2, Reference Guide.
Number 09-01 in Technical Report Series. Tilburg,
The Netherlands.

Chrysanne Di Marco and Robert E. Mercer, 2005.
Computing attitude and affect in text: Theory and
applications, chapter Hedging in scientific articles
as a means of classifying citations. Springer-Verlag,
Dordrecht.

Richard Farkas, Veronika Vincze, Gyorgy Mora, Janos
Csirik, and Gyorgy Szarvas. 2010. The CoNLL-
2010 Shared Task: Learning to Detect Hedges and
their Scope in Natural Language Text. In Proceed-
ings of the Fourteenth Conference on Computational
Natural Language Learning (CoNLL-2010): Shared
Task, pages 1-12, Uppsala, Sweden, July. Associa-
tion for Computational Linguistics.

Carol Friedman, Philip Alderson, John Austin, James J.
Cimino, and Stephen B. Johnson. 1994. A general
natural-language text processor for clinical radiol-
ogy. Journal of the American Medical Informatics
Association, 1(2):161-174.

Ken Hyland. 1998. Hedging in scientific research ar-
ticles. John Benjamins B.V, Amsterdam.

47

Thorsten Joachims. 2002. Learning to Classify Text
Using Support Vector Machines, volume 668 of The
Springer International Series in Engineering and
Computer Science. Springer.

Halil Kilicoglu and Sabine Bergler. 2008. Recogniz-
ing speculative language in biomedical research ar-
ticles: a linguistically motivated perspective. BMC
Bioinformatics, 9(Suppl 11):S10.

George Lakoff. 1972. Hedges: a study in meaning
criteria and the logic of fuzzy concepts. Chicago
Linguistics Society Papers, 8:183-228.

Marc Light, Xin Y.Qiu, and Padmini Srinivasan. 2004.
The language of bioscience: facts, speculations, and
statements in between. In Proceedings of the Bi-
oLINK 2004, pages 17-24.

Ben Medlock and Ted Briscoe. 2007. Weakly super-
vised learning for hedge classification in scientific
literature. In Proceedings of ACL 2007, pages 992—
999.

Ben Medlock. 2008. Exploring hedge identification in
biomedical literature. Journal of Biomedical Infor-
matics, 41:636-654.

Roser Morante and Walter Daelemans. 2009. Learn-
ing the scope of hedge cues in biomedical texts. In
Proceedings of BioNLP 2009, pages 28-36, Boul-
der, Colorado.

Joakim Nivre. 2006. Inductive Dependency Parsing,
volume 34 of Text, Speech and Language Technol-
ogy. Springer.

Arzucan Ozgiir and Dragomir R. Radev. 2009. Detect-
ing speculations and their scopes in scientific text.
In Proceedings of EMNLP 2009, pages 1398—-1407,
Singapore.

Frank R. Palmer.
Cambridge, UK.

1986. Mood and modality. CUP,

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency
parsing and domain adaptation with LR models and
parser ensembles. In Proceedings of CoNLL 2007 :
Shared Task, pages 82-94, Prague, Czech Republic.

Gyorgy Szarvas. 2008. Hedge classification in
biomedical texts with a weakly supervised selection
of keywords. In Proceedings of ACL 2008, pages
281-289, Columbus, Ohio, USA. ACL.

Paul Thompson, Giulia Venturi, John McNaught,
Simonetta Montemagni, and Sophia Ananiadou.
2008. Categorising modality in biomedical texts. In
Proceedings of the LREC 2008 Workshop on Build-
ing and Evaluating Resources for Biomedical Text
Mining 2008, pages 27-34, Marrakech. LREC.

Veronika Vincze, Gyorgy Szarvas, Richard Farkas,
Gyorgy Moéra, and Janos Csirik. 2008. The Bio-
Scope corpus: biomedical texts annotated for uncer-
tainty, negation and their scopes. BMC Bioinformat-
ics, 9(Suppl 11):S9.



