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Abstract

In this paper, we proposed a hedge de-
tection method with average perceptron,
which was used in the closed challenge
in CoNLL-2010 Shared Task. There are
two subtasks: (1) detecting uncertain sen-
tences and (2) identifying the in-sentence
scopes of hedge cues. We use the unified
learning algorithm for both subtasks since
that the hedge score of sentence can be de-
composed into scores of the words, espe-
cially the hedge words. On the biomedical
corpus, our methods achieved F-measure
with 77.86% in detecting in-domain un-
certain sentences, 77.44% in recognizing
hedge cues, and 19.27% in identifying the
scopes.

1 Introduction

Detecting hedged information in biomedical lit-
eratures has received considerable interest in the
biomedical natural language processing (NLP)
community recently. Hedge information indicates
that authors do not or cannot back up their opin-
ions or statements with facts (Szarvas et al., 2008),
which exists in many natural language texts, such
as webpages or blogs, as well as biomedical liter-
atures.

For many NLP applications, such as question
answering and information extraction, the infor-
mation extracted from hedge sentences would be
harmful to their final performances. Therefore,
the hedge or speculative information should be
detected in advance, and dealt with different ap-
proaches or discarded directly.

In CoNLL-2010 Shared Task (Farkas et al.,
2010), there are two different level subtasks: de-
tecting sentences containing uncertainty and iden-
tifying the in-sentence scopes of hedge cues.

For example, in the following sentence:

32

These results suggest that the IRE motif
in the ALAS mRNA is functional and
imply that translation of the mRNA is
controlled by cellular iron availability
during erythropoiesis.

The words suggest and imply indicate that the
statements are not supported with facts.

In the first subtask, the sentence is considered
as uncertainty.

In the second subtask, suggest and imply are
identified as hedge cues, while the consecutive
blocks suggest that the IRE motif in the ALAS
mRNA is functional and imply that translation of
the mRNA is controlled by cellular iron availabil-
ity during erythropoiesis are recognized as their
corresponding scopes.

In this paper, we proposed a hedge detec-
tion method with average perceptron (Collins,
2002), which was used in the closed challenges in
CoNLL-2010 Shared Task (Farkas et al., 2010).
Our motivation is to use a unified model to de-
tect two level hedge information (word-level and
sentence-level) and the model is easily expanded
to joint learning of two subtasks. Since that the
hedge score of sentence can be decomposed into
scores of the words, especially the hedge words,
we chosen linear classifier in our method and used
average perceptron as the training algorithm.

The rest of the paper is organized as follows. In
Section 2, a brief review of related works is pre-
sented. Then, we describe our method in Section
3. Experiments and results are presented in the
section 4. Finally, the conclusion will be presented
in Section 5.

2 Related works

Although the concept of hedge information has
been introduced in linguistic community for a
long time, researches on automatic hedge detec-
tion emerged from machine learning or compu-
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tational linguistic perspective in recent years. In
this section, we give a brief review on the related
works.

For speculative sentences detection, Medlock
and Briscoe (2007) report their approach based
on weakly supervised learning. In their method,
a statistical model is initially derived from a seed
corpus, and then iteratively modified by augment-
ing the training dataset with unlabeled samples
according the posterior probability. They only
employ bag-of-words features. On the public
biomedical dataset!, their experiments achieve the
performance of 0.76 in BEP (break even point).
Although they also introduced more linguistic fea-
tures, such as part-of-speech (POS), lemma and
bigram (Medlock, 2008), there are no significant
improvements.

In Ganter and Strube (2009), the same task on
Wikipedia is presented. In their system, score of a
sentence is defined as a normalized tangent value
of the sum of scores over all words in the sentence.
Shallow linguistic features are introduced in their
experiments.

Morante and Daelemans (2009) present their re-
search on identifying hedge cues and their scopes.
Their system consists of several classifiers and
works in two phases, first identifying the hedge
cues in a sentence and secondly finding the full
scope for each hedge cue. In the first phase, they
use IGTREE algorithm to train a classifier with
3 categories. In the second phase, three different
classifiers are trained to find the first token and last
token of in-sentence scope and finally combined
into a meta classifier. The experiments shown
that their system achieves an F1 of nearly 0.85
of identifying hedge cues in the abstracts sub cor-
pus, while nearly 0.79 of finding the scopes with
predicted hedge cues. More experiments could
be found in their paper (Morante and Daelemans,
2009). They also provide a detail statistics on
hedge cues in BioScope corpus?.

3 Hedge detection with average
perceptron

3.1 Detecting uncertain sentences

The first subtask is to identify sentences con-
taining uncertainty information. In particular,

"http://www.benmedlock.co.uk/
hedgeclassif.html

ttp://www.inf.u-szeged.hu/rgai/
bioscope
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this subtask is a binary classification problem at
sentence-level.

We define the score of sentence as the confi-
dence that the sentence contains uncertainty infor-
mation.

The score can be decomposed as the sum of the
scores of all words in the sentence,

Sx,y) =Y s(iy) =Y W é(zi,y)

T, EX T, EX

where, x denotes a sentence and x; is the -
th word in the sentence x, ¢(z;,y) is a sparse
high-dimensional binary feature vector of word z;.
y € {uncertain, certain} is the category of the
sentence. For instance, in the example sentence,
if current word is suggest while the category of
this sentence is uncertain, the following feature is
hired,

. x;=""'suggest’’
¢ (.13 ) _ 1’ if y="'‘uncertain’’’
n Zuy - .
0, otherwise

where n is feature index.

This representation is commonly used in struc-
tured learning algorithms. We can combine the
features into a sparse feature vector ®(x,y) =

Zi (i, y).

S(Xa y) = WT(I)(J’" y) = Z WTQS(l'iay)

T;€EX

In the predicting phase, we assign x to the cate-
gory with the highest score,

y* = argmaxw’ ®(z,y)
y

We learn the parameters w with online learning
framework. The most common online learner is
the perceptron (Duda et al., 2001). It adjusts pa-
rameters w when a misclassification occurs. Al-
though this framework is very simple, it has been
shown that the algorithm converges in a finite
number of iterations if the data is linearly separa-
ble. Moreover, much less training time is required
in practice than the batch learning methods, such
as support vector machine (SVM) or conditional
maximum entropy (CME).

Here we employ a variant perceptron algorithm
to train the model, which is commonly named
average perceptron since it averages parameters
w across iterations. This algorithm is first pro-
posed in Collins (2002). Many experiments of



NLP problems demonstrate better generalization
performance than non averaged parameters. More
theoretical proofs can be found in Collins (2002).
Different from the standard average perceptron al-
gorithm, we slightly modify the average strategy.
The reason to this modification is that the origi-
nal algorithm is slow since parameters accumulate
across all iterations. In order to keep fast training
speed and avoid overfitting at the same time, we
make a slight change of the parameters accumu-
lation strategy, which occurs only after each iter-
ation over the training data finished. Our training
algorithm is shown in Algorithm 1.

input : training data set:
(TnyYn),mn=1,--- N,
parameters: average number: K,
maximum iteration number: 7'.
output: average weight: cw

Initialize: cw «— 0,;
fork=0---K —1do
wo 03
fort=0---T—1do
receive an example (x¢, ¥¢);
predict: §; = argmax, wi ®(xs,y);
if Qt 7é Yt then
| Wip1 = Wi+ @(xe, ) — P(xt, i)
end
end
CW = CW + W7 ;

end
cw =cw/K ;

Algorithm 1: Average Perceptron algorithm

Binary context features are extracted from 6
predefined patterns, which are shown in Figure 1.
By using these patterns, we can easily obtain the
complicate features. As in the previous example,
if the current word is suggest, then a new com-
pound feature could be extracted in the form of
w_1 =results//wg =suggest by employing the pat-
tern w_jwy. // is the separate symbol.

3.2 Identifying hedge cues and their scopes

Our approach for the second subtask consists of
two phases: (1) identifying hedge cues in a sen-
tence, then (2) recognizing their corresponding
scopes.

3.2.1 Identifying hedge cues

Hedge cues are the most important clues for de-
termining whether a sentence contains uncertain
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e unigram: wq,pg
e bigram: wowi, wopo, Pop1

e trigram: w_jwow;

Figure 1: Patterns employed in the sentence-level
hedge detection. Here w denotes single word, p is
part of speech, and the subscript denotes the rela-
tive offset compared with current position.

e unigram: w_s, w_1, wo, W1, W, Po

e bigram: w_wo, wow1, wopo, P—1P0, PoP1

e trigram: w_jwow;

Figure 2: Patterns employed in the word-level
hedge detection.

information. Therefore in this phase, we treat the
problem of identifying hedge cues as a classifica-
tion problem. Each word in a sentence would be
predicted a category indicating whether this word
is a hedge cue word or not. In the previous ex-
ample, there are two different hedge cues in the
sentence (show in bold manner). Words suggest
and imply are assigned with the category CUE de-
noting hedge cue word, while other words are as-
signed with label O denoting non hedge cue word.

In our system, this module is much similar to
the module of detecting uncertain sentences. The
only difference is that this phase is word level. So
that each training sample in this phase is a word,
while in detecting speculative sentences training
sample is a sentence. The training algorithm is the
same as the algorithm shown in Algorithm 1. 12
predefined patterns of context features are shown
in Figure 2.

3.2.2 Recognizing in-sentence scopes

After identifying the hedge cues in the first phase,
we need to recognize their corresponding in-
sentence scopes, which means the boundary of
scope should be found within the same sentence.
We consider this problem as a word-cue pair
classification problem, where word is any word
in a sentence and cue is the identified hedge cue
word. Similar to the previous phase, a word-level
linear classifier is trained to predict whether each



word-cue pair in a sentence is in the scope of the
hedge cue.

Besides base context features used in the pre-
vious phase, we introduce additional syntactic de-
pendency features. These features are generated
by a first-order projective dependency parser (Mc-
Donald et al., 2005), and listed in Figure 3.

The scopes of hedge cues are always covering
a consecutive block of words including the hedge
cue itself. The ideal method should recognize only
one consecutive block for each hedge cue. How-
ever, our classifier cannot work so well. Therefore,
we apply a simple strategy to process the output
of the classifier. The simple strategy is to find a
maximum consecutive sequence which covers the
hedge cue. If a sentence is considered to contain
several hedge cues, we simply combine the con-
secutive sequences, which have at least one com-
mon word, to a large block and assign it to the
relative hedge cues.

4 Experiments

In this section, we report our experiments on
datasets of CoNLL-2010 shared tasks, including
the official results and our experimental results
when developing the system.

Our system architecture is shown in Figure 4,
which consists of the following modules.

1. corpus preprocess module, which employs a
tokenizer to normalize the corpus;

2. sentence detection module, which uses a bi-
nary sentence-level classifier to determine
whether a sentence contains uncertainty in-
formation;

3. hedge cues detection module, which identi-
fies which words in a sentence are the hedge
cues, we train a binary word-level classifier;

4. cue scope recognition module, which recog-
nizes the corresponding scope for each hedge
cue by another word-level classifier.

Our experimental results are obtained on the
training datasets by 10-fold cross validation. The
maximum iteration number for training the aver-
age perceptron is set to 20. Our system is imple-
mented with Java’.

Shttp://code.google.com/p/fudannlp/
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biomedical | Wikipedia
#sentences 14541 11111
#words 382274 247328
#hedge sentences 2620 2484
Johedge sentences 0.18 0.22
#hedge cues 3378 3133
average number 1.29 1.26
average cue length 1.14 2.45
av. scope length 15.42 -

Table 1: Statistical information on annotated cor-
pus.

4.1 Datasets

In CoNLL-2010 Shared Task, two different
datasets are provided to develop the system: (1)
biological abstracts and full articles from the Bio-
Scope corpus, (2) paragraphs from Wikipedia. Be-
sides manually annotated datasets, three corre-
sponding unlabeled datasets are also allowed for
the closed challenges. But we have not employed
any unlabeled datasets in our system.

A preliminary statistics can be found in Ta-
ble 1. We make no distinction between sen-
tences from abstracts or full articles in biomedi-
cal dataset. From Table 1, most sentences are cer-
tainty while about 18% sentences in biomedical
dataset and 22% in Wikipedia dataset are spec-
ulative. On the average, there exists nearly 1.29
hedge cues per sentence in biomedical dataset and
1.26 in Wikipedia. The average length of hedge
cues varies in these two corpus. In biomedical
dataset, hedge cues are nearly one word, but more
than two words in Wikipedia. On average, the
scope of hedge cue covers 15.42 words.

4.2 Corpus preprocess

The sentence are processed with a maximum-
entropy part-of-speech tagger* (Toutanova et al.,
2003), in which a rule-based tokenzier is used to
separate punctuations or other symbols from reg-
ular words. Moreover, we train a first-order pro-
jective dependency parser with MSTParser® (Mc-
Donald et al., 2005) on the standard WSJ training
corpus, which is converted from constituent trees
to dependency trees by several heuristic rules®.

*nttp://nlp.stanford.edu/software/
tagger.shtml

Shttp://www.seas.upenn.edu/-strctlrn/
MSTParser/MSTParser.html

*http://w3.msi.vxu.se/~nivre/research/
Penn2Malt.html



word-cue pair: current word and the hedge cue word pair,
word-cue POS pair: POS pair of current word and the hedge cue word,

path of POS: path of POS from current word to the hedge cue word along dependency
tree,

path of dependency: relation path of dependency from current word to the hedge cue
word along dependency tree,

POS of hedge cue word+direction: POS of hedge cue word with the direction to the
current word. Here direction can be “LEFT” if the hedge cue is on the left to the current

word, or “RIGHT” on the right,

cue word,

depth

tree depth: depth of current in the corresponding dependency tree,

surface distance: surface distance between current word and the hedge cue word. The
value of this feature is always 10 in the case of surface distance greater than 10,

surface distance+tree depth: combination of surface distance and tree depth

number of punctuations: number of punctuations between current word and the hedge

number of punctuations + tree depth: combination of number of punctuations and tree

Figure 3: Additional features used in recognizing in-sentence scope

4.3 Uncertain sentences detection

In the first subtask, we carry out the experiments
within domain and cross domains. As previously
mentioned, we do not use the unlabeled datasets
and make no distinction between abstracts and full
articles in biomedical dataset. This means we
train the models only with the official annotated
datasets. The model for cross-domain is trained
on the combination of annotated biomedical and
Wikipedia datasets.

In this subtask, evaluation is carried out on the
sentence level and F-measure of uncertainty sen-
tences is employed as the chief metric.

Table 2 shows the results within domain. Af-
ter 10-fold cross validation over training dataset,
we achieve 84.39% of Fl-measure on biomedical
while 56.06% on Wikipedia.

We analyzed the low performance of our sub-
mission result on Wikipedia. The possible rea-
son is our careless work when dealing with the
trained model file. Therefore we retrain a model
for Wikipedia and the performance is listed on the
bottom line (Wikipedia*) in Table 2.
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Dataset Precision \ Recall \ F1
10-fold cross validation
biomedical 91.03 78.66 | 84.39
Wikipedia 66.54 48.43 | 56.06
official evaluation

biomedical 79.45 76.33 | 77.86
Wikipedia 94.23 6.58 1.23
Wikipedia® | 82.19 [ 32.86 | 46.95 |

Table 2: Results for in-domain uncertain sentences
detection

Table 3 shows the results across domains. We
split each annotated dataset into 10 folds. Then
training dataset is combined by individually draw-
ing 9 folds out from the split datasets and the
rests are used as the test data. On biomedical
dataset, F1-measure gets to 79.24% while 56.16%
on Wikipedia dataset. Compared with the results
within domain, over 5% performance decreases
from 84.39% to 79.24% on biomedical, but a
slightly increase on Wikipedia.
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Figure 4: System architecture of our system

Dataset Precision \ Recall \ F1
10-fold cross validation
biomedical 87.86 72.16 | 79.24
Wikipedia 67.78 47.95 | 56.16
official evaluation
biomedical 62.81 79.11 | 70.03
Wikipedia 62.66 55.28 | 58.74

Table 3: Results for across-domain uncertain sen-
tences detection

4.3.1 Results analysis

We investigate the weights of internal features and
found that the words, which have no uncertainty
information, also play the significant roles to pre-
dict the uncertainty of the sentence.

Intuitively, the words without uncertainty infor-
mation should just have negligible effect and the
corresponding features should have low weights.
However, this ideal case is difficult to reached by
learning algorithm due to the sparsity of data.

In Table 4, we list the top 10 words involved
in features with the largest weights for each cate-
gory. These words are ranked by the accumulative
scores of their related features.

In Table 5, we list the top 10 POS involved in
features with the largest weight for each category.

4.4 Hedge cue identification

Hedge cues identification is one module for the
second subtask, we also analyze the performance
on this module.

Since we treat this problem as a binary classi-
fication problem, we evaluate F-measure of hedge
cue words. The results are listed in Table 6.

We have to point out that our evaluation is
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Dataset Precision \ Recall \ F1
10-fold cross validation(word-level)
biomedical 90.15 84.43 | 87.19
Wikipedia 57.74 39.81 | 47.13
official evaluation(phrase-level)
biomedical | 787 [ 7622 | 77.44

Table 6: Results for in-domain hedge cue identifi-
cation

based on word while official evaluation is based
on phrase. That means our results would seem
to be higher than the official results, especially on
Wikipedia dataset because average length of hedge
cues in Wikipedia dataset is more than 2 words.

4.4.1 Result Analysis

We classify the results into four categories: false
negative, false positive, true positive and true neg-
ative. We found that most mistakes are made be-
cause of polysemy and collocation.

In Table 7, we list top 10 words for each cate-
gory. For the false results, the words are difficult to
distinguish without its context in the correspond-
ing sentence.

4.5 Scopes recognition

For recognizing the in-sentence scopes, F-measure
is also used to evaluate the performance of the
word-cue pair classifier. The results using gold
hedge cues are shown in Table 8. From the re-
sults, F-measure achieves respectively 70.44% and
75.94% when individually using the base context
features extracted by 12 predefined patterns (see
Figure 1) and syntactic dependency features (see
Figure 3), while 79.55% when using all features.
The results imply that syntactic dependency



biomedical Wikipedia cross domain
uncertain certain uncertain certain uncertain certain
whether show probably | the other || suggest show
may demonstrate some often whether used to
suggest will many patients || probably was
likely can one of another indicate CFS
indicate role believed days appear | demonstrate
possible found possibly CFS putative the other
putative human considered are some of all
appear known to such as any other || thought 7
thought report several western | possibly people
potential evidence said to pop likely could not

Table 4: Top 10 significant words in detecting uncertain sentences

biomedical Wikipedia \ cross domain
uncertain | certain || uncertain ‘ certain ‘ uncertain | certain
MD SYM RB VBZ JJS SYM
VBG PRP JJS CD RBS ©’
VB NN RBS ©’ RB JJR
VBZ CD FW WRB EX WDT
IN WDT VBP PRP CC CD

Table 5: Top 5 significant POS in detecting uncertain sentences

Dataset \ Precision \ Recall \ F1
base context features
biomedical |  66.04 | 75.48 | 70.44
syntactic dependency features
biomedical | 93.77 | 63.05 [ 75.94
all features
biomedical | 78.72 [ 8041 | 79.55

Table 8: Results for scopes recognizing with gold
hedge cues (word-level)

features contribute more benefits to recognize
scopes than surface context features.

Official results evaluated at block level are also
listed in Table 9.

Recall F1
17.23 | 19.27

Precision
21.87

dataset
biomedical

Table 9: Official results for scopes recognizing
(block level)

From Table 9 and the official result on hedge
cue identification in Table 6, we believe that our
post-processing strategy would be responsible for
the low performance on recognizing scopes. Our
strategy is to find a maximum consecutive block
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covering the corresponding hedge cue. This strat-
egy cannot do well with the complex scope struc-
ture. For example, a scope is covered by another
scope. Therefore, our system would generate a
block covering all hedge cues if there exists more
than one hedge cues in a sentence.

5 Conclusion

We present our implemented system for CoNLL-
2010 Shared Task in this paper. We introduce
syntactic dependency features when recognizing
hedge scopes and employ average perceptron al-
gorithm to train the models. On the biomedi-
cal corpus, our system achieves F-measure with
77.86% in detecting uncertain sentences, 77.44%
in recognizing hedge cues, and 19.27% in identi-
fying the scopes.

Although some results are low and beyond our
expectations, we believe that our system can be at
least improved within the following fields. Firstly,
we would experiment on other kinds of features,
such as chunk or named entities in biomedical.
Secondly, the unlabeled datasets would be ex-
plored in the future.



False Negative

False Positive

True Positive

True Negative

support considered suggesting | chemiluminescence
of potential may rhinitis
demonstrate or proposal leukemogenic
a hope might ribosomal
postulate indicates indicating bp
supports expected likely nc&2
good can appear intronic/exonic
advocates should possible large
implicated either speculate allele
putative idea whether end

Table 7: Top 10 words with the largest scores for each category in hedge cue identification
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