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Introduction

This volume consists of the descriptions of the CoNLL-2010 Shared Task and the participating
systems. The shared task was dedicated to the detection of uncertainty cues and their linguistic
scope in natural language text. The motivation behind this task was that distinguishing factual
and uncertain information in texts is of essential importance in information extraction.

The shared task addressed the detection of uncertainty in two domains. As uncertainty detection
is extremely important for biomedical information extraction and most existing approaches have
targeted such applications, participants were asked to develop systems for hedge detection in
biological scientific articles. Uncertainty detection is also important, e.g. in encyclopedias,
where the goal is to collect reliable world knowledge about real-world concepts and topics.

Two uncertainty detection tasks, sentence classification and in-sentence hedge scope detection
were given to the participants. A total of 23 teams participated in the shared task. Those who
participated in both tasks were invited to write a paper up to 8 pages. The page limit for those
who participated only in the first task was 6 pages.

Although several approaches were introduced by the participants of the shared task and we
believe that the ideas described in this proceedings can serve as an excellent starting point for
the development of an uncertainty detector, there is a lot of room for improving such systems.
The manually annotated datasets and software tools developed for the shared task may act
as benchmarks for these future experiments and they are freely available at http://www.inf.
u-szeged.hu/rgai/conll2010st.

Szeged, May, 2010

Richárd Farkas, for the Shared Task organizers
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Richárd Farkas, Human Language Technology Group, University of Szeged
Veronika Vincze, Human Language Technology Group, University of Szeged
György Szarvas, Ubiquitous Knowledge Processing Lab, Technische Universität Darmstadt
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Abstract
The CoNLL-2010 Shared Task was dedi-
cated to the detection of uncertainty cues
and their linguistic scope in natural lan-
guage texts. The motivation behind this
task was that distinguishing factual and
uncertain information in texts is of essen-
tial importance in information extraction.
This paper provides a general overview
of the shared task, including the annota-
tion protocols of the training and evalua-
tion datasets, the exact task definitions, the
evaluation metrics employed and the over-
all results. The paper concludes with an
analysis of the prominent approaches and
an overview of the systems submitted to
the shared task.

1 Introduction

Every year since 1999, the Conference on Com-
putational Natural Language Learning (CoNLL)
provides a competitive shared task for the Com-
putational Linguistics community. After a five-
year period of multi-language semantic role label-
ing and syntactic dependency parsing tasks, a new
task was introduced in 2010, namely the detection
of uncertainty and its linguistic scope in natural
language sentences.

In natural language processing (NLP) – and in
particular, in information extraction (IE) – many
applications seek to extract factual information
from text. In order to distinguish facts from unre-
liable or uncertain information, linguistic devices
such as hedges (indicating that authors do not
or cannot back up their opinions/statements with
facts) have to be identified. Applications should
handle detected speculative parts in a different
manner. A typical example is protein-protein in-
teraction extraction from biological texts, where
the aim is to mine text evidence for biological enti-
ties that are in a particular relation with each other.

Here, while an uncertain relation might be of some
interest for an end-user as well, such information
must not be confused with factual textual evidence
(reliable information).

Uncertainty detection has two levels. Auto-
matic hedge detectors might attempt to identify
sentences which contain uncertain information
and handle whole sentences in a different man-
ner or they might attempt to recognize in-sentence
spans which are speculative. In-sentence uncer-
tainty detection is a more complicated task com-
pared to the sentence-level one, but it has bene-
fits for NLP applications as there may be spans
containing useful factual information in a sentence
that otherwise contains uncertain parts. For ex-
ample, in the following sentence the subordinated
clause starting with although contains factual in-
formation while uncertain information is included
in the main clause and the embedded question.

Although IL-1 has been reported to con-
tribute to Th17 differentiation in mouse
and man, it remains to be determined
{whether therapeutic targeting of IL-1
will substantially affect IL-17 in RA}.

Both tasks were addressed in the CoNLL-2010
Shared Task, in order to provide uniform manu-
ally annotated benchmark datasets for both and to
compare their difficulties and state-of-the-art so-
lutions for them. The uncertainty detection prob-
lem consists of two stages. First, keywords/cues
indicating uncertainty should be recognized then
either a sentence-level decision is made or the lin-
guistic scope of the cue words has to be identified.
The latter task falls within the scope of semantic
analysis of sentences exploiting syntactic patterns,
as hedge spans can usually be determined on the
basis of syntactic patterns dependent on the key-
word.
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2 Related Work

The term hedging was originally introduced by
Lakoff (1972). However, hedge detection has re-
ceived considerable interest just recently in the
NLP community. Light et al. (2004) used a hand-
crafted list of hedge cues to identify specula-
tive sentences in MEDLINE abstracts and several
biomedical NLP applications incorporate rules for
identifying the certainty of extracted information
(Friedman et al., 1994; Chapman et al., 2007; Ara-
maki et al., 2009; Conway et al., 2009).

The most recent approaches to uncertainty de-
tection exploit machine learning models that uti-
lize manually labeled corpora. Medlock and
Briscoe (2007) used single words as input features
in order to classify sentences from biological ar-
ticles (FlyBase) as speculative or non-speculative
based on semi-automatically collected training ex-
amples. Szarvas (2008) extended the methodology
of Medlock and Briscoe (2007) to use n-gram fea-
tures and a semi-supervised selection of the key-
word features. Kilicoglu and Bergler (2008) pro-
posed a linguistically motivated approach based
on syntactic information to semi-automatically re-
fine a list of hedge cues. Ganter and Strube (2009)
proposed an approach for the automatic detec-
tion of sentences containing uncertainty based on
Wikipedia weasel tags and syntactic patterns.

The BioScope corpus (Vincze et al., 2008) is
manually annotated with negation and specula-
tion cues and their linguistic scope. It consists
of clinical free-texts, biological texts from full pa-
pers and scientific abstracts. Using BioScope for
training and evaluation, Morante and Daelemans
(2009) developed a scope detector following a su-
pervised sequence labeling approach while Özgür
and Radev (2009) developed a rule-based system
that exploits syntactic patterns.

Several related works have also been published
within the framework of The BioNLP’09 Shared
Task on Event Extraction (Kim et al., 2009), where
a separate subtask was dedicated to predicting
whether the recognized biological events are un-
der negation or speculation, based on the GENIA
event corpus annotations (Kilicoglu and Bergler,
2009; Van Landeghem et al., 2009).

3 Uncertainty Annotation Guidelines

The shared task addressed the detection of uncer-
tainty in two domains. As uncertainty detection
is extremely important for biomedical information

extraction and most existing approaches have tar-
geted such applications, participants were asked
to develop systems for hedge detection in bio-
logical scientific articles. Uncertainty detection
is also important, e.g. in encyclopedias, where
the goal is to collect reliable world knowledge
about real-world concepts and topics. For exam-
ple, Wikipedia explicitly declares that statements
reflecting author opinions or those not backed up
by facts (e.g. references) should be avoided (see
3.2 for details). Thus, the community-edited en-
cyclopedia, Wikipedia became one of the subjects
of the shared task as well.

3.1 Hedges in Biological Scientific Articles
In the biomedical domain, sentences were manu-
ally annotated for both hedge cues and their lin-
guistic scope. Hedging is typically expressed by
using specific linguistic devices (which we refer to
as cues in this article) that modify the meaning or
reflect the author’s attitude towards the content of
the text. Typical hedge cues fall into the following
categories:

• auxiliaries: may, might, can, would, should,
could, etc.

• verbs of hedging or verbs with speculative
content: suggest, question, presume, suspect,
indicate, suppose, seem, appear, favor, etc.

• adjectives or adverbs: probable, likely, possi-
ble, unsure, etc.

• conjunctions: or, and/or, either . . . or, etc.

However, there are some cases where a hedge is
expressed via a phrase rather than a single word.
Complex keywords are phrases that express un-
certainty together, but not on their own (either the
semantic interpretation or the hedging strength of
its subcomponents are significantly different from
those of the whole phrase). An instance of a com-
plex keyword can be seen in the following sen-
tence:

Mild bladder wall thickening {raises
the question of cystitis}.

The expression raises the question of may be sub-
stituted by suggests and neither the verb raises nor
the noun question convey speculative meaning on
their own. However, the whole phrase is specula-
tive therefore it is marked as a hedge cue.
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During the annotation process, a min-max strat-
egy for the marking of keywords (min) and their
scope (max) was followed. On the one hand, when
marking the keywords, the minimal unit that ex-
presses hedging and determines the actual strength
of hedging was marked as a keyword. On the other
hand, when marking the scopes of speculative key-
words, the scope was extended to the largest syn-
tactic unit possible. That is, all constituents that
fell within the uncertain interpretation were in-
cluded in the scope. Our motivation here was that
in this way, if we simply disregard the marked text
span, the rest of the sentence can usually be used
for extracting factual information (if there is any).
For instance, in the example above, we can be sure
that the symptom mild bladder wall thickening is
exhibited by the patient but a diagnosis of cystitis
would be questionable.

The scope of a speculative element can be de-
termined on the basis of syntax. The scopes of
the BioScope corpus are regarded as consecutive
text spans and their annotation was based on con-
stituency grammar. The scope of verbs, auxil-
iaries, adjectives and adverbs usually starts right
with the keyword. In the case of verbal elements,
i.e. verbs and auxiliaries, it ends at the end of the
clause or sentence, thus all complements and ad-
juncts are included. The scope of attributive ad-
jectives generally extends to the following noun
phrase, whereas the scope of predicative adjec-
tives includes the whole sentence. Sentential ad-
verbs have a scope over the entire sentence, while
the scope of other adverbs usually ends at the end
of the clause or sentence. Conjunctions generally
have a scope over the syntactic unit whose mem-
bers they coordinate. Some linguistic phenomena
(e.g. passive voice or raising) can change scope
boundaries in the sentence, thus they were given
special attention during the annotation phase.

3.2 Wikipedia Weasels

The chief editors of Wikipedia have drawn the at-
tention of the public to uncertainty issues they call
weasel1. A word is considered to be a weasel
word if it creates an impression that something im-
portant has been said, but what is really commu-
nicated is vague, misleading, evasive or ambigu-
ous. Weasel words do not give a neutral account
of facts, rather, they offer an opinion without any

1http://en.wikipedia.org/wiki/Weasel_
word

backup or source. The following sentence does
not specify the source of information, it is just the
vague term some people that refers to the holder of
this opinion:

Some people claim that this results in a
better taste than that of other diet colas
(most of which are sweetened with as-
partame alone).

Statements with weasel words usually evoke ques-
tions such as Who says that?, Whose opinion is
this? and How many people think so?.

Typical instances of weasels can be grouped in
the following way (we offer some examples as
well):

• Adjectives and adverbs

– elements referring to uncertainty: prob-
able, likely, possible, unsure, often, pos-
sibly, allegedly, apparently, perhaps,
etc.

– elements denoting generalization:
widely, traditionally, generally, broadly-
accepted, widespread, etc.

– qualifiers and superlatives: global, su-
perior, excellent, immensely, legendary,
best, (one of the) largest, most promi-
nent, etc.

– elements expressing obviousness:
clearly, obviously, arguably, etc.

• Auxiliaries

– may, might, would, should, etc.

• Verbs

– verbs with speculative content and their
passive forms: suggest, question, pre-
sume, suspect, indicate, suppose, seem,
appear, favor, etc.

– passive forms with dummy subjects: It
is claimed that . . . It has been men-
tioned . . . It is known . . .

– there is / there are constructions: There
is evidence/concern/indication that. . .

• Numerically vague expressions / quantifiers

– certain, numerous, many, most, some,
much, everyone, few, various, one group
of, etc. Experts say . . . Some people
think . . . More than 60% percent . . .

3



• Nouns

– speculation, proposal, consideration,
etc. Rumour has it that . . . Common
sense insists that . . .

However, the use of the above words or grammat-
ical devices does not necessarily entail their being
a weasel cue since their use may be justifiable in
their contexts.

As the main application goal of weasel detec-
tion is to highlight articles which should be im-
proved (by reformulating or adding factual is-
sues), we decided to annotate only weasel cues
in Wikipedia articles, but we did not mark their
scopes.

During the manual annotation process, the fol-
lowing cue marking principles were employed.
Complex verb phrases were annotated as weasel
cues since in some cases, both the passive con-
struction and the verb itself are responsible for the
weasel. In passive forms with dummy subjects and
there is / there are constructions, the weasel cue
included the grammatical subject (i.e. it and there)
as well. As for numerically vague expressions, the
noun phrase containing a quantifier was marked
as a weasel cue. If there was no quantifier (in the
case of a bare plural), the noun was annotated as
a weasel cue. Comparatives and superlatives were
annotated together with their article. Anaphoric
pronouns referring to a weasel word were also an-
notated as weasel cues.

4 Task Definitions

Two uncertainty detection tasks (sentence clas-
sification and in-sentence hedge scope detec-
tion) in two domains (biological publications and
Wikipedia articles) with three types of submis-
sions (closed, cross and open) were given to the
participants of the CoNLL-2010 Shared Task.

4.1 Detection of Uncertain Sentences
The aim of Task1 was to develop automatic proce-
dures for identifying sentences in texts which con-
tain unreliable or uncertain information. In par-
ticular, this task is a binary classification problem,
i.e. factual and uncertain sentences have to be dis-
tinguished.

As training and evaluation data

• Task1B: biological abstracts and full articles
(evaluation data contained only full articles)
from the BioScope corpus and

• Task1W: paragraphs from Wikipedia possi-
bly containing weasel information

were provided. The annotation of weasel/hedge
cues was carried out on the phrase level, and sen-
tences containing at least one cue were considered
as uncertain, while sentences with no cues were
considered as factual. The participating systems
had to submit a binary classification (certain vs.
uncertain) of the test sentences while marking cues
in the submissions was voluntary (but participants
were encouraged to do this).

4.2 In-sentence Hedge Scope Resolution

For Task2, in-sentence scope resolvers had to be
developed. The training and evaluation data con-
sisted of biological scientific texts, in which in-
stances of speculative spans – that is, keywords
and their linguistic scope – were annotated manu-
ally. Submissions to Task2 were expected to auto-
matically annotate the cue phrases and the left and
right boundaries of their scopes (exactly one scope
must be assigned to a cue phrase).

4.3 Evaluation Metrics

The evaluation for Task1 was carried out at the
sentence level, i.e. the cue annotations in the sen-
tence were not taken into account. The Fβ=1 mea-
sure (the harmonic mean of precision and recall)
of the uncertain class was employed as the chief
evaluation metric.

The Task2 systems were expected to mark cue-
and corresponding scope begin/end tags linked to-
gether by using some unique IDs. A scope-level
Fβ=1 measure was used as the chief evaluation
metric where true positives were scopes which ex-
actly matched the gold standard cue phrases and
gold standard scope boundaries assigned to the cue
word. That is, correct scope boundaries with in-
correct cue annotation and correct cue words with
bad scope boundaries were both treated as errors.

This scope-level metric is very strict. For in-
stance, the requirement of the precise match of the
cue phrase is questionable as – from an application
point of view – the goal is to find uncertain text
spans and the evidence for this is not so impor-
tant. However, the annotation of cues in datasets
is essential for training scope detectors since lo-
cating the cues usually precedes the identification
of their scope. Hence we decided to incorporate
cue matches into the evaluation metric.
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Another questionable issue is the strict bound-
ary matching requirement. For example, includ-
ing or excluding punctuations, citations or some
bracketed expressions, like (see Figure 1) from
a scope is not crucial for an otherwise accurate
scope detector. On the other hand, the list of
such ignorable phenomena is arguable, especially
across domains. Thus, we considered the strict
boundary matching to be a straightforward and un-
ambiguous evaluation criterion. Minor issues like
those mentioned above could be handled by sim-
ple post-processing rules. In conclusion we think
that the uncertainty detection community may find
more flexible evaluation criteria in the future but
the strict scope-level metric is definitely a good
starting point for evaluation.

4.4 Closed and Open Challenges

Participants were invited to submit results in dif-
ferent configurations, where systems were allowed
to exploit different kinds of annotated resources.
The three possible submission categories were:

• Closed, where only the labeled and unla-
beled data provided for the shared task were
allowed, separately for each domain (i.e.
biomedical train data for biomedical test set
and Wikipedia train data for Wikipedia test
set). No further manually crafted resources
of uncertainty information (i.e. lists, anno-
tated data, etc.) could be used in any domain.
On the other hand, tools exploiting the man-
ual annotation of linguistic phenomena not
related to uncertainty (such as POS taggers
and parsers trained on labeled corpora) were
allowed.

• Cross-domain was the same as the closed one
but all data provided for the shared task were
allowed for both domains (i.e. Wikipedia
train data for the biomedical test set, the
biomedical train data for Wikipedia test set
or a union of Wikipedia and biomedical train
data for both test sets).

• Open, where any data and/or any additional
manually created information and resource
(which may be related to uncertainty) were
allowed for both domains.

The motivation behind the cross-domain and the
open challenges was that in this way, we could

assess whether adding extra (i.e. not domain-
specific) information to the systems can contribute
to the overall performance.

5 Datasets

Training and evaluation corpora were annotated
manually for hedge/weasel cues and their scope
by two independent linguist annotators. Any dif-
ferences between the two annotations were later
resolved by the chief annotator, who was also re-
sponsible for creating the annotation guidelines
and training the two annotators. The datasets
are freely available2 for further benchmark experi-
ments at http://www.inf.u-szeged.hu/
rgai/conll2010st.

Since uncertainty cues play an important role
in detecting sentences containing uncertainty, they
are tagged in the Task1 datasets as well to enhance
training and evaluation of systems.

5.1 Biological Publications

The biological training dataset consisted of the bi-
ological part of the BioScope corpus (Vincze et al.,
2008), hence it included abstracts from the GE-
NIA corpus, 5 full articles from the functional ge-
nomics literature (related to the fruit fly) and 4 ar-
ticles from the open access BMC Bioinformatics
website. The automatic segmentation of the doc-
uments was corrected manually and the sentences
(14541 in number) were annotated manually for
hedge cues and their scopes.

The evaluation dataset was based on 15 biomed-
ical articles downloaded from the publicly avail-
able PubMedCentral database, including 5 ran-
dom articles taken from the BMC Bioinformat-
ics journal in October 2009, 5 random articles to
which the drosophila MeSH term was assigned
and 5 random articles having the MeSH terms
human, blood cells and transcription factor (the
same terms which were used to create the Genia
corpus). These latter ten articles were also pub-
lished in 2009. The aim of this article selection
procedure was to have a theme that was close to
the training corpus. The evaluation set contained
5003 sentences, out of which 790 were uncertain.
These texts were manually annotated for hedge
cues and their scope. To annotate the training and
the evaluation datasets, the same annotation prin-
ciples were applied.

2under the Creative Commons Attribute Share Alike li-
cense

5



For both Task1 and Task2, the same dataset was
provided, the difference being that for Task1, only
hedge cues and sentence-level uncertainty were
given, however, for Task2, hedge cues and their
scope were marked in the text.

5.2 Wikipedia Datasets
2186 paragraphs collected from Wikipedia
archives were also offered as Task1 training
data (11111 sentences containing 2484 uncertain
ones). The evaluation dataset contained 2346
Wikipedia paragraphs with 9634 sentences, out of
which 2234 were uncertain.

For the selection of the Wikipedia paragraphs
used to construct the training and evaluation
datasets, we exploited the weasel tags added by
the editors of the encyclopedia (marking unsup-
ported opinions or expressions of a non-neutral
point of view). Each paragraph containing weasel
tags (5874 different ones) was extracted from the
history dump of English Wikipedia. First, 438 ran-
domly selected paragraphs were manually anno-
tated from this pool then the most frequent cue
phrases were collected. Later on, two other sets
of Wikipedia paragraphs were gathered on the ba-
sis of whether they contained such cue phrases or
not. The aim of this sampling procedure was to
provide large enough training and evaluation sam-
ples containing weasel words and also occurrences
of typical weasel words in non-weasel contexts.

Each sentence was annotated manually for
weasel cues. Sentences were treated as uncer-
tain if they contained at least one weasel cue, i.e.
the scope of weasel words was the entire sentence
(which is supposed to be rewritten by Wikipedia
editors).

5.3 Unlabeled Data
Unannotated but pre-processed full biological arti-
cles (150 articles from the publicly available Pub-
MedCentral database) and 1 million paragraphs
from Wikipedia were offered to the participants as
well. These datasets did not contain any manual
annotation for uncertainty, but their usage permit-
ted data sampling from a large pool of in-domain
texts without time-wasting pre-processing tasks
(cleaning and sentence splitting).

5.4 Data Format
Both training and evaluation data were released
in a custom XML format. For each task, a sep-
arate XML file was made available containing the

whole document set for the given task. Evaluation
datasets were available in the same format as train-
ing data without any sentence-level certainty, cue
or scope annotations.

The XML format enabled us to provide more
detailed information about the documents such as
segment boundaries and types (e.g. section titles,
figure captions) and it is the straightforward for-
mat to represent nested scopes. Nested scopes
have overlapping text spans which may contain
cues for multiple scopes (there were 1058 occur-
rences in the training and evaluation datasets to-
gether). The XML format utilizes id-references
to determine the scope of a given cue. Nested
constructions are rather complicated to represent
in the standard IOB format, moreover, we did not
want to enforce a uniform tokenization.

To support the processing of the data files,
reader and writer software modules were devel-
oped and offered to the participants for the uCom-
pare (Kano et al., 2009) framework. uCompare
provides a universal interface (UIMA) and several
text mining and natural language processing tools
(tokenizers, POS taggers, syntactic parsers, etc.)
for general and biological domains. In this way
participants could configure and execute a flexible
chain of analyzing tools even with a graphical UI.

6 Submissions and Results

Participants uploaded their results through the
shared task website, and the official evaluation was
performed centrally. After the evaluation period,
the results were published for the participants on
the Web. A total of 23 teams participated in the
shared task. 22, 16 and 13 teams submitted output
for Task1B, Task1W and Task2, respectively.

6.1 Results

Tables 1, 2 and 3 contain the results of the submit-
ted systems for Task1 and Task2. The last name
of the first author of the system description pa-
per (published in these proceedings) is used here
as a system name3. The last column contains the
type of submission. The system of Kilicoglu and
Bergler (2010) is the only open submission. They
adapted their system introduced in Kilicoglu and
Bergler (2008) to the datasets of the shared task.

Regarding cross submissions, Zhao et al. (2010)
and Ji et al. (2010) managed to achieve a no-
ticeable improvement by exploiting cross-domain

3Özgür did not publish a description of her system.
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Name P / R / F type
Georgescul 72.0 / 51.7 / 60.2 C
Ji 62.7 / 55.3 / 58.7 X
Chen 68.0 / 49.7 / 57.4 C
Morante 80.6 / 44.5 / 57.3 C
Zhang 76.6 / 44.4 / 56.2 C
Zheng 76.3 / 43.6 / 55.5 C
Täckström 78.3 / 42.8 / 55.4 C
Mamani Sánchez 68.3 / 46.2 / 55.1 C
Tang 82.3 / 41.4 / 55.0 C
Kilicoglu 67.9 / 46.0 / 54.9 O
Tjong Kim Sang 74.0 / 43.0 / 54.4 C
Clausen 75.1 / 42.0 / 53.9 C
Özgür 59.4 / 47.9 / 53.1 C
Zhou 85.3 / 36.5 / 51.1 C
Li 88.4 / 31.9 / 46.9 C
Prabhakaran 88.0 / 28.4 / 43.0 C
Ji 94.2 / 6.6 / 12.3 C

Table 1: Task1 Wikipedia results (type ∈
{Closed(C), Cross(X), Open(O)}).

data. Zhao et al. (2010) extended the biological
cue word dictionary of their system – using it as
a feature for classification – by the frequent cues
of the Wikipedia dataset, while Ji et al. (2010)
used the union of the two datasets for training
(they have reported an improvement from 47.0 to
58.7 on the Wikipedia evaluation set after a post-
challenge bugfix).

Name P / R / F type
Morante 59.6 / 55.2 / 57.3 C
Rei 56.7 / 54.6 / 55.6 C
Velldal 56.7 / 54.0 / 55.3 C
Kilicoglu 62.5 / 49.5 / 55.2 O
Li 57.4 / 47.9 / 52.2 C
Zhou 45.6 / 43.9 / 44.7 O
Zhou 45.3 / 43.6 / 44.4 C
Zhang 46.0 / 42.9 / 44.4 C
Fernandes 46.0 / 38.0 / 41.6 C
Vlachos 41.2 / 35.9 / 38.4 C
Zhao 34.8 / 41.0 / 37.7 C
Tang 34.5 / 31.8 / 33.1 C
Ji 21.9 / 17.2 / 19.3 C
Täckström 2.3 / 2.0 / 2.1 C

Table 2: Task2 results (type ∈ {Closed(C),
Open(O)}).

Each Task2 and Task1W system achieved a

Name P / R / F type
Tang 85.0 / 87.7 / 86.4 C
Zhou 86.5 / 85.1 / 85.8 C
Li 90.4 / 81.0 / 85.4 C
Velldal 85.5 / 84.9 / 85.2 C
Vlachos 85.5 / 84.9 / 85.2 C
Täckström 87.1 / 83.4 / 85.2 C
Shimizu 88.1 / 82.3 / 85.1 C
Zhao 83.4 / 84.8 / 84.1 X
Özgür 77.8 / 91.3 / 84.0 C
Rei 83.8 / 84.2 / 84.0 C
Zhang 82.6 / 84.7 / 83.6 C
Kilicoglu 92.1 / 74.9 / 82.6 O
Morante 80.5 / 83.3 / 81.9 X
Morante 81.1 / 82.3 / 81.7 C
Zheng 73.3 / 90.8 / 81.1 C
Tjong Kim Sang 74.3 / 87.1 / 80.2 C
Clausen 79.3 / 80.6 / 80.0 C
Szidarovszky 70.3 / 91.0 / 79.3 C
Georgescul 69.1 / 91.0 / 78.5 C
Zhao 71.0 / 86.6 / 78.0 C
Ji 79.4 / 76.3 / 77.9 C
Chen 74.9 / 79.1 / 76.9 C
Fernandes 70.1 / 71.1 / 70.6 C
Prabhakaran 67.5 / 19.5 / 30.3 X

Table 3: Task1 biological results (type ∈
{Closed(C), Cross(X), Open(O)}).

higher precision than recall. There may be two
reasons for this. The systems may have applied
only reliable patterns, or patterns occurring in the
evaluation set may be imperfectly covered by the
training datasets. The most intense participation
was on Task1B. Here, participants applied vari-
ous precision/recall trade-off strategies. For in-
stance, Tang et al. (2010) achieved a balanced pre-
cision/recall configuration, while Li et al. (2010)
achieved third place thanks to their superior preci-
sion.

Tables 4 and 5 show the cue-level performances,
i.e. the F-measure of cue phrase matching where
true positives were strict matches. Note that it was
optional to submit cue annotations for Task1 (if
participants submitted systems for both Task2 and
Task1B with cue tagging, only the better score of
the two was considered).

It is interesting to see that Morante et al. (2010)
who obtained the best results on Task2 achieved
a medium-ranked F-measure on the cue-level (e.g.
their result on the cue-level is lower by 4% com-
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pared to Zhou et al. (2010), while on the scope-
level the difference is 13% in the reverse direc-
tion), which indicates that the real strength of the
system of Morante et al. (2010) is the accurate de-
tection of scope boundaries.

Name P / R / F
Tang 63.0 / 25.7 / 36.5
Li 76.1 / 21.6 / 33.7
Özgür 28.9 / 14.7 / 19.5
Morante 24.6 / 7.3 / 11.3

Table 4: Wikipedia cue-level results.

Name P / R / F type
Tang 81.7 / 81.0 / 81.3 C
Zhou 83.1 / 78.8 / 80.9 C
Li 87.4 / 73.4 / 79.8 C
Rei 81.4 / 77.4 / 79.3 C
Velldal 81.2 / 76.3 / 78.7 C
Zhang 82.1 / 75.3 / 78.5 C
Ji 78.7 / 76.2 / 77.4 C
Morante 78.8 / 74.7 / 76.7 C
Kilicoglu 86.5 / 67.7 / 76.0 O
Vlachos 82.0 / 70.6 / 75.9 C
Zhao 76.7 / 73.9 / 75.3 X
Fernandes 79.2 / 64.7 / 71.2 C
Zhao 63.7 / 74.1 / 68.5 C
Täckström 66.9 / 58.6 / 62.5 C
Özgür 49.1 / 57.8 / 53.1 C

Table 5: Biological cue-level results (type ∈
{Closed(C), Cross(X), Open(O)}).

6.2 Approaches
The approaches to Task1 fall into two major cat-
egories. There were six systems which handled
the task as a classical sentence classification prob-
lem and employed essentially a bag-of-words fea-
ture representation (they are marked as BoW in
Table 6). The remaining teams focused on the
cue phrases and sought to classify every token if
it was a part of a cue phrase, then a sentence was
predicted as uncertain if it contained at least one
recognized cue phrase. Five systems followed a
pure token classification approach (TC) for cue de-
tection while others used sequential labeling tech-
niques (usually Conditional Random Fields) to
identify cue phrases in sentences (SL).

The feature set employed in Task1 systems typ-
ically consisted of the wordform, its lemma or

stem, POS and chunk codes and about the half of
the participants constructed features from the de-
pendency and/or constituent parse tree of the sen-
tences as well (see Table 6 for details).

It is interesting to see that the top ranked sys-
tems of Task1B followed a sequence labeling ap-
proach, while the best systems on Task1W applied
a bag-of-words sentence classification. This may
be due to the fact that biological sentences have
relatively simple patterns. Thus the context of the
cue words (token classification-based approaches
used features derived from a window of the token
in question, thus, they exploited the relationship
among the tokens and their contexts) can be uti-
lized while Wikipedia weasels have a diverse na-
ture. Another observation is that the top systems
in both Task1B and Task1W are the ones which
did not derive features from syntactic parsing.

Each Task2 system was built upon a Task1 sys-
tem, i.e. they attempted to recognize the scopes
for the predicted cue phrases (however, Zhang et
al. (2010) have argued that the objective functions
of Task1 and Task2 cue detection problems are
different because of sentences containing multiple
hedge spans).

Most systems regarded multiple cues in a sen-
tence to be independent from each other and
formed different classification instances from
them. There were three systems which incor-
porated information about other hedge cues (e.g.
their distance) of the sentence into the feature
space and Zhang et al. (2010) constructed a cas-
cade system which utilized directly the predicted
scopes (it processes cue phrases from left to right)
during predicting other scopes in the same sen-
tence.

The identification of the scope for a certain cue
was typically carried out by classifying each to-
ken in the sentence. Task2 systems differ in the
number of class labels used as target and in the
machine learning approaches applied. Most sys-
tems – following Morante and Daelemans (2009)
– used three class labels (F)IRST, (L)AST and
NONE. Two participants used four classes by
adding (I)NSIDE, while three systems followed
a binary classification approach (SCOPE versus
NONSCOPE). The systems typically included a
post-processing procedure to force scopes to be
continuous and to include the cue phrase in ques-
tion. The machine learning methods applied can
be again categorized into sequence labeling (SL)
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NAME approach scope ML postproc tree dep multihedge
Fernandes TC FL ETL
Ji TC I AP +
Kilicoglu HC manual + + +
Li SL FL CRF, SVMHMM + + +
Morante TC FL KNN + +
Rei SL FIL manual+CRF + +
Täckström TC FI SVM +
Tang SL FL CRF + + +
Velldal HC manual +
Vlachos TC I Bayesian MaxEnt + +
Zhang SL FIL CRF + +
Zhao SL FL CRF +
Zhou SL FL CRF + +

Table 7: System architectures overview for Task2. Approaches: sequence labeling (SL), token clas-
sification (TC), hand-crafted rules (HC); Machine learners: Entropy Guided Transformation Learning
(ETL), Averaged Perceptron (AP), k-nearest neighbour (KNN); The way of identifying scopes: predict-
ing first/last tokens (FL), first/inside/last tokens (FIL), just inside tokens (I); Multiple Hedges: the system
applied a mechanism for handling multiple hedges inside a sentence

and token classification (TC) approaches (see Ta-
ble 7). The feature sets used here are the same
as for Task1, extended by several features describ-
ing the relationship between the cue phrase and the
token in question mostly by describing the depen-
dency path between them.

7 Conclusions

The CoNLL-2010 Shared Task introduced the
novel task of uncertainty detection. The challenge
consisted of a sentence identification task on un-
certainty (Task1) and an in-sentence hedge scope
detection task (Task2). In the latter task the goal
of automatic systems was to recognize speculative
text spans inside sentences.

The relatively high number of participants in-
dicates that the problem is rather interesting for
the Natural Language Processing community. We
think that this is due to the practical importance
of the task for (principally biomedical) applica-
tions and because it addresses several open re-
search questions. Although several approaches
were introduced by the participants of the shared
task and we believe that the ideas described in
this proceedings can serve as an excellent starting
point for the development of an uncertainty de-
tector, there is a lot of room for improving such
systems. The manually annotated datasets and
software tools developed for the shared task may
act as benchmarks for these future experiments

(they are freely available at http://www.inf.
u-szeged.hu/rgai/conll2010st).
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Abstract

Detecting hedges and their scope in nat-
ural language text is very important for
information inference. In this paper,
we present a system based on a cascade
method for the CoNLL-2010 shared task.
The system composes of two components:
one for detecting hedges and another one
for detecting their scope. For detecting
hedges, we build a cascade subsystem.
Firstly, a conditional random field (CRF)
model and a large margin-based model are
trained respectively. Then, we train an-
other CRF model using the result of the
first phase. For detecting the scope of
hedges, a CRF model is trained according
to the result of the first subtask. The ex-
periments show that our system achieves
86.36% F-measure on biological corpus
and 55.05% F-measure on Wikipedia cor-
pus for hedge detection, and 49.95% F-
measure on biological corpus for hedge
scope detection. Among them, 86.36%
is the best result on biological corpus for
hedge detection.

1 Introduction

Hedge cues are very common in natural language
text. Vincze et al. (2008) report that 17.70% of
the sentences in the abstract section and 19.94% of
sentences in the full paper section contain hedges
on BioScope corpus. As Vincze et al. (2008)
suggest that information that falls in the scope
of hedges can not be presented as factual in-
formation. Detecting hedges and their scope in
natural language text is very important for in-
formation inference. Recently, relative research
has received considerable interest in the biomed-
ical NLP community, including detecting hedges
and their in-sentence scope in biomedical texts

(Morante and Daelemans, 2009). The CoNLL-
2010 has launched a shared task for exploiting the
hedge scope annotated in the BioScope (Vincze et
al., 2008) and publicly available Wikipedia (Gan-
ter and Strube, 2009) weasel annotations. The
shared task contains two subtasks (Farkas et al.,
2010): 1. learning to detect hedges in sentences on
BioScope and Wikipedia; 2. learning to detect the
in-sentence scope of these hedges on BioScope.

In this paper, we present a system based on a
cascade method for the CoNLL-2010 shared task.
The system composes of two components: one
for detecting hedges and another one for detect-
ing their scope. For detecting hedges, we build
a cascade subsystem. Firstly, conditional ran-
dom field (CRF) model and a large margin-based
model are trained respectively. Then, we train
another CRF model using the result of the first
phase. For detecting the scope of hedges, a CRF
model is trained according to the result of the first
subtask. The experiments show that our system
achieves 86.36% F-measure on biological corpus
and 55.05% F-measure on Wikipedia corpus for
hedge detection, and 49.95% F-measure on bio-
logical corpus for hedge scope detection. Among
them, 86.36% is the best result on biological cor-
pus for hedge detection.

2 System Description

As there are two subtasks, we present a system
based on a cascade supervised machine learning
methods for the CoNLL-2010 shared task. The ar-
chitecture of our system is shown in Figure 1.

The system composes of two subsystems for
two subtasks respectively, and the first subsystem
is a two-layer cascaded classifier.

2.1 Hedge Detection
The hedges are represented by indicating whether
a token is in a hedge and its position in the
CoNLL-2010 shared task. Three tags are used for
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Figure 1: System architecture

this scheme, where O cue indicates a token out-
side of a hedge, B cue indicates a token at the
beginning of a hedge and I cue indicates a to-
ken inside of a hedge. In this subsystem, we do
preprocessing by GENIA Tagger (version 3.0.1)1

at first, which does lemma extraction, part-of-
speech (POS), chunking and named entity recog-
nition (NER) for feature extraction. For the out-
put of GENIA Tagger, we convert the first char
of a lemma into lower case and BIO chunk tag
into BIOS chunk tag, where S indicates a token
is a chunk, B indicates a token at the beginning
of a chunk, I indicates a token inside of a chunk,
and O indicates a token outside of a chunk. Then
a two-layer cascaded classifier is built for pre-
diction. There are a CRF classifier and a large
margin-based classifier in the first layer and a CRF
classifier in the second layer.

In the first layer, the following features are used
in our system:

• Word and Word Shape of the lemma: we used
the similar scheme as shown in (Tsai et al.,
2005).

1http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

• Prefix and Suffix with length 3-5.

• Context of the lemma, POS and the chunk in
the window [-2,2].

• Combined features including L0C0, LiP0

and LiC0, where −1 ≤ i ≤ 1 L denotes the
lemma of a word, P denotes a POS and C
denotes a chunk tag.

• The type of a chunk; the lemma and POS se-
quences of it.

• Whether a token is a part of the pairs ”neither
... nor” and ”either ... or” as both tokens of a
pair are always labeled with the same tag.

• Whether a token can possibly be classified
into B cue, I cue or O cue; its lemma, POS
and chunk tag for each possible case: these
features are extracted according to a dictio-
nary extracted from training corpus, which
lists all possible hedge tag for each word in
the training corpus.

In the second layer, we used some features
about the result of the last layer besides those men-
tioned above. They are listed as follow:

• The lemma and POS sequences of the hedge
predicted by each classifier.

• The times of a token classified into B cue,
I cue and O cue by the first two classifiers.

• Whether a token is the last token of the hedge
predicted by each classifier.

2.2 Hedge Scope Detection

We follow the way of Morante and Daelemans
(2009) to represent the scope of a hedge, where
F scope indicates a token at the beginning of a
scope sequence, L scope indicates a token at the
last of a scope sequence, and NONE indicates
others. In this phase, we do preprocessing by
GDep Tagger (version beta1)2 at first, which does
lemma extraction, part-of-speech (POS), chunk-
ing, named entity recognition (NER) and depen-
dency parse for feature extraction. For the out-
put of GDep Tagger, we deal with the lemma and
chunk tag using the same way mentioned in the
last section. Then, a CRF classifier is built for pre-
diction, which uses the following features:

2http://www.cs.cmu.edu/ sagae/parser/gdep
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• Word.

• Context of the lemma, POS, the chunk, the
hedge and the dependency relation in the
window [-2,2].

• Combined features including L0C0,
L0H0, L0D0, LiP0, PiC0,PiH0, CiH0,
PiD0,CiD0, where −1 ≤ i ≤ 1 L denotes
the lemma of a word, P denotes a POS, C
denotes a chunk tag, H denotes a hedge tag
and D denotes a dependency relation tag.

• The type of a chunk; the lemma and POS se-
quences of it.

• The type of a hedge; the lemma, POS and
chunk sequences of it.

• The lemma, POS, chunk, hedge and depen-
dency relation sequences of 1st and 2nd de-
pendency relation edges; the lemma, POS,
chunk, hedge and dependency relation se-
quences of the path from a token to the root.

• Whether there are hedges in the 1st, 2nd de-
pendency relation edges or path from a token
to the root.

• The location of a token relative to the nega-
tion signal: previous the first hedge, in the
first hedge, between two hedge cues, in the
last hedge, post the last hedge.

At last, we provided a postprocessing system
for the output of the classifier to build the com-
plete sequence of tokens that constitute the scope.
We applied the following postprocessing:

• If a hedge is bracketed by a F scope and a
L scope, its scope is formed by the tokens be-
tween them.

• If a hedge is only bracketed by a F scope, and
there is no L scope in the sentence, we search
the first possible word from the end of the
sentence according to a dictionary, which ex-
tracted from the training corpus, and assign it
as L scope. The scope of the hedge is formed
by the tokens between them.

• If a hedge is only bracketed by a F scope, and
there are at least one L scope in the sentence,
we think the last L scope is the L scope of the
hedge, and its scope is formed by the tokens
between them.

• If a hedge is only bracketed by a L scope,
and there is no F scope in the sentence, we
search the first possible word from the begin-
ning of the sentence to the hedge according to
the dictionary, and assign it as F scope. The
scope of the hedge is formed by the tokens
between them.

• If a hedge is only bracketed by a L scope,
and there are at least one F scope in the sen-
tence, we search the first possible word from
the hedge to the beginning of the sentence ac-
cording to the dictionary, and think it as the
F scope of the hedge. The scope of the hedge
is formed by the tokens between them.

• If a hedge is bracketed by neither of them, we
remove it.

3 Experiments and Results

Two annotated corpus: BioScope and Wikipedia
are supplied for the CoNLL-2010 shared task. The
BioScope corpus consists of two parts: biological
paper abstracts and biological full papers, and it
is used for two subtasks. The Wikipedia corpus is
only used for hedge detection. The detailed infor-
mation of these two corpora is shown in Table 1
and Table 2, respectively.

Abstracts Papers Test
#Documents 1273 9 15
#Sentences 11871 2670 5003
%Hedge sent. 17.70 19.44 15.75
#Hedges 2694 682 1043
#AvL. of sent. 30.43 27.95 31.30
#AvL. of scopes 17.27 14.17 17.51

Table 1: The detailed information of BioScope
corpus. ”AvL.” stands for average length.

Train Test
#Documents 2186 2737
#Sentences 11111 9634
%Hedge sentences 22.36 23.19
#Hedges 3133 3143
#AvL. of sentences 23.07 20.82

Table 2: The detail information of Wikipedia cor-
pus. ”AvL.” stands for average length.

In our experiments, CRF++-0.533 implemen-
3http://crfpp.sourceforge.net/
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tation is employed to CRF, and svm hmm 3.104

implementation is employed to the large margin
method. All parameters are default except C
(the trade-off between training error and margin,
C=8000, for selecting C, the training corpus is par-
titioned into three parts, two of them are used for
training and the left one is used as a development
dataset) in svm hmm. Both of them are state-of-
the-art toolkits for the sequence labeling problem.

3.1 Hedge Detection
We first compare the performance of each single
classifier with the cascaded system on two corpora
in domain, respectively. Each model is trained by
whole corpus, and the performance of them was
evaluated by the official tool of the CoNLL-2010
shared task. There were two kinds of measure:
one for sentence-level performance and another
one for cue-match performance. Here, we only
focused on the first one, and the results shown in
Table 3.

Corpus System Prec. Recall F1
CRF 87.12 86.46 86.79

BioScope LM 85.24 87.72 86.46
CAS 85.03 87.72 86.36
CRF 86.10 35.77 50.54

Wikipedia LM 82.28 41.36 55.05
CAS 82.28 41.36 55.05

Table 3: In-sentence performance of the hedge
detection subsystem for in-domain test. ”Prec.”
stands for precision, ”LM” stands for large mar-
gin, and ”CAS” stands for cascaded system.

From Table 3, we can see that the cascaded sys-
tem is not better than other two single classifiers
and the single CRF classifier achieves the best per-
formance with F-measure 86.79%. The reason for
selecting this cascaded system for our final sub-
mission is that the cascaded system achieved the
best performance on the two training corpus when
we partition each one into three parts: two of them
are used for training and the left one is used for
testing.

For cross-domain test, we train a cascaded clas-
sifier using BioScope+Wikipedia cropus. Table 4
shows the results.

As shown in Table 5, the performance of cross-
domain test is worse than that of in-domain test.

4http://www.cs.cornell.edu/People/tj/svm light/svm-
hmm.html

Corpus Precision Recall F1
BioScope 89.91 73.29 80.75
Wikipedia 81.56 40.20 53.85

Table 4: Results of the hedge detection for cross-
domain test. ”LM” stands for large margin, and
”CAS” stands for cascaded system.

3.2 Hedge Scope Detection

For test the affect of postprocessing for hedge
scope detection, we test our system using two eval-
uation tools: one for scope tag and the other one
for sentence-level scope (the official tool). In or-
der to evaluate our system comprehensively, four
results are used for comparison. The ”gold” is the
performance using golden hedge tags for test, the
”CRF” is the performance using the hedge tags
prediction of single CRF for test, the ”LM” is the
performance using the hedge tag prediction of sin-
gle large margin for test, and ”CAS” is the per-
formance of using the hedge tag prediction of cas-
caded subsystem for test. The results of scope tag
and scope sentence-level are listed in Table 5 and
Table 6, respectively. Here, we should notice that
the result listed here is different with that submit-
ted to the CoNLL-2010 shared task because some
errors for feature extraction in the previous system
are revised here.

HD tag Precision Recall F1
F scope 92.06 78.83 84.94

gold L scope 80.56 68.67 74.14
NONE 99.68 99.86 99.77
F scope 78.83 66.89 72.37

CRF L scope 72.52 60.50 65.97
NONE 99.56 99.75 99.65
F scope 77.25 67.57 72.09

LM L scope 72.33 61.41 66.42
NONE 99.56 99.73 99.31
F scope 77.32 67.86 72.29

CAS L scope 72.00 61.29 66.22
NONE 99.57 99.73 99.65

Table 5: Results of the hedge scope tag. ”HD”
stands for hedge detection subsystem we used,
”LM” stands for large margin, and ”CAS” stands
for cascaded system.

As shown in Table 5, the performance of
L scope is much lower than that of F scope.
Therefore, the first problem we should solve is
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HD subsystem Precision Recall F1
gold 57.92 55.95 56.92
CRF 52.36 48.40 50.30
LM 51.06 48.89 49.95
CAS 50.96 48.98 49.95

Table 6: Results of the hedge scope in-sentence.
”HD” stands for hedge detection subsystem we
used, ”LM” stands for large margin, and ”CAS”
stands for cascaded system.

how to improve the prediction performance of
L scope. Moreover, compared the performance
shown in Table 5 and 6, about 15% (F1 of L scope
in Table 5 - F1 in Table 6) scope labels are mis-
matched. An efficient postprocessing is needed to
do F-L scope pair match.

As ”CRF” hedge detection subsystem is bet-
ter than the other two subsystems, our system
achieves the best performance with F-measure
50.30% when using the ”CRF” subsystem.

4 Conclusions

This paper presents a cascaded system for the
CoNLL-2010 shared task, which contains two
subsystems: one for detecting hedges and an-
other one for detecting their scope. Although
the best performance of hedge detection subsys-
tem achieves F-measure 86.79%, the best per-
formance of the whole system only achieves F-
measure 50.30%. How to improve it, we think
some complex features such as context free gram-
mar may be effective for detecting hedge scope.
In addition, the postprocessing can be further im-
proved.
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Abstract

In this paper we describe our approach
to the CoNLL-2010 shared task on de-
tecting speculative language in biomedical
text. We treat the detection of sentences
containing uncertain information (Task1)
as a token classification task since the
existence or absence of cues determines
the sentence label. We distinguish words
that have speculative and non-speculative
meaning by employing syntactic features
as a proxy for their semantic content. In
order to identify the scope of each cue
(Task2), we learn a classifier that predicts
whether each token of a sentence belongs
to the scope of a given cue. The features
in the classifier are based on the syntactic
dependency path between the cue and the
token. In both tasks, we use a Bayesian
logistic regression classifier incorporating
a sparsity-enforcing Laplace prior. Over-
all, the performance achieved is 85.21%
F-score and 44.11% F-score in Task1 and
Task2, respectively.

1 Introduction

The term speculative language, also known as
hedging, refers to expressions of uncertainty over
statements. Recognition of such statements is im-
portant for higher-level applications. For exam-
ple, a multi-document summarization system can
assign different weights to speculative and non-
speculative statements when aggregating informa-
tion on a particular issue.

The CoNLL-2010 shared task (Farkas et al.,
2010) formulates speculative language detection
as two subtasks. In the first subtask (Task1), sys-
tems need to determine whether a sentence con-
tains uncertain information or not. In the sec-
ond subtask (Task2), systems need to identify the

hedge cues and their scope in the sentence. Table 1
provides an example from the training data.

The participants are provided with data from
two domains: biomedical scientific literature (both
abstracts and full articles) and Wikipedia. We
choose to focus on the former. The training data
for this domain are nine full articles and 1,273 ab-
stracts from the BioScope corpus (Szarvas et al.,
2008) and the test data are 15 full articles.

Our approach to speculative language detection
relies on syntactic parsing and machine learning.
We give a description of the techniques used in
Sections 2 and 3. We treat the detection of sen-
tences containing uncertain information (Task1) as
a token classification task in which we learn a clas-
sifier to predict whether a token is a cue or not. In
order to handle words that have speculative and
non-speculative meaning (e.g. “indicating” in the
example of Table 1), we employ syntactic features
as a proxy for their semantic content (Section 4).
For scope identification (Task2), we learn a clas-
sifier that predicts whether each token of the sen-
tence belongs to the scope of a particular cue (Sec-
tion 6). The features used are based on the syntac-
tic dependency path between the cue and the to-
ken. We report results and perform error analysis
for both tasks, pointing out annotation issues that
could be ameliorated (Sections 5 and 7). Based on
our experience we suggest improvements on the
task definition taking into account work from the
broader field (Section 8).

2 Syntactic parsing for the biomedical
domain

The syntactic parser we chose for our experi-
ments is the C&C Combinatory Categorial Gram-
mar (CCG) parser adapted to the biomedical do-
main (Rimell and Clark, 2009). In this frame-
work, parsing is performed in three stages: part-
of-speech (PoS) tagging, CCG supertagging and
parse selection. The parse selection module de-
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The Orthology and Combined modules both have states that achieve likelihood ratios above 400 (as
high as 1207 for the Orthology module and 613 for the Combined module), {indicating that both these
modules {can, on their own, predict some interacting protein pairs with a posterior odds ratio above 1}}.

Table 1: Sentence annotated as speculative with two cues (in boldface) and their scopes (in brackets).

rives the actual parse tree using the information
from the other two components. The intermediate
CCG supertagging stage assigns each token to a
lexical category which attempts to capture its syn-
tactic role in the sentence. Lexical categories con-
tain more information than PoS tags (mainly on
subcategorization) and they are more numerous,
thereby making their assignment a relatively dif-
ficult task. Therefore, the parse selection module
takes into account multiple predictions per token
which allows recovery from supertagging errors
while still reducing the ambiguity propagated. An
interesting aspect of this three-stage parsing ap-
proach is that, if the parse selection module fails to
construct a parse tree for the sentence (a common
issue when syntactic parsers are ported to new do-
mains), the lexical categories obtained by the su-
pertagger preserve some of the syntactic informa-
tion that would not be found in PoS tags.

The adaptation to the biomedical domain by
Rimell and Clark (2009) involved re-training the
PoS tagger and the CCG supertagger using in-
domain resources, while the parse selection com-
ponent was left intact. As recent work in the
BioNLP 2009 shared task has shown (Kim et al.,
2009), domain-adapted parsing benefits informa-
tion extraction systems.

The native output of the C&C parser is con-
verted into the Stanford Dependency (SD) col-
lapsed dependency format (de Marneffe and Man-
ning, 2008). These dependencies define binary re-
lations between tokens and the labels of these re-
lations are obtained from a hierarchy. While the
conversion is unlikely to be perfect given that the
native C&C output follows a different formalism,
we made this choice because it allows for the use
of different parsers with minimal adaptation.

Finally, an important pre-processing step we
take is tokenization of the original text. Since the
PoS tagger is trained on the GENIA corpus which
follows the Penn TreeBank tokenization scheme,
we use the tokenization script provided by the tree-
bank.1

1http://www.cis.upenn.edu/˜treebank/tokenization.html

3 Bayesian logistic regression

In both tasks, we use a Bayesian logistic regres-
sion classifier incorporating a sparsity-enforcing
Laplace prior (Genkin et al., 2006). Logistic re-
gression models are of the form:

p(y = +1|β, x) =
exp(xβT )

1 + exp(xβT )
(1)

where y ∈ {+1,−1} is a binary class label, x
is the feature vector representation of the instance
to be classified and β is the feature weight vec-
tor which is learnt from the training data. Since
feature interactions are not directly represented,
the interactions that are expected to matter for the
task considered must be specified as additional
features. In Bayesian logistic regression, a prior
distribution on β is used which encodes our prior
beliefs on the feature weights. In this work, we
use the Laplace prior which encourages the fea-
ture weight vector to be sparse, reflecting our be-
lief that most features will be irrelevant to the task.

4 Detecting sentences containing
speculation

In Task1, systems need to determine whether a
sentence contains uncertain information (labeled
uncertain) or not (labeled certain). A sentence is
uncertain if one or more of its tokens denote un-
certainty. Such tokens are labeled as cues and they
are provided by the organizers for training. If a
cue is a present, any other (potentially “unhedg-
ing”) token becomes irrelevant to the task. There-
fore, we cast the task as a binary token classifi-
cation problem and determine the sentence label
from the token-level decisions.

Words used as speculative cues do not always
denote speculation. For example, in BioScope “if”
and “appear” are annotated as cues 4% and 83%
of the times they are encountered. In order to
gain better understanding of the task, we build a
dictionary-based cue extractor. First we extract all
the cues from the training data and use their lem-
mas, obtained using morpha (Minnen et al., 2001),
to tag tokens in the test data. We keep only single-
token cues in order to avoid non-indicative lem-
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token=indicating lemma=indicate
PoS=VBG lemma+PoS=indicate+VBG

CCG=(S[ng]\NP)/S[em]
lemma+CCG=indicate+(S[ng]\NP)/S[em]

Table 2: Features extracted for the token “indicat-
ing” from the Example in Table 1. CCG supertag
(S[ng]\NP)/S[em] denotes that “indicating” ex-
pects an embedded clause (S[em]) to its right (in-
dicated by the forward slash /) and a noun phrase
(NP) to its left (indicated by the backward slash \)
to form a present participle (S[ng]).

mas entering the dictionary (e.g. “that” in “in-
dicate that”). Since the test data consist of full
articles only, we evaluate the performance of the
dictionary-based approach using four-fold cross-
validation on the nine full articles of the training
data with the abstracts added as training data in
every fold, but not used as test data. The recall
achieved is 98.07%, but F-score is lower (59.53%)
demonstrating that the single-token cues in the
training data provide adequate coverage, but low
precision. The restricted domain helps precision
as it precludes some word meanings from appear-
ing. For example “might” is unlikely to be encoun-
tered as a noun in the biomedical domain. Never-
theless, in order to achieve better performance it
is important to further refine the cue identification
procedure.

Determining whether a token is used as a specu-
lative cue or not resembles supervised word sense
disambiguation. The main difference is that in-
stead of having an inventory of senses for each
word, we have two senses applicable to all words.
As in most word sense disambiguation tasks, the
classification of a word as cue or not is dependent
on the other words in the sentence, which we take
into account using syntax. The syntactic context
of words is a useful proxy to their semantics, as
shown in recent work on verb sense disambigua-
tion (Chen and Palmer, 2009). Furthermore, it is
easy to obtain syntactic information automatically
using a parser, even though there will be some
noise due to parsing errors. Similar intuitions were
exploited by Kilicoglu and Bergler (2008) in refin-
ing a dictionary of cues with syntactic rules.

In what follows, we present the features ex-
tracted for each token for our final system, along
with an example of their application in Table 2.
Where appropriate we give the relevant labels in

the Stanford Dependency (SD) scheme in paren-
theses for reproducibility:

• We extract the token itself and its lemma as
features.

• To handle cases where word senses are identi-
fiable by the PoS of a token (“might result” vs
“the might”), we combine the latter with the
lemma and add it as a feature.

• We combine the lemma with the CCG supertag
and add it as a feature in order to capture cases
where the hedging function of a word is de-
termined by its syntactic role in the sentence.
For example, “indicating” in the example of
Table 1 is followed by a clausal complement (a
very reliable predictor of hedging function for
epistemic verbs), which is captured by its CCG
supertag. As explained in Section 2, this in-
formation can be recovered even in sentences
where the parser fails to produce a parse.

• Passive voice is commonly employed to limit
commitment to the statement made, therefore
we add it as a feature combined with the
lemma to verbs in that voice (nsubjpass).

• Modal auxiliaries are prime hedging devices
but they are also among the most ambiguous.
For example, “can” is annotated as a cue in
16% of its occurrences and it is the fifth most
frequent cue in the full articles. To resolve
this ambiguity, we add as features the lemma
of the main verb the auxiliary is dependent on
(aux) as well as the lemmas of any dependents
of the main verb. Thus we can capture some
stereotypical speculative expressions in scien-
tific articles (e.g “could be due”), while avoid-
ing false positives that are distinguished by the
use of first person plural pronoun and/or ref-
erence to objective enabling conditions (Kil-
icoglu and Bergler, 2008).

• Speculation can be expressed via negation of
a word expressing certainty (e.g. “we do not
know”), therefore we add the lemma of the to-
ken prefixed with “not” (neg).

• In order to capture stereotypical hedging ex-
pressions such as “raises the question” and
“on the assumption” we add as features the di-
rect object of verbs combined with the lemma
of their object (dobj) and the preposition for
nouns in a prepositional relation (prep *).

• In order to capture the effect of adverbs on the
hedging function of verbs (e.g. “theoretically
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features Recall Precision F-score
tokens, lemmas 75.92 81.07 78.41

+PoS, CCG 78.23 83.71 80.88
+syntax 81.00 81.31 81.15
+combs 79.58 84.98 82.19

Table 3: Performance of various feature sets on
Task1 using cross-validation on full articles.

considered”) we add the lemma of the adverb
as a feature to the verb (advmod).

• To distinguish the probabilistic/numerical
sense from the hedging sense of adjectives
such as “possible”, we add the lemma and the
number of the noun they modify as features
(amod), since plural number tends to be as-
sociated with the probabilistic/numerical sense
(e.g. “all possible combinations”).

Finally, given that this stage is meant to identify
cues in order to recover their scopes in Task2, we
attempt to resolve multi-token cues in the train-
ing data into single-token ones. This agrees with
the minimal strategy for marking cues stated in the
corpus guidelines (Szarvas et al., 2008) and it sim-
plifies scope detection. Therefore, during train-
ing multi-token cues are resolved to their syntactic
head according to the dependency output, e.g. in
Table 1 “indicate that” is restricted to “indicate”
only. There were two cases in which this process
failed; the cues being “cannot” (S3.167) and “not
clear” (S3.269). We argue that the former is in-
consistently annotated (the sentence reads “cannot
be defined. . . ” and it would have been resolved to
“defined”), while the latter is headed syntactically
by the verb “be” which is preceding it.

5 Task1 results and error analysis

Initially we experiment using the full-articles part
of the training data only divided in four folds. The
reason for this choice is that the language of the
abstracts is relatively restricted and phenomena
that appear only in full papers could be obscured
by the abstracts, especially since the latter con-
sist of more sentences in total (11,871 vs. 2,670).
Such phenomena include language related to fig-
ures and descriptions of probabilistic models.

Each row in Table 3 is produced by adding
extra features to the feature set represented on
the row directly above it. First we consider us-
ing only the tokens and their lemmas as features

features Recall Precision F-score
tokens, lemmas 79.19 80.43 79.81

+PoS, CCG 81.12 85.22 83.12
+syntax 83.43 84.57 84.00
+combs 85.16 85.99 85.58

Table 4: Performance of various feature sets on
Task1 using cross-validation on full articles incor-
porating the abstracts as training data.

which amounts to a weighted dictionary but which
achieves reasonable performance. The inclusion
of PoS tags and CCG supertags improves perfor-
mance, whereas syntactic context increases recall
while decreasing precision slightly. This is due
to the fact that logistic regression does not rep-
resent feature interactions and the effect of these
features varies across words. For example, clausal
complements affect epistemic verbs but not other
words (“indicate” vs. “state” in the example of
Table 1) and negation affects only words express-
ing certainty. In order to ameliorate this limitation
we add the lexicalized features described in Sec-
tion 4, for example the combination of the lemma
with the negation syntactic dependency. These ad-
ditional features improved precision from 81.31%
to 84.98%.

Finally, we add the abstracts to the training data
which improves recall but harms precision slightly
(Table 4) when only tokens and lemmas are used
as features. Nevertheless, we decided to keep them
as they have a positive effect for all other feature
representations.

A misinterpretation of the BioScope paper
(Szarvas et al., 2008) led us to believe that five of
the nine full articles in the training data were anno-
tated using the guidelines of Medlock and Briscoe
(2007). After the shared task, the organizers clar-
ified to us that all the full articles were annotated
using the BioScope guidelines. Due to our misin-
terpretation, we change our experimental setup to
cross-validate on the four full articles annotated in
BioScope only, considering the other five full ar-
ticles and the abstracts only as training data. We
keep this setup for the remainder of the paper.

We repeat the cross-validation experiments with
the full feature set and this new experimental setup
and report the results in Table 5. Using the same
feature set, we experiment with the Gaussian prior
instead of the sparsity-enforcing Laplace prior
which results in decreased precision and F-score,
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Recall Precision F-score
cross-Laplace 80.33 84.21 82.23

cross-Gaussian 81.59 80.58 81.08
test 84.94 85.48 85.21

Table 5: Performance of the final system in Task1.

therefore confirming our intuition that most fea-
tures extracted are irrelevant to the task and should
have zero weight. Finally, we report our perfor-
mance on the test data using the Laplace prior.

6 Detecting the scope of the hedges

In Task2, the systems need to identify speculative
cues and their respective scopes. Since our system
for Task1 identifies cues, our discussion of Task2
focuses on identifying the scope of a given cue.
It is a non-trivial task, since scopes can be nested
and can span over a large number of tokens of the
sentence.

An initial approach explored was to associate
each cue with the token representing the syntactic
head of its scope and then to infer the scope us-
ing syntactic parsing. In order to achieve this, we
resolved the (almost always multi-token) scopes
to their syntactic heads and then built a classi-
fier whose features are based on syntactic depen-
dency paths. Multi-token scopes which were not
headed syntactically by a single token (according
to the parser) were discarded in order to obtain a
cleaner dataset for training. This phenomenon oc-
curs rather frequently, therefore reducing the train-
ing instances. At testing, the classifier identifies
the syntactic head of the scope for each cue and
we infer the scope from the syntactic parser’s out-
put. If more than one scope head is identified for
a particular cue, then the scopes are concatenated.

The performance of this approach turned out to
be very low, 10.34% in F-score. We identified two
principal reasons for this. First, relying on the syn-
tactic parser’s output to infer the scope is unavoid-
ably affected by parsing errors. Second, the scope
annotation takes into account semantics instead of
syntax. For example bibliographic references are
excluded based on their semantics.

In order to handle these issues, we developed an
approach that predicts whether each token of the
sentence belongs to the scope of a given cue. The
overall scope for that cue becomes the string en-
closed by the left- and right-most tokens predicted
to belong to the scope. The features used by the

classifier to predict whether a token belongs to the
scope of a particular cue are based on the short-
est syntactic dependency path connecting them,
which is found using Dijkstra’s algorithm. If no
such path is found (commonly due to parsing fail-
ure), then the token is classified as not belonging
to the scope of that cue. The features we use are
the following:

• The dependency path between the cue and the
token, combined with both their lemmas.

• According to the guidelines, different cues
have different preferences in having their
scopes extended to their left or to their right.
For example modal auxiliaries like “can” in
Table 1 extend their scope to their right. There-
fore we add the dependency path feature de-
fined above refined by whether the token is on
the left or the right of the cue in question.

• We combine the dependency path and the lem-
mas of the cue and the token with their PoS
tags and CCG supertags, since these tags re-
fine the syntactic function of the tokens.

The features defined above are very sparse, espe-
cially when longer dependency paths are involved.
This can affect performance substantially, as the
scopes can be rather long, in many cases spanning
over the whole sentence. An unseen dependency
path between a cue and a token during testing re-
sults in the token being excluded from the scope
of that cue. In turn, this causes predicted scopes to
be shorter than they should be. We attempt to al-
leviate this sparsity in two stages. First, we make
the following simplifications to the labels of the
dependencies:

• Adjectival, noun compound, relative clause
and participial modifiers (amod, nn, rcmod,
partmod) are converted to generic modifiers
(mod).

• Passive auxiliary (auxpass) and copula (cop)
relations are converted to auxiliary relations
(aux).

• Clausal complement relations with inter-
nal/external subject (ccomp/xcomp) are con-
verted to complement relations (comp).

• All subject relations in passive or active voice
(nsubj, nsubjpass, csubj, csubjpass) are con-
verted to subjects (subj).

• Direct and indirect object relations (iobj, dobj)
are converted to objects (obj).
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• We de-lexicalize conjunct (conj *) and prepo-
sitional modifier relations (prep *).

Second, we shorten the dependency paths:

• Since the SD collapsed dependencies format
treats conjunctions asymmetrically (conj), we
propagate the subject and object dependencies
of the head of the conjunction to the depen-
dent. We process appositional and abbrevi-
ation modifiers (appos, abbrev) in the same
way.

• Determiner and predeterminer relations (det,
predet) in the end of the dependency path are
removed, since the determiners (e.g. “the”)
and predeterminers (e.g. “both”) are included
in/excluded from the scope following their
syntactic heads.

• Consecutive modifier and dependent relations
(mod, dep) are replaced by a single relation of
the same type.

• Auxiliary relations (aux) that are not in the be-
ginning or the end of the path are removed.

Despite these simplifications, it is still possible
during testing to encounter dependency paths un-
seen in the training data. In order to ameliorate
this issue, we implement a backoff strategy that
progressively shortens the dependency path until
it matches a dependency path seen in the training
data. For example, if the path from a cue to a token
is subj-mod-mod and it has not been seen in the
training data, we test if subj-mod has been seen.
If it has, we consider it as the dependency path to
define the features described earlier. If not, we test
for subj in the same way. This strategy relies on
the assumption that tokens that are likely to be in-
cluded in/excluded from the scope following the
tokens they are syntactically dependent on. For
example, modifiers are likely to follow the token
being modified.

7 Task2 results and error analysis

In order to evaluate the performance of our ap-
proach, we performed four-fold cross-validation
on the four BioScope full articles, using the re-
maining full articles and the abstracts as training
data only. The performance achieved using the
features mentioned in Section 6 is 28.62% F-score,
while using the simplified dependency paths in-
stead of the path extracted from the parser’s out-
put improves it to 34.35% F-score. Applying the
back-off strategy for unseen dependency paths to

features Recall Precision F-score
standard 27.54 29.79 28.62

simplified 33.11 35.69 34.35
+backoff 34.10 36.75 35.37

+post 40.98 44.17 42.52

Table 6: Performance on Task2 using cross-
validation on BioScope full articles.

the simplified paths results in 35.37% F-score (Ta-
ble 6).

Our system predicts only single token cues.
This agrees in spirit with the minimal cue an-
notation strategy stated in the BioScope guide-
lines. The guidelines allow for multi-token cues,
referred to as complex keywords, which are de-
fined as cases where the tokens of a phrase cannot
express uncertainty independently. We argue that
this definition is rather vague, and combined with
the requirement for contiguity, results in cue in-
stances such as “indicating that” (multiple occur-
rences), “looks as” (S4.232) and “address a num-
ber of questions” (S4.36) annotated as cues. It is
unclear why “suggesting that” or “appears that”
are not annotated as cues as well, or why “that”
contributes to the semantic content of “indicate”.
“that” does help determine the sense of “indicate”,
but we argue that it should not be part of the cue as
it does not contribute to its semantic content. “in-
dicate that” is the only consistent multi-token cue
pattern in the training data. Therefore, when our
system identifies as a cue a token with the lemma
“indicate”, if this token is followed by “that”,
“that” is added to the cue. Given the annotation
difficulties multi-token cues present, it would be
useful during evaluation to relax cue matching in
the same way as in the BioNLP 2009 shared task,
i.e. considering as correct those cues predicted
within one token of the gold standard annotation.

As explained in Section 6, bibliographic ref-
erences are excluded from scopes and cannot be
recognized by means of syntactic parsing only.
Additionally, in some cases the XML formatting
does not preserve the parentheses and/or brack-
ets around numerical references. We employ two
post-processing steps to deal with these issues.
First, if the ultimate token of a scope happens to
be the penultimate token of the sentence and a
number, then it is removed from the scope. This
step can have a negative effect when the last to-
ken of the scope and penultimate token of the sen-
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Recall Precision F-score

Cues
cross 74.52 81.63 77.91
test 74.50 81.85 78.00

Task2
cross 40.98 44.17 42.52
test 42.40 45.96 44.11

Table 7: Performance on cue identification and
cue/scope identification in Task2.

tence happens to be a genuine number, as in Fig-
ure 1. In our experiments however, this heuristic
always increased performance. Second, if a scope
contains an opening parenthesis but not its clos-
ing one, then the scope is limited to the token im-
mediately before the opening one. Note that the
training data annotation allows for partial paren-
thetical statements to be included in scopes, as a
result of terminating scopes at bibliographic ref-
erences which are not the only tokens in a paren-
theses. For example, in S7.259: “expressed (ED,
unpublished)” the scope is terminated after “ED”.
These post-processing steps improved the perfor-
mance substantially to 42.52% F-score (Table 6).

The requirement for contiguous scope spans
which include their cue(s) is not treated appropri-
ately by our system, since we predict each token of
the scope independently. Combined with the fact
that the guidelines frequently define scopes to ex-
tend either to the left or to the right of the cue, an
approach based on sequential tagging and/or pre-
dicting boundaries could perform better. However,
as mentioned in the guidelines, the contiguity re-
quirement sometimes forced the inclusion of to-
kens that should have been excluded given the pur-
pose of the task.

Our final performance on the test data is 44.11%
in F-score (Table 7). This is higher than the one re-
ported in the official results (38.37%) because we
subsequently increased the coverage of the C&C
parser (parse failures resulted in 63 cues not re-
ceiving a scope), the addition of the back-off strat-
egy for unseen dependency paths and the clarifica-
tion on the inclusion of bibliographic references in
the scopes which resulted in improving the paren-
theses post-processing steps.

8 Related work

The shared task uses only full articles for testing
while both abstracts and full articles are used for
training. We argue that this represents a realistic
scenario for system developers since annotated re-

sources consist mainly of abstracts, while most in-
formation extraction systems are applied to full ar-
ticles. Also, the shared task aimed at detecting the
scope of speculation, while most previous work
(Light et al., 2004; Medlock and Briscoe, 2007;
Kilicoglu and Bergler, 2008) considered only clas-
sification of sentences, possibly due to the lack of
appropriately annotated resources.

The increasing interest in detecting speculative
language in scientific text resulted in a number of
guidelines. Compared to the most recent previous
definition by Medlock and Briscoe (2007), Bio-
Scope differs in the following ways:

• BioScope does not annotate anaphoric hedge
references.

• BioScope annotates indications of experimen-
tally observed non-universal behaviour.

• BioScope annotates statements of explicitly
proposed alternatives.

The first difference is due to the requirement that
the scope of the speculation be annotated, which
is not possible when it is present in a different sen-
tence. The other two differences follow from the
stated purpose which is the detection of sentences
containing uncertain information.

In related work, Hyland (1996) associates the
use of speculative language in scholarly publica-
tions with the purpose for which they are em-
ployed by the authors. In particular, he dis-
tinguishes content-oriented hedges from reader-
oriented ones. The former are used to calibrate
the strength of the claims made, while the latter
are employed in order to soften anticipated crit-
icism on behalf of the reader. Content-oriented
hedges are further distinguished as accuracy-
oriented ones, used to express uncertain claims
more accurately, and writer-oriented ones, used
to limit the commitment of the author(s) to the
claims. While the boundaries between these dis-
tinctions are not clear-cut and instances of hedging
can serve more than one of these purposes simulta-
neously, it is worth bearing them in mind while ap-
proaching the task. With respect to the shared task,
taking into account that hedging is used to ex-
press statements more accurately can help resolve
the ambiguity when annotating certain statements
about uncertainty. Such statements, which involve
words such as “estimate”, “possible”, “predict”,
occur frequently in full articles.

Wilson (2008) analyzes speculation detection
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inside a general framework for sentiment analysis
centered around the notion of private states (emo-
tions, thoughts, intentions, etc.) that are not open
to objective observation or verification. Specu-
lation is annotated with a spec-span/spec-target
scheme by answering the questions what the spec-
ulation is and what the speculation is about. With
respect to the BioScope guidelines, spec-span is
similar to what scope attempts to capture. spec-
span and spec-target do not need to be present
at the same time, which could help annotating
anaphoric cues.

9 Conclusions

This paper describes our approach to the CoNLL-
2010 shared task on speculative language detec-
tion using logistic regression and syntactic depen-
dencies. We achieved competitive performance on
sentence level uncertainty classification (Task1),
but not on scope identification (Task2). Motivated
by our error analysis we suggest refinements to the
task definition that could improve annotation.

Our approach to detecting speculation cues suc-
cessfully employed syntax as a proxy for the se-
mantic content of words. In addition, we demon-
strated that performance gains can be obtained by
choosing an appropriate prior for feature weights
in logistic regression. Finally, our performance in
scope detection was improved substantially by the
simplification scheme used to reduce the sparsity
of the dependency paths. It was devised using hu-
man judgment, but as information extraction sys-
tems become increasingly reliant on syntax and
each task is likely to need a different scheme, fu-
ture work should investigate how this could be
achieved using machine learning.
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Abstract 

In this paper, we describe the experimental 
settings we adopted in the context of the 2010 
CoNLL shared task for detecting sentences 
containing uncertainty. The classification results 
reported on are obtained using discriminative 
learning with features essentially incorporating 
lexical information. Hyper-parameters are tuned 
for each domain: using BioScope training data 
for the biomedical domain and Wikipedia 
training data for the Wikipedia test set. By 
allowing an efficient handling of combinations of 
large-scale input features, the discriminative 
approach we adopted showed highly competitive 
empirical results for hedge detection on the 
Wikipedia dataset: our system is ranked as the 
first with an F-score of 60.17%. 

1 Introduction and related work  

One of the first attempts in exploiting a Support 
Vector Machine (SVM) classifier to select 
speculative sentences is described in Light et al. 
(2004). They adopted a bag-of-words 
representation of text sentences occurring in 
MEDLINE abstracts and reported on preliminary 
results obtained. As a baseline they used an 
algorithm based on finding speculative sentences 
by simply checking whether any cue (from a 
given list of 14 cues) occurs in the sentence to be 
classified. 

Medlock and Briscoe (2007) also used single 
words as input features in order to classify 
sentences from scientific articles in biomedical 
domain as speculative or non-speculative. In a 
first step they employed a weakly supervised 
Bayesian learning model in order to derive the 
probability of each word to represent a hedge 
cue. In the next step, they perform feature 
selection based on these probabilities. In the last 
step a classifier trained on a given number of 

selected features was applied. Medlock and 
Briscoe (2007) use a similar baseline as the one 
adopted by Light et al. (2004), i.e. a naïve 
algorithm based on substring matching, but with 
a different list of terms to match against. Their 
baseline has a recall/precision break-even point 
of 0.60, while their system improves the 
accuracy to a recall/precision break-even point of 
0.76. However Medlock and Briscoe (2007) note 
that their model is unsuccessful in identifying 
assertive statements of knowledge paucity which 
are generally marked rather syntactically than 
lexically. 

Kilicoglu and Bergler (2008) proposed a semi-
automatic approach incorporating syntactic and 
some semantic information in order to enrich or 
refine a list of lexical hedging cues that are used 
as input features for automatic detection of 
uncertain sentences in the biomedical domain. 
They also used lexical cues and syntactic 
patterns that strongly suggest non-speculative 
contexts (“unhedges”). Then they manually 
expanded and refined the set of lexical hedging 
and “unhedging” cues using conceptual semantic 
and lexical relations extracted from WordNet 
(Fellbaum, 1998) and the UMLS SPECIALIST 
Lexicon (McCray et al. 1994). Kilicoglu and 
Bergler (2008) did experiments on the same 
dataset as Medlock and Briscoe (2007) and their 
experimental results proved that the 
classification accuracy can be improved by 
approximately 9% (from an F-score of 76% to an 
F-score of 85%) if syntactic and semantic 
information are incorporated. 

The experiments run by Medlock (2008) on 
the same dataset as Medlock and Briscoe (2007) 
show that adding features based on part-of-
speech tags to a bag-of-words input 
representation can slightly improve the accuracy, 
but the “improvements are marginal and not 
statistically significant”. Their experimental 
results also show that stemming can slightly 
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Dataset 

#sente
nces 

%uncertain 
sentences 

#distinct 
cues 

#ambiguous 
cues 

 
P 

 
R 

 
F 

Wikipedia training 11111 22% 1912 0.32 0.96 0.48 
Wikipedia test 9634 23% - 

188 
0.45 0.86 0.59 

BioScope training  14541 18% 168 0.46 0.99 0.63 
BioScope test  5003 16% - 

96 
0.42 0.98 0.59 

 
Table 1: The percentage of “uncertain” sentences (% uncertain sentences) given the total number of 
available sentences (#sentences) together with the number of distinct cues in the training corpus and 

the performance of the baseline algorithm based on the list of cues extracted from the training corpus. 
 
improve the classification accuracy, while using 
bigrams brings a statistically significant 
improvement over a simple bag-of-words 
representation. However, Medlock (2008) 
illustrates that “whether a particular term acts as 
a hedge cue is quite often a rather subtle function 
of its sense usage, in which case the distinctions 
may well not be captured by part-of-speech 
tagging”. 

Móra et al. (2009) also used a machine 
learning framework based on lexical input 
features and part-of-speech tags. Other recent 
work on hedge detection (Ganter and Strube, 
2009; Marco and Mercer, 2004; Mercer et al., 
2004; Morante and Daelemans, 2009a; Szarvas, 
2008) relied primarily on word frequencies as 
primary features including various shallow 
syntactic or semantic information. 

The corpora made available in the CoNLL 
shared task (Farkas et al., 2010; Vincze et al., 
2008) contains multi-word expressions that have 
been annotated by linguists as cue words tending 
to express hedging. In this paper, we test whether 
it might suffice to rely on this list of cues alone 
for automatic hedge detection. The classification 
results reported on are obtained using support 
vector machines trained with features essentially 
incorporating lexical information, i.e. features 
extracted from the list of hedge cues provided 
with the training corpus. 

In the following, we will first describe some 
preliminary considerations regarding the results 
that can be achieved using a naïve baseline 
algorithm (Section 2). Section 3 summarizes the 
experimental settings and the input features 
adopted, as well as the experimental results we 
obtained on the CoNLL test data. We also report 
on the intermediate results we obtained when 
only the CoNLL training dataset was available. 
In Section 4, we conclude with a brief 
description of the theoretical and practical 
advantages of our system. Future research 
directions are mentioned in Section 5. 

2 Preliminary Considerations  

2.1 Benchmarking 

As a baseline for our experiments, we consider a 
naive algorithm that classifies as “uncertain” any 
sentence that contains a hedge cue, i.e. any of the 
multi-word expressions labeled as hedge cues in 
the training corpus. 

Table 1 shows the results obtained when using 
the baseline naïve algorithm on the CoNLL 
datasets provided for training and test purposes1. 
The performance of the baseline algorithm is 
denoted by Precision (P), Recall (R) and F-score 
(F) measures. The first three columns of the table 
show the total number of available sentences 
together with the percentage of “uncertain” 
sentences occurring in the dataset. The fourth 
column of the table shows the total number of 
distinct hedge cues extracted from the training 
corpus. Those hedge cues occurring in “certain” 
sentences are denoted as “ambiguous cues”. The 
fifth column of the table shows the number of 
distinct ambiguous cues. 

As we observe from Table 1, the baseline 
algorithm has very high values for the recall 
score on the BioScope corpus (both training and 
test data). The small percentage of false 
negatives on the BioScope test data reflects the 
fact that only a small percentage of “uncertain” 
sentences in the reference test dataset do not 
contain a hedge cue that occurs in the training 
dataset. 

The precision of the baseline algorithm has 
values under 0.5 on all four datasets (i.e. on both 
BioScope and Wikipedia data). This illustrates 
that ambiguous hedge cues are frequently used in 
“certain” sentences. That is, the baseline 
algorithm has less true positives than false 
                                                 
1 In Section 3.2, we provide the performance of the baseline 
algorithm obtained when only the CoNLL training dataset 
was available. When we tuned our system, we obviously 
had available only the results provided in Table 2 (Section 
3.2). 
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positives, i.e. more than 50% of the sentences 
containing a hedge cue are labeled as “certain” in 
the reference datasets. 

2.2 Beyond bag-of-words 

In order to verify whether simply the frequencies 
of all words (except stop-words) occurring in a 
sentence might suffice to discriminate between 
“certain” and “uncertain” sentences, we 
performed preliminary experiments with a SVM 
bag-of-words model. The accuracy of this system 
is lower than the baseline accuracy on both 
datasets (BioScope and Wikipedia). For instance, 
the classifier based on a bag-of-words 
representation obtains an F-score of 
approximately 42% on Wikipedia data, while the 
baseline has an F-score of 49% on the same 
dataset. Another disadvantage of using a bag-of-
words input representation is obviously the large 
dimension of the system’s input matrix. For 
instance, the input matrix representation of the 
Wikipedia training dataset would have 
approximately 11111 rows and over 150000 
columns which would require over 6GB of RAM 
for a non-sparse matrix representation. 

3 System Description 

3.1 Experimental Settings  

In our work for the CoNLL shared task, we used 
Support Vector Machine classification (Fan et 
al., 2005; Vapnik, 1998) based on the Gaussian 
Radial Basis kernel function (RBF). We tuned 
the width of the RBF kernel (denoted by gamma) 
and the regularization parameter (denoted by C) 
via grid search over the following range of 
values: {2-8, 2-7, 2-6, …24} for gamma and {1, 
10..200 step 10, 200..500 step 100} for C. 
During parameter tuning, we performed 10-fold 
cross validation for each possible value of these 
parameters. Since the training data are 
unbalanced (e.g. 18% of the total number of 
sentences in the BioScope training data are 
labeled as “uncertain”), for SVM training we 
used the following class weights: 

• 0.1801 for the “certain” class and 0.8198 
for the “uncertain” class on the BioScope 
dataset;  

• 0.2235 for the “certain” class and 0.7764 
for the “uncertain” class on the 
Wikipedia dataset. 

The system was trained on the training set 
provided by the CoNLL shared task organizers 
and tested on the test set provided. As input 
features in our max-margin framework, we 

simply used the frequency of each hedge cue 
provided with the training corpus in each 
sentence. We also used as input features during 
the tuning phase of our system 2-grams and 3-
grams extracted from the list of hedge cues 
provided with the training corpus. 

3.2 Classification results 

 
 
Figure 1: Contour plot of the classification error 

landscape resulting from a grid search over a 
range of values of {2-8, 2-7, 2-6, 2-5, 2-4} for the 

gamma parameter and a range of values of {10, 
20, …, 110} for the C parameter on Wikipedia 

data. 
 

 
 

Figure 2: Contour plot of the classification error 
landscape resulting from a grid search over a 
range of values of {2-8, 2-7, 2-6, …2-2} for the 

gamma parameter and a range of values of {1, 
10, 20, 30, …110} for the C parameter on 

BioScope data. 
 

Figure 1 shows the variability of hedge 
detection results on Wikipedia training data 
when changing the RBF-specific kernel 
parameter and the regularization parameter C. 
The contour plot shows that there are three 
regions (represented in the figure by the darkest 
landscape color) for parameter values where the 
cross validation error is lower than 18.2%. One 
of these optimal settings for parameter values 
was used for the results submitted to the CoNLL 
shared task and we obtained an F-score of 
60.17%. When the CoNLL test data containing  
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Table 2: The performance of our system corresponding to the best parameter values. The performance 
is denoted in terms of true positives (TP), false positives (FP), false negatives (FN), precision (P), 

recall (R) and F-score (F)
.

the reference labels were made available, we also 
did tests with our system 
using the other two optimal settings for 
parameter values. 

The optimal classification results on the 
Wikipedia dataset were obtained for a gamma 
value equal to 0.0625 and for a C value equal to 
10, corresponding to a cross validation 
classification error of 17.94%. The model 
performances corresponding to these best 
parameter values are provided in Table 2. The P, 
R, F-score values provided in Table 2 are 
directly comparable to P, R, F-score values given 
in Table 1 since exactly the same datasets were 
used during the evaluation. 

The SVM approach we adopted shows highly 
competitive empirical results for weasel 
detection on the Wikipedia test dataset in the 
sense that our system was ranked as the first in 
the CoNLL shared task. However, the baseline 
algorithm described in Section 2 proves to be 
rather difficult to beat given its F-score 
performance of 59% on the Wikipedia test data. 
This provides motivation to consider other 
refinements of our system. In particular, we 
believe that it might be possible to improve the 
recall of our system by enriching the list of input 
features using a lexical ontology in order to 
extract synonyms for verbs, adjectives and 
adverbs occurring in the current hedge cue list. 

Figure 2 exemplifies the SVM classification 
results obtained during parameter tuning on 
BioScope training data. The optimal 
classification results on the BioScope dataset 
were obtained for gamma equal to 0.0625 and C 
equal to 110, corresponding to a cross validation 
classification error of 3.73%. The model 
performance corresponding to the best parameter 
settings is provided in Table 2. Our system 
obtained an F-score of 0.78 on the BioScope test 
dataset while the best ranked system in the 
CoNLL shared task obtained an F-score of 0.86. 
In order to identify the weaknesses of our system 
in this domain, in Subsection 3.2 we will furnish 
the intermediate results we obtained on the 
CoNLL training set. 

The system is platform independent. We ran 
the experiments under Windows on a Pentium 4, 
3.2GHz with 3GB RAM. The run times 
necessary for training/testing on the whole 
training/test dataset are provided in Table 2.  

Table 3 shows the approximate intervals of 
time required for running SVM parameter tuning 
via grid search on the entire CoNLL training 
datasets. 

 
Dataset Range of values Run 

time  
Wikipedia 
training data 

{2 -8,2-7, …2-1} for 
gamma;  
{10, 20, …110} for 
C 

13 hours  

BioScope 
training data 

{2 -8,2-7, …2-2} for 
gamma;  
{10, 20, …110} for 
C 

4 hours 

 
Table 3 : Approximate run times for parameter 

tuning via 10-fold cross validation 
 

3.3 Intermediate results 

In the following we discuss the results obtained 
when the system was trained on approximately 
80% of the CoNLL training corpus and the 
remaining 20% was used for testing. The 80% of 
the training corpus was also used to extract the 
list of hedge cues that were considered as input 
features for the SVM machine learning system. 

The BioScope training corpus provided in 
CoNLL shared task framework contains 11871 
sentences from scientific abstracts and 2670 
sentences from scientific full articles. 

In a first experiment, we only used sentences 
from scientific abstracts for training and testing: 
we randomly selected 9871 sentences for training 
and the remaining 2000 sentences were used for 
testing. The results thus obtained are shown in 
Table 4 on the second line of the table. 

Dataset TP FP FN P R F Run Time 
Wikipedia training 1899 1586 585 0.5449 0.7644 0.6362 49.1 seconds 

Wikipedia test 1213 471 1021 0.7203 0.5429 0.6191 21.5 seconds 
BioScope training 2508 515 112 0.8296 0.9572 0.8888 19.5 seconds 

BioScope test 719 322 71 0.6907 0.9101 0.7854 2.6 seconds 
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Table 4: Performances when considering separately the dataset containing abstracts only and the 

dataset containing articles from BioScope corpus. The SVM classifier was trained with gamma = 1 
and c=10. Approximately 80% of the CoNLL train corpus was used for training and 20% of the train 

corpus was held out for testing. 
 

Second, we used only the available 2670 
sentences from scientific full articles. We 
randomly split this small dataset into a training 
set of 2170 sentences and test set of 500 
sentences. 

Third, we used the entire set of 14541 
sentences (composing scientific abstracts and full 
articles) for training and testing: we randomly 
selected 11541 sentences for training and the 
remaining 3000 sentences were used for testing. 
The results obtained in this experiment are 
shown in Table 4 on the fourth line. 

We observe from Table 3 a difference of 10% 
between the F-score obtained on the dataset 
containing abstracts and the F-score obtained on 
the dataset containing full articles. This 
difference in accuracy might simply be due to the 
fact that the available abstracts training dataset is 
approximately 5 times larger than the full articles 
training dataset. In order to check whether this 
difference in accuracy is only attributable to the 
small size of the full articles dataset, we further 
analyze the learning curve of SVM on the 
abstracts dataset. 

To measure the learning curve, we randomly 
selected from the abstracts dataset 2000 
sentences for testing. We divided the remaining 
sentences into 10 parts, we used two parts for 
training, then we increased the size of the 
training dataset by one part incrementally. We 
show the results obtained in Figure 3. The x-axis 
shows the number of sentences used for training 
divided by 1000. We observe that the F-score on 
the test dataset changed only slightly when more 
than 4/10 of the training data (i.e. more than 
4800 sentences) were used for training. We also 
observe that using 2 folds for training (i.e. 
approximately 2000 sentences) gives an F-score 
of around 87% on the held-out test data. 
Therefore, using a similar amount of training 
data for BioScope abstracts as used for BioScope 
full articles, we still have a difference of 8% 

between the F-score values obtained. That is, our 
system is more efficient on abstracts than on full 
articles. 
 

 
 

Figure 3: The performance of our system when 
we used for training various percentages of the 

BioScope training dataset composed of abstracts 
only. 

4 Conclusions 

Our empirical results show that our approach 
captures informative patterns for hedge detection 
through the intermedium of a simple low-level 
feature set. 

Our approach has several attractive theoretical 
and practical properties. Given that the system 
formulation is based on the max-margin 
framework underlying SVMs, we can easily 
incorporate other kernels that induce a feature 
space that might better separate the data. 
Furthermore, SVM parameter tuning and the 
process of building the feature vector matrix, 
which are the most time and resource consuming, 
can be easily integrated in a distributed 
environment considering either cluster-based 
computing or a GRID technology (Wegener et 
al., 2007).  

From a practical point of view, the key aspects 
of our proposed system are its simplicity and 
flexibility. Additional syntactic and semantic 

SVM Baseline Dataset content #sentences 
used for 
training 

#sentences 
used for 

test 
P R F P R F 

Abstracts only 9871 2000 0.85 0.94 0.90 0.49 0.97 0.65 
Full articles only 2170 500 0.72 0.87 0.79 0.46 0.91 0.61 

Abstracts and  
full articles 

11541 3000 0.81 0.92 0.86 0.47 0.98 0.64 
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based features can easily be added to the SVM 
input. Also, the simple architecture facilitates the 
system’s integration in an information retrieval 
system. 

5 Future work 

The probabilistic discriminative model we have 
explored appeared to be well suited to tackle the 
problem of weasel detection. This provides 
motivation to consider other refinements of our 
system, by incorporating syntactic or semantic 
information. In particular, we believe that the 
recall score of our system can be improved by 
identifying a list of new potential hedge cues 
using a lexical ontology. 
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Abstract

In this paper, we proposed a hedge de-
tection method with average perceptron,
which was used in the closed challenge
in CoNLL-2010 Shared Task. There are
two subtasks: (1) detecting uncertain sen-
tences and (2) identifying the in-sentence
scopes of hedge cues. We use the unified
learning algorithm for both subtasks since
that the hedge score of sentence can be de-
composed into scores of the words, espe-
cially the hedge words. On the biomedical
corpus, our methods achieved F-measure
with 77.86% in detecting in-domain un-
certain sentences, 77.44% in recognizing
hedge cues, and 19.27% in identifying the
scopes.

1 Introduction

Detecting hedged information in biomedical lit-
eratures has received considerable interest in the
biomedical natural language processing (NLP)
community recently. Hedge information indicates
that authors do not or cannot back up their opin-
ions or statements with facts (Szarvas et al., 2008),
which exists in many natural language texts, such
as webpages or blogs, as well as biomedical liter-
atures.

For many NLP applications, such as question
answering and information extraction, the infor-
mation extracted from hedge sentences would be
harmful to their final performances. Therefore,
the hedge or speculative information should be
detected in advance, and dealt with different ap-
proaches or discarded directly.

In CoNLL-2010 Shared Task (Farkas et al.,
2010), there are two different level subtasks: de-
tecting sentences containing uncertainty and iden-
tifying the in-sentence scopes of hedge cues.

For example, in the following sentence:

These results suggest that the IRE motif
in the ALAS mRNA is functional and
imply that translation of the mRNA is
controlled by cellular iron availability
during erythropoiesis.

The words suggest and imply indicate that the
statements are not supported with facts.

In the first subtask, the sentence is considered
as uncertainty.

In the second subtask, suggest and imply are
identified as hedge cues, while the consecutive
blocks suggest that the IRE motif in the ALAS
mRNA is functional and imply that translation of
the mRNA is controlled by cellular iron availabil-
ity during erythropoiesis are recognized as their
corresponding scopes.

In this paper, we proposed a hedge detec-
tion method with average perceptron (Collins,
2002), which was used in the closed challenges in
CoNLL-2010 Shared Task (Farkas et al., 2010).
Our motivation is to use a unified model to de-
tect two level hedge information (word-level and
sentence-level) and the model is easily expanded
to joint learning of two subtasks. Since that the
hedge score of sentence can be decomposed into
scores of the words, especially the hedge words,
we chosen linear classifier in our method and used
average perceptron as the training algorithm.

The rest of the paper is organized as follows. In
Section 2, a brief review of related works is pre-
sented. Then, we describe our method in Section
3. Experiments and results are presented in the
section 4. Finally, the conclusion will be presented
in Section 5.

2 Related works

Although the concept of hedge information has
been introduced in linguistic community for a
long time, researches on automatic hedge detec-
tion emerged from machine learning or compu-
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tational linguistic perspective in recent years. In
this section, we give a brief review on the related
works.

For speculative sentences detection, Medlock
and Briscoe (2007) report their approach based
on weakly supervised learning. In their method,
a statistical model is initially derived from a seed
corpus, and then iteratively modified by augment-
ing the training dataset with unlabeled samples
according the posterior probability. They only
employ bag-of-words features. On the public
biomedical dataset1, their experiments achieve the
performance of 0.76 in BEP (break even point).
Although they also introduced more linguistic fea-
tures, such as part-of-speech (POS), lemma and
bigram (Medlock, 2008), there are no significant
improvements.

In Ganter and Strube (2009), the same task on
Wikipedia is presented. In their system, score of a
sentence is defined as a normalized tangent value
of the sum of scores over all words in the sentence.
Shallow linguistic features are introduced in their
experiments.

Morante and Daelemans (2009) present their re-
search on identifying hedge cues and their scopes.
Their system consists of several classifiers and
works in two phases, first identifying the hedge
cues in a sentence and secondly finding the full
scope for each hedge cue. In the first phase, they
use IGTREE algorithm to train a classifier with
3 categories. In the second phase, three different
classifiers are trained to find the first token and last
token of in-sentence scope and finally combined
into a meta classifier. The experiments shown
that their system achieves an F1 of nearly 0.85
of identifying hedge cues in the abstracts sub cor-
pus, while nearly 0.79 of finding the scopes with
predicted hedge cues. More experiments could
be found in their paper (Morante and Daelemans,
2009). They also provide a detail statistics on
hedge cues in BioScope corpus2.

3 Hedge detection with average
perceptron

3.1 Detecting uncertain sentences

The first subtask is to identify sentences con-
taining uncertainty information. In particular,

1http://www.benmedlock.co.uk/
hedgeclassif.html

2http://www.inf.u-szeged.hu/rgai/
bioscope

this subtask is a binary classification problem at
sentence-level.

We define the score of sentence as the confi-
dence that the sentence contains uncertainty infor-
mation.

The score can be decomposed as the sum of the
scores of all words in the sentence,

S(x, y) =
∑

xi∈x

s(xi, y) =
∑

xi∈x

wT φ(xi, y)

where, x denotes a sentence and xi is the i-
th word in the sentence x, φ(xi, y) is a sparse
high-dimensional binary feature vector of word xi.
y ∈ {uncertain, certain} is the category of the
sentence. For instance, in the example sentence,
if current word is suggest while the category of
this sentence is uncertain, the following feature is
hired,

φn(xi, y) =

{
1, if xi=‘‘suggest’’

y=‘‘uncertain’’ ,

0, otherwise

where n is feature index.
This representation is commonly used in struc-

tured learning algorithms. We can combine the
features into a sparse feature vector Φ(x, y) =∑

i φ(xi, y).

S(x, y) = wT Φ(x, y) =
∑

xi∈x

wT φ(xi, y)

In the predicting phase, we assign x to the cate-
gory with the highest score,

y∗ = arg max
y

wT Φ(x, y)

We learn the parameters w with online learning
framework. The most common online learner is
the perceptron (Duda et al., 2001). It adjusts pa-
rameters w when a misclassification occurs. Al-
though this framework is very simple, it has been
shown that the algorithm converges in a finite
number of iterations if the data is linearly separa-
ble. Moreover, much less training time is required
in practice than the batch learning methods, such
as support vector machine (SVM) or conditional
maximum entropy (CME).

Here we employ a variant perceptron algorithm
to train the model, which is commonly named
average perceptron since it averages parameters
w across iterations. This algorithm is first pro-
posed in Collins (2002). Many experiments of
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NLP problems demonstrate better generalization
performance than non averaged parameters. More
theoretical proofs can be found in Collins (2002).
Different from the standard average perceptron al-
gorithm, we slightly modify the average strategy.
The reason to this modification is that the origi-
nal algorithm is slow since parameters accumulate
across all iterations. In order to keep fast training
speed and avoid overfitting at the same time, we
make a slight change of the parameters accumu-
lation strategy, which occurs only after each iter-
ation over the training data finished. Our training
algorithm is shown in Algorithm 1.

input : training data set:
(xn, yn), n = 1, · · · , N ,
parameters: average number: K,
maximum iteration number: T .

output: average weight: cw

Initialize: cw← 0,;
for k = 0 · · ·K − 1 do

w0 ← 0 ;
for t = 0 · · ·T − 1 do

receive an example (xt, yt);
predict: ŷt = arg maxy wT

t Φ(xt, y) ;
if ŷt 6= yt then

wt+1 = wt+Φ(xt, yt)−Φ(xt, ŷt)
end

end
cw = cw + wT ;

end
cw = cw/K ;

Algorithm 1: Average Perceptron algorithm

Binary context features are extracted from 6
predefined patterns, which are shown in Figure 1.
By using these patterns, we can easily obtain the
complicate features. As in the previous example,
if the current word is suggest, then a new com-
pound feature could be extracted in the form of
w−1 =results//w0 =suggest by employing the pat-
tern w−1w0. // is the separate symbol.

3.2 Identifying hedge cues and their scopes
Our approach for the second subtask consists of
two phases: (1) identifying hedge cues in a sen-
tence, then (2) recognizing their corresponding
scopes.

3.2.1 Identifying hedge cues
Hedge cues are the most important clues for de-
termining whether a sentence contains uncertain

• unigram: w0,p0

• bigram: w0w1, w0p0, p0p1

• trigram: w−1w0w1

Figure 1: Patterns employed in the sentence-level
hedge detection. Here w denotes single word, p is
part of speech, and the subscript denotes the rela-
tive offset compared with current position.

• unigram: w−2, w−1, w0, w1, w2, p0

• bigram: w−1w0, w0w1, w0p0, p−1p0, p0p1

• trigram: w−1w0w1

Figure 2: Patterns employed in the word-level
hedge detection.

information. Therefore in this phase, we treat the
problem of identifying hedge cues as a classifica-
tion problem. Each word in a sentence would be
predicted a category indicating whether this word
is a hedge cue word or not. In the previous ex-
ample, there are two different hedge cues in the
sentence (show in bold manner). Words suggest
and imply are assigned with the category CUE de-
noting hedge cue word, while other words are as-
signed with label O denoting non hedge cue word.

In our system, this module is much similar to
the module of detecting uncertain sentences. The
only difference is that this phase is word level. So
that each training sample in this phase is a word,
while in detecting speculative sentences training
sample is a sentence. The training algorithm is the
same as the algorithm shown in Algorithm 1. 12
predefined patterns of context features are shown
in Figure 2.

3.2.2 Recognizing in-sentence scopes
After identifying the hedge cues in the first phase,
we need to recognize their corresponding in-
sentence scopes, which means the boundary of
scope should be found within the same sentence.

We consider this problem as a word-cue pair
classification problem, where word is any word
in a sentence and cue is the identified hedge cue
word. Similar to the previous phase, a word-level
linear classifier is trained to predict whether each
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word-cue pair in a sentence is in the scope of the
hedge cue.

Besides base context features used in the pre-
vious phase, we introduce additional syntactic de-
pendency features. These features are generated
by a first-order projective dependency parser (Mc-
Donald et al., 2005), and listed in Figure 3.

The scopes of hedge cues are always covering
a consecutive block of words including the hedge
cue itself. The ideal method should recognize only
one consecutive block for each hedge cue. How-
ever, our classifier cannot work so well. Therefore,
we apply a simple strategy to process the output
of the classifier. The simple strategy is to find a
maximum consecutive sequence which covers the
hedge cue. If a sentence is considered to contain
several hedge cues, we simply combine the con-
secutive sequences, which have at least one com-
mon word, to a large block and assign it to the
relative hedge cues.

4 Experiments

In this section, we report our experiments on
datasets of CoNLL-2010 shared tasks, including
the official results and our experimental results
when developing the system.

Our system architecture is shown in Figure 4,
which consists of the following modules.

1. corpus preprocess module, which employs a
tokenizer to normalize the corpus;

2. sentence detection module, which uses a bi-
nary sentence-level classifier to determine
whether a sentence contains uncertainty in-
formation;

3. hedge cues detection module, which identi-
fies which words in a sentence are the hedge
cues, we train a binary word-level classifier;

4. cue scope recognition module, which recog-
nizes the corresponding scope for each hedge
cue by another word-level classifier.

Our experimental results are obtained on the
training datasets by 10-fold cross validation. The
maximum iteration number for training the aver-
age perceptron is set to 20. Our system is imple-
mented with Java3.

3http://code.google.com/p/fudannlp/

biomedical Wikipedia
#sentences 14541 11111
#words 382274 247328
#hedge sentences 2620 2484
%hedge sentences 0.18 0.22
#hedge cues 3378 3133
average number 1.29 1.26
average cue length 1.14 2.45
av. scope length 15.42 -

Table 1: Statistical information on annotated cor-
pus.

4.1 Datasets

In CoNLL-2010 Shared Task, two different
datasets are provided to develop the system: (1)
biological abstracts and full articles from the Bio-
Scope corpus, (2) paragraphs from Wikipedia. Be-
sides manually annotated datasets, three corre-
sponding unlabeled datasets are also allowed for
the closed challenges. But we have not employed
any unlabeled datasets in our system.

A preliminary statistics can be found in Ta-
ble 1. We make no distinction between sen-
tences from abstracts or full articles in biomedi-
cal dataset. From Table 1, most sentences are cer-
tainty while about 18% sentences in biomedical
dataset and 22% in Wikipedia dataset are spec-
ulative. On the average, there exists nearly 1.29
hedge cues per sentence in biomedical dataset and
1.26 in Wikipedia. The average length of hedge
cues varies in these two corpus. In biomedical
dataset, hedge cues are nearly one word, but more
than two words in Wikipedia. On average, the
scope of hedge cue covers 15.42 words.

4.2 Corpus preprocess

The sentence are processed with a maximum-
entropy part-of-speech tagger4 (Toutanova et al.,
2003), in which a rule-based tokenzier is used to
separate punctuations or other symbols from reg-
ular words. Moreover, we train a first-order pro-
jective dependency parser with MSTParser5 (Mc-
Donald et al., 2005) on the standard WSJ training
corpus, which is converted from constituent trees
to dependency trees by several heuristic rules6.

4http://nlp.stanford.edu/software/
tagger.shtml

5http://www.seas.upenn.edu/˜strctlrn/
MSTParser/MSTParser.html

6http://w3.msi.vxu.se/˜nivre/research/
Penn2Malt.html
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• word-cue pair: current word and the hedge cue word pair,

• word-cue POS pair: POS pair of current word and the hedge cue word,

• path of POS: path of POS from current word to the hedge cue word along dependency
tree,

• path of dependency: relation path of dependency from current word to the hedge cue
word along dependency tree,

• POS of hedge cue word+direction: POS of hedge cue word with the direction to the
current word. Here direction can be “LEFT” if the hedge cue is on the left to the current
word, or “RIGHT” on the right,

• tree depth: depth of current in the corresponding dependency tree,

• surface distance: surface distance between current word and the hedge cue word. The
value of this feature is always 10 in the case of surface distance greater than 10,

• surface distance+tree depth: combination of surface distance and tree depth

• number of punctuations: number of punctuations between current word and the hedge
cue word,

• number of punctuations + tree depth: combination of number of punctuations and tree
depth

Figure 3: Additional features used in recognizing in-sentence scope

4.3 Uncertain sentences detection

In the first subtask, we carry out the experiments
within domain and cross domains. As previously
mentioned, we do not use the unlabeled datasets
and make no distinction between abstracts and full
articles in biomedical dataset. This means we
train the models only with the official annotated
datasets. The model for cross-domain is trained
on the combination of annotated biomedical and
Wikipedia datasets.

In this subtask, evaluation is carried out on the
sentence level and F-measure of uncertainty sen-
tences is employed as the chief metric.

Table 2 shows the results within domain. Af-
ter 10-fold cross validation over training dataset,
we achieve 84.39% of F1-measure on biomedical
while 56.06% on Wikipedia.

We analyzed the low performance of our sub-
mission result on Wikipedia. The possible rea-
son is our careless work when dealing with the
trained model file. Therefore we retrain a model
for Wikipedia and the performance is listed on the
bottom line (Wikipedia∗) in Table 2.

Dataset Precision Recall F1
10-fold cross validation

biomedical 91.03 78.66 84.39
Wikipedia 66.54 48.43 56.06

official evaluation
biomedical 79.45 76.33 77.86
Wikipedia 94.23 6.58 1.23
Wikipedia∗ 82.19 32.86 46.95

Table 2: Results for in-domain uncertain sentences
detection

Table 3 shows the results across domains. We
split each annotated dataset into 10 folds. Then
training dataset is combined by individually draw-
ing 9 folds out from the split datasets and the
rests are used as the test data. On biomedical
dataset, F1-measure gets to 79.24% while 56.16%
on Wikipedia dataset. Compared with the results
within domain, over 5% performance decreases
from 84.39% to 79.24% on biomedical, but a
slightly increase on Wikipedia.
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Figure 4: System architecture of our system

Dataset Precision Recall F1
10-fold cross validation

biomedical 87.86 72.16 79.24
Wikipedia 67.78 47.95 56.16

official evaluation
biomedical 62.81 79.11 70.03
Wikipedia 62.66 55.28 58.74

Table 3: Results for across-domain uncertain sen-
tences detection

4.3.1 Results analysis
We investigate the weights of internal features and
found that the words, which have no uncertainty
information, also play the significant roles to pre-
dict the uncertainty of the sentence.

Intuitively, the words without uncertainty infor-
mation should just have negligible effect and the
corresponding features should have low weights.
However, this ideal case is difficult to reached by
learning algorithm due to the sparsity of data.

In Table 4, we list the top 10 words involved
in features with the largest weights for each cate-
gory. These words are ranked by the accumulative
scores of their related features.

In Table 5, we list the top 10 POS involved in
features with the largest weight for each category.

4.4 Hedge cue identification

Hedge cues identification is one module for the
second subtask, we also analyze the performance
on this module.

Since we treat this problem as a binary classi-
fication problem, we evaluate F-measure of hedge
cue words. The results are listed in Table 6.

We have to point out that our evaluation is

Dataset Precision Recall F1
10-fold cross validation(word-level)

biomedical 90.15 84.43 87.19
Wikipedia 57.74 39.81 47.13

official evaluation(phrase-level)
biomedical 78.7 76.22 77.44

Table 6: Results for in-domain hedge cue identifi-
cation

based on word while official evaluation is based
on phrase. That means our results would seem
to be higher than the official results, especially on
Wikipedia dataset because average length of hedge
cues in Wikipedia dataset is more than 2 words.

4.4.1 Result Analysis
We classify the results into four categories: false
negative, false positive, true positive and true neg-
ative. We found that most mistakes are made be-
cause of polysemy and collocation.

In Table 7, we list top 10 words for each cate-
gory. For the false results, the words are difficult to
distinguish without its context in the correspond-
ing sentence.

4.5 Scopes recognition

For recognizing the in-sentence scopes, F-measure
is also used to evaluate the performance of the
word-cue pair classifier. The results using gold
hedge cues are shown in Table 8. From the re-
sults, F-measure achieves respectively 70.44% and
75.94% when individually using the base context
features extracted by 12 predefined patterns (see
Figure 1) and syntactic dependency features (see
Figure 3), while 79.55% when using all features.

The results imply that syntactic dependency
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biomedical Wikipedia cross domain
uncertain certain uncertain certain uncertain certain
whether show probably the other suggest show

may demonstrate some often whether used to
suggest will many patients probably was
likely can one of another indicate CFS

indicate role believed days appear demonstrate
possible found possibly CFS putative the other
putative human considered are some of all
appear known to such as any other thought ‘:’
thought report several western possibly people
potential evidence said to pop likely could not

Table 4: Top 10 significant words in detecting uncertain sentences

biomedical Wikipedia cross domain
uncertain certain uncertain certain uncertain certain

MD SYM RB VBZ JJS SYM
VBG PRP JJS CD RBS ‘:’
VB NN RBS ‘:’ RB JJR

VBZ CD FW WRB EX WDT
IN WDT VBP PRP CC CD

Table 5: Top 5 significant POS in detecting uncertain sentences

Dataset Precision Recall F1
base context features

biomedical 66.04 75.48 70.44
syntactic dependency features

biomedical 93.77 63.05 75.94
all features

biomedical 78.72 80.41 79.55

Table 8: Results for scopes recognizing with gold
hedge cues (word-level)

features contribute more benefits to recognize
scopes than surface context features.

Official results evaluated at block level are also
listed in Table 9.

dataset Precision Recall F1
biomedical 21.87 17.23 19.27

Table 9: Official results for scopes recognizing
(block level)

From Table 9 and the official result on hedge
cue identification in Table 6, we believe that our
post-processing strategy would be responsible for
the low performance on recognizing scopes. Our
strategy is to find a maximum consecutive block

covering the corresponding hedge cue. This strat-
egy cannot do well with the complex scope struc-
ture. For example, a scope is covered by another
scope. Therefore, our system would generate a
block covering all hedge cues if there exists more
than one hedge cues in a sentence.

5 Conclusion

We present our implemented system for CoNLL-
2010 Shared Task in this paper. We introduce
syntactic dependency features when recognizing
hedge scopes and employ average perceptron al-
gorithm to train the models. On the biomedi-
cal corpus, our system achieves F-measure with
77.86% in detecting uncertain sentences, 77.44%
in recognizing hedge cues, and 19.27% in identi-
fying the scopes.

Although some results are low and beyond our
expectations, we believe that our system can be at
least improved within the following fields. Firstly,
we would experiment on other kinds of features,
such as chunk or named entities in biomedical.
Secondly, the unlabeled datasets would be ex-
plored in the future.
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False Negative False Positive True Positive True Negative
support considered suggesting chemiluminescence

of potential may rhinitis
demonstrate or proposal leukemogenic

a hope might ribosomal
postulate indicates indicating bp
supports expected likely nc82

good can appear intronic/exonic
advocates should possible large
implicated either speculate allele

putative idea whether end

Table 7: Top 10 words with the largest scores for each category in hedge cue identification
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Abstract

In this paper we describe the machine
learning systems that we submitted to the
CoNLL-2010 Shared Task on Learning to
Detect Hedges and Their Scope in Nat-
ural Language Text. Task 1 on detect-
ing uncertain information was performed
by an SVM-based system to process the
Wikipedia data and by a memory-based
system to process the biological data.
Task 2 on resolving in-sentence scopes of
hedge cues, was performed by a memory-
based system that relies on information
from syntactic dependencies. This system
scored the highest F1 (57.32) of Task 2.

1 Introduction

In this paper we describe the machine learning
systems that CLiPS1 submitted to the closed track
of the CoNLL-2010 Shared Task on Learning to
Detect Hedges and Their Scope in Natural Lan-
guage Text (Farkas et al., 2010).2 The task con-
sists of two subtasks: detecting whether a sentence
contains uncertain information (Task 1), and re-
solving in-sentence scopes of hedge cues (Task 2).

To solve Task 1, systems are required to classify
sentences into two classes, “Certain” or “Uncer-
tain”, depending on whether the sentence contains
factual or uncertain information. Three annotated
training sets are provided: Wikipedia paragraphs
(WIKI), biological abstracts (BIO-ABS) and bio-
logical full articles (BIO-ART). The two test sets
consist of WIKI and BIO-ART data.

Task 2 requires identifying hedge cues and find-
ing their scope in biomedical texts. Finding the
scope of a hedge cue means determining at sen-
tence level which words in the sentence are af-
fected by the hedge cue. For a sentence like the

1Web page: http://www.clips.ua.ac.be
2Web page: http://www.inf.u-szeged.hu/rgai

/conll2010st

one in (1) extracted from the BIO-ART training
corpus, systems have to identify likely and sug-
gested as hedge cues, and they have to find that
likely scopes over the full sentence, and that sug-
gested scopes over by the role of murine MIB in
TNFα signaling. A scope will be correctly re-
solved only if both the cue and the scope are cor-
rectly identified.

(1) <xcope id=2> The conservation from Drosophila to
mammals of these two structurally distinct but
functionally similar E3 ubiquitin ligases is <cue
ref=2>likely</cue> to reflect a combination of
evolutionary advantages associated with: (i)
specialized expression pattern, as evidenced by the
cell-specific expression of the neur gene in sensory
organ precursor cells [52]; (ii) specialized function, as
<xcope id=1> <cue ref=1>suggested</cue> by the
role of murine MIB in TNFα signaling</xcope> [32];
(iii) regulation of protein stability, localization, and/or
activity</xcope>.

Systems are to be trained on BIO-ABS and
BIO-ART and tested on BIO-ART. Example (1)
shows that sentences in the BIO-ART dataset can
be quite complex because of their length, because
of their structure - very often they contain enu-
merations, and because they contain bibliographic
references and references to tables and figures.
Handling these phenomena is necessary to detect
scopes correctly in the setting of this task. Note
that the scope of suggested above does not include
the bibliographic reference [32], whereas the scope
of likely includes all the bibliographic references,
and that the scope of likely does not include the
final punctuation mark.

In the case of the BIO data, we approach Task
1 as a prerequisite for Task 2. Therefore we treat
them as two consecutive classification tasks: a first
one that consists of classifying the tokens of a sen-
tence as being at the beginning of a hedge sig-
nal, inside or outside. This allows the system to
find multiword hedge cues. We tag a sentence as
uncertain if at least a hedge cue is found in the
sentence. The second classification task consists
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of classifying the tokens of a sentence as being
the first element of the scope, the last, or nei-
ther. This happens as many times as there are
hedge cues in the sentence. The two classification
tasks are implemented using memory-based learn-
ers. Memory-based language processing (Daele-
mans and van den Bosch, 2005) is based on the
idea that NLP problems can be solved by reuse of
solved examples of the problem stored in memory.
Given a new problem, the most similar examples
are retrieved, and a solution is extrapolated from
them.

Section 2 is devoted to related work. In Sec-
tion 3 we describe how the data have been prepro-
cessed. In Section 4 and Section 5 we present the
systems that perform Task 1 and Task 2. Finally,
Section 6 puts forward some conclusions.

2 Related work

Hedging has been broadly treated from a theoret-
ical perspective. The term hedging is originally
due to Lakoff (1972). Palmer (1986) defines a
term related to hedging, epistemic modality, which
expresses the speaker’s degree of commitment to
the truth of a proposition. Hyland (1998) focuses
specifically on scientific texts. He proposes a prag-
matic classification of hedge expressions based on
an exhaustive analysis of a corpus. The catalogue
of hedging cues includes modal auxiliaries, epis-
temic lexical verbs, epistemic adjectives, adverbs,
nouns, and a variety of non–lexical cues. Light
et al. (2004) analyse the use of speculative lan-
guage in MEDLINE abstracts. Some NLP appli-
cations incorporate modality information (Fried-
man et al., 1994; Di Marco and Mercer, 2005).
As for annotated corpora, Thompson et al. (2008)
report on a list of words and phrases that express
modality in biomedical texts and put forward a cat-
egorisation scheme. Additionally, the BioScope
corpus (Vincze et al., 2008) consists of a collec-
tion of clinical free-texts, biological full papers,
and biological abstracts annotated with negation
and speculation cues and their scope.

Although only a few pieces of research have fo-
cused on processing negation, the two tasks of the
CoNLL-2010 Shared Task have been addressed
previously. As for Task 1, Medlock and Briscoe
(2007) provide a definition of what they consider
to be hedge instances and define hedge classifi-
cation as a weakly supervised machine learning
task. The method they use to derive a learning

model from a seed corpus is based on iteratively
predicting labels for unlabeled training samples.
They report experiments with SVMs on a dataset
that they make publicly available3. The experi-
ments achieve a recall/precision break even point
(BEP) of 0.76. They apply a bag-of-words ap-
proach to sample representation. Medlock (2008)
presents an extension of this work by experiment-
ing with more features (part-of-speech, lemmas,
and bigrams). With a lemma representation the
system achieves a peak performance of 0.80 BEP,
and with bigrams of 0.82 BEP. Szarvas (2008) fol-
lows Medlock and Briscoe (2007) in classifying
sentences as being speculative or non-speculative.
Szarvas develops a MaxEnt system that incor-
porates bigrams and trigrams in the feature rep-
resentation and performs a complex feature se-
lection procedure in order to reduce the number
of keyword candidates. It achieves up to 0.85
BEP and 85.08 F1 by using an external dictio-
nary. Kilicoglu and Bergler (2008) apply a lin-
guistically motivated approach to the same clas-
sification task by using knowledge from existing
lexical resources and incorporating syntactic pat-
terns. Additionally, hedge cues are weighted by
automatically assigning an information gain mea-
sure and by assigning weights semi–automatically
depending on their types and centrality to hedging.
The system achieves results of 0.85 BEP.

As for Task 2, previous work (Morante and
Daelemans, 2009; Özgür and Radev, 2009) has
focused on finding the scope of hedge cues in
the BioScope corpus (Vincze et al., 2008). Both
systems approach the task in two steps, identify-
ing the hedge cues and finding their scope. The
main difference between the two systems is that
Morante and Daelemans (2009) perform the sec-
ond phase with a machine learner, whereas Özgur
and Radev (2009) perform the second phase with
a rule-based system that exploits syntactic infor-
mation.

The approach to resolving the scopes of hedge
cues that we present in this paper is similar to
the approach followed in Morante and Daelemans
(2009) in that the task is modelled in the same
way. A difference between the two systems is that
this system uses only one classifier to solve Task
2, whereas the system described in Morante and
Daelemans (2009) used three classifiers and a met-

3Available at
http://www.benmedlock.co.uk/hedgeclassif.html.
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alearner. Another difference is that the system in
Morante and Daelemans (2009) used shallow syn-
tactic features, whereas this system uses features
from both shallow and dependency syntax. A third
difference is that that system did not use a lexicon
of cues, whereas this system uses a lexicon gener-
ated from the training data.

3 Preprocessing

As a first step, we preprocess the data in order
to extract features for the machine learners. We
convert the xml files into a token-per-token rep-
resentation, following the standard CoNLL for-
mat (Buchholz and Marsi, 2006), where sentences
are separated by a blank line and fields are sepa-
rated by a single tab character. A sentence consists
of a sequence of tokens, each one starting on a new
line.

The WIKI data are processed with the Memory
Based Shallow Parser (MBSP) (Daelemans and
van den Bosch, 2005) in order to obtain lemmas,
part-of-speech (PoS) tags, and syntactic chunks,
and with the MaltParser (Nivre, 2006) in order to
obtain dependency trees. The BIO data are pro-
cessed with the GDep parser (Sagae and Tsujii,
2007) in order to get the same information.

# WORD LEMMA PoS CHUNK NE D LABEL C S
1 The The DT B-NP O 3 NMOD O O O
2 structural structural JJ I-NP O 3 NMOD O O O
3 evidence evidence NN I-NP O 4 SUB O O O
4 lends lend VBZ B-VP O 0 ROOT B F O
5 strong strong JJ B-NP O 6 NMOD I O O
6 support support NN I-NP O 4 OBJ I O O
7 to to TO B-PP O 6 NMOD O O O
8 the the DT B-NP O 11 NMOD O O O
9 inferred inferred JJ I-NP O 11 NMOD B O F

10 domain domain NN I-NP O 11 NMOD O O O
11 pair pair NN I-NP O 7 PMOD O L L
12 , , , O O 4 P O O O
13 resulting result VBG B-VP O 4 VMOD O O O
14 in in IN B-PP O 13 VMOD O O O
15 a a DT B-NP O 18 NMOD O O O
16 high high JJ I-NP O 18 NMOD O O O
17 confidence confidence NN I-NP O 18 NMOD O O O
18 set set NN I-NP O 14 PMOD O O O
19 of of IN B-PP O 18 NMOD O O O
20 domain domain NN B-NP O 21 NMOD O O O
21 pairs pair NNS I-NP O 19 PMOD O O O
22 . . . O O 4 P O O O

Table 1: Preprocessed sentence.

Table 1 shows a preprocessed sentence with the
following information per token: the token num-
ber in the sentence, word, lemma, PoS tag, chunk
tag, named entity tag, head of token in the depen-
dency tree, dependency label, cue tag, and scope
tags separated by a space, for as many cues as
there are in the sentence.

In order to check whether the conversion from

the xml format to the CoNLL format is a source
of error propagation, we convert the gold CoNLL
files into xml format and we run the scorer pro-
vided by the task organisers. The results obtained
are listed in Table 2.

Task 1 Task 2
WIKI BIO-ART BIO-ABS BIO-ART BIO-ABS

F1 100.00 100.00 100.00 99.10 99.66

Table 2: Evaluation of the conversion from xml to
CoNLL format.

4 Task 1: Detecting uncertain
information

In Task 1 sentences have to be classified as con-
taining uncertain or unreliable information or not.
The task is performed differently for the WIKI and
for the BIO data, since we are interested in finding
the hedge cues in the BIO data, as a first step to-
wards Task 2.

4.1 Wikipedia system (WIKI)
In the WIKI data a sentence is marked as uncertain
if it contains at least one weasel, or cue for uncer-
tainty. The list of weasels is quite extensive and
contains a high number of unique occurrences. For
example, the training data contain 3133 weasels
and 1984 weasel types, of which 63% are unique.
This means that a machine learner will have diffi-
culties in performing the classification task. Even
so, some generic structures can be discovered
in the list of weasels. For example, the differ-
ent weasels A few people and A few sprawling
grounds follow a pattern. We manually select the
42 most frequent informative tokens4 from the list
of weasels in the training partition. In the remain-
der of this section we will refer to these tokens as
weasel cues.

Because of the wide range of weasels, we opt
for predicting the (un)certainty of a sentence, in-
stead of identifying the weasels. The sentence
classification is done in three steps: instance cre-
ation, SVM classification and sentence labeling.

4Weasel cues: few, number, variety, bit, great, majority,
range, variety, all, almost, arguably, certain, commonly, gen-
erally, largely, little, many, may, most, much, numerous, of-
ten, one, other, others, perhaps, plenty of, popular, possibly,
probably, quite, relatively, reportedly, several, some, suggest,
there be, the well-known, various, very, wide, widely.
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4.1.1 Instance creation
Although we only want to predict the (un)certainty
of a sentence as a whole, we classify every token
in the sentence separately. After parsing the data
we create one instance per token, with the excep-
tion of tokens that have a part-of-speech from the
list: #, $, :, LS, RP, UH, WP$, or WRB. The ex-
clusion of these tokens is meant to simplify the
classification task.

The features used by the system during classifi-
cation are the following:

• About the token: word, lemma, PoS tag, chunk tag,
dependency head, and dependency label.

• About the token context: lemma, PoS tag, chunk tag
and dependency label of the two tokens to the left and
right of the token in focus in the string of words of the
sentence.

• About the weasel cues: a binary marker that indicates
whether the token in focus is a weasel cue or not, and a
number defining the number of weasel cues that there
are in the entire sentence.

These instances with 24 non-binary features
carry the positive class label if the sentence is un-
certain. We use a binarization script that rewrites
the instance to a format that can be used with a
support vector machine and during this process,
feature values that occur less than 2 times are
omitted.

4.1.2 SVM classification
To label the instances of the unseen data we use
SVMlight (Joachims, 2002). We performed some
experiments with different settings and decided
to only change the type of kernel from the de-
fault linear kernel to a polynomial kernel. For
the Wikipedia training data, the training of the
246,876 instances with 68417 features took ap-
proximately 22.5 hours on a 32 bit, 2.2GHz, 2GB
RAM Mac OS X machine.

4.1.3 Sentence labeling
In this last step, we collect all instances from the
same sentence and inspect the predicted labels for
every token. If more than 5% of the instances are
marked as uncertain, the whole sentence is marked
as uncertain. The idea behind the setup is that
many tokens are very ambiguous in respect to un-
certainty because they do not carry any informa-
tion. Fewer tokens are still ambiguous, but contain
some information, and a small set of tokens are al-
most unambiguous. This small set of informative
tokens does not have to coincide with weasels nor

weasels cues. The result is that we cannot predict
the actual weasels in a sentence, but we get an in-
dication of the presence of tokens that are common
in uncertain sentences.

4.2 Biological system (BIO)
The system that processes the BIO data is different
from the system that processes the WIKI data. The
BIO system uses a classifier that predicts whether
a token is at the beginning of a hedge signal, inside
or outside. So, instances represent tokens. The in-
stance features encode the following information:

• About the token: word, lemma, PoS tag, chunk tag, and
dependency label.

• About the context to the left and right in the string of
words of the sentence: word of the two previous and
three next tokens, lemma and dependency label of pre-
vious and next tokens, deplabel, and chunk tag and PoS
of next token. A binary feature indicating whether the
next token has an SBAR chunk tag.

• About the context in the syntactic dependency tree:
chain of PoS tags, chunk tags and dependency label
of children of token; word, lemma, PoS tag, chunk tag,
and dependency label of father; combined tag with the
lemma of the token and the lemma of its father; chain
of dependency labels from token to ROOT. Lemma of
next token, if next token is syntactic child of token. If
token is a verb, lemma of the head of the token that is
its subject.

• Dictionary features. We extract a list of hedge cues
from the training corpus. Based on this list, two binary
features indicate whether token and next token are po-
tential cues.

• Lemmas of the first noun, first verb and first adjective
in the sentence.

The classifier is the decision tree IGTree as im-
plemented in TiMBL (version 6.2) 5(Daelemans
et al., 2009), a fast heuristic approximation of k-
nn, that makes a heuristic approximation of near-
est neighbor search by a top down traversal of the
tree. It was parameterised by using overlap as the
similarity metric and information gain for feature
weighting. Running the system on the test data
takes 10.44 seconds in a 64 bit 2.8GHz 8GB RAM
Intel Xeon machine with 4 cores.

4.3 Results
All the results published in the paper are calcu-
lated with the official scorer provided by the task
organisers. We provide precision (P), recall (R)
and F1. The official results of Task 1 are pre-
sented in Table 3. We produce in-domain and

5TiMBL: http://ilk.uvt.nl/timbl
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cross-domain results. The BIO in-domain re-
sults have been produced with the BIO system,
by training on the training data BIO-ABS+BIO-
ART, and testing on the test data BIO-ART. The
WIKI in-domain results have been produced by
the WIKI system by training on WIKI and test-
ing on WIKI. The BIO cross-domain results have
been produced with the BIO system, by train-
ing on BIO-ABS+BIO-ART+WIKI and testing on
BIO-ART. The WIKI cross-domain results have
been produced with the WIKI system by train-
ing on BIO-ABS+BIO-ART+WIKI and testing on
WIKI. Training the SVM with BIO-ABS+BIO-
ART+WIKI augmented the training time exponen-
tially and the system did not finish on time for sub-
mission. We report post-evaluation results.

In-domain Cross-domain
P R F1 P R F1

WIKI 80.55 44.49 57.32 80.64* 44.94* 57.71*
BIO 81.15 82.28 81.71 80.54 83.29 81.89

Table 3: Uncertainty detection results (Task 1 -
closed track). Post-evaluation results are marked
with *.

In-domain results confirm that uncertain sen-
tences in Wikipedia text are more difficult to detect
than uncertain sentences in biological text. This
is caused by a loss in recall of the WIKI system.
Compared to results obtained by other systems
participating in the CoNLL-2010 Shared Task, the
BIO system performs 4.47 F1 lower than the best
system, and the WIKI system performs 2.85 F1
lower. This indicates that there is room for im-
provement. As for cross-domain results, we can-
not conclude that the cross-domain data harm the
performance of the system, but we cannot state
either that the cross-domain data improve the re-
sults. Since we performed Task 1 as a step towards
Task 2, it is interesting to know what is the per-
formance of the system in identifying hedge cues.
Results are shown in Table 4. One of the main
sources of errors in detecting the cues are due to
the cue or. Of the 52 occurrences in the test corpus
BIO-ART, the system produces 3 true positives, 8
false positives and 49 false negatives.

In-domain Cross-domain
P R F1 P R F1

Bio 78.75 74.69 76.67 78.14 75.45 76.77

Table 4: Cue matching results (Task 1 - closed
track).

5 Task 2: Resolution of in-sentence
scopes of hedge cues

Task 2 consists of resolving in-sentence scopes of
hedge cues in biological texts. The system per-
forms this task in two steps, classification and
postprocessing, taking as input the output of the
system that finds cues.

5.1 Classification
In the classification step a memory-based classi-
fier classifies tokens as being the first token in the
scope sequence, the last, or neither, for as many
cues as there are in the sentence. An instance rep-
resents a pair of a predicted hedge cue and a token.
All tokens in a sentence are paired with all hedge
cues that occur in the sentence.

The classifier used is an IB1 memory–based al-
gorithm as implemented in TiMBL (version 6.2)6

(Daelemans et al., 2009), a memory-based classi-
fier based on the k-nearest neighbor rule (Cover
and Hart, 1967). The IB1 algorithm is parame-
terised by using overlap as the similarity metric,
gain ratio for feature weighting, using 7 k-nearest
neighbors, and weighting the class vote of neigh-
bors as a function of their inverse linear distance.
Running the system on the test data takes 53 min-
utes in a 64 bit 2.8GHz 8GB RAM Intel Xeon ma-
chine with 4 cores.

The features extracted to perform the classifi-
cation task are listed below. Because, as noted
by Özgür and Radev (2009) and stated in the an-
notation guidelines of the BioScope corpus7, the
scope of a cue can be determined from its lemma,
PoS tag, and from the syntactic construction of the
clause (passive voice vs. active, coordination, sub-
ordination), we use, among others, features that
encode information from the dependency tree.

• About the cue: chain of words, PoS label, dependency
label, chunk label, chunk type; word, PoS tag, chunk
tag, and chunk type of the three previous and next to-
kens in the string of words in the sentence; first and
last word, chain of PoS tags, and chain of words of the
chunk where cue is embedded, and the same features
for the two previous and two next chunks; binary fea-
ture indicating whether cue is the first, last or other to-
ken in sentence; binary feature indicating whether cue
is in a clause with a copulative construction; PoS tag
and dependency label of the head of cue in the depen-
dency tree; binary feature indicating whether cue is lo-
cated before or after its syntactic head in the string of

6TiMBL: http://ilk.uvt.nl/timbl.
7Available at: http://www.inf.u-szeged.hu/

rgai/project/nlp/bioscope/Annotation%20
guidelines2.1.pdf.
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words of the sentence; feature indicating whether cue
is followed by an S-BAR or a coordinate construction.

• About the token: word, PoS tag, dependency label,
chunk tag, chunk type; word, PoS tag, chunk tag, and
chunk type of the three previous and three next tokens
in the string of words of the sentence; chain of PoS
tag and lemmas of two and three tokens to the right of
token in the string of words of the sentence; first and
last word, chain of PoS tags, and chain of words of the
chunk where token is embedded, and the same features
for the two previous and two next chunks; PoS tag and
deplabel of head of token in the dependency tree; bi-
nary feature indicating whether token is part of a cue.

• About the token in relation to cue: binary features indi-
cating whether token is located before or after cue and
before or after the syntactic head of cue in the string
of words of the sentence; chain of PoS tags between
cue and token in the string of words of the sentence;
normalised distance between cue and token (number of
tokens in between divided by total number of tokens);
chain of chunks between cue and token; feature indi-
cating whether token is located before cue, after cue or
wihtin cue.

• About the dependency tree: feature indicating who is
ancestor (cue, token, other); chain of dependency la-
bels and chain of PoS tags from cue to common an-
cestor, and from token to common ancestor, if there is
a common ancestor; chain of dependency labels and
chain of PoS from token to cue, if cue is ancestor of to-
ken; chain of dependency labels and chain of PoS from
cue to token, if token is ancestor of cue; chain of de-
pendency labels and PoS from cue to ROOT and from
token to ROOT.

Features indicating whether token is a candidate to be
the first token of scope (FEAT-FIRST), and whether
token is a candidate to be the last token of the scope
(FEAT-LAST). These features are calculated by a
heuristics that takes into account detailed information
of the dependency tree. The value of FEAT-FIRST de-
pends on whether the clause is in active or in passive
voice, on the PoS of the cue, and on the lemma in some
cases (for example, verbs appear, seem). The value of
FEAT-LAST depends on the PoS of the cue.

5.2 Postprocessing
In the corpora provided for this task, scopes are
annotated as continuous sequences of tokens that
include the cue. However, the classifiers only pre-
dict the first and last element of the scope. In or-
der to guarantee that all scopes are continuous se-
quences of tokens we apply a first postprocessing
step (P-SCOPE) that builds the sequence of scope
based on the following rules:

1. If one token has been predicted as FIRST and one as
LAST, the sequence is formed by the tokens between
FIRST and LAST.

2. If one token has been predicted as FIRST and none has
been predicted as LAST, the sequence is formed by the
tokens between FIRST and the first token that has value
1 for FEAT-LAST.

3. If one token has been predicted as FIRST and more
than one as LAST, the sequence is formed by the tokens
between FIRST and the first token predicted as LAST
that is located after cue.

4. If one token has been predicted as LAST and none as
FIRST, the sequence will start at the hedge cue and it
will finish at the token predicted as LAST.

5. If no token has been predicted as FIRST and more than
one as LAST, the sequence will start at the hedge cue
and will end at the first token predicted as LAST after
the hedge signal.

6. If one token has been predicted as LAST and more than
one as FIRST, the sequence will start at the cue.

7. If no tokens have been predicted as FIRST and no to-
kens have been predicted as LAST, the sequence will
start at the hedge cue and will end at the first token that
has value 1 for FEAT-LAST.

The system predicts 987 scopes in total. Of
these, 1 FIRST and 1 LAST are predicted in 762
cases; a different number of predictions is made
for FIRST and for LAST in 217 cases; no FIRST
and no LAST are predicted in 5 cases, and 2
FIRST and 2 LAST are predicted in 3 cases. In 52
cases no FIRST is predicted, in 93 cases no LAST
is predicted.

Additionally, as exemplified in Example 1 in
Section 1, bibliographic references and references
to tables and figures do not always fall under the
scope of cues, when the references appear at the
end of the scope sequence. If references that ap-
pear at the end of the sentence have been predicted
by the classifier within the scope of the cue, these
references are set out of the scope in a second post-
processing step (P-REF).

5.3 Results
The official results of Task 2 are presented in Ta-
ble 5. The system scores 57.32 F1, which is the
highest score of the systems that participated in
this task.

In-domain
P R F1

BIO 59.62 55.18 57.32

Table 5: Scope resolution official results (Task 2 -
closed track).

In order to know what is the effect of the post-
processing steps, we evaluate the output of the
system before performing step P-REF and before
performing step P-SCOPE. Table 6 shows the re-
sults of the evaluation. Without P-REF, the perfor-
mance decreases in 7.30 F1. This is caused by the
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fact that a considerable proportion of scopes end
in a reference to bibliography, tables, or figures.
Without P-SCOPE it decreases 4.50 F1 more. This
is caused, mostly, by the cases in which the classi-
fier does not predict the LAST class.

In-domain
P R F1

BIO before P-REF 51.98 48.20 50.02
BIO before P-SCOPE 48.82 44.43 46.52

Table 6: Scope resolution results before postpro-
cessing steps.

It is not really possible to compare the scores
obtained in this task to existing research previous
to the CoNLL-2010 Shared Task, namely the re-
sults obtained by Özgür and Radev (2009) on the
BioScope corpus with a rule-based system and by
Morante and Daelemans (2009) on the same cor-
pus with a combination of classifiers. Özgür and
Radev (2009) report accuracy scores (61.13 on full
text), but no F measures are reported. Morante and
Daelemans (2009) report percentage of correct
scopes for the full text data set (42.37), obtained
by training on the abstracts data set, whereas the
results presented in Table 5 are reported in F mea-
sures and obtained in by training and testing on
other corpora. Additionally, the system has been
trained on a corpus that contains abstracts and full
text articles, instead of only abstracts. However,
it is possible to confirm that, even with informa-
tion on dependency syntax, resolving the scopes of
hedge cues in biological texts is not a trivial task.
The scores obtained in this task are much lower
than the scores obtained in other tasks that involve
semantic processing, like semantic role labeling.

The errors of the system in Task 2 are caused
by different factors. First, there is error propaga-
tion from the system that finds cues. Second, the
system heavily relies on information from the syn-
tactic dependency tree. The parser used to prepro-
cess the data (GDep) has been trained on abstracts,
instead of full articles, which means that the per-
formance on full articles will be lower, since sen-
tence are longer and more complex. Third, en-
coding the information of the dependency tree
in features for the learner is not a straightfor-
ward process. In particular, some errors in resolv-
ing the scope are caused by keeping subordinate
clauses within the scope, as in sentence (2), where,
apart from not identifying speculated as a cue, the
system wrongly includes resulting in fewer high-

confidence sequence assignments within the scope
of may. This error is caused in the instance con-
struction phase, because token assignments gets
value 1 for feature FEAT-LAST and token algo-
rithm gets value 0, whereas it should have been
otherwise.

(2) We speculated that the presence of multiple isotope
peaks per fragment ion in the high resolution Orbitrap
MS/MS scans <xcope id=1><cue ref=1>may
</cue> degrade the sensitivity of the search
algorithm, resulting in fewer high-confidence
sequence assignments</xcope>.

Additionally, the test corpus contains an article
about the annotation of a corpus of hedge cues,
thus, an article that contains metalanguage. Our
system can not deal with sentences like the one in
(3), in which all cues with their scopes are false
positives.

(3) For example, the word <xcope id=1><cue ref=1>
may</cue> in sentence 1</xcope>) <xcope id=2>
<cue ref=2>indicates that</cue> there is some
uncertainty about the truth of the event, whilst the
phrase Our results show that in 2) <xcope id=3>
<cue ref=3>indicates that</cue> there is
experimental evidence to back up the event described
by encodes</xcope></xcope>.

6 Conclusions and future research

In this paper we presented the machine learning
systems that we submitted to the CoNLL-2010
Shared Task on Learning to Detect Hedges and
Their Scope in Natural Language Text. The BIO
data were processed by memory-based systems in
Task 1 and Task 2. The system that performs Task
2 relies on information from syntactic dependen-
cies. This system scored the highest F1 (57.32) of
Task 2.

As for Task 1, in-domain results confirm that
uncertain sentences in Wikipedia text are more dif-
ficult to detect than uncertain sentences in biolog-
ical text. One of the reasons is that the number of
weasels is much higher and diverse than the num-
ber of hedge cues. BIO cross-domain results show
that adding WIKI data to the training set causes a
slight decrease in precision and a slight increase
in recall. The errors of the BIO system show that
some cues, like or are difficult to identify, because
they are ambiguous. As for Task 2, results indi-
cate that resolving the scopes of hedge cues in bi-
ological texts is not a trivial task. The scores ob-
tained in this task are much lower than the scores
obtained in other tasks that involve semantic pro-
cessing, like semantic role labeling. The results

46



are influenced by propagation of errors from iden-
tifying cues, errors in the dependency tree, the ex-
traction process of syntactic information from the
dependency tree to encode it in the features, and
the presence of metalanguage on hedge cues in the
test corpus. Future research will focus on improv-
ing the identification of hedge cues and on using
different machine learning techniques to resolve
the scope of cues.

Acknowledgements

The research reported in this paper was made pos-
sible through financial support from the University
of Antwerp (GOA project BIOGRAPH).

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-

X shared task on multilingual dependency parsing.
In Proceedings of the CoNLL-X Shared Task, New
York. SIGNLL.

Thomas M. Cover and Peter E. Hart. 1967. Nearest
neighbor pattern classification. Institute of Electri-
cal and Electronics Engineers Transactions on In-
formation Theory, 13:21–27.

Walter Daelemans and Antal van den Bosch. 2005.
Memory-based language processing. Cambridge
University Press, Cambridge, UK.

Walter Daelemans, Jakub Zavrel, Ko Van der Sloot, and
Antal Van den Bosch. 2009. TiMBL: Tilburg Mem-
ory Based Learner, version 6.2, Reference Guide.
Number 09-01 in Technical Report Series. Tilburg,
The Netherlands.

Chrysanne Di Marco and Robert E. Mercer, 2005.
Computing attitude and affect in text: Theory and
applications, chapter Hedging in scientific articles
as a means of classifying citations. Springer-Verlag,
Dordrecht.
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Abstract

This paper describes a hybrid, two-level
approach for resolving hedge cues, the
problem of the CoNLL-2010 shared task.
First, a maximum entropy classifier is ap-
plied to identify cue words, using both
syntactic- and surface-oriented features.
Second, a set of manually crafted rules,
operating on dependency representations
and the output of the classifier, is applied
to resolve the scope of the hedge cues
within the sentence.

1 Introduction

The CoNLL-2010 shared task1 comprises two
sub-tasks. Task 1 is described as learning to detect
sentences containing uncertainty, while the object
of Task 2 is learning to resolve the in-sentence
scope of hedge cues (Farkas et al., 2010). Parallel-
ing this two-fold task definition, the architecture
of our system naturally decomposes into two main
steps. First, a maximum entropy (MaxEnt) classi-
fier is applied to automatically detect cue words.
For Task 1, a given sentence is labeled as uncer-
tain if it contains a word classified as a cue. For
Task 2, we then go on to determine the scope of
the identified cues using a set of manually crafted
rules operating on dependency representations.

For both Task 1 and Task 2, our system partic-
ipates in the stricter category of ‘closed’ or ‘in-
domain’ systems. This means that we do not
use any additional uncertainty-annotated material
beyond the supplied training data, consisting of
14541 sentences from biomedical abstracts and ar-
ticles (see Table 2). In the official ranking of re-

∗We are grateful to our colleagues at the University of
Oslo and the University of Potsdam, for many useful discus-
sions, constructive critique, and encouragment. We specifi-
cally thank Woodley Packard for careful proof-reading.

1The CoNLL-2010 shared task website: http://www.
inf.u-szeged.hu/rgai/conll2010st/.

sults, and considering systems in all categories to-
gether (closed/open/cross-domain), our system is
ranked 4 out of 24 for Task 1 and 3 out of 15 for
Task 2, resulting in highest average rank (and F1)
overall. We detail the implementation of the cue
classifier and the syntactic rules in Sections 3 and
4, respectively. Results for the held-out testing are
provided in Section 5. First, however, the next sec-
tion describes the various resources that we used
for pre-processing the CoNLL data sets, to prepare
the input to our hedge analysis systems.

2 Architecture and Set-Up

2.1 Preprocessing
To ease integration of annotations across system
components, we converted the XML training data
to plain-text files, with stand-off annotation linked
to the raw data by virtue of character start and end
positions (dubbed characterization in the follow-
ing). Thus, hedge cues, scope boundaries, tok-
enization, Part-of-Speech (PoS) assignments, etc.
are all represented in a uniform fashion: as po-
tentially overlapping annotations on sub-strings of
the raw input.

The GENIA tagger (Tsuruoka et al., 2005) takes
an important role in our pre-processing set-up.
However, maybe somewhat surprisingly, we found
that its tokenization rules are not always opti-
mally adapted for the BioScope corpus. GENIA

unconditionally introduces token boundaries for
some punctuation marks that can also occur token-
internally. For example, it wrongly splits tokens
like ‘3,926.50’, ‘methlycobamide:CoM’,
or ‘Ca(2+)’. Conversely, GENIA fails to isolate
some kinds of opening single quotes, because the
quoting conventions assumed in BioScope differ
from those used in the GENIA Corpus; furthermore,
it mis-tokenizes LATEX-style n- and m-dashes.

On average, one in five sentences in the CoNLL
training data exhibited GENIA tokenization prob-
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ID FORM LEMMA POS FEATS HEAD DEPREL XHEAD XDEP
1 The the DT _ 4 NMOD 4 SPECDET
2 unknown unknown JJ degree:attributive 4 NMOD 4 ADJUNCT
3 amino amino JJ degree:attributive 4 NMOD 4 ADJUNCT
4 acid acid NN pers:3|case:nom|num:sg|ntype:common 5 SBJ 3 SUBJ
5 may may MD mood:ind|subcat:MODAL|tense:pres|clauseType:decl|passive:- 0 ROOT 0 ROOT
6 be be VB _ 5 VC 7 PHI
7 used use VBN subcat:V-SUBJ-OBJ|vtype:main|passive:+ 6 VC 5 XCOMP
8 by by IN _ 7 LGS 9 PHI
9 these these DT deixis:proximal 10 NMOD 10 SPECDET
10 species specie NNS num:pl|pers:3|case:obl|common:count|ntype:common 8 PMOD 7 OBL-AG
11 . . . _ 5 P 0 PUNC

Table 1: Enhanced dependency representation of the example sentence The unknown amino acid may
be used by these species with GENIAPoS-tags (POS), Malt parses (HEAD, DEPREL) and XLE parses
(XHEAD, XDEP).

lems. Our pre-processing approach therefore de-
ploys a home-grown, cascaded finite-state tok-
enizer (borrowed and adapted from the open-
source English Resource Grammar; Flickinger
(2000)), which aims to implement the tokeniza-
tion decisions made in the Penn Treebank (Mar-
cus et al., 1993) – much like GENIA, in principle
– but properly treating corner cases like the ones
above. Synchronized via characterization, this to-
kenization is then enriched with the output of no
less than two PoS taggers, as detailed in the next
section.

2.2 PoS Tagging and Lemmatization
For PoS tagging and lemmatization, we combine
GENIA (with its built-in, occasionally deviant to-
kenizer) and TnT (Brants, 2000), which operates
on pre-tokenized inputs but in its default model
is trained on financial news from the Penn Tree-
bank. Our general goal here is to take advantage
of the higher PoS accuracy provided by GENIA in
the biomedical domain, while using our improved
tokenization and producing inputs to the parsing
stage (see Section 2.3 below) that as much as pos-
sible resemble the conventions used in the original
training data for the parser – the Penn Treebank,
once again.

To this effect, for the vast majority of tokens we
can align the GENIA tokenization with our own,
and in these cases we typically use GENIA PoS

tags and lemmas (i.e. base forms). For better nor-
malization, we downcase base forms for all parts
of speech except proper nouns. However, GENIA

does not make a PoS distinction between proper
and common nouns, as in the Penn Treebank, and
hence we give precedence to TnT outputs for to-
kens tagged as nominal by both taggers. Finally,
for the small number of cases where we cannot es-
tablish a one-to-one alignment from an element in

our own tokenization to a GENIA token, we rely on
TnT annotation only. In the merging of annotations
across components, and also in downstream pro-
cessing we have found it most convenient to op-
erate predominantly in terms of characterization,
i.e. sub-strings of the raw input that need not align
perfectly with token boundaries.

2.3 Dependency Parsing with LFG Features
For syntactic parsing we employ a data-driven de-
pendency parser which incorporates the predic-
tions from a large-scale LFG grammar. A tech-
nique of parser stacking is employed, which en-
ables a data-driven parser to learn from the out-
put of another parser, in addition to gold stan-
dard treebank annotations (Nivre and McDonald,
2008). This technique has been shown to pro-
vide significant improvements in accuracy for both
English and German (Øvrelid et al., 2009), and
a similar approach employing an HPSG grammar
has been shown to increase domain independence
in data-driven dependency parsing (Zhang and
Wang, 2009). For our purposes, we decide to use a
parser which incorporates analyses from two quite
different parsing approaches – data-driven depen-
dency parsing and “deep” parsing with a hand-
crafted grammar – providing us with a range of
different types of linguistic features which may be
used in hedge detection.

We employ the freely available MaltParser
(Nivre et al., 2006), which is a language-
independent system for data-driven dependency
parsing.2 It is based on a deterministic pars-
ing strategy in combination with treebank-induced
classifiers for predicting parse transitions. It sup-
ports a rich feature representation of the parse his-
tory in order to guide parsing and may easily be
extended to take into account new features of the

2See http://maltparser.org.
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Sentences Hedged Cues Multi-Word Tokens Cue Tokens
Sentences Cues

Abstracts 11871 2101 2659 364 309634 3056
Articles 2670 519 668 84 68579 782
Total 14541 2620 3327 448 378213 3838

Table 2: Some descriptive figures for the shared task training data. Token-level counts are based on the
tokenization described in Section 2.1.

parse history.

Parser stacking The procedure to enable the
data-driven parser to learn from the grammar-
driven parser is quite simple. We parse a treebank
with the XLE platform (Crouch et al., 2008) and the
English grammar developed within the ParGram
project (Butt et al., 2002). We then convert the
LFG output to dependency structures, so that we
have two parallel versions of the treebank – one
gold standard and one with LFG-annotation. We
extend the gold standard treebank with additional
information from the corresponding LFG analysis
and train the data-driven dependency parser on the
enhanced data set. See Øvrelid et al. (2010) for
details of the conversion and training of the parser.

Table 1 shows the enhanced dependency rep-
resentation of the English sentence The unknown
amino acid may be used by these species, taken
from the training data. For each token, the parsed
data contains information on the surface form,
lemma, and PoS tag, as well as on the head and de-
pendency relation in columns 6 and 7. The depen-
dency analysis suggested by XLE is contained in
columns 8 and 9, whereas additional XLE informa-
tion, such as morphosyntactic properties like num-
ber and voice, as well as more semantic properties
detailing, e.g., subcategorization frames, seman-
tic conceptual categories such as human, time and
location, etc., resides in the FEATS column. The
parser outputs, which in turn form the basis for our
scope resolution rules discussed in Section 4, also
take this same form.

The parser employed in this work is trained
on the Wall Street Journal sections 2 – 24 of the
Penn Treebank, converted to dependency format
(Johansson and Nugues, 2007) and extended with
XLE features, as described above. Parsing is per-
formed using the arc-eager mode of MaltParser
(Nivre, 2003) and an SVM with a polynomial ker-
nel. When tested using 10-fold cross-validation on
this data set, the parser achieves a labeled accuracy

score of 89.8 (Øvrelid et al., 2010).

3 Identifying Hedge Cues

For the task of identifying hedge cues, we devel-
oped a binary maximum entropy (MaxEnt) classi-
fier. The identification of cue words is used for (i)
classifying sentences as certain/uncertain (Task 1),
and (ii) providing input to the syntactic rules that
we later apply for resolving the in-sentence scope
of the cues (Task 2). We also report evaluation
scores for the sub-task of cue detection in isola-
tion.

As annotated in the training data, it is possible
for a hedge cue to span multiple tokens, e.g. as in
whether or not. The majority of the multi-word
cues in the training data are very infrequent, how-
ever, most occurring only once, and the classifier
itself is not sensitive to the notion of multi-word
cues. A given word token in the training data is
simply considered to be either a cue or a non-cue,
depending on whether it falls within the span of a
cue annotation. The task of determining whether
a cue word forms part of a larger multi-word cue,
is performed by a separate post-processing step,
further described in Section 3.2.

3.1 Maximum Entropy Classification
In the MaxEnt framework, each training exam-
ple – in our case a paired word and label 〈wi, yi〉
– is represented as a feature vector f(wi, yi) =
fi ∈ <d. Each dimension or feature function fij

can encode arbitrary properties of the data. The
particular feature functions we are using for the
cue identification are described under Section 3.4
below. For model estimation we use the TADM3

software (Malouf, 2002). For feature extraction
and model tuning, we build on the experimen-
tation environment developed by Velldal (2008)
(in turn extending earlier work by Oepen et al.

3Toolkit for Advanced Discriminative Modeling; avail-
able from http://tadm.sourceforge.net/.
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(2004)). Among other things, its highly optimized
feature handling – where the potentially expen-
sive feature extraction step is performed only once
and then combined with several levels of feature
caching – make it computationally feasible to per-
form large-scale ‘grid searches’ over different con-
figurations of features and model parameters when
using many millions of features.

3.2 Multi-Word Cues
After applying the classifier, a separate post-
processing step aims to determine whether tokens
identified as cue words belong to a larger multi-
word cue. For example, when the classifier has
already identified one or more of the tokens in a
phrase such as raises the possibility to be part of a
hedge cue, a heuristic rule (viz. basically lemma-
level pattern-matching, targeted at only the most
frequently occurring multi-word cues in the train-
ing data) makes sure that the tokens are treated as
part of one and the same cue.

3.3 Model Development, Data Sets and
Evaluation Measures

While the training data made available for the
shared task consisted of both abstracts and full
articles from the BioScope corpus (Vincze et al.,
2008), the test data were pre-announced to consist
of biomedical articles only. In order to make the
testing situation during development as similar as
possible to what could be expected for the held-out
testing, we only tested on sentences taken from the
articles part of the training data. When developing
the classifiers we performed 10-fold training and
testing over the articles, while always including all
sentences from the abstracts in the training set as
well. Table 2 provides some basic descriptive fig-
ures summarizing the training data.

As can be seen in Table 3, we will be report-
ing precision, recall and F-scores for three dif-
ferent levels of evaluation for the cue classifiers:
the sentence-level, token-level and cue-level. The
sentence-level scores correspond to Task 1 of the
shared task, i.e. correctly identifying sentences as
being certain or uncertain. A sentence is labeled
uncertain if it contains at least one token classi-
fied as a hedge cue. The token-level scores indi-
cate how well the classifiers succeed in identify-
ing individual cue words (this score does not take
into account the heuristic post-processing rules for
finding multi-word cues). Finally, the cue-level
scores are based on the exact-match counts for full
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Figure 1: Learning curves showing, for both
token- and sentence-level F-scores, the effect of
incrementally including a larger percentage of
training data into the 10-fold cycles. (As described
also for the other development results, while we
are training on both the articles and the abstracts,
we are testing only on the articles.)

hedge cues (possibly spanning multiple tokens).
These latter scores are computed using the official
shared task scorer script.

3.4 Feature Types
We trained cue classifiers using a wide vari-
ety of feature types, both syntactic and surface-
oriented. However, to better assess the contri-
bution of the different features, we first trained
two baseline models using only features defined
for non-normalized surface forms as they occur in
the training data. The most basic baseline model
(Baseline 1) included only unigram features. The
behavior of this classifier is similar to what we
would expect from simply compiling a list of cue
words from the training data, based on the major-
ity usage of each word as cue or non-cue. Base-
line 2 additionally included 2 words to the left and
3 to the right of the focus word (after first perform-
ing a search for the optimal spans of n-grams up
to 5). As shown in Table 3, this model achieved
a sentence-level F1 of 87.14 and a token-level F1
of 81.97. The corresponding scores for Baseline 1
are 79.20 and 69.59.

A general goal in our approach to hedge analy-
sis is to evaluate the contribution of syntactic in-
formation, both in cue detection and scope resolu-
tion. After applying the parser described in Sec-
tion 2.3, we extracted a range of classifier features
on the basis of the dependency structures (both as
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proposed by the stacked MaltParser and converted
from XLE) as well as the deep grammar (XLE). Ad-
ditionally we defined various features on the basis
of base forms and PoS information provided by the
GENIA pre-processing (see Section 2.2).

For a quick overview, the feature types we ex-
perimented with include the following:

GENIA features n-gram features over the base
forms and PoS tags from the GENIA information
described in Section 2.2.

Dependency features A range of features ex-
tracted from dependency structures produced by
MaltParser and XLE (see Section 2.3), designed
to capture the syntactic properties and environ-
ment of a token: deprel – dependency rela-
tion (Malt and XLE), deppath – dependency
path to root, deppattern – ordered set of co-
dependents/siblings, including focus token (Malt),
lextriple/postriple – lexicalized and unlexicalized
dependency triplet for token (Malt), coord – bi-
nary feature expressing coordination (XLE), co-
ordLevel – phrase-structural level of coordination
(XLE).

Lexical parser features Other features con-
structed on the basis of the parser output: subcat
– subcategorization frame for verbs (XLE), adv-
Type – type of adverbial, e.g. sentence, VP (XLE),
adjType – adjectival function, e.g. attributive vs.
predicative (XLE)

When added to Baseline 2 in isolation, most of
these features resulted in a boost in classifier per-
formance. For the dependency-based features, the
contribution was more pronounced for lexicalized
versions of the features. This also points to the
fact that lexical information seems to be the key
for the task of cue identification, where the model
using only n-grams over surface forms proved a
strong baseline. As more feature types were added
to the classifier together, we also saw a clear trend
of diminishing returns, in that many of the fea-
tures seemed to contribute overlapping informa-
tion. After several rounds of grid-search over dif-
ferent feature configurations, the best-performing
classifier (as used for the shared task) used only
the following feature types: n-grams over surface
forms (including up to 2 tokens to the right), n-
grams over base forms (up to 3 tokens left and
right), PoS of the target word, ‘subcat’, ‘coord’,
and ‘coordLevel’. The ‘subcat’ feature contains

information taken from XLE regarding the subcat-
egorization requirements of a verb in a specific
context, e.g., whether a verb is modal, takes an
expletive subject etc., whereas the coordination
features signal coordination (‘coord’) and detail
the phrase-structural level of coordination (‘co-
ordLevel’), e.g., NP, VP, etc. This defines the fea-
ture set used for the model referred to as final in
Table 3.

Recall that for Baseline 2, the F-score is 87.14
for the sentence-level evaluation and 81.97 for the
token-level. For our best and final feature config-
uration, the corresponding F-scores are 89.00 and
83.42, respectively. At both the sentence-level and
the token-level, the differences in classifier per-
formance were found to be statistically significant
at p < 0.005, using a two-tailed sign-test. Af-
ter also applying the heuristic rules for detecting
multi-word cues, the cue-level F-score for our final
model is 84.60, compared to 82.83 for Baseline 2.

3.5 The Effect of Data Size
In order to asses the effect of the size of the train-
ing set, we computed learning curves showing
how classifier performance changes as more train-
ing data is added. Starting with only 10% of the
training data included in the 10-fold cycle, Fig-
ure 1 shows the effect on both token level and
sentence-level F-scores as we incrementally in-
clude larger portions of the available training data.

Unsurprisingly, we see that the performance of
the classifier is steadily improving up to the point
where 100% of the data is included, and by extrap-
olating from the curves shown in Figure 1 it seems
reasonable to assume that this improvement would
continue if more data were available. We there-
fore tried to further increase the size of the training
set by also using the hedge-annotated clinical re-
ports that form part of the BioScope corpus. This
provided us with an additional 855 hedged sen-
tences. However, the classifiers did not seem able
to benefit from the additional training examples,
and across several feature configurations perfor-
mance was found to be consistently lower (though
not significantly so). The reason is probably that
the type of text is quite different – the clinical re-
ports have a high ratio of fragments and also shows
other patterns of cue usage, being somewhat more
jargon-based. This seems to underpin the findings
of previous studies that hedge cue learners appear
quite sensitive to text type (Morante and Daele-
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Sentence Level Token Level Cue Level
Model Prec Rec F1 Prec Rec F1 Prec Rec F1

Baseline 1 79.25 79.45 79.20 77.71 63.41 69.59 77.37 71.70 74.43
Baseline 2 86.83 87.54 87.14 86.86 77.69 81.97 85.34 80.21 82.69
Final 91.39 86.78 89.00 91.20 76.95 83.42 90.18 79.47 84.49

Table 3: Averaged 10-fold cross-validation results on the articles in the official shared task training data,
always including the abstracts in the training portion. The model listed as final includes features such
as n-grams over surface forms and base forms (both left and right), PoS, subcategorization frames, and
phrase-structural coordination level. The feature types are further described in Section 3.4.

PoS Description Source

CC Coordinations scope over their conjuncts M
IN Prepositions scope over their arguments with its descendants M
JJattr Attributive adjectives scope over their nominal head and its descendants M
JJpred Predicative adjectives scope over referential subjects and clausal arguments, if any M, X
MD Modals inherit subj-scope from their lexical verb and scope over their descendants M, X
RB Adverbs scope over their heads with its descendants M
VBpass Passive verbs scope over referential subjects and the verbal descendants M, X
VBrais Raising verbs scope over referential subjects and the verbal descendants M, X
* For multi-word cues, the head determines scope for all elements
* Back off from final punctuation and parentheses

Table 4: Overview of dependency-based scope rules with information source (MaltParser or XLE), orga-
nized by PoS of the cue.

mans, 2009).

4 Resolving Cue Scope

In our approach to scope resolution we rely heav-
ily on syntactic information, taken from the depen-
dency structures proposed by both MaltParser and
XLE, as well as various additional features from
the XLE parses relating to specific syntactic con-
structions.

4.1 Scope Rules
We construct a small set of heuristic rules which
define the scope for each cue detected in Stage
1. In the construction of these rules, we made use
of the information provided by the guidelines for
scope annotation in the BioScope corpus (Vincze
et al., 2008) as well as manual inspection of the
training data in order to arrive at reasonable scope
hypotheses for various types of cues.

The rules take as input a parsed sentence which
has been tagged with hedge cues and operate over
the dependency structures and additional features
provided by the parser. Default scope is set to

start at the cue word and span to the end of the
sentence (not including final puctuation), and this
scope also provides the baseline for the evaluation
of our rules. Table 4 provides an overview of the
rules employed for scope resolution.

In the case of multi-word cues, such as indicate
that, and either ... or, which share scope, we need
to determine the head of the multi-word unit. We
then set the scope of the whole unit to the scope of
the head token.

As an example, the application of the rules in
Table 4 to the sentence with the parsed output
in Table 1 correctly determine the scope of the
cue may as shown in example (1), using a variety
of syntactic cues regarding part-of-speech, argu-
menthood, voice, etc. First, the scope of the sen-
tence is set to default scope. Then the MD rule is
applied, which checks the properties of the lexical
verb used, located through a chain of verbal de-
pendents from the modal verb. Since it is passive
(passive:+), initial scope is set to include the
cue’s subject (SBJ) argument with all its descen-
dants (The unknown amino acid).
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Task 1 Task 2 Cue Detection

Prec Rec F1 Prec Rec F1 Prec Rec F1

85.48 84.94 85.21 56.71 54.02 55.33 81.20 76.31 78.68

Table 6: Evaluation results for the official held-out testing.

Scope Prec Rec F1

Default w/gold cues 45.21 45.21 45.21
Rules w/gold cues 72.31 72.31 72.31
Rules w/classified cues 68.56 61.38 64.77

Table 5: Evaluation of the scope resolution rules
on the training articles, using both gold standard
cues and predicted cues. For the row labeled De-
fault, the scope for each cue is always taken to
span rightward to the end of the sentence. In the
rows labeled Rules, the scopes have been resolved
using the dependency-based rules.

(1) (The unknown amino acid <may> be used
by these species).

4.2 Rule Evaluation
Table 5 shows the evaluation of the set of scope
rules on the articles section of the data set, using
gold standard cues.4 This gives us an indication of
the performance of the rules, isolated from errors
in cue detection.

First of all, we may note that the baseline is
a strong one: choosing to extend the scope of a
cue to the end of the sentence provides an F-score
of 45.21. Given gold standard cue information,
the set of scope rules improves on the baseline by
27 percentage points on the articles section of the
data set, giving us an F-score of 72.31. Comparing
to the evaluation using classified cues (the bottom
row of Table 5), we find that the use of automati-
cally assigned cues causes a drop in performance
of 7.5 percentage points, to a result of 64.77.

5 Held-Out Testing

Table 6 presents the final results as obtained on
the held-out test data, which constitute the official

4This evaluation was carried out using the official scorer
script of the CoNLL shared task. When cue information is
kept constant, as in our case, the values for false positives
and false negatives will be identical, hence the precision and
recall values will always be identical as well.

results for our system in the CoNLL-2010 shared
task. The held-out test set comprises biomedical
articles with a total of 5003 sentences (790 of them
hedged).

For Task 1 we obtain an F-score of 85.21. The
corresponding result for the training data, which is
reported as ‘Sentence Level’ in Table 3, is 89.00.
Although we experience a slight drop in perfor-
mance (3.8 percentage points), the system seems
to generalize quite well to unseen data when it
comes to the detection of sentence-level uncer-
tainty.

For Task 2, the result on the held-out data set is
an F-score of 55.33, with quite balanced values for
precision and recall, 56.7 and 54.0, respectively. If
we compare this to the end-to-end evaluation on
the training data, provided in the bottom row of
Table 5, we find a somewhat larger drop in perfor-
mance (9.5 percentage points), from an F-score of
64.77 to the held-out 55.3. There are several pos-
sible reasons for this drop. First of all, there might
be a certain degree of overfitting of our system to
the training data. The held-out data may contain
hedging constructions that are not covered by our
set of scope rules. Moreover, the performance of
the scope rules is also influenced by the cue de-
tection, which is reported in the final columns of
Table 6. The cue-level performance of our system
on the held-out data set is 78.68, whereas the same
evaluation on the training data is 84.49. We find
that it is the precision, in particular, which suffers
in the application to the held-out data set. A pos-
sible strategy for future work is to optimize both
components of the Task 2 system, the cue detec-
tion and the scope rules, on the entire training set,
instead of just on the articles.

6 Conclusions – Outlook

We have described a hybrid, two-level approach
for resolving hedging in biomedical text, as sub-
mitted for the stricter track of ‘closed’ or ‘in-
domain’ systems in the CoNLL-2010 shared task.
For the task of identifying hedge cues, we train
a MaxEnt classifier, which, for the held-out test
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data, achieves an F-score of 78.68 on the cue-level
and 85.21 on the sentence-level (Task 1). For the
task of resolving the in-sentence scope of the iden-
tified cues (Task 2), we apply a set of manually
crafted rules operating on dependency representa-
tions, resulting in an end-to-end F-score of 55.33
(based on exact match of both cues and scopes). In
the official shared task ranking of results, and con-
sidering systems in all tracks together, our system
is ranked 4 out of 24 for Task 1 and 3 out of 15 for
Task 2, resulting in the highest average rank over-
all. For future work we aim to further improve the
cue detection, in particular with respect to multi-
word cues, and also continue to refine the scope
rules. Instead of defining the scopal rules only at
the level of dependency structure, one could also
have rules operating on constituent structure – per-
haps even combining alternative resolution candi-
dates using a statistical ranker.
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Abstract

Hedge cues were detected using a super-
vised Conditional Random Field (CRF)
classifier exploiting features from the
RASP parser. The CRF’s predictions were
filtered using known cues and unseen in-
stances were removed, increasing preci-
sion while retaining recall. Rules for scope
detection, based on the grammatical re-
lations of the sentence and the part-of-
speech tag of the cue, were manually-
developed. However, another supervised
CRF classifier was used to refine these pre-
dictions. As a final step, scopes were con-
structed from the classifier output using a
small set of post-processing rules. Devel-
opment of the system revealed a number of
issues with the annotation scheme adopted
by the organisers.

1 Introduction

Speculative or, more generally, “hedged” language
is a way of weakening the strength of a statement.
It is usually signalled by a word or phrase, called a
hedge cue, which weakens some clauses or propo-
sitions. These weakened portions of a sentence
form the scope of the hedge cues.

Hedging is an important tool in scientific lan-
guage allowing scientists to guide research be-
yond the evidence without overstating what fol-
lows from their work. Vincze et al. (2008) show
that 19.44% of all sentences in the full papers
of the BioScope corpus contain hedge cues. De-
tecting these cues is potentially valuable for tasks
such as scientific information extraction or liter-
ature curation, as typically only definite informa-
tion should be extracted and curated. Most work
so far has been done on classifying entire text
sentences as hedged or not, but this risks los-
ing valuable information in (semi-)automated sys-

tems. More recent approaches attempt to find the
specific parts of a text sentence that are hedged.

Here we describe a system that is designed to
find hedge cues and their scopes in biomedical re-
search papers. It works in three stages:

1. Detecting the cues using a token-level super-
vised classifier.

2. Finding the scopes with a combination of
manual rules and a second supervised token-
level classifier.

3. Applying postprocessing rules to convert the
token-level annotation into predictions about
scope.

Parts of the system are similar to that of Morante
and Daelemans (2009) — both make use of ma-
chine learning to tag tokens as being in a cue or
a scope. The most important differences are the
use of manually defined rules and the inclusion of
grammatical relations from a parser as critical fea-
tures.

2 Data

A revised version of the BioScope corpus (Vincze
et al., 2008), containing annotation of cues and
scopes, was provided as training data for the
CoNLL-2010 shared task (Farkas et al., 2010).
This includes 9 full papers and 1273 abstracts
from biomedical research fields. A separate new
set of full papers was released for evaluation as
part of the task. Table 1 contains an overview of
the training corpus statistics.

(1) provides an example sentence from the cor-
pus illustrating the annotation provided for train-
ing.

(2) shows the same sentence, representing cues
with angle brackets and scopes with round brack-
ets.

56



Papers Abstracts
Documents 9 1273
Sentences 2670 11871
Cues 682 2694
Scopes 668 2659
Unique cues 100 112
Cues with multiple words 10.70% 12.25%
Scopes start with cue 72.00% 80.59%
Scopes with multiple cues 2.10% 1.28%

Table 1: Training data statistics.

(1) <sentence id=“S1.166”>We <xcope
id=“X1.166.2”><cue ref=“X1.166.2”
type=“speculation”>expect</cue> that this cluster
<xcope id=“X1.166.1”><cue ref=“X1.166.1”
type=“speculation”>may</cue> represent a novel
selenoprotein
family</xcope></xcope>.</sentence>

(2) We (<expect> that this cluster (<may> represent a
novel selenoprotein family)).

There are a number of conditions on the anno-
tation that are imposed:

• Every cue has one scope.

• Every scope has one or more cues.

• The cue must be contained within its scope.

• Cues and scopes have to be continuous.

For development of the system, before the eval-
uation data were released, we used 60% of the
available corpus for training and 40% for testing.
The results we give below measure the system per-
formance on the evaluation data while using all
of the training data to build the supervised clas-
sifiers. The manually-developed rules are based
on the 60% of the development data we originally
reserved for training.

All of the training and test data sentences
were tokenised and parsed using the RASP sys-
tem (Briscoe et al., 2006). Multiple part-of-
speech (POS) tag outputs were passed to the parser
(to compensate for the high number of unseen
words in biomedical text), retaining just the high-
est ranked directed graph of grammatical relations
(GRs). Each node in the graph represents a word
token annotated with POS, lemma, and positional
order information. In the case of parse failure the
set of unconnected graphs returned by the highest-
ranked spanning subanalyses for each sentence
were retained.

3 Speculation cues

The hedge cues are found using a Conditional
Random Field (CRF) (Lafferty et al., 2001) classi-
fier, implemented using CRF++ 1. We chose the
CRF model because we framed the task as one
of token-level sequential tagging and CRFs are
known to achieve state-of-the-art performance on
related text classification tasks. Each word token
is assigned one of the following tags: F (first word
of a cue), I (inside a cue), L (last word of a cue),
O (outside, not a cue), hereafter referred to as the
FILO scheme.

The feature types used for classification are de-
fined in terms of the grammatical relations output
provided by the RASP system. We use binary fea-
tures that indicate whether a word token is a head
or a dependent in specific types of grammatical
relation (GR). This distinguishes between differ-
ent functions of the same word (when used as a
subject, object, modifier, etc.). These features are
combined with POS and lemma of the word to dis-
tinguish between uses of different cues and cue
types. We also utilise features for the lemma and
POS of the 3 words before and after the current
word.

The list of feature types for training the classi-
fier is:

• string
• lemma
• part-of-speech
• broad part-of-speech
• incoming GRs + POS
• outgoing GRs + POS
• incoming GRs + POS + lemma
• outgoing GRs + POS + lemma
• lemma + POS + POS of next word
• lemma + POS + POS of previous word
• 3 previous lemma + POS combinations
• 3 following lemma + POS combinations.

Outgoing GRs are grammatical relations where
the current word is the head, incoming GRs where
it is the dependent.

The predictions from the classifier are com-
pared to the list of known cues extracted from the
training data; the longest possible match is marked
as a cue. For example, the classifier could output
the following tag sequence:

(3) This[O] indicates[F] that[O] these[O] two[O]
lethal[O] mutations[O] . . .

1http://crfpp.sourceforge.net

57



indicates is classified as a cue but that is not.
The list of known cues contains “indicates that”
which matches this sentence, therefore the system
prediction is:

(4) This <indicates that> these two lethal mutations . . .

Experiments in section 5.1 show that our sys-
tem is not good at finding previously unseen cues.
Lemma is the most important feature type for cue
detection and when it is not available, there is not
enough evidence to make good predictions. There-
fore, we compare all system predictions to the list
of known cues and if there is no match, they are
removed. The detection of unseen hedge cues is a
potential topic for future research.

4 Speculation scopes

We find a scope for each cue predicted in the pre-
vious step. Each word token in the sentence is
tagged with either F (first word of a scope), I (in-
side a scope), L (last word of a scope) or O (out-
side, not in a scope). Using our example sentence
(2) the correct tagging is:

expect may
We O O
expect F O
that I O
this I O
cluster I O
may I F
represent I I
a I I
novel I I
selenoprotein I I
family L L
. O O

Table 2: Example of scope tagging.

If a cue contains multiple words, they are each
processed separately and the predictions are later
combined by postprocessing rules.

As the first step, manually written rules are ap-
plied that find the scope based on GRs and POS
tags. We refine these predictions using a second
CRF classifier and further feature types extracted
from the RASP system output. Finally, postpro-
cessing rules are applied to convert the tagging se-
quence into scopes. By default, the minimal scope
returned is the cue itself.

4.1 Manual rules
Manual rules were constructed based on the de-
velopment data and annotation guidelines. In the
following rules and examples:

• “below” refers to nodes that are in the sub-
graph of GRs rooted in the current node.

• “parent” refers to the node that is the head
of the current node in the directed, connected
GR graph.

• “before” and “after” refer to word positions
in the text centered on the current node.

• “mark everything below” means mark all
nodes in the subgraph as being in the scope
(i.e. tag as F/I/L as appropriate). However,
the traversal of the graph is terminated when
a text adjunct (TA) GR boundary or a word
POS-tagged as a clause separator is found,
since they often indicate the end of the scope.

The rules for finding the scope of a cue are trig-
gered based on the generalised POS tag of the cue:

• Auxiliary — VM
Mark everything that is below the parent and
after the cue.
If the parent verb is passive, mark everything
below its subject (i.e. the dependent of the
subj GR) before the cue.

• Verb — VV
Mark everything that is below the cue and af-
ter the cue.
If cue is appear or seem, mark everything be-
low subject before the cue.
If cue is passive, mark everything below sub-
ject before the cue.

• Adjective — JJ
Find parent of cue. If there is no parent, the
cue is used instead.
Mark everything that is below the parent and
after the cue.
If parent is passive, mark everything below
subject before the cue.
If cue is (un)likely and the next word is to,
mark everything below subject before the
cue.

• Adverb — RR
Mark everything that is below the parent and
after the cue.
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• Noun — NN
Find parent of cue. If there is no parent, the
cue is used instead.
Mark everything that is below the parent and
after the cue.
If parent is passive, mark everything below
subject before the cue.

• Conjunction — CC
Mark everything below the conjunction.
If the cue is or and there is another cue either
before, combine them together.

• “Whether” as a conjunction — CSW
Mark everything that is below the cue and af-
ter the cue.

• Default — anything else
Mark everything that is below the parent and
after the cue.
If parent verb is passive, mark everything be-
low subject before the cue.

Either . . . or . . . is a frequent exception contain-
ing two separate cues that form a single scope. An
additional rule combines these cues when they are
found in the same sentence.

The partial GR graph for (5) is given in Figure
1 (with positional numbering suppressed for read-
ability).

(5) Lobanov et al. thus developed a sensitive search
method to deal with this problem, but they also
admitted that it (<would> fail to identify highly
unusual tRNAs).

Following the rules, would is identified as a cue
word with the part-of-speech VM; this triggers the
first rule in the list. The parent of would is fail
since they are connected with a GR where fail is
the head. Everything that is below fail in the GR
graph and positioned after would is marked as be-
ing in the scope. Since fail is not passive, the sub-
ject it is left out. The final scope returned by the
rule is then would fail to identify highly unusual
tRNAs.

4.2 Machine learning
The tagging sequence from the manual rules is
used as input to a second CRF classifier, along
with other feature types from RASP. The output
of the classifier is a modified sequence of FILO
tags.

The list of features for each token, used both
alone and as sequences of 5-grams before and after
the token, is:

Figure 1: Partial GR graph for sample sentence (5)

• tag from manual rules
• lemma
• POS
• is the token also the cue
• distance from the cue
• absolute distance from the cue
• relative position to the cue
• are there brackets between the word and the

cue
• is there any other punctuation between the

word and the cue
• are there any special (clause ending) words

between the word and cue
• is the word in the GR subtree of the cue
• is the word in the GR subtree of the main verb
• is the word in the GR subject subtree of the

main verb

Features of the current word, used in combina-
tion with the POS sequence of the cue:

• POS
• distance from the cue
• absolute distance from the cue
• relative position to the cue
• is the word in the GR subtree of the cue
• is the word in the GR subtree of the main verb
• is the word in the GR subject subtree of the

main verb
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Additional features:

• GR paths between the word and the cue: full
path plus subpaths with up to 5 nodes
• GR paths in combination with the lemma se-

quence of the cue

The scope of the hedge cue can often be found
by tracking the sequence of grammatical relations
in the GR graph of a sentence, as described by
the manual rules. To allow the classifier to learn
such regularities, we introduce the concept of a
GR path.

Given that the sentence has a full parse and con-
nected graph, we can find the shortest connected
path between any two words. We take the con-
nected path between the word and the cue and con-
vert it into a string representation to use it as a fea-
ture value in the classifier. Path sections of differ-
ent lengths allow the system to find both general
and more specific patterns. POS tags are used as
node values to abstract away from word tokens.

An example for the word unusual, using the
graph from Figure 1, is given below. Five fea-
tures representing paths with increasing lengths
plus one feature containing the full path are ex-
tracted.

(6) 1: VM
2: VM<–aux–VV0
3: VM<–aux–VV0–xcomp–>VV0
4: VM<–aux–VV0–xcomp–>VV0–dobj–>NP2
5: VM<–aux–VV0–xcomp–>VV0–dobj–>NP2–
ncmod–>JJ
6: VM<–aux–VV0–xcomp–>VV0–dobj–>NP2–
ncmod–>JJ

Line 1 shows the POS of the cue would (VM).
On line 2, this node is connected to fail (VV0) by
an auxiliary GR type. More links are added until
we reach unusual (JJ).

The presence of potential clause ending words,
used by Morante and Daelemans (2009), is in-
cluded as a feature type with values: whereas,
but, although, nevertheless, notwithstanding, how-
ever, consequently, hence, therefore, thus, instead,
otherwise, alternatively, furthermore, moreover,
since.

4.3 Post-processing
If the cue contains multiple words, the tag se-
quences have to be combined. This is done by
overlapping the sequences and choosing the pre-
ferred tag for each word, according to the hierar-
chy F > L > I > O.

Next, scopes are constructed from tag se-
quences using the following rules:

• Scope start point is the first token tagged as
F before the cue. If none are found, the first
word of the cue is used as the start point.

• Scope end point is the last token tagged as L
after the cue. If none are found, look for tags
I and F. If none are found, the last word of the
cue is used as end point.

The scopes are further modified until none of
the rules below return any updates:

• If the last token of the scope is punctuation,
move the endpoint before the token.

• If the last token is a closing bracket, move the
scope endpoint before the opening bracket.

• If the last token is a number and it is not pre-
ceded by a capitalised word (e.g. Table 16),
move the scope endpoint before the token.
This is a heuristic rule to handle trailing ci-
tations which are frequent in the training data
and often misattached by the parser.

Finally, scopes are checked for partial overlap
and any instances are corrected. For example, the
system might return a faulty version (7) of the sen-
tence (2) in which one scope is only partially con-
tained within the other.

(7) We [<expect> that this cluster (<may> represent a
novel] selenoprotein family).

This prediction cannot be represented within the
format specified for the shared task and we were
unable to find cases where such annotation would
be needed. These scopes are modified by moving
the end of the first scope to the end of the second
scope. The example above would become:

(8) We [<expect> that this cluster (<may> represent a
novel selenoprotein family)].

5 Results

5.1 Hedge cues
In evaluation a predicted cue is correct if it con-
tains the correct substring of the sentence. Token-
level evaluation would not give accurate results
because of varying tokenisation rules. A sentence
is classified as hedged if it contains one or more
cues.
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The results below are obtained using the scorers
implemented by the organisers of the shared task.

As our baseline system, we use simple string
matching. The list of known cues is collected from
the training data and compared to the evaluation
sentences. The longest possible match is always
marked as a cue. ML1 to ML3 are variations of
the system described in section 3. All available
data, from papers and abstracts, were used to train
the CRF classifier. ML1 uses the results of the
classifier directly. The longest sequence of tokens
tagged as being part of a cue is used to form the fi-
nal prediction. ML2 incorporates the list of known
cues, constructing a cue over the longest sequence
of matching tokens where at least one token has
been tagged as belonging to a cue. ML3 uses the
list of known cues and also removes any predicted
cues not seen in the training data.

Baseline ML1 ML2 ML3
Total cues 1047 1047 1047 1047
Predicted cues 3062 995 1006 995
Correctly
predicted cues

1018 785 810 810

Cue precision 0.332 0.789 0.805 0.814
Cue recall 0.972 0.750 0.774 0.774
Cue F-measure 0.495 0.769 0.789 0.793
Sentence
precision

0.413 0.831 0.831 0.838

Sentence recall 0.995 0.843 0.843 0.842
Sentence
F-measure

0.584 0.837 0.837 0.840

Table 3: Cue detection results.

The baseline system returns nearly all cues but
since it matches every string, it also returns many
false positives, resulting in low precision. ML1
delivers more realistic predictions and increases
precision to 0.79. This illustrates how the use of a
word as a hedge cue depends on its context and not
only on the word itself. ML2 incorporates known
cues and increases both precision and recall. ML3
removes any unseen cue predictions further im-
proving precision. This shows the system is un-
able to accurately predict cues that have not been
included in the training data.

Table 4 lists the ten most common cues in the
test data and the number of cues found by the ML3
system.

In the cases of may and suggest, which are also
the most common cues in the development data,
the system finds all the correct instances. Can
and or are not detected as accurately because they
are both common words that in most cases are

TP FP Gold
may 161 5 161
suggest 124 0 124
can 2 1 61
or 9 12 52
indicate that 49 2 50
whether 42 6 42
might 42 1 42
could 30 17 41
would 37 14 37
appear 31 14 31

Table 4: True and false positives of the ten most
common cues in the evaluation data, using ML3
system.

not functioning as hedges. For example, there are
1215 occurrences of or in the training data and
only 146 of them are hedge cues; can is a cue in 64
out of 506 instances. We have not found any ex-
tractable features that reliably distinguish between
the different uses of these words.

5.2 Hedge scopes
A scope is counted as correct if it has the correct
beginning and end points in the sentence and is
associated with the correct cues. Scope prediction
systems take cues as input, therefore we present
two separate evaluations – one with gold standard
cues and the other with cues predicted by the ML3
system from section 4.

The baseline system looks at each cue and
marks a scope from the beginning of the cue to the
end of the sentence, excluding the full stop. The
system using manual rules applies a rule for each
cue to find its scope, as described in section 4.1.
The POS tag of the cue is used to decide which
rule should be used and the GRs determine the
scope.

The final system uses the result from the manual
rules to derive features, adds various further fea-
tures from the parser and trains a CRF classifier to
refine the predictions.

We hypothesized that the speculative sentences
in abstracts may differ from the ones in full papers
and a 10-fold cross-validation of the development
data supported this intuition. Therefore, the orig-
inal system (CRF1) only used data from the full
papers to train the scope detection classifier. We
present here also the system trained on all of the
available data (CRF2).

Post-processing rules are applied equally to all
of these systems.

The baseline system performs remarkably well.
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Baseline Manual
rules

Manual
rules +
CRF1

Manual
rules +
CRF2

Total scopes 1033 1033 1033 1033
Predicted 1047 1035 1035 1035
Correctly
predicted

596 661 686 683

Precision 0.569 0.639 0.663 0.660
Recall 0.577 0.640 0.664 0.661
F-measure 0.573 0.639 0.663 0.661

Table 5: Scope detection results using gold stan-
dard cues.

Baseline Manual
rules

Manual
rules +
CRF1

Manual
rules +
CRF2

Total scopes 1033 1033 1033 1033
Predicted 995 994 994 994
Correctly
predicted

507 532 564 567

Precision 0.510 0.535 0.567 0.570
Recall 0.491 0.515 0.546 0.549
F-measure 0.500 0.525 0.556 0.559

Table 6: Scope detection results using predicted
cues.

It does not use any grammatical or lexical know-
ledge apart from the cue and yet it delivers an F-
score of 0.50 with predicted and 0.57 with gold
standard cues.

Manual rules are essentially a more fine-grained
version of the baseline. Instead of a single rule,
one of 8 possible rules is selected based on the
POS tag of the cue. This improves the results,
increasing the F-score to 0.53 with predicted and
0.64 with gold standard cues. The improvement
suggests that the POS tag of a cue is a good indi-
cator of how it behaves in the sentence.

Error analysis showed that 35% of faulty scopes
were due to incorrect or unconnected GR graphs
output by the parser, and 65% due to exceptions
that the rules do not cover. An example of an ex-
ception, the braces { } showing the scopes pre-
dicted by the rules, is given in (9).

(9) Contamination is {(<probably> below 1%)}, which
is {(<likely> lower than the contamination rate of the
positive dataset) as discussed in 47}.

as discussed in 47 is a modifier of the clause
which is usually included in the scope but in this
case should be left out.

Finally, the last system combines features from
the rule-based system with features from RASP to
train a second classifier and improves our results
further, reaching 0.56 with predicted cues.

Inclusion of the abstracts as training data gave
a small improvement with predicted cues but not
with gold standard cues. It is part of future work
to determine if and how the use of hedges differs
across text sources.

6 Annotation scheme

During analysis of the data, several examples were
found that could not be correctly annotated due to
the restrictions of the markup. This leads us to
believe that the current rules for annotation might
not be best suited to handle complex constructions
containing hedged text.

Most importantly, the requirement for the hedge
scope to be continuous over the surface form of
text sentence does not work for some examples
drawn from the development data. In (10) below
it is uncertain whether fat body disintegration is
independent of the AdoR. In contrast, it is stated
with certainty that fat body disintegration is pro-
moted by action of the hemocytes, yet the latter
assertion is included in the scope to keep it contin-
uous.

(10) (The block of pupariation <appears> to involve
signaling through the adenosine receptor ( AdoR )) ,
but (fat body disintegration , which is promoted by
action of the hemocytes , <seems> to be independent
of the AdoR) .

Similarly, according to the guidelines, the sub-
ject of be likely should be included in its scope,
as shown in example (11). In sentence (12), how-
ever, the subject this phenomenon is separated by
two non-speculative clauses and is therefore left
out of the scope.

(11) Some predictors make use of the observation that
(neighboring genes whose relative location is
conserved across several prokaryotic organisms are
<likely> to interact).

(12) This phenomenon, which is independent of tumour
necrosis factor, is associated with HIV replication, and
(is thus <likely> to explain at least in part the
perpetuation of HIV infection in monocytes).

In (13), arguably, there is no hedging as the sen-
tence precisely describes a statistical technique for
predicting interaction given an assumption.

(13) More recently, other groups have come up with
sophisticated statistical methods to estimate
(<putatively> interacting domain pairs), based on the
(<assumption> of domain reusability).

Ultimately, dealing effectively with these and
related examples would involve representing
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hedge scope in terms of sets of semantic proposi-
tions recovered from a logical semantic represen-
tation of the text, in which anaphora, word sense,
and entailments had been resolved.

7 Related work

Most of the previous work has been done on classi-
fying sentences as hedged or not, rather than find-
ing the scope of the hedge.

The first linguistically and computationally mo-
tivated study of hedging in biomedical texts is
Light et al. (2004). They present an analysis of the
problem based on Medline abstracts and construct
an initial experiment for automated classification.

Medlock and Briscoe (2007) propose a weakly
supervised machine learning approach to the
hedge classification problem. They construct a
classifier with single words as features and use
a small amount of seed data to bootstrap the
system, achieving the precision/recall break-even
point (BEP) of 0.76. Szarvas (2008) extends this
work by introducing bigrams and trigrams as fea-
ture types, improving feature selection and us-
ing external data sources to construct lists of cue
words, achieving a BEP of 0.85.

Kilicoglu and Bergler (2008) apply a combina-
tion of lexical and syntactic methods, improving
on previous results and showing that quantifying
the strength of a hedge can be beneficial for clas-
sification of speculative sentences.

Vincze et al. (2008) created a publicly available
annotated corpus of biomedical papers, abstracts
and clinical data called BioScope, parts of which
were also used as training data for the CoNLL10
shared task, building on the dataset and annota-
tion scheme used for evaluation by Medlock and
Briscoe (2007).

Morante and Daelemans (2009) use the Bio-
Scope corpus to approach the problem of identify-
ing cues and scopes via supervised machine learn-
ing. They train a selection of classifiers to tag each
word and combine the results with a final classi-
fier, finding 65.6% of the scopes in abstracts and
35.9% of the scopes in papers.

8 Conclusions

We have shown that the GRs output by the RASP
system can be effectively used as features for de-
tecting cues in a supervised classifier and also as
the basis for manual rules and features for scope
detection. We demonstrated that a small num-

ber of manual rules can provide competitive re-
sults, but that these can be further improved using
machine learning techniques and post-processing
rules. The generally low ceiling for the scope de-
tection results demonstrates the difficulty of both
annotating and detecting the hedge scopes in terms
of surface sentential forms.

Future work could usefully be directed at im-
proving performance on unseen cue detection and
on learning rules of the same form as those de-
veloped manually from annotated training data.
However, perhaps the most pressing issue is that of
establishing the best possible annotation and con-
sequent definition of the scope detection task.
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Abstract

RelHunter is a Machine Learning based
method for the extraction of structured in-
formation from text. Here, we apply Rel-
Hunter to the Hedge Detection task, pro-
posed as the CoNLL-2010 Shared Task1.
RelHunter’s key design idea is to model
the target structures as a relation over enti-
ties. The method decomposes the original
task into three subtasks: (i) Entity Iden-
tification; (ii) Candidate Relation Gener-
ation; and (iii) Relation Recognition. In
the Hedge Detection task, we define three
types of entities: cue chunk, start scope
token and end scope token. Hence, the
Entity Identification subtask is further de-
composed into three token classification
subtasks, one for each entity type. In
the Candidate Relation Generation sub-
task, we apply a simple procedure to gen-
erate a ternary candidate relation. Each in-
stance in this relation represents a hedge
candidate composed by a cue chunk, a
start scope token and an end scope to-
ken. For the Relation Recognition sub-
task, we use a binary classifier to discrim-
inate between true and false candidates.
The four classifiers are trained with the
Entropy Guided Transformation Learning
algorithm. When compared to the other
hedge detection systems of the CoNLL
shared task, our scheme shows a competi-
tive performance. The F -score of our sys-
tem is 54.05 on the evaluation corpus.

∗ This work is partially funded by CNPq and FAPERJ
grants 557.128/2009-9 and E-26/170028/2008.

† Holds a CNPq doctoral fellowship and has financial
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1Closed Task 2: detection of hedge cues and their scopes.

1 Introduction

Hedges are linguistic devices that indicate un-
certain or unreliable information within a text.
The detection of hedge structures is important for
many applications that extract facts from textual
data. The CoNLL-2010 Shared Task (Farkas et
al., 2010) is dedicated to hedge detection.

A hedge structure consists of a cue and a scope.
In Figure 1, we present a sentence with two hedge
instances. The hedge cues are highlighted and
their scopes are delimited by brackets. The hedge
cue comprises one or more keywords that indi-
cate uncertainty. The hedge scope is the uncertain
statement which is hedged by the cue. The scope
always includes the corresponding cue.

[ They indicate that [ the demonstration
is possible in this context ] and there is a
correlation ]

Figure 1: Sentence with two hedge instances.

Over the last two decades, several Computa-
tional Linguistic problems have been successfully
modeled as local token classification tasks (Brill,
1995; Milidiú et al., 2009). Nevertheless, the
harder problems consist in identifying complex
structures within a text. These structures comprise
many tokens and show non local token dependen-
cies.

Phrase chunking (Sang and Buchholz, 2000) is
a task that involves structure recognition. Pun-
yakanok and Roth decompose this task into
four subtasks, that are sequentially solved (Pun-
yakanok and Roth, 2001). They use Hidden
Markov Models for the first three subtasks. They
find out that task decomposition improves the
overall token classification modeling.

Clause identification (Sang and Déjean, 2001)
is another task that requires structure recognition.
As clauses may embed other clauses, these struc-

64



tures involve stronger dependencies than phrase
chunks. Carreras et al. propose an approach that
extends Punyakanok and Roth’s previous work
(Carreras et al., 2002). Their system comprises
complex methods for training and extraction, in
order to exploit the specific dependency aspects of
clause structures.

Phrase Recognition is a general type of task that
includes both phrase chunking and clause iden-
tification. Carreras et al. propose the Filtering-
Ranking Perceptron (FRP) system for this general
task (Carreras et al., 2005). The FRP task model-
ing is strongly related to previous proposals (Pun-
yakanok and Roth, 2001; Carreras et al., 2002).
However, it simultaneously learns to solve three
subtasks. FRP is very effective, although compu-
tationally expensive at both training and prediction
time. Currently, FRP provides the best performing
clause identification system.

In Morante and Daelemans (2009), the hedge
detection task is solved as two consecutive classi-
fication tasks. The first one consists of classify-
ing the tokens of a sentence as hedge cues using
the IOB tagging style. The second task consists of
classifying tokens of a sentence as being the start
of a hedge scope, the end of one, or neither. The
result of those two tasks is combined using a set of
six rules to solve the hedge detection task.

Here, we describe RelHunter, a new method
for the extraction of structured information from
text. Additionally, we apply it to the Hedge Detec-
tion task. RelHunter extends the modeling strat-
egy used both in Carreras et al. (2005) and Pun-
yakanok et al. (2001). Other applications of this
method are presented in Fernandes at al. (2009b;
2010).

The remainder of this text is organized as fol-
lows. In Section 2, we present an overview of the
RelHunter method. The modeling approach for
the Hedge Detection task is presented in Sections
3 and 4. The experimental findings are depicted
and discussed in Section 5. Finally, in Section 6,
we present our final remarks.

2 RelHunter Overview

The central idea of RelHunter is to model the tar-
get structures as a relation over entities. To learn
how to extract this relation from text, RelHunter
uses two additional schemes: task decomposition
and interdependent classification.

We decompose the original task into three sub-

tasks: (i) Entity Identification; (ii) Candidate Re-
lation Generation; and (iii) Relation Recognition.
In Figure 2, we illustrate the application of Rel-
Hunter to hedge detection. We use the sentence
introduced by Figure 1.

Entity Identification is a local subtask, in which
simple entities are detected without any concern
about the structures they belong to. The outcome
of this subtask is the entity set. For instance, for
hedge detection, we identify three types of enti-
ties: hedge cues, tokens that start a scope and to-
kens that end a scope.

The second subtask is performed by a simple
procedure that generates the candidate relation
over the entity set. This relation includes true and
false candidates. This procedure considers do-
main specific knowledge to avoid the generation
of all possible candidates. In the hedge detection
task, we define the candidate relation as the set
of entity triples that comprise a hedge cue, a start
scope token and an end scope token, such that the
start token does not occur after the end token and
the hedge cue occurs between the start and the end
tokens.

The Relation Recognition subtask is a binary
classification problem. In this subtask, we dis-
criminate between true and false candidates. The
output relation produced in this subtask contains
the identified hedge instances.

3 Hedge Detection using RelHunter

In this section, we detail the RelHunter method
and describe its application to hedge detection.

3.1 Entity Identification

We consider three specific entity types: cue chunk,
start scope token, and end scope token. We divide
entity identification into three token classification
tasks, one for each entity type. Thus, we use the
original corpus to train three classifiers.

The cue chunk subtask is approached as a to-
ken classification problem by using the IOB tag-
ging style. The token tag is defined as follows: I,
when it is inside a hedge cue; O, when it is outside
a hedge cue; and B, when it begins a hedge cue
immediately after a distinct cue. As the baseline
classifier, we use the Cue Dictionary proposed in
Morante and Daelemans (2009), classifying each
occurrence of those words as a cue.

The start scope and end scope subtasks are
modeled as binary token classification problems.
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Figure 2: Diagram of the RelHunter method.

As the baseline classifier for the start scope sub-
task, we assign the first token of each hedge cue as
the start of a scope.

We have two baseline classifiers for the end
scope subtask: END and END-X. The END sys-
tem classifies as an end token the second to the
last token of each sentence that contains a cue.
Due to the frequent occurrence of parenthesized
clauses at the end of sentences in full articles, the
END-X system extends the END system with an
additional operation. It reassigns an end scope tag,
from a close parentheses token, to the token before
its corresponding open parentheses.

3.2 Candidate Relation Generation

We define as the candidate hedge relation the set
of entity triples that comprise a hedge cue, a start
scope token and an end scope token, such that the
start token does not occur after the end token and
the hedge cue occurs between the start and the end
tokens.

3.3 Relation Recognition

We train a binary classifier to discriminate be-
tween positive and negative candidates within the
candidate relation. This classifier is trained on the
relation dataset, which is built by a general pro-
cedure. This dataset contains an entry for each
candidate. For each candidate, we generate two
feature sets: local features and global features.

The local features include local information
about each candidate entity, namely: cue chunk,
start scope token and end scope token. These fea-
tures are retrieved from the original corpus. For
the start and end tokens, we use all their features in
the original corpus. For the cue chunk, we use the
features of the rightmost token within the chunk.

The global features follow Carreras et al.
(2002). These features are generated by consid-
ering the whole sentence where the candidate lies
in. They inform about the occurrence of relevant
elements within sentence fragments. We consider
as relevant elements the three entity types and ver-
bal chunks.

For each candidate entity, we consider three
fragments. The first one contains all the tokens be-
fore the entity. The second, all the entity tokens,
and the third all the tokens after the entity. Simi-
larly, for the whole candidate, we have three more
fragments: one containing all the tokens before the
candidate, another containing all the candidate to-
kens, and the third one containing all the tokens
after the candidate. Thus, there are 12 fragments
for each candidate, three for each entity plus three
for the whole candidate.

For each relevant element and fragment, we
generate two global features in the relation dataset:
a flag indicating the occurrence of the element
within the fragment and a counter showing its fre-
quency.

The relation dataset has km local features and
6r(k + 1) global features, where k is the relation
cardinality (number of entities), m is the number
of features in the original corpus, and r is the num-
ber of relevant elements.

Our current RelHunter implementation uses the
Entropy Guided Transformation Learning (ETL)
as its learning engine (Milidiú et al., 2008; dos
Santos and Milidiú, 2009). For instance, we train
four ETL based classifiers: one for each Entity
Identification subtask and one for the Relation
Recognition subtask. In the next section, we de-
scribe an important issue explored by the ETL al-
gorithm.
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4 Interdependent Classification

The input to the Relation Recognition subtask is
the candidate relation, i.e., a set of hedge candi-
dates. The corresponding classifier must discrim-
inate positive from negative candidates. However,
identifying one candidate as positive implies that
some other candidates must be negatives. This in-
volves a special modeling issue: interdependent
classification. The learning engine may explore
these dependencies, when building the classifier
for this subtask.

Interdependent classification is usually assumed
for neighboring examples. When the learning
model adopts a Markovian Property, then the
neighborhood is given by a context window. This
is the case for Markovian Fields such as Hidden
Markov Models. Another model that also explores
interdependent examples is ETL.

ETL is a very attractive modeling tool and has
been applied to several classification tasks (Mi-
lidiú et al., 2008; dos Santos and Milidiú, 2009;
Fernandes et al., 2009a; Fernandes et al., 2010).
ETL uses an annotated corpus, where the corre-
sponding class is attached to each example. The
corpus is partitioned into segments. Each segment
is a sequence of examples. Examples within the
same segment are considered dependent. Con-
versely, examples within different segments are
considered independent. Moreover, an example
classification depends only on the features of the
examples from its corresponding context window.
Hence, to apply ETL we need to provide three
modeling ingredients: segment definition, exam-
ple ordering within a segment and the context win-
dow size. Given that, classification dependencies
are explored by the ETL classifier. Hence, Rel-
Hunter uses ETL as its learning engine.

We include in the same segment the hedge can-
didates that have the same cue and start scope to-
kens. Within a segment, we order the candidates
by the order of the end token in the original cor-
pus. We use a context window of 7 candidates,
i.e., three candidates before the current, the current
candidate and three candidates after the current.

5 Experimental Results

We use the corpus provided in the CoNLL-2010
Shared Task to train and evaluate our hedge de-
tection system. We add the following annota-
tion to the corpus: word stems, part-of-speech
tags, phrase chunks, and clause annotations. Word

stems have been generated by the Porter stemmer
(Porter, 1980). The additional annotation has been
generated by ETL based systems (dos Santos and
Milidiú, 2009; Fernandes et al., 2009b; Milidiú et
al., 2008).

The CoNLL corpus is based on the BioScope
corpus (Vincze et al., 2008). Since it contains doc-
uments of two different kinds – paper abstracts and
full papers – we split it into two subcorpora. The
first subcorpus is called ABST and contains all the
paper abstracts. The second is called FULL and
contains all the full papers.

We have two experimental setups: Development
and Evaluation. In the Development Setup, we use
ABST as the training corpus and FULL as the de-
velopment corpus. This is a conservative decision
since the CoNLL Evaluation Corpus is comprised
only of full articles. In the Evaluation Setup, we
use the union of ABST and FULL as the train-
ing corpus and report the performance over the
CoNLL Evaluation Corpus.

5.1 Development

Here, we report the development setup experimen-
tal findings. In Table 1, we show the performance
of the three baseline classifiers. The start and end
classifiers are evaluated with golden standard cue
chunks. All results are obtained with the END-X
baseline system, except when explicitly stated.

Task Precision Recall F-score

Cue 51.96 51.65 51.80
Start scope 72.01 72.22 72.11
End scope 65.90 58.97 62.24

Table 1: Development performance of the three
Baseline Classifiers.

In Table 2, we report the performance of the
three entity identification ETL classifiers. Again,
the start and end classifiers are evaluated with
golden standard cue chunks. These results indi-
cate that the end scope subtask is the hardest one.
Indeed, our ETL classifier is not able to improve
the baseline classifier performance. The last ta-
ble line shows the performance of the RelHunter
method on the target task – hedge detection.

5.2 Evaluation

Here, we report the evaluation setup findings. In
Table 3, we show the performance of the three
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Task Precision Recall F-score

Cue 81.23 73.20 77.01
Start scope 91.81 72.37 80.94
End scope 65.90 58.97 62.24

Hedge 53.49 34.43 41.89

Table 2: Development performance of the three
entity identification ETL classifiers and the Rel-
Hunter method to hedge detection.

baseline classifiers. The start and end classifiers
are evaluated with golden standard cue chunks.

Task Precision Recall F-score

Cue 45.12 60.02 51.52
Start scope 75.51 75.73 75.62
End scope 81.01 72.56 76.55

Table 3: Evaluation performance of the three
Baseline Classifiers.

In Table 4, we report the performance of the
three entity identification ETL classifiers. Again,
the start and end classifiers are evaluated with
golden standard cue chunks. The last table line
shows the performance of the RelHunter method
on the target task – hedge detection.

Task Precision Recall F-score

Cue 78.73 77.05 77.88
Start scope 89.21 77.86 83.15
End scope 81.01 72.56 76.55

Hedge 57.84 50.73 54.05

Table 4: Evaluation performance of the three
entity identification ETL classifiers and the Rel-
Hunter method to hedge detection.

In Table 5, we report the Hedge Detection per-
formances when using END and END-X, as the
baseline classifier for the end scope subtask. The
use of END-X improves the overall system F -
score by more than ten twelve.

In Table 6, we report the Final Results of the
CoNLL-2010 Shared Task – Closed Task 2. For
the sake of comparison, we also include the per-
formance of the RelHunter system with END-X,
that has been developed and tested after the com-

End scope Precision Recall F-score

END 45.96 38.04 41.63
END-X 57.84 50.73 54.05

Table 5: Evaluation performance of the RelHunter
system when using END and END-X.

petition end. The version with the END baseline
holds rank 7 at the competition.

Official
System P R F

Rank

1 Morante 59.62 55.18 57.32
2 Rei 56.74 54.60 55.65
3 Velldal 56.71 54.02 55.33
- RelHunter 57.84 50.73 54.05
4 Li 57.42 47.92 52.24
5 Zhou 45.32 43.56 44.42
6 Zhang 45.94 42.69 44.25
7 Fernandes 45.96 38.04 41.63
8 Vlachos 41.18 35.91 38.37
9 Zhao 34.78 41.05 37.66
10 Tang 34.49 31.85 33.12
11 Ji 21.87 17.23 19.27
12 Täckström 02.27 02.03 02.15

Table 6: Evaluation performance of the CoNLL-
2010 systems and the RelHunter method with the
END-X end scope classifier.

6 Conclusion

We propose RelHunter, a new machine learning
based method for the extraction of structured in-
formation from text. RelHunter consists in model-
ing the target structures as a relation over entities.
To learn how to extract this relation from text, Rel-
Hunter uses two main schemes: task decomposi-
tion and interdependent classification.

RelHunter decomposes the identification of en-
tities into several but simple token classification
subtasks. Additionally, the method generates a
candidate relation over the identified entities and
discriminates between true and false candidates
within this relation.

RelHunter uses the Entropy Guided Transfor-
mation Learning algorithm as its learning engine.
As Hidden Markov Models, ETL is able to con-
sider interdependent examples. RelHunter ex-
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ploits this powerful feature in order to tackle de-
pendencies among the hedge candidates.

RelHunter is easily applied to many complex
Computational Linguistic problems. We show its
effectiveness by applying it to hedge detection.
Other successful applications of this method are
presented in Fernandes et al. (2009b; 2010).

RelHunter explores the dependency among lin-
guistic structures by using a powerful feature of
the ETL algorithm. Nevertheless, this feature
is restricted to sequentially organized examples,
since ETL has been initially proposed for token
classification problems. Linguistic structures in-
volve topologies that are frequently more complex
than that. The ETL algorithm may be extended to
consider more complex topologies. We conjecture
that it is possible to consider quite general topolo-
gies. This would contribute to the construction of
better solutions to many Computational Linguistic
tasks.

Acknowledgments

The authors thank Evelin Amorim and Eduardo
Motta for coding dataset normalization procedures
that are very handy for Hedge Detection.

References
Eric Brill. 1995. Transformation-based error-driven

learning and natural language processing: a case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Xavier Carreras, Lluı́s Màrquez, Vasin Punyakanok,
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Ruy L. Milidiú, Cı́cero N. dos Santos, and Julio C.
Duarte. 2008. Phrase chunking using entropy
guided transformation learning. In Proceedings of
ACL-08: HLT, pages 647–655, Columbus, USA.
Association for Computational Linguistics.
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Abstract

We extend our prior work on specula-
tive sentence recognition and speculation
scope detection in biomedical text to the
CoNLL-2010 Shared Task on Hedge De-
tection. In our participation, we sought
to assess the extensibility and portability
of our prior work, which relies on linguis-
tic categorization and weighting of hedg-
ing cues and on syntactic patterns in which
these cues play a role. For Task 1B,
we tuned our categorization and weight-
ing scheme to recognize hedging in bio-
logical text. By accommodating a small
number of vagueness quantifiers, we were
able to extend our methodology to de-
tecting vague sentences in Wikipedia arti-
cles. We exploited constituent parse trees
in addition to syntactic dependency rela-
tions in resolving hedging scope. Our re-
sults are competitive with those of closed-
domain trained systems and demonstrate
that our high-precision oriented methodol-
ogy is extensible and portable.

1 Introduction

Natural language is imbued with uncertainty,
vagueness, and subjectivity. However, informa-
tion extraction systems generally focus on ex-
tracting factual information, ignoring the wealth
of information expressed through such phenom-
ena. In recent years, the need for information ex-
traction and text mining systems to identify and
model such extra-factual information has increas-
ingly become clear. For example, online product
and movie reviews have provided a rich context
for analyzing sentiments and opinions in text (see
Pang and Lee (2008) for a recent survey), while
tentative, speculative nature of scientific writing,
particularly in biomedical literature, has provided

impetus for recent research in speculation detec-
tion (Light et al., 2004). The term hedging is often
used as an umbrella term to refer to an array of
extra-factual phenomena in natural language and
is the focus of the CoNLL-2010 Shared Task on
Hedge Detection.

The CoNLL-2010 Shared Task on Hedge De-
tection (Farkas et al., 2010) follows in the steps
of the recent BioNLP’09 Shared Task on Event
Extraction (Kim et al., 2009), in which one task
(speculation and negation detection) was con-
cerned with notions related to hedging in biomed-
ical abstracts. However, the CoNLL-2010 Shared
Task differs in several aspects. It sheds light on
the pervasiveness of hedging across genres and do-
mains: in addition to biomedical abstracts, it is
concerned with biomedical full text articles as well
as with Wikipedia articles. Both shared tasks have
been concerned with scope resolution; however,
their definitions of scope are fundamentally differ-
ent: the BioNLP’09 Shared Task takes the scope
of a speculation instance to be an abstract seman-
tic object (an event), thus a normalized logical
form. The CoNLL-2010 Shared Task, on the other
hand, defines it as a textual unit based on syntac-
tic considerations. It is also important to note that
hedging in scientific writing is a core aspect of the
genre (Hyland, 1998), while it is judged to be a
flaw which has to be eradicated in Wikipedia ar-
ticles. Therefore, hedge detection in these genres
serves different purposes: explicitly encoding the
factuality of a scientific claim (doubtful, probable,
etc.) versus flagging unreliable text.

We participated in both tasks of the CoNLL-
2010 Shared Task: namely, detection of sentences
with uncertainty (Task 1) and resolution of uncer-
tainty scope (Task 2). Since we pursued both of
these directions in prior work, one of our goals in
participating in the shared task was to assess how
our approach generalized to previously unseen
texts, even genres. Towards this goal, we adopted
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an open-domain approach, where we aimed to use
previously developed techniques to the extent pos-
sible. Among all participating groups, we distin-
guished ourselves as the one that fully worked in
an open-domain setting. This approach worked
reasonably well for uncertainty detection (Task 1);
however, for the scope resolution task, we needed
to extend our work more substantially, since the
notion of scope was fundamentally different than
what we adopted previously. The performance
of our system was competitive; in terms of F-
measure, we were ranked near the middle in Task
1, while a more significant focus on scope reso-
lution resulted in fourth place ranking among fif-
teen systems. We obtained the highest precision
in tasks focusing on biological text. Considering
that we chose not to exploit the training data pro-
vided to the full extent, we believe that our system
is viable in terms of extensibility and portability.

2 Related Work

Several notions related to hedging have been pre-
viously explored in natural language processing.
In the news article genre, these have included
certainty, modality, and subjectivity. For ex-
ample, Rubin et al. (2005) proposed a four di-
mensional model to categorize certainty in news
text: certainty level, focus, perspective and time.
In the context of TimeML (Pustejovsky et al.,
2005), which focuses on temporal expressions
in news articles, event modality is encoded us-
ing subordination links (SLINKs), some of which
(MODAL,EVIDENTIAL) indicate hedging (Saurı́ et
al., 2006). Saurı́ (2008) exploits modality and
polarity to assess the factuality degree of events
(whether they correspond to facts, counter-facts or
possibilities), and reports on FactBank, a corpus
annotated for event factuality (Saurı́ and Puste-
jovsky, 2009). Wiebe et al. (2005) consider
subjectivity in news articles, and focus on the
notion of private states, encompassing specula-
tions, opinions, and evaluations in their subjectiv-
ity frames.

The importance of speculative language in
biomedical articles was first acknowledged by
Light et al. (2004). Following work in this area
focused on detecting speculative sentences (Med-
lock and Briscoe, 2007; Szarvas, 2008; Kilicoglu
and Bergler, 2008). Similar to Rubin et al.’s
(2005) work, Thompson et al. (2008) proposed
a categorization scheme for epistemic modality in

biomedical text according to the type of infor-
mation expressed (e.g., certainty level, point of
view, knowledge type). With the availability of the
BioScope corpus (Vincze et al., 2008), in which
negation, hedging and their scopes are annotated,
studies in detecting speculation scope have also
been reported (Morante and Daelemans, 2009;
Özgür and Radev, 2009). Negation and uncer-
tainty of bio-events are also annotated to some ex-
tent in the GENIA event corpus (Kim et al., 2008).
The BioNLP’09 Shared Task on Event Extraction
(Kim et al., 2009) dedicated a task to detecting
negation and speculation in biomedical abstracts,
based on the GENIA event corpus annotations.

Ganter and Strube (2009) elaborated on the link
between vagueness in Wikipedia articles indicated
by weasel words and hedging. They exploited
word frequency measures and shallow syntactic
patterns to detect weasel words in Wikipedia ar-
ticles.

3 Methods

Our methodology for hedge detection is essen-
tially rule-based and relies on a combination of
lexical and syntactic information. Lexical infor-
mation is encoded in a simple dictionary, and rel-
evant syntactic information is identified using the
Stanford Lexicalized Parser (Klein and Manning,
2003). We exploit constituent parse trees as well
as corresponding collapsed dependency represen-
tations (deMarneffe et al., 2006), provided by the
parser.

3.1 Detecting Uncertainty in Biological Text

For detecting uncertain sentences in biological text
(Task 1B), we built on the linguistically-inspired
system previously described in detail in Kilicoglu
and Bergler (2008). In summary, this system relies
on a dictionary of lexical speculation cues, derived
from a set of core surface realizations of hedging
identified by Hyland (1998) and expanded through
WordNet (Fellbaum, 1998) synsets and UMLS
SPECIALIST Lexicon (McCray et al., 1994) nom-
inalizations. A set of lexical certainty markers (un-
hedgers) are also included, as they indicate hedg-
ing when they are negated (e.g., know). These
hedging cues are categorized by their type (modal
auxiliaries, epistemic verbs, approximative adjec-
tives, etc.) and are weighted to reflect their cen-
tral/peripheral contribution to hedging, inspired by
the fuzzy model of Hyland (1998). We use a scale
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of 1-5, where 5 is assigned to cues most central
to hedging and 1 to those that are most periph-
eral. For example, the modal auxiliary may has
a weight of 5, while a relatively weak hedging
cue, the epistemic adverb apparently, has a weight
of 2. The weight sum of cues in a sentence in
combination with a predetermined threshold de-
termines whether the sentence in question is un-
certain. Syntax, generally ignored in other stud-
ies on hedging, plays a prominent role in our ap-
proach. Certain syntactic constructions act as cues
(e.g., whether- and if -complements), while others
strengthen or weaken the effect of the cue associ-
ated with them. For example, a that-complement
taken by an epistemic verb increases the hedging
score contributed by the verb by 2, while lack of
any complement decreases the score by 1.

For the shared task, we tuned this categoriza-
tion and weighting scheme, based on an analy-
sis of the biomedical full text articles in training
data. We also adjusted the threshold. We elim-
inated some hedging cue categories completely
and adjusted the weights of a small number of
the remaining cues. The eliminated cue categories
included approximative adverbs (e.g., generally,
largely, partially) and approximative adjectives
(e.g., partial), often used to “manipulate preci-
sion in quantification” (Hyland, 1998). The other
eliminated category included verbs of effort (e.g.,
try, attempt, seek), also referred to as rationalising
narrators (Hyland, 1998). The motivation behind
eliminating these categories was that cues belong-
ing to these categories were never annotated as
hedging cues in the training data. The elimination
process resulted in a total of 147 remaining hedg-
ing cues. Additionally, we adjusted the weights of
several other cues that were not consistently anno-
tated as cues in the training data, despite our view
that they were strong hedging cues. One example
is the epistemic verb predict, previously assigned a
weight of 4 based on Hyland’s analysis. We found
its annotation in the training data somewhat incon-
sistent, and lowered its weight to 3, thus requiring
a syntactic strengthening effect (an infinitival com-
plement, for example) for it to qualify as a hedging
cue in the current setting (threshold of 4).

3.2 Detecting Uncertainty in Wikipedia
Articles

Task 1W was concerned with detecting uncer-
tainty in Wikipedia articles. Uncertainty in this

context refers more or less to vagueness indicated
by weasel words, an undesirable feature accord-
ing to Wikipedia policy. Analysis of Wikipedia
training data provided by the organizers revealed
that there is overlap between weasel words and
hedging cues described in previous section. We,
therefore, sought to adapt our dictionary of hedg-
ing cues to the task of detecting vagueness in
Wikipedia articles. Similar to Task 1B, changes
involved eliminating cue categories and adjusting
cue weights. In addition, however, we also added
a previously unconsidered category of cues, due
to their prominence in Wikipedia data as weasel
words. This category (vagueness quantifiers (Lap-
pin, 2000)) includes words, such as some, several,
many and various, which introduce imprecision
when in modifier position. For instance, in the ex-
ample below, both some and certain contribute to
vagueness of the sentence.

(1) Even today, some cultures have certain in-
stances of their music intending to imitate
natural sounds.

For Wikipedia uncertainty detection, eliminated
categories included verbs and nouns concerning
tendencies (e.g., tend, inclination) in addition to
verbs of effort. The only modal auxiliary consis-
tently considered a weasel word was might; there-
fore, we only kept might in this category and elim-
inated the rest (e.g., may, would). Approxima-
tive adverbs, eliminated in detecting uncertainty
in biological text, not only were revived for this
task, but also their weights were increased as they
were more central to vagueness expressions. Be-
sides these changes in weighting and categoriza-
tion, the methodology for uncertainty detection in
Wikipedia articles was essentially the same as that
for biological text. The threshold we used in our
submission was, similarly, 4.

3.3 Scope Resolution for Uncertainty in
Biological Text

Task 2 of the shared task involved hedging scope
resolution in biological text. We previously tack-
led this problem within the context of biological
text in the BioNLP’09 Shared Task (Kilicoglu and
Bergler, 2009). That task defined the scope of
speculation instances as abstract, previously ex-
tracted bio-events. Our approach relied on find-
ing an appropriate syntactic dependency relation
between the bio-event trigger word identified in
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earlier steps and the speculation cue. The cate-
gory of the hedging cue constrained the depen-
dency relations that are deemed appropriate. For
example, consider the sentence in (2a), where in-
volves is a bio-event trigger for a Regulation
event and suggest is a speculation cue of epis-
temic verb type. The first dependency relation
in (2b) indicates that the epistemic verb takes a
clausal complement headed by the bio-event trig-
ger. The second indicates that that is the comple-
mentizer. This cue category/dependency combi-
nation licenses the generation of a speculation in-
stance where the event indicated by the event trig-
ger represents the scope.

(2) (a) The results suggest that M-CSF induc-
tion of M-CSF involves G proteins, PKC
and NF kappa B.

(b) ccomp(suggest,involves)
complm(involves,that)

Several other cue category/dependency combi-
nations sought for speculation scope resolution are
given in Table 1. X represents a token that is nei-
ther a cue nor a trigger (aux: auxiliary, dobj: direct
object, neg: negation modifier).

Cue Category Dependency
Modal auxiliary (may) aux(Trigger,Cue)
Conditional (if ) complm(Trigger,Cue)
Unhedging noun dobj(X,Cue)
(evidence) ccomp(X,Trigger)

neg(Cue,no)

Table 1: Cue categories with examples and the de-
pendency relations to search

In contrast to this notion of scope being an ab-
stract semantic object, Task 2 (BioScope corpus,
in general) conceptualizes hedge scope as a con-
tinuous textual unit, including the hedging cue it-
self and the biggest syntactic unit the cue is in-
volved in (Vincze et al., 2008). This fundamen-
tal difference in conceptualization limits the di-
rect applicability of our prior approach to this
task. Nevertheless, we were able to use our work
as a building block in extending scope resolution
heuristics. We further augmented it by exploiting
constituent parse trees provided by Stanford Lex-
icalized Parser. These extensions are summarized
below.

3.3.1 Exploiting parse trees
The constituent parse trees contribute to scope
resolution uniformly across all hedging cue cate-
gories. We simply determine the phrasal node that
dominates the hedging cue and consider the tokens
within that phrase as being in the scope of the cue,
unless they meet one of the following exclusion
criteria:

1. Exclude tokens within post-cue sentential
complements (indicated by S and SBAR
nodes) introduced by a small number of
discourse markers (thus, whereas, because,
since, if, and despite).

2. Exclude punctuation marks at the right
boundary of the phrase

3. Exclude pre-cue determiners and adverbs at
the left boundary of the phrase

For example, in the sentence below, the verb
phrase that included the modal auxiliary may also
included the complement introduced by thereby.
Using the exclusion criteria 1 and 2, we excluded
the tokens following SPACER from the scope:

(3) (a) . . . motifs may be easily compared with
the results from BEAM, PRISM and
SPACER, thereby extending the SCOPE
ensemble to include a fourth class of
motifs.

(b) CUE: may
SCOPE: motifs may be easily compared
with the results from BEAM, PRISM
and SPACER

3.3.2 Extending dependency-based heuristics
The new scope definition was also accommodated
by extending the basic dependency-based heuris-
tics summarized earlier in this section. In addition
to finding the trigger word that satisfies the ap-
propriate dependency constraint with the hedging
cue (we refer to this trigger word as scope head,
henceforth), we also considered the other depen-
dency relations that the scope head was involved
in. These relations, then, were used in right ex-
pansion and left expansion of the scope. Right ex-
pansion involves finding the rightmost token that
is in a dependency relation with the scope head.
Consider the sentence below:

(4) The surprisingly low correlations between
Sig and accuracy may indicate that the ob-
jective functions employed by motif finding
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programs are only a first approximation to bi-
ological significance.

The epistemic verb indicate has as its scope
head the token approximation, due to the existence
of a clausal complement dependency (ccomp) be-
tween them. On the other hand, the rightmost to-
ken of the sentence, significance, has a preposi-
tional modifier dependency (prep to) with approx-
imation. It is, therefore, included in the scope of
indicate. Two dependency types, adverbial clause
modifier (advcl) and conjunct (conj), were ex-
cluded from consideration when the rightmost to-
ken is sought, since they are likely to signal new
discourse units outside the scope.

In contrast to right expansion, which applies
to all hedging cue categories, left expansion ap-
plies only to a subset. Left expansion involves
searching for a subject dependency governed by
the scope head. The dependency types descend-
ing from the subject (subj) type in the Stanford de-
pendency hierarchy are considered: nsubj (nom-
inal subject), nsubjpass (passive nominal sub-
ject), csubj (clausal subject) and csubjpass (pas-
sive clausal subject). In the following example,
the first token, This, is added to the scope of likely
through left expansion (cop: copula).

(5) (a) This is most likely a conservative esti-
mate since a certain proportion of inter-
actions remain unknown . . .

(b) nsubj(likely,This)
cop(likely,is)

Left expansion was limited to the following cue
categories, with the additional constraints given:

1. Modal auxiliaries, only when their scope
head takes a passive subject (e.g., they is
added to the scope of may in they may be an-
notated as pseudogenes).

2. Cues in adjectival categories, when they are
in copular constructions (e.g., Example (5)).

3. Cues in several adjectival ad verbal cate-
gories, when they take infinitival comple-
ments (e.g., this is added to the scope of ap-
pears in However, this appears to add more
noise to the prediction without increasing the
accuracy).

After scope tokens are identified using the parse
tree as well as via left and right expansion, the al-
gorithm simply sets as scope the continuous tex-
tual unit that includes all the scope tokens and the

hedging cue. Since, likely is the hedging cue and
This and estimate are identified as scope tokens in
Example (5), the scope associated with likely be-
comes This is most likely a conservative estimate.

We found that citations, numbers and punc-
tuation marks occurring at the end of sentences
caused problems in scope resolution, specifically
in biomedical full text articles. Since they are
rarely within any scope, we implemented a simple
stripping algorithm to eliminate them from scopes
in such documents.

4 Results and Discussion

The official evaluation results regarding our sub-
mission are given in Table 2. These results were
achieved with the threshold 4, which was the opti-
mal threshold on the training data.

Prec. Recall F-score Rank
Task 1B 92.07 74.94 82.62 12/24
Task 1W 67.90 46.02 54.86 10/17
Task 2 62.47 49.47 55.21 4/15

Table 2: Evaluation results

In Task 1B, we achieved the highest precision.
However, our relatively low recall led to the place-
ment of our system in the middle. Our system al-
lows adjusting precision versus recall by setting
the threshold. In fact, setting the threshold to 3 af-
ter the shared task, we were able to obtain overall
better results (Precision=83.43, Recall=84.81, F-
score=84.12, Rank=8/24). However, we explicitly
targeted precision, and in that respect, our submis-
sion results were not surprising. In fact, we iden-
tified a new type of hedging signalled by coordi-
nation (either . . . or . . . as well as just or) in the
training data. An example is given below:

(6) (a) It will be either a sequencing error or a
pseudogene.

(b) CUE: either-or
SCOPE: either a seqeuncing error or a
pseudogene

By handling this class to some extent, we could
have increased our recall, and therefore, F-score
(65 out of 1,044 cues in the evaluation data for
biological text involved this class). However, we
decided against treating this class, as we believe
it requires a slightly different treatment due to its
special semantics.
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In participating in Task 1W, our goal was to
test the ease of extensibility of our system. In
that regard, our results show that we were able
to exploit the overlap between our hedging cues
and the weasel words. The major difference we
noted between hedging in two genres was the
class of vagueness quantifiers, and, with little ef-
fort, we extended our system to consider them.
We also note that setting the threshold to 3 after
the shared task, our recall and F-score improved
significantly (Precision=63.21, Recall=53.67, F-
score=58.05, Rank=3/17).

Our more substantial effort for Task 2 resulted
in a better overall ranking, as well as the highest
precision in this task. In contrast to Task 1, chang-
ing the threshold in this task did not have a pos-
itive effect on the outcome. We also measured
the relative contribution of the enhancements to
scope resolution. The results are presented in Ta-
ble 3. Baseline is taken as the scope resolution al-
gorithm we developed in prior work. These results
show that: a) scope definition we adopted earlier
is essentially incompatible with the BioScope def-
inition b) simply taking the phrase that the hedg-
ing cue belongs to as the scope provides relatively
good results c) left and right expansion heuristics
are needed for increased precision and recall.

Prec. Recall F-score
Baseline 3.29 2.61 2.91
Baseline+ Left/
right expansion

25.18 20.03 22.31

Parse tree 49.20 39.10 43.58
Baseline+
Parse tree

50.66 40.27 44.87

All 62.47 49.47 55.21

Table 3: Effect of scope resolution enhancements

4.1 Error Analysis

In this section, we provide a short analysis of the
errors our system generated, focusing on biologi-
cal text.

Since our dictionary of hedging cues is incom-
plete and we did not attempt to expand it for Task
1B, we had a fair number of recall errors. As
we mentioned above, either-or constructions oc-
cur frequently in the training and evaluation data,
and we did not attempt to handle them. Addition-
ally, some lexical cues, such as feasible and im-
plicate, do not appear in our dictionary, causing

further recall errors. The weighting scheme also
affects recall. For example, the adjective appar-
ent has a weight of 2, which is not itself sufficient
to qualify a sentence as uncertain (with a thresh-
old of 4) (7a). On the other hand, when it takes
a clausal complement, the sentence is considered
uncertain (7b). The first sentence (7a) causes a re-
call error.

(7) (a) An apparent contradiction between the
previously reported number of cycling
genes . . .

(b) . . . it is apparent that the axonal termini
contain a significantly reduced number
of varicosities . . .

In some cases, syntactic constructions that play
a role in determining the certainty status of a sen-
tence cannot be correctly identified by the parser,
often leading to recall errors. For example, in the
sentence below, the clausal complement construc-
tion is missed by the parser. Since the verb indi-
cate has weight 3, this leads to a recall error in the
current setting.

(8) . . . indicating that dMyc overexpression can
substitute for PI3K activation . . .

Adjusting the weights of cues worked well gen-
erally, but also caused unexpected problems, due
to what seem like inconsistencies in annotation.
The examples below highlight the effect of low-
ering the weight of predict from 4 to 3. Exam-
ples (9a) and (9b) are almost identical on surface
and our system predicted both to be uncertain, due
to the fact that predicted took infinitival comple-
ments in both cases. However, only (9a) was an-
notated as uncertain, leading to a precision error in
(9b).

(9) (a) . . . include all protein pairs predicted to
have posterior odds ratio . . .

(b) Protein pairs predicted to have a poste-
rior odds ratio . . .

The error cases in scope resolution are more
varied. Syntax has a larger role in this task, and
therefore, parsing errors tend to affect the results
more directly. In the following example, dur-
ing left-expanding the scope of the modal auxil-
iary could, RNAi screens, rather than the full noun
phrase fruit fly RNAi screens, is identified as the
passive subject of the scope head (associated), be-
cause an appropriate modifier dependency cannot
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be found between the noun phrase head screens
and either of the modifiers, fruit and fly.

(10) . . . was to investigate whether fruit fly RNAi
screens of conserved genes could be asso-
ciated with similar tick phenotypes and tick
gene function.

In general, the simple mechanism to exploit
constituent parse trees was useful in resolving
scope. However, it appears that a nuanced ap-
proach based on cue categories could enhance the
results further. In particular, the current mecha-
nism does not contribute much to resolving scopes
of adverbial cues. In the following example, parse
tree mechanism does not have any effect, leading
to both a precision and a recall error in scope res-
olution.

(11) (a) . . . we will consider tightening the defi-
nitions and possibly splitting them into
different roles.

(b) FP: possibly
FN: possibly splitting them into differ-
ent roles

Left/right expansion strategies were based on
the analysis of training data. However, we en-
countered errors caused by these strategies where
we found the annotations contradictory. In Exam-
ple (12a), the entire fragment is in the scope of
thought, while in (12b), the scope of suggested
does not include it was, even though on surface
both fragments are very similar.

(12) (a) . . . the kinesin-5 motor is thought to play
a key role.

(b) . . . it was suggested to enhance the nu-
clear translocation of NF-κB.

Post-processing in the form of citation stripping
was simplistic, and, therefore, was unable to han-
dle complex cases, as the one shown in the exam-
ple below. The algorithm is only able to remove
one reference at the end.

(13) (a) . . . it is possible that some other sig-
nalling system may operate with Semas
to confine dorsally projecting neurons to
dorsal neuropile [3],[40],[41].

(b) FP: may operate with Semas to con-
fine dorsally projecting neurons to dor-
sal neuropile [3],[40],
FN: may operate with Semas to con-
fine dorsally projecting neurons to dor-
sal neuropile

5 Conclusions

Rather than developing a dedicated methodology
that exclusively relies on the data provided by or-
ganizers, we chose to extend and refine our prior
work in hedge detection and used the training
data only in a limited manner: to tune our sys-
tem in a principled way. With little tuning, we
achieved the highest precision in Task 1B. We
were able to capitalize on the overlap between
hedging cues and weasel words for Task 1W and
achieved competitive results. Adapting our pre-
vious work in scope resolution to Task 2, how-
ever, was less straightforward, due to the incom-
patible definitions of scope. Nevertheless, by re-
fining the prior dependency-based heuristics with
left and right expansion strategies and utilizing a
simple mechanism for parse tree information, we
were able to accommodate the new definition of
scope to a large extent. With these results, we con-
clude that our methodology is portable and easily
extensible.

While the results show that using the parse tree
information for scope resolution benefited our per-
formance greatly, error analysis presented in the
previous sections also suggests that a finer-grained
approach based on cue categories could further
improve results, and we aim to explore this exten-
sion further.
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Abstract 

This paper describes our system about 
detecting hedges and their scope in natural 
language texts for our participation in CoNLL-
2010 shared tasks. We formalize these two 
tasks as sequence labeling problems, and 
implement them using conditional random 
fields (CRFs) model. In the first task, we use a 
greedy forward procedure to select features for 
the classifier. These features include part-of-
speech tag, word form, lemma, chunk tag of 
tokens in the sentence. In the second task, our 
system exploits rich syntactic features about 
dependency structures and phrase structures, 
which achieves a better performance than only 
using the flat sequence features. Our system 
achieves the third score in biological data set 
for the first task, and achieves 0.5265 F1 score 
for the second task. 

1 Introduction 

In recent years, a fair amount of approaches have 
been developed on detecting speculative and 
negative information from biomedical and 
natural language texts, for its benefit to the 
applications like information extraction. These 
approaches evolve from hand-crafted rule-based 
approaches, which use regular expressions to 
match the sentences or its grammatical parsing, 
such as NegEx (Chapman et al., 2001), 
Negfinder (Mutalik et al., 2001), and 
NegExpander (Aronow et al., 1999), to machine 
learning approaches, including semi-supervised 
methods (Medlock and Briscoe, 2007; Szarvas, 
2008), and supervised methods (Morante and 
Daelemans, 2009).  

In this paper, we describe the machine 
learning system submitted to CoNLL-2010 
Shared task (Farkas et al., 2010). Our system 
formalizes these two tasks as consecutive 
sequence labeling problems, and learns the 
classifiers using conditional random fields 
approach. In the first task, a model is trained to 
identify the hedge cues in sentences, and in the 
second task, another model is used to find the 

corresponding scope for each hedge cue 
generated in the first task. Our system follows 
the study of Morante and Daelemans (2009), but 
applies more refined feature selection. In the first 
task, we use a greedy forward procedure to select 
features for the classifier. In the second task, we 
exploit rich syntactic information to improve the 
performance of the model, from dependency 
structures and phrase structures. A rule-based 
post processing procedure is used to eliminate 
the errors brought by the classifier for each task. 

The remainder of the paper is organized as 
follows. In section 2, we briefly describe the task 
and the details of our system, including how to 
select features for the hedge cue detection 
system, and how to find the corresponding scope 
for each hedge cue. The experimental results are 
discussed in section 3. In section 4 we put 
forward some conclusion. 

2 System Description  

We model these two tasks for identifying the 
hedge cues and finding their scope as two 
consecutive sequence labeling problems, such as 
chunking, segmentation and named entity 
recognition, and train the classifiers using 
conditional random fields approach (Lafferty et 
al., 2001). For each task, a post-processing 
procedure is used to refine the results from the 
classifier. 

In the first task, we detect the hedge cue by 
classifying the tokens of a sentence as being at 
the beginning of, inside or outside of the hedge 
signal. In the second task, we find the scope of a 
hedge cue by classifying the tokens of a sentence 
as being the first one of, the last one or neither of 
the scope.  

A sentence from biological full articles data 
set omitting the id number is shown below in 
Figure 1. In this sentence, there is only one 
hedge cue, the phrase “raises an interesting 
question”, and its corresponding scope is the 
sequence from token “raises” to token “acid”. 
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<sentence>This <xcope><cue>raises an 
interesting question</cue>: "Is there a 23rd 
amino acid</xcope>?".</sentence> 

 
Figure 1: A sentence with hedge cue and scope 

annotation in biological full articles data set 

2.1 Hedge detection 

Since hedge cues usually consist of one or more 
tokens, we predict the tokens in BIO 
representation, whether the token is the first 
token of a hedge cue (B-cue), inside a hedge cue 
(I-cue), or outside of the hedge cue (O-cue). For 
the sentence in Figure 1, token “raises” is 
denoted as B-cue, tokens “an interesting 
question” all as I-cue, and the other tokens in the 
sentence as O-cue. 

The classifier is trained using conditional 
random fields (Lafferty et al., 2001), which 
combines the benefits of conditional models with 
the global normalization of random field models, 
and avoid the label bias problem that exists in 
maximum entropy Markov models (MEMMs). 
The CRF model we use is implemented as 
CRF++ 0.511 . The parameters of the CRF 
classifier are set as defaults. 

We use a greedy forward procedure to select a 
better feature sets for the classifier according to 
the evaluation results in the development set. We 
first start from a basic feature set, and then add 
each feature outside the basic set and remove 
each feature inside the basic set one by one to 
check the effectiveness of each feature by the 
performance change in the development set. This 
procedure is repeated until no feature is added or 
removed or the performance is not improved. 

The selected features are listed below: 

• Cn (n=-2,-1, 0, 1, 2) 

• CnCn+1 (n=-1,0) 

• Cn-1CnCn+1 (n=-1,0,1) 

• Cn-2Cn-1CnCn+1  (n=0,1) 

Where C denote features of each token, 
including FORM, LEMMA, and POS (in Table 
1), C0 represents the feature of current token and 
Cn(C-n) represents the feature of the token n 
positions to the right (left) of current token. 
CnCn+1 denote the combination of Cn and Cn+1. So 
are Cn-1CnCn+1 and Cn-2Cn-1CnCn+1. 

 
 

                                                 
1 http://crfpp.sourceforge.net/ 

Feature 
Name 

Description 

FORM Word form or punctuation symbol. 

LEMMA Lemma or stem of word form. 

POS Part-of-speech tag of the token. 

CHUNK Chunk tag of the token, e.g. B_NP, 
B_ SBAR, and I_NP. 

TCHUNK Chunk type of the token, e.g. NP. 

 
Table 1: Description of features of each token 
 
Although our system is based on token, chunk 

features are also important. Analyzing the 
training data set, it is shown that if one token in a 
chunk is in the hedge cue, the other tokens in the 
chunk are usually in the same hedge cue. The 
chunk feature can provide more information for 
the multiword hedge cues. The LEMMA, POS, 
and CHUNK of each token used in our system 
are determined using GENIA tagger (Tsuruoka et 
al., 2005).  

The selected CHUNK features in our system 
are listed as follows: 

• Cn (n=-3, -2,-1, 0, 1, 2, 3 ) 

• CnCn+1 (n=-3, -2,-1, 0, 1, 2, 3 ) 

• Cn-1CnCn+1  (n=-2,-1,0,1,-2) 

• Cn-2Cn-1CnCn+1 (n=-1,0,1,2) 

We can obtain the preliminary results using 
the CRF model-based classifier, but there are 
some missed or incorrectly classified hedge cues 
which can be recognized by rule-based patterns. 
Through statistical analysis on the training and 
development data sets, we obtain some effective 
rules for post processing, including: 

 
• If the first token of a NP chunk tag is 

annotated as I-cue, the whole NP chunk is 
in the hedge cues. 

• If the B-VP chunk tag of a token is 
followed by a B-SBAR chunk tag, the 
token is annotated as B-cue. 

• If token “that” follows token “indicate” 
and the POS of token “that” is IN, the 
chunk tag of token “that” is B-SBAR, then 
the “indicate” will be annotated with B-
cue and “that” will be annotated with I-
cue. 

• If token “indicate” is followed by token 
“an” or token “a”, then the token 
“indicate” is annotated as B-cue. 
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2.2 Scope finding 

In this task, we train a classifier to predict 
whether each token in the sentence is in the 
scope by classifying them as the first one (F-
scope), the last one (L-scope), or neither 
(NONE) of the scope, which is the same as 
Morante and Daelemans (2009). For the sentence 
in Figure 1, token “raises” is denoted as F-scope, 
token “acid” as L-scope, and the other tokens in 
the sentence as NONE.  

After the classification, a post processing 
procedure is used to match the scope to each 
hedge, guaranteeing that each hedge has only one 
corresponding scope sequence, and must be 
inside its scope sequence. There is no cross 
between different scope sequences, but inclusion 
is allowed. The hedges are selected from the first 
task. 

The classifier is also implemented using 
conditional random fields model, and the 
parameters of the CRF classifier are set as 
defaults. We first build a set of baseline sequence 
features for the classifier, some borrowed from 
Morante and Daelemans (2009). The selected 
baseline sequence features are: 

• Of the token in focus: FORM, POS, 
LEMMA, CHUNK, TCHUNK, 
combination of FORM and POS; POS, 
LEMMA, CHUNK, TCHUNK of two 
tokens to the left and three tokens to the 
right; first word, last word, chain of 
FORM, POS of two chunks to the left and 
two chunks to the right; All combination 
of POS in the window of length less than 3; 
All combination of CHUNK in the 
window of length 2. 

• Of the left closest hedge: chain of the 
FORM, POS, LEMMA, CHUNK, and 
TCHUNK; All combination of POS and 
FORM in the window of length 2. 

• Of the right closest hedge: chain of the 
FORM, POS, LEMMA, CHUNK, and 
TCHUNK; All combination of POS and 
FORM in the window of length 2. 

• Of the tokens between the left closest 
hedge and the token in focus: chain of 
FORM, POS, LEMMA, CHUNK and 
TCHUNK; the number. 

• Of the tokens between the right closest 
hedge and the token in focus: chain of 
FORM, POS, LEMMA, CHUNK and 
TCHUNK; the number. 

• Others: the number of hedge cues in the 
sentence; the sequence relation between 
the token in focus and hedge cues (LEFT, 
RIGHT, MIDDLE, IN, NULL) 

Besides the sequence features listed above, 
syntactic features between the token in focus and 
hedge cues are explored in our classifier. Huang 
and Low (2007) notes that structure information 
stored in parse trees helps identifying the scope 
of negative hedge cues, and Szarvas (2008) 
points out that the scope of a keyword can be 
determined on the basic of syntax. Thus we 
believe that a highly accurate extraction of 
syntactic structure would be beneficial for this 
task.  

For sentences in the dataset, their dependency 
structures are extracted using GENIA 
Dependency parser (Sagae and Tsujii, 2007), and 
phrase structure using Brown self-trained 
biomedical parser (McClosky, 2009). Figure 2 
shows the corresponding dependency tree and 
Figure 3 shows the corresponding phrase 
structure tree for the sentence in Figure 1. In the 
following part in the section, we will illustrate 
these syntactic features and give examples for 
their value. We take the token “acid” as the token 
in focus, to determine whether it is classified as 
F-scope, L-scope or NONE. 

 

 
 

Figure 2: Dependency tree of the sentence in 
Figure 1 

 
For the token “acid” in the dependency trees 

in Figure 2, its father node is the token “there”, 
and the dependency relation between these two 
token is “NMOD”. 

Dependency features between the token in 
focus and the left closest hedge cue are: 

• Dependency relation of the token in 
focus to its father, left closest hedge to its 
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father and the dependency relation pair: 
NOMD, ROOT, ROOT+NMOD. 

• Chain of POS: ->VBZ<-VBZ<-EX<-NN 

• Chain of POS without consecutive 
redundant POS: ->VBZ <-EX<-NN 

• POS of their nearest co-father: VBZ 

• Whether it is a linear relation (self, up , 
down, no): up 

• Kinship (grandfather, grandson, father, 
son, brother, self, no): no. 

• The number of tokens in the chain: 4 

Similar features are extracted for dependency 
relation between the token in focus and its right 
closest hedge cue. There is no right hedge cue for 
token “acid”. Thus these features are set as 
“NULL”. 
 

This raises an interesting question :  " Is there a 23rd amino acid ? " .

DT VBZ DT JJ NN : NN VBZ RB DT NN NN NN . RB .

NP NP NP ADVP NP

VP

S

NP

ADVP

NP

VP

S

S

 
 

Figure 3: Phrase structure tree of the sentence in 
Figure 1 

 
Phrase structure features between the token in 

focus and its left closest hedge cue are: 

• Chain of syntactic categories: VBZ-
>VP<- NP <-NP <-S<-VP <-NP<-NN 

• syntactic categories without consecutive 
redundant ones: VBZ->VP<-NP<-S<-
VP<- NP<-NN 

• Syntactic category of their nearest co-
father: VP 

• The number of syntactic categories in the 
chain: 8 

The phrase structure features between the 
token in focus and the nearest right hedge cue are 
similar, setting as “NULL”. 

Scope finding requires each hedge cue has 
only one corresponding scope. A hedge-scope 

pair is true positive only if the hedge cue and its 
corresponding scope are correctly identified. We 
perform the post processing procedure in 
sequence: 

• For each hedge cue from the beginning 
to the end of the sentence, find its left 
closest F-scope which has not been 
identified by other hedge cues, and 
identify it as its F-scope. 

• For each hedge cue from the end to the 
beginning of the sentence, find its right 
closest L-scope which has not been 
identified by other hedge cues, and 
identify it as its L-scope. 

• For each hedge:  

� If both its F-scope and L-scope is 
identified, then done;  

� If only its F-scope is identified, then 
its L-scope is set as L-scope of the 
last hedge cue in the sentence if it 
exists or according to the dictionary 
which we build with training data 
set; 

� If only its L-scope is identified, then 
its F-scope is set as its first token; 

� If none of its F-scope and L-scope is 
identified, then discard the hedge 
cue. 

3 Overall Results 

In this section we will present our experimental 
results for these two tasks. In the first task, the 
chief evaluation is carried on sentence level: 
whether a sentence contains hedge/weasel cue or 
not. Our system compares the performance of 
different machine learning algorithm, CRF and 
SVM-HMM on hedge cue detection. A post 
processing procedure is used to increase the 
recall measure for our system. 

In the second task, three experiments are 
performed. The first experiment is used to 
validate the benefit of dependency features and 
phrase structure features for scope finding. The 
second experiment is designed to evaluate the 
effect of abstract dataset on full article dataset. 
These two experiments are all performed using 
gold hedge cues. The performance of our scope 
finding system with predicted hedge cues is 
presented in the third experiment. 
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3.1 Hedge detection 

The first experiment is used to compare two 
machine learning algorithms, SVM-HMM and 
CRF. We train the classifiers on abstract and full 
articles data sets. The results of the classifier on 
evaluation data set are shown in Table 2. 
 

Model Precision Recall F1 

SVM-HMM 88.71 81.52 84.96 

CRF 90.4 81.01 85.45 

 
Table 2: Results of hedge cues detection using 

CRF and SVM-HMM 
 

From Table 1, it is shown that CRF model 
outperforms SVM-HMM model in both 
precision and recall measure. The results are 
obtained without post processing. The 
experimental result with post processing is 
shown in Table 3. 

 
Feature Precision Recall F1 

Without Post 
processing 

90.4 81.01 85.45 

Post  
processing 

90.1 82.05 85.89 

 
Table 3: Result of biological evaluation data set 

without/with post processing 
 
By post processing, some mislabeled or 

incorrectly classified hedge cues can be 
recognized, especially the recall of the I-cue 
improved largely, from 55.26% to 68.51%. 
Though the precision is a little lower, the F1 
measure increases 0.44%. 

3.2 Scope finding 

To measure the benefit of syntactic features on 
scope finding task, we perform the experiment 
with different features on abstract data set, of 
which we split two-thirds as training data, and 
the other one third as testing data. The results are 
presented in Table 4. 

We take the classifier with sequence features 
as baseline classifier. From Table 4, it is shown 
that adding dependency features achieves a 
slightly better performance than the baseline 
classifier, and adding phrase structure features 
improve much better, about 1.2% F1-score. The 
classifier with all syntactic features achieves the 
best F1-score, 2.19% higher than baseline 
classifier. However, in later experiment on 
evaluation dataset after the shared task, we 

observed that dependency features actually 
harmed the performance for full articles dataset. 

 
Feature set Precision Recall F1 
Sequence  
(Baseline) 

82.20 81.61 81.90 

Sequence + 
Dependency 

82.28 82.09 82.19 

Sequence  
+ Phrase structure 

83.14 83.04 83.09 

All 84.19 83.99 84.09 
 

Table 4: Results of scope finding system with 
different feature sets on abstract data set 

 
Three experiments are designed to evaluate 

the benefit of abstract dataset for full articles 
dataset. The first one is performed on full articles 
data set, of which we split two-thirds for training, 
and the other one third for testing. The second 
experiment is trained on abstract data set, and 
evaluated on full articles data set. In the third 
experiment, we take abstract data set and one 
third of full articles as training data, and evaluate 
on the remaining full articles data set. The results 
are shown below in Table 5. 

 
Training 

data 
Testing 

data 
Prec. Recall F1 

Part Art. Part Art. 53.14 51.80 52.46 
Abs. Full Art. 54.32 54.64 54.48 
Mix Part Art. 59.59 59.74 59.66 

 
Table 5: Results of scope finding system with 

gold-standard hedge cues 
 
Results in Table 5 reveal that more abstract 

and full article dataset are added to the classifier 
as training data, better performance the system 
achieve. Thus we use the combination of abstract 
and full articles as training data for the final 
evaluation.  

Table 6 presents the results of our scope 
finding system with or without dependency 
features, using both gold-standard hedge cues 
and predicated hedge cues generated by our 
hedge cue finding system. 

Comparing the results in Table 4, 5, and 6, we 
observe that the performance of scope finding 
classifier on full article dataset is much lower 
than on abstract dataset, and dependency features 
are beneficial for the abstract dataset, but useless 
for full article dataset. We ascribe this 
phenomenon to the lack of enough full articles 
training data and the different properties of 
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abstract and full articles data sets. Deep research 
is expected to continue. 

 
Hedge 
cues 

Dep. 
features 

Prec. Recall F1 

with 57.42 47.92 52.
24 

Predicted 

without 58.13 48.11 52.
65 

with 59.43 58.28 58.
85 

Gold 
standard 

without 60.20 58.86 59.
52 

 
Table 6: Results of scope finding system 

with/without dependency features using both 
gold-standard and predicated hedge cues 

4 Conclusion 

In this paper, we describe a machine learning 
system for detecting hedges and their scope in 
natural language texts. These two tasks are 
formalized as sequence labeling problems, and 
implemented using conditional random fields 
approach. We use a greedy forward procedure to 
select features for the classifier, and exploit rich 
syntactic features to achieve a better performance. 
In the in-domain evaluation, our system achieves 
the third score in biological data set for the first 
task, and achieves 0.5265 F1 score for the second 
task. 
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Abstract
This paper reports experiments for the
CoNLL-2010 shared task on learning to
detect hedges and their scope in natu-
ral language text. We have addressed
the experimental tasks as supervised lin-
ear maximum margin prediction prob-
lems. For sentence level hedge detection
in the biological domain we use an L1-
regularised binary support vector machine,
while for sentence level weasel detection
in the Wikipedia domain, we use an L2-
regularised approach. We model the in-
sentence uncertainty cue and scope de-
tection task as an L2-regularised approxi-
mate maximum margin sequence labelling
problem, using the BIO-encoding. In ad-
dition to surface level features, we use a
variety of linguistic features based on a
functional dependency analysis. A greedy
forward selection strategy is used in ex-
ploring the large set of potential features.
Our official results for Task 1 for the bio-
logical domain are 85.2 F1-score, for the
Wikipedia set 55.4 F1-score. For Task 2,
our official results are 2.1 for the entire
task with a score of 62.5 for cue detec-
tion. After resolving errors and final bugs,
our final results are for Task 1, biologi-
cal: 86.0, Wikipedia: 58.2; Task 2, scopes:
39.6 and cues: 78.5.

1 Introduction

This paper reports experiments to detect uncer-
tainty in text. The experiments are part of the two
shared tasks given by CoNLL-2010 (Farkas et al.,
2010). The first task is to identify uncertain sen-
tences; the second task is to detect the cue phrase
which makes the sentence uncertain and to mark
its scope or span in the sentence.

Uncertainty as a target category needs to be ad-
dressed with some care. Sentences, utterances,
statements are not uncertain – their producer, the
speaker or author, is. Statements may explicitly
indicate this uncertainty, employing several differ-
ent linguistic and textual mechanisms to encode
the speaker’s attitude with respect to the verac-
ity of an utterance. The absence of such markers
does not necessarily indicate certainty – the oppo-
sition between certain and uncertain is not clearly
demarkable, but more of a dimensional measure.
Uncertainty on the part of the speaker may be dif-
ficult to differentiate from a certain assessment of
an uncertain situation, It is unclear whether this
specimen is an X or a Y vs. The difference between
X and Y is unclear.

In this task, the basis for identifying uncertainty
in utterances is almost entirely lexical. Hedges,
the main target of this experiment, are an estab-
lished category in lexical grammar analyses - see
e.g. Quirk et al. (1985), for examples of English
language constructions. Most languages use vari-
ous verbal markers or modifiers for indicating the
speaker’s beliefs in what is being said, most proto-
typically using conditional or optative verb forms,
Six Parisiens seraient morts, or auxiliaries, This
mushroom may be edible, but aspectual markers
may also be recruited for this purpose, more indi-
rectly, I’m hoping you will help vs. I hope you will
help; Do you want to see me now vs. Did you want
to see me now. Besides verbs, there are classes
of terms that through their presence, typically in
an adverbial role, in an utterance make explicit
its tentativeness: possibly, perhaps... and more
complex constructions with some reservation, es-
pecially such that explicitly mention the speaker
and the speaker’s beliefs or doubts, I suspect that
X.

Weasels, the other target of this experiment,
on the other hand, do not indicate uncertainty.
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Weasels are employed when speakers attempt to
convince the listener of something they most likely
are certain of themselves, by anchoring the truth-
fulness of the utterance to some outside fact or au-
thority (Most linguists believe in the existence of
an autonomous linguistic processing component),
but where the authority in question is so unspecific
as not to be verifiable when scrutinised.

We address both CoNLL-2010 shared tasks
(Farkas et al., 2010). The first, detecting uncer-
tain information on a sentence level, we solve by
using an L1-regularised support vector machine
with hinge loss for the biological domain, and
an L2-regularised maximum margin model for the
Wikipedia domain. The second task, resolution of
in-sentence scopes of hedge cues, we approach as
an approximate L2-regularized maximum margin
structured prediction problem. Our official results
for Task 1 for the biological domain are 85.2 F1-
score, for the Wikipedia set 55.4 F1-score. For
Task 2, our official results were 2.1 for the entire
task with a score of 62.5 for cue detection. After
resolving errors and unfortunate bugs, our final re-
sults are for Task 1, biological: 86.0, Wikipedia:
58.2; Task 2: 39.6 and 78.5 for cues.

2 Detecting Sentence Level Uncertainty

On the sentence level, word- and lemma-based
features have been shown to be useful for uncer-
tainty detection (see e.g. Light et al. (2004), Med-
lock and Briscoe (2007), Medlock (2008), and
Szarvas (2008)). Medlock (2008) and Szarvas
(2008) employ probabilistic, weakly supervised
methods, where in the former, a stemmed single
term and bigram representation achieved best re-
sults (0.82 BEP), and in the latter, a more complex
n-gram feature selection procedure was applied
using a Maximum Entropy classifier, achieving
best results when adding reliable keywords from
an external hedge keyword dictionary (0.85 BEP,
85.08 F1-score on biomedical articles). More lin-
guistically motivated features are used by Kil-
icoglu and Bergler (2008), such as negated “un-
hedging” verbs and nouns and that preceded by
epistemic verbs and nouns. On the fruit-fly dataset
(Medlock and Briscoe, 2007) they achieve 0.85
BEP, and on the BMC dataset (Szarvas, 2008) they
achieve 0.82 BEP. Light et al. (2004) also found
that most of the uncertain sentences appeared to-
wards the end of the abstract, indicating that the
position of an uncertain sentence might be a use-

ful feature.
Ganter and Strube (2009) consider weasel tags

in Wikipedia articles as hedge cues, and achieve
results of 0.70 BEP using word- and distance
based features on a test set automatically derived
from Wikipedia, and 0.69 BEP on a manually an-
notated test set using syntactic patterns as fea-
tures. These results suggest that syntactic features
are useful for identifying weasels that ought to be
tagged. However, evaluation is performed on bal-
anced test sets, which gives a higher baseline.

2.1 Learning and Optimization Framework

A guiding principle in our approach to this shared
task has been to focus on highly computationally
efficient models, both in terms of training and pre-
diction times. Although kernel based non-linear
separators may sometimes obtain better predic-
tion performance, compared to linear models, the
speed penalty at prediction time is often substan-
tial, since the number of support patterns often
grows linearly with the size of the training set. We
therefore restrict ourselves to linear models, but
allow for a restricted family of explicit non-linear
mappings by feature combinations.

For sentence level hedge detection in the bio-
logical domain, we employ an L1-regularised sup-
port vector machine with hinge loss, as provided
by the library implemented by Fan et al. (2008),
while for weasel detection in the Wikipedia do-
main, we instead use the L2-regularised maximum
margin model described in more detail in section
3.1. In both cases, we approximately optimise the
F1-measure by weighting each class by the inverse
of its proportion in the training data.

The reason for using L1-regularisation in the bi-
ological domain is that the annotation is heavily
biased towards a rather small number of lexical
cues, making most of the potential surface features
irrelevant. The Wikipedia weasel annotation, on
the other hand, is much more noisy and less de-
termined by specific lexical markers. Regularising
with respect to the L1-norm is known to give pref-
erence to sparse models and for the special case
of logistic regression, Ng (2004) proved that the
sample complexity grows only logarithmically in
the number of irrelevant features, instead of lin-
early as when regularising with respect to the L2-
norm. Our preliminary experiments indicated that
L1-regularisation is superior to L2-regularisation
in the biological domain, while slightly inferior in
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the Wikipedia domain.

2.2 Feature Definitions
The asymmetric relationship between certain and
uncertain sentences becomes evident when one
tries to learn this distinction based on surface level
cues. While the UNCERTAIN category is to a large
extent explicitly anchored in lexical markers, the
CERTAIN category is more or less defined implic-
itly as the complement of the UNCERTAIN cate-
gory. To handle this situation, we use a bias fea-
ture to model the weight of the CERTAIN category,
while explicit features are used to model the UN-
CERTAIN category.

The following list describes the feature tem-
plates explored for sentence level uncertainty de-
tection. Some features are based on a linguistic
analysis by the Connexor Functional Dependency
(FDG) parser (Tapanainen and Järvinen, 1997).

SENLEN Preliminary experiments indicated that taking sen-
tence length into account is beneficial. We incorporate
this by using three different bias terms, according to the
length (in tokens) of the sentences. This feature takes
the following values: S < 18 ≤ M ≤ 32 < L.

DOCPT Document part, e.g., TITLE, ABSTRACT and BODY
TEXT, allowing for different models for different docu-
ment parts.

TOKEN, LEMMA Tokens in most cases equals words, but
may in some special cases also be multiword units, e.g.
of course, as defined by the FDG tokenisation. Lemmas
are base forms of words, with some special features
introduced for numeric tokens, e.g., year, short number,
and long number.

QUANT Syntactic function of a noun phrase with a quanti-
fier head (at least some of the isoforms are conserved
between mouse and humans), or a modifying quantifier
(Recently, many investigators have been interested in
the study on eosinophil biology).

HEAD, DEPREL Functional dependency head of the token,
and the type of dependency relation between the head
and the token, respectively.

SYN Phrase-level and clause-level syntactic functions of a
word.

MORPH Part-of-speech and morphological traits of a word.

Each feature template defines a set of features
when applied to data. The TOKEN, LEMMA,
QUANT, HEAD, DEPREL templates yield single-
ton sets of features for each token, while the SYN

and MORPH templates extends to sets consisting
of several features for each token. A sentence is
represented as the union of all active token level
features and the SENLEN and DOCPT, if active.
In addition to the linear combination of concrete

features, we allow combined features by the Carte-
sian product of the feature set extensions of two or
more feature templates.

2.3 Feature Template Selection

Although regularised maximum margin models
often cope well even in the presence of irrelevant
features, it is a good idea to search the large set of
potential features for an optimal subset.

In order to make this search feasible we make
two simplifications. First, we do not explore the
full set of individual features, but instead the set of
feature templates, as defined above. Second, we
perform a greedy search in which we iteratively
add the feature template that gives the largest per-
formance improvement, when added to the cur-
rent optimal set of templates. The performance of
a feature set for sentence level detection is mea-
sured as the mean F1-score, with respect to the
UNCERTAIN class, minus one standard deviation
– the mean and standard deviation are computed
by three fold cross-validation on the training set.
We subtract one standard deviation from the mean
in order to promote stable solutions over unstable
ones.

Of course, these simplifications do not come for
free. The solution of the optimisation problem
might be quite unstable with respect to the optimal
hyper-parameters of the learning algorithm, which
in turn may depend on the feature set used. This
risk could be reduced by conducting a more thor-
ough parameter search for each candidate feature
set, however, this was simply too time consuming
for the present work. A further risk of using for-
ward selection is that feature interactions are ig-
nored. This issue is handled better with backward
elimination, but that is also more time consuming.

The full set of explored feature templates is too
large to be listed here; instead we list the features
selected in each iteration of the search, together
with their corresponding scores, in Table 1.

3 Detecting In-sentence Uncertainty

When it comes to the automatic identification of
hedge cues and their linguistic scopes, Morante
and Daelemans (2009) and Özgür and Radev
(2009) report experiments on the BioScope cor-
pus (Vincze et al., 2008), achieving best results
(10-fold cross evaluation) on the identification of
hedge cues of 71.59 F-score (using IGTree with
current, preceding and subsequent word and cur-
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Task Template set Dev F1 Test F1

Bio

SENLEN - -
∪ LEMMA 88.9 (.25) 78.79
∪ LEMMABI 90.3 (.19) 85.86
∪ LEMMA⊗QUANT 90.3 (.07) 85.97

Wiki
SENLEN - -
∪ TOKEN⊗DOCPT 59.0 (.76) 60.12
∪ TOKENBI⊗SENLEN 59.9 (.09) 58.26

Table 1: Top feature templates for sentence level
hedge and weasel detection.

rent lemma as features) and 82.82 F-score (using a
Support Vector Machine classifier and a complex
feature set including keyword and dependency re-
lation information), respectively. On the task of
automatic scope resolution, best results are re-
ported as 59.66 (F-score) and 61.13 (accuracy),
respectively, on the full paper subset. Özgür and
Radev (2009) use a rule-based method for this sub-
task, while Morante and Daelemans (2009) use
three different classifiers as input to a CRF-based
meta-learner, with a complex set of features, in-
cluding hedge cue information, current and sur-
rounding token information, distance information
and location information.

3.1 Learning and Optimisation Framework

In recent years, a wide range of different ap-
proaches to general structured prediction prob-
lems, of which sequence labelling is a special
case, have been suggested. Among others, Con-
ditional Random Fields (Lafferty et al., 2001),
Max-Margin Markov Networks (Taskar et al.,
2003), and Structured Support Vector Machines
(Tsochantaridis et al., 2005). A drawback of
these approaches is that they are all quite com-
putationally demanding. As an alternative, we
propose a much more computationally lenient ap-
proach based on the regularised margin-rescaling
formulation of Taskar et al. (2003), which we in-
stead optimise by stochastic subgradient descent
as suggested by Ratliff et al. (2007). In addi-
tion we only perform approximate decoding, us-
ing beam search, which allows arbitrary complex
joint feature maps to be employed, without sacri-
ficing speed.

3.1.1 Technical Details
Let X denote the pattern set and let Y denote the
set of structured labels. Let A denote the set of
atomic labels and let each label y ∈ Y consist of

an indexed sequence of atomic labels yi ∈ A. De-
note by Yx ⊆ Y the set of possible label assign-
ments to pattern x ∈ X and by yx ∈ Yx its cor-
rect label. In the specific case of BIO-sequence
labelling, A = {BEGIN, INSIDE, OUTSIDE} and
Yx = A|x|, where |x| is the length of the sequence
x ∈ X .

A structured classification problem amounts
to learning a mapping from patterns to labels,
f : X 7→ Y , such that the expected loss
EX×Y [∆(yx, f(x))] is minimised. The prediction
loss, ∆ : Y × Y 7→ <+, measures the loss of
predicting label y = f(x) when the correct la-
bel is yx, with ∆(yx, yx) = 0. Here we assume
the Hamming loss, ∆H(y, y′) =

∑|y|
i=1 δ(yi, y

′
i),

where δ(yi, y
′
i) = 1 if yi 6= y′i and 0 otherwise.

The idea of the margin-rescaling approach is to
let the structured margin between the correct label
yx and a hypothesis y ∈ Yx scale linearly with the
prediction loss ∆(yx, y) (Taskar et al., 2003). The
structured margin is defined in terms of a score
function S : X × Y 7→ <, in our case the linear
score function S(x, y) = wT Φ(x, y), where w ∈
<m is a vector of parameters and Φ : X×Y 7→ <m

is a joint feature function. The learning problem
then amounts to finding parameters w such that
S(x, yx) ≥ S(x, y) + ∆(yx, y) for all y ∈ Yx \
{yx} over the training data D. In other words, we
want the score of the correct label to be higher than
the score plus the loss, of all other labels, for each
instance. In order to balance margin maximisation
and margin violation, we add the L2-regularisation
term ‖w‖2.

By making use of the loss augmented decoding
function

f∆(x, yx) = argmax
y∈Yx

[S(x, y) + ∆(yx, y)] , (1)

we get the following regularised risk functional:

Qλ,D(w) =
|D|∑

i=1

S∆(x(i), yx(i)) +
λ

2
‖w‖2, (2)

where

S∆(x, yx) = max
y∈Yx

[S(x, y) + ∆(yx, y)]−S(x, yx)

(3)
We optimise (2) by stochastic approximate subgra-
dient descent with step size sequence [η0/

√
t]∞t=1

(Ratliff et al., 2007). The initial step size η0

and the regularisation factor λ are data depen-
dent hyper-parameters, which we tune by cross-
validation.
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This framework is highly efficient both at learn-
ing and prediction time. Training cues and scopes
on the biological data, takes about a minute, while
prediction times are in the order of seconds, using
a Java based implementation on a standard laptop;
the absolute majority of that time is spent on read-
ing and extracting features from an inefficient in-
ternal JSON-based format.

3.1.2 Hashed Feature Functions
Joint feature functions enable encoding of depen-
dencies between labels and relations between pat-
tern and label. Most feature templates are de-
fined based on input only, while some are de-
fined with respect to output features as well. Let
Ψ(x, y1:i−1, i) ∈ <m denote the joint feature func-
tion corresponding to the application of all active
feature templates to pattern x ∈ X and partially
decoded label y1:i−1 ∈ Ai−1 when decoding at
position i. The feature mapping used in scoring
candidate label yi ∈ A is then computed as the
Cartesian product Φ(x, y, i) = Ψ(x, y1:i−1, i) ⊗
Λ(yi), where Λ(yi) ∈ <m is a unique unitary fea-
ture vector representation of label yi. The feature
representation for a complete sequence x and its
associated label y is then computed as

Φ(x, y) =
|x|∑

i=1

Φ(x, y, i)

When employing joint feature functions and com-
bined features, the number of unique features may
grow very large. This is a problem when the
amount of internal memory is limited. Feature
hashing, as described by Weinberger et al. (2009),
is a simple trick to circumvent this problem. As-
sume that we have an original feature function
φ : X × Y 7→ <m, where m might be arbitrar-
ily large. Let h : N+ 7→ [1, n] be a hash function
and let h−1(i) ⊆ [1,m] be the set of integers such
that j ∈ h−1(i) iff h(j) = i. We now use this
hash function to map the index of each feature in
φ(x, y) to its corresponding index in Φ(x, y), as
Φi(x, y) =

∑
j∈h−1(i) φj(x, y). The features in Φ

are thus unions of multisets of features in φ. Given
a hash function with good collision properties, we
can expect that the subset of features mapped to
any index in Φ(x, y) is small and composed of ele-
ments drawn at random from φ(x, y). Weinberger
et al. (2009) contains proofs of bounds on these
distributions. Furthermore, by using a k-valued
hash function h : Nk 7→ [1, n], the Cartesian prod-

uct of k feature sets can be computed much more
efficiently, compared to using a dictionary.

3.2 Position Based Feature Definitions

For in-sentence cue and scope prediction we make
use of the same token level feature templates as
for sentence level detection. An additional level
of expressivity is added in that each token level
template is associated with a token position. A
template is addressed either relative to the token
currently being decoded, or by the dependency arc
of a token, which in turn is addressed by a relative
position. The addressing can be either to a single
position, or a range of positions. Feature templates
may further be defined with respect to features of
the input pattern, the token level labels predicted
so far, or with respect to combinations of input
and label features. Joint features, just as complex
feature combinations, are created by forming the
Cartesian product of an input feature set and a la-
bel feature set.

The feature templates are instantiated by pre-
fixing the template name to each member of the
feature set. To exemplify, the single position tem-
plate TOKENi, given that the token currently be-
ing decoded at position i is suggests, is instanti-
ated as the singleton set {TOKENi = suggests}.
The range template TOKENi,i+1, given that the
current token is suggests and the next token is
that, is instantiated as the set {TOKENi,i+1 =
suggests, TOKENi,i+1 = that}; i.e. each member
of the set is prefixed by the range template name.

In addition to the token level templates used for
sentence level prediction, the following templates
were explored:

LABEL Label predicted so far at the addressed position(s).

HEAD.X An arbitrary feature, X, addressed by follow-
ing the dependency arc(s) from the addressed posi-
tion(s). For example, HEAD.LEMMAi corresponds to
the lemma found by looking at the dependency head of
the current token.

CUE, CUESCOPE Whether the token(s) addressed is re-
spectively, a cue marker, or within the syntactic scope
of the current cue, following the definition of scope
provided by Vincze et al. (2008).

3.3 Feature Template Selection

Just as with sentence level detection, we used a
greedy forward selection strategy when searching
for the optimal subset of feature templates. The
cue and scope detection subtasks were optimised
separately.
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The scoring measures used in the search for
cue and scope detection features differ. In order
to match the official scoring measure for cue de-
tection, we optimise the F1-score of labels cor-
responding to cue tags, i.e. we treat the BEGIN

and INSIDE cue tags as an equivalence class. The
official scoring measure for scope prediction, on
the other hand, corresponds to the exact match
of scope boundaries. Unfortunately using exact
match performance turned out to be not very well
suited for use in greedy forward selection. This
is because before a sufficient per token accuracy
has been reached, and even when it has, the ex-
act match score may fluctuate wildly. Therefore,
as a substitute, we instead guide the search by to-
ken level accuracy. This discrepancy between the
search criterion and the official scoring metric is
unfortunate.

Again, when taking into account position ad-
dressing, joint features and combined features, the
complete set of explored templates is too large to
fit in the current experiment. The selected features
together with their corresponding scores are found
in Table 2.

Task Template set Dev F1 Test F1

Cue

TOKENi 74.0 (1.5) -
∪ TOKENi−1 81.0 (.30) 68.78
∪ MORPHi 83.6 (.10) 74.06
∪ LEMMAi ⊗ LEMMAi+1 85.6 (.20) 78.41
∪ SYNi 86.5 (.41) 78.28
∪ LEMMAi−1 ⊗ LEMMAi 86.7 (.42) 78.52

Scope

CueScopei 66.9 (.92) -
∪ LABELi−2,i−1 79.5 (.67) 34.80
∪ LEMMAi 82.4 (1.1) 33.18
∪ MORPHi 83.1 (.35) 35.70
∪ CUEi−2,i−1 83.4 (.13) 40.14
∪ CUEi,i+1,i+2 83.6 (.11) 41.15
∪ LEMMAi−1 84.1 (.16) 40.04
∪ MORPHi 84.4 (.33) 40.04
∪ TOKENi+1 84.5 (.09) 39.64

Table 2: Top feature templates for in-sentence de-
tection of hedge cues and scopes.

4 Discussion

Our final F1-score results for the corrected system
are, in Task 1 for the biological domain 85.97, for
the Wikipedia domain 58.25; for Task 2, our re-
sults are 39.64 for the entire task with a score of
78.52 for cue detection.

Any gold standard-based shared experiment un-
avoidably invites discussion on the reliability of

the gold standard. It is easy to find borderline ex-
amples in the evaluation corpus, e.g. sentences
that may just as well be labeled “certain” rather
than “uncertain”. This gives an indication of the
true complexity of assessing the hidden variable of
uncertainty and coercing it to a binary judgment
rather than a dimensional one. It is unlikely that
everyone will agree on a binary judgment every
time.

To improve experimental results and the gen-
eralisability of the results for the task of detect-
ing uncertain information on a sentence level, we
would need to break reliance on the purely lexical
cues. For instance, we now have identified possi-
ble and putative as markers for uncertainty, but in
many instances they are not (Finally, we wish to
ensure that others can use and evaluate the GREC
as simply as possible). This would be avoidable
through either a deeper analysis of the sentence
to note that possible in this case does not modify
anything of substance in the sentence, or alterna-
tively through a multi-word term preprocessor to
identify as simply as possible as an analysis unit.

In the Wikipedia experiment, where the objec-
tive is to identify weasel phrases, the judicious en-
coding of quantifiers such as “some of the most
well-known researchers say that X” would be
likely to identify the sought-for sentences when
the quantified NP is in subject position. In our
experiment we find that our dependency analysis
did not distinguish between the various syntactic
roles of quantified NPs. As a result, we marked
several sentences with a quantifier as a “weasel”
sentence, even where the quantified NP was in a
non-subject role – leading to overly many weasel
sentences. An example is given in Table 3.

If certainty can be identified separately, not as
absence of overt uncertainty, identifying uncer-
tainty can potentially be aided through the iden-
tification of explicit certainty together with nega-
tion, as found by Kilicoglu and Bergler (2008). In
keeping with their results, we found negations in a
sizeable proportion of the annotated training mate-
rial. Currently we capture negation as a lexical cue
in immediate bigrams, but with longer range nega-
tions, we will miss some clear cases: Table 3 gives
two examples. To avoid these misses, we will both
need to identify overt expressions of certainty and
to identify and track the scope of negation – the
first challenge is unexplored but would not seem
to be overly complex; the second is a well-known
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and established challenge for NLP systems in gen-
eral.

In the task of detecting in-sentence uncertainty
– identification of hedge cues and their scopes –
we find that an evaluation method based on ex-
act match of a token sequence is overly unforgiv-
ing. There are many cases where the marginal to-
kens of a sequence are less than central or irrele-
vant for the understanding of the hedge cue and its
scope: moving the boundary by one position over
an uninteresting token may completely invalidate
an otherwise arguably correct analysis. A token-
by-token scoring would be a more functional eval-
uation criterion, or perhaps a fuzzy match, allow-
ing for a certain amount of erroneous characters.

For our experiments, this has posed some chal-
lenges. While we model the in-sentence un-
certainty detection as a sequence labelling prob-
lem in the BIO-representation (BEGIN, INSIDE,
OUTSIDE), the provided corpus uses an XML-
representation. Moreover, the official scoring tool
requires that the predictions are well formed XML,
necessitating a conversion from XML to BIO prior
to training and from BIO to XML after prediction.
Consistent tokenisation is important, but the syn-
tactic analysis components used by us distorted the
original tokenisation and restoring the exact same
token sequence proved problematic.

Conversion from BIO to XML is straightforward
for cues, while some care must be taken when an-
notating scopes, since erroneous scope predictions
may result in malformed XML. When adding the
scope annotation, we use a stack based algorithm.
For each sentence, we simultaneously traverse the
scope-sequence corresponding to each cue, left to
right, token by token. The stack is used to en-
sure that scopes are either separated or nested and
an additional restriction ensures that scopes may
never start or end inside a cue. In case the al-
gorithm fails to place a scope according to these
restrictions, we fall back and let the scope cover
the whole sentence. Several of the more frequent
errors in our analyses are scoping errors, many
likely to do with the fallback solution. Our analy-
sis quite frequently fails also to assign the subject
of a sentence to the scope of a hedging verb. Ta-
ble 3 shows one example each of these errors –
overextended scope and missing subject.

Unfortunately, the tokenisation output by our
analysis components is not always consistent with
the tokenisation assumed by the BioScope annota-

tion. A post-processing step was therefore added
in which each, possibly complex, token in the pre-
dicted BIO-sequence is heuristically mapped to its
corresponding position in the XML structure. This
post-processing is not perfect and scopes and cues
at non-word token boundaries, such as parenthe-
ses, are quite often misplaced with respect to the
BioScope annotation. Table 3 gives one example
which is scored “erroneous” since the token “(63)”
is in scope, where the “correct” solution has it out-
side the scope. These errors are not important to
address, but are quite frequent in our results – ap-
proximately 80 errors are of this type.

To achieve more general and effective methods
to detect uncertainty in an argument, we should
note that uncertainty is signalled in a text through
many mechanisms, and that the purely lexical and
explicit signal found through the present experi-
ments in hedge identification is effective and use-
ful, but will not catch everything we might want to
find. Lexical approaches are also domain depen-
dent. For instance, Szarvas (2008) and Morante
and Daelemans (2009) report loss in performance,
when applying the same methods developed on bi-
ological data, on clinical text. Using the systems
developed for scientific text elsewhere poses a mi-
gration challenge. It would be desirable both to
automatically learn a hedging lexicon from a gen-
eral seed set and to have features on a higher level
of abstraction.

Our main result is that casting this task as a se-
quence labelling problem affords us the possibility
to combine linguistic analyses with a highly effi-
cient implementation of a max-margin prediction
algorithm. Our framework processes the data sets
in minutes for training and seconds for prediction
on a standard personal computer.
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Abstract

This paper presents a system which adopts
a standard sequence labeling technique for
hedge detection and scope finding. For
the first task, hedge detection, we formu-
late it as a hedge labeling problem, while
for the second task, we use a two-step la-
beling strategy, one for hedge cue label-
ing and the other for scope finding. In par-
ticular, various kinds of syntactic features
are systemically exploited and effectively
integrated using a large-scale normalized
feature selection method. Evaluation on
the CoNLL-2010 shared task shows that
our system achieves stable and competi-
tive results for all the closed tasks. Fur-
thermore, post-deadline experiments show
that the performance can be much further
improved using a sufficient feature selec-
tion.

1 Introduction

Hedges are linguistic devices representing spec-
ulative parts of articles. Previous works such as
(Hyland, 1996; Marco and Mercer, 2004; Light et
al., 2004; Thompson et al., 2008) present research
on hedge mainly as a linguistic phenomenon.
Meanwhile, detecting hedges and their scopes au-
tomatically are increasingly important tasks in nat-
ural language processing and information extrac-
tion, especially in biomedical community. The
shared task of CoNLL-2010 described in Farkas
et al. (2010) aims at detecting hedges (task 1)
and finding their scopes (task 2) for the literature

∗ This work is partially supported by the National
Natural Science Foundation of China (Grants 60903119,
60773090, 90820018 and 90920004), the National Basic Re-
search Program of China (Grant No. 2009CB320901), and
the National High-Tech Research Program of China (Grant
No.2008AA02Z315).

†corresponding author

from BioScope corpus (Szarvas et al., 2008) and
Wikipedia. This paper describes a system adopt-
ing sequence labeling which performs competitive
in the official evaluation, as well as further test.
In addition, a large-scale feature selection proce-
dure is applied in training and development. Con-
sidering that BioScope corpus is annotated by two
independent linguists according to a formal guide-
line (Szarvas, 2008), while Wikipedia weasels are
tagged by netizens who are diverse in background
and various in evaluation criterion, it is needed to
handle them separately. Our system selects fea-
tures for Wikipedia and BioScope corpus indepen-
dently and evaluate them respectively, leading to
fine performances for all of them.

The rest of the paper is organized as follows.
The next section presents the technical details of
our system of hedge detection and scope finding.
Section 3 gives information of features. Section
4 shows the evaluation results, including official
results and further ones after official outputs col-
lection. Section 5 concludes the paper.

2 Methods

Basically, the tasks are formulated as sequence la-
beling in our approach. The available label set dif-
fers between task 1 and 2. In addition, it is needed
to introduce an indicator in order to find scopes for
the multi-hedge sentences properly.

2.1 Hedge detection

The valid label set of task 1, hedge detection, con-
tains only two labels: “Hedge” and “ ”, which
represent that a word is in a hedge cue or not
respectively. Since results of hedge detection in
this shared task are evaluated at sentence level, a
sentence will be classified as “uncertain” in the
post-process if it has one or more words labeled
“Hedge” in it and otherwise “certain”.
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2.2 Scope finding

The second task is divided into two steps in our
system. The first step is quite the same as what
the system does in task 1: labeling the words as in
hedge cues or not. Then the scope of each hedge
will be labeled by taking advantage of the result
of the first step. A scope can be denoted by a
beginning word and an ending word to represent
the first and the last element. In scope finding the
available label set contains “Begin”, “End”, “Mid-
dle” and “ ”, representing the first and last word in
the scope, in-scope and out-of-scope. As an exam-
ple, a sentence with hedge cue and scope labeling
is given in Table 1. Hedge cue “indicating” with
its scope from “indicating” itself to “transcription”
are labeled. While evaluating outputs, only “Be-
gin”s and “End”s will be taken into consideration
and be treated as the head and tail tokens of the
scopes of specific hedge cues.

Furthermore ...
, ...
inhibition ...
can ...
be ...
blocked ...
by ...
actinomycin ...
D ...
, ...
indicating ... Hedge Begin
a ... Middle
requirement ... Middle
for ... Middle
de ... Middle
novo ... Middle
transcription ... End
. ...

Table 1: A sentence with hedge cue and scope la-
beling

It seems that the best labeling result of task 1
can be used directly to be the proper intermediate
representation of task 2. However, the complexity
of scope finding for multi-hedge sentences forces
us to modify the intermediate result of task 2 for
the sake of handling the sentences with more than
one hedge cue correctly. Besides, since task 1 is
a sentence classification task essentially, while the
goal of the first step of task 2 is to label the words
as accurately as possible, it is easy to find that
the optimal labeling results of task 1 may not be
optimal to be the intermediate representations for
task 2. This problem can be solved if sentence-
level hedge detection and intermediate representa-

tion finding are treated as two separate tasks with
independent feature selection procedures. The de-
tails of feature selection will be given in section
3.

2.3 Scope finding for multi-hedge cases

Sentences with more than one hedge cue are quite
common in both datasets of BioScope corpus and
Wikipedia. By counting hedges in every sentence,
we find that about one fourth of the sentences with
hedges have more than one hedge cue in all three
data sources (Table 2). In Morante and Daele-
mans (2009), three classifiers predict whether each
token is Begin, End or None and a postprocess-
ing is needed to associate Begins and Ends with
their corresponding hedge cues. In our approach,
in order to decrease ambiguous or illegal outputs
e.g. inequivalent numbers of Begins and Ends, a
pair of Begin and End without their correspond-
ing hedge cue between them, etc., sentences with
more than one hedge cue will be preprocessed by
making copies as many as the number of hedges
and be handled separately.

The sentence which is selected as a sample has
two hedge cues: “suggesting” and “may”, so our
system preprocesses the sentence into two single-
hedge ones, which is illustrated in Table 3. Now it
comes to the problem of finding scope for single-
hedge sentence. The two copies are labeled sep-
arately, getting one scope from “suggesting” to
“mitogenesis” for the hedge cue “suggesting” and
the other from “IFN-alpha” to “mitogenesis” for
“may”. Merging the two results will give the final
scope resolution of the sentence.

However, compared with matching Begins and
Ends in postprocessing given by Morante and
Daelemans (2009), the above method gives rise
to out of control of projections of the scopes,
i.e. scopes of hedges may partially overlap after
copies are merged. Since scopes should be in-
tact constituents of sentences, namely, subtrees in
syntax tree which never partly overlap with each
other, results like this are linguistically illegal and
should be discarded. We solve this problem by in-
troducing an instructional feature called “Indica-
tor”. For sentences with more than one hedge cue,
namely more than one copy while finding scopes,
words inside the union of existing (labeled) scopes
will be tagged as “Indicator” in unhandled copies
before every labeling. For example, after finding
scope for the first copy in Table 3 and words from
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Dataset # Sentence # No-hedge ratio # One-hedge ratio # Multi-hedge ratio
Biomedical Abstracts 11871 9770 82.3% 1603 13.5% 498 4.2%
Biomedical Fulltexts 2670 2151 80.6% 385 14.4% 134 5.0%

Wikipedia 11111 8627 77.6% 1936 17.4% 548 4.9%

Table 2: Statistics of hedge amount

IFN-alpha IFN-alpha
also also
sensitized sensitized
T T
cells cells
to to
IL-2-induced IL-2-induced
proliferation proliferation
, ,
further further
suggesting Hedge suggesting
that that
IFN-alpha IFN-alpha
may may Hedge
be be
involved involved
in in
the the
regulation regulation
of of
T-cell T-cell
mitogenesis mitogenesis
. .

Table 3: An example of 2-hedge sentence before
scope finding

“suggesting” to “mitogenesis” are put in the scope
of cue “suggesting”, these words should be tagged
“Indicator” in the second copy, whose result is il-
lustrated in Table 4. If not in a scope, any word is
tagged “ ” as the indicator. The “Indicator”s tag-
ging from “suggesting” to “mitogenesis” in Table
4 mean that no other than the situations of a) “Be-
gin” is after or at “suggesting” and “End” is before
or at “mitogenesis” b) Both “Begin” and “End” are
before “suggesting” c) Both next “Begin” and next
“End” are after “mitogenesis” can be accepted. In
other words, new labeling should keep the projec-
tions of scopes in the result. Although it is only
an instructional indicator and does not have any
coerciveness, the evaluation result of experiment
shows it effective.

3 Feature selection

Since hedge and scope finding are quite novel
tasks and it is not easy to determine the effective
features by experience, a greedy feature selection
is conducted. As it mentioned in section 2, our
system divides scope finding into two sub-tasks:

IFN-alpha ...
also ...
sensitized ...
T ...
cells ...
to ...
IL-2-induced ...
proliferation ...
, ...
further ...
suggesting ... Indicator
that ... Indicator
IFN-alpha ... Indicator Begin
may ... Indicator Hedge Middle
be ... Indicator Middle
involved ... Indicator Middle
in ... Indicator Middle
the ... Indicator Middle
regulation ... Indicator Middle
of ... Indicator Middle
T-cell ... Indicator Middle
mitogenesis ... Indicator End
. ...

Table 4: Scope resolution with instructional fea-
ture: “Indicator”

a) Hedge cue labeling

b) Scope labeling

The first one is the same as hedge detection task
in strategy, but quite distinct in target of feature
set, because hedge detection is a task of sentence
classification while the first step of scope find-
ing aims at high accuracy of labeling hedge cues.
Therefore, three independent procedures of fea-
ture selection are conducted for BioScope corpus
dataset. As Wikipedia is not involved in the task of
scope finding, it only needs one final feature set.

About 200 feature templates are initially con-
sidered for each task. We mainly borrow ideas and
are enlightened by following sources while initial-
izing feature template sets:

a) Previous papers on hedge detection and
scope finding (Light et al., 2004; Medlock,
2008; Medlock and Briscoe, 2008; Kilicoglu
and Bergler, 2008; Szarvas, 2008; Ganter
and Strube, 2009; Morante and Daelemans,
2009);
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b) Related works such as named entity recog-
nition (Collins, 1999) and text chunking
(Zhang et al., 2001);

c) Some literature on dependency parsing
(Nivre and Scholz, 2004; McDonald et al.,
2005; Nivre, 2009; Zhao et al., 2009c; Zhao
et al., 2009a);

3.1 Notations of Feature Template

A large amount of advanced syntactic features in-
cluding syntactic connections, paths, families and
their concatenations are introduced. Many of these
features come from dependency parsing, which
aims at building syntactic tree expressed by depen-
dencies between words. More details about de-
pendency parsing are given in Nivre and Scholz
(2004) and McDonald et al. (2005). The parser
in Zhao et al. (2009a) is used to construct de-
pendency structures in our system, and some of
the notations in this paper adopt those presented
in Zhao et al. (2009c). Feature templates are from
various combinations or integrations of the follow-
ing basic elements.

Word Property. This part of features includes
word form (form), lemma (lemma), part-of-speech
tag (pos), syntactic dependency (dp) , syntactic de-
pendency label (dprel).

Syntactic Connection. This includes syntactic
head (h), left(right) farthest(nearest) child (lm, ln,
rm and rn) and high (low) support verb, noun or
preposition. Here we specify the last one as an
example, support verb(noun/preposition). From a
given word to the syntactic root along the syntac-
tic tree, the first verb/noun/preposition that is met
is called its low support verb/noun/preposition,
and the nearest one to the root(farthest to
the given word) is called as its high support
verb/noun/preposition. The concept of support
verb was broadly used (Toutanova et al., 2005;
Xue, 2006; Jiang and Ng, 2006), and it is extended
to nouns and prepositions in Zhao et al. (2009b).
In addition, a slightly modified syntactic head, pp-
head, is introduced, it returns the left most sibling
of a given word if the word is headed by a prepo-
sition, otherwise it returns the original head.

Path. There are two basic types of path. One
is the linear path (linePath) in the sequence, the
other is the path in the syntactic parsing tree (dp-
Path). For example, m:n|dpPath represents the
dependency path from word m to n. Assuming
that the two paths from m and n to the root are

pm and pn, m:n|dpPathShare, m:n|dpPathPred
and m:n|dpPathArgu represent the common part
of pm and pn, part of pm which does not belong
to pn and part of pn which does not belong to pm,
respectively.

Family. A children set includes all syntactic
children(children) are used in the template nota-
tions.

Concatenation of Elements. For all collected
elements according to dpPath, children and so on,
we use three strategies to concatenate all those
strings to produce the feature value. The first is
seq, which concatenates all collected strings with-
out doing anything. The second is bag, which
removes all duplicated strings and sort the rest.
The third is noDup, which removes all duplicated
neighbored strings.

Hedge Cue Dictionary and Scope Indicator.
Hedge cues in the training set are collected and put
in a dictionary. Whether a word in the training or
testing set is in the dictionary (dic) is introduced
into feature templates. As the evaluation is non-
open, we do not put in any additional hedge cues
from other resources. An indicator (indicator) is
given for multi-hedge scope finding, as specified
in section 2.At last, in feature set for scope label-
ing, hedge represents that the word is in a hedge
cue.

At last, we take x as current token to be labeled,
and xm to denote neighbor words. m > 0 repre-
sents that it is a word goes mth after current word
and m < 0 for word −mth before current word.

3.2 Feature template sets for each task

As optimal feature template subsets cannot be ex-
pected to be extracted from so large sets by hand,
greedy feature selections according to Zhao et al.
(2009b) are applied. The normalized feature selec-
tion has been proved to be effective in quite a lot
of NLP tasks and can often successfully select an
optimal or very close to optimal feature set from a
large-scale superset. Although usually it needs 3
to 4 loops denoted by “While” in the Algorithm 1
of Zhao et al. (2009b) to get the best template set,
we only complete one before official outputs col-
lection because of time limitation, which to a large
extent hinders the performance of the system.

Three template sets are selected for BioScope
corpus. One with the highest accuracy for
sentence-level hedge detection (Set B), one with
the best performance for word-level hedge cue la-
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beling (Set H) and another one with the maximal
F-score for scope finding (Set S). In addition, one
set is discovered for sentence-level hedge detec-
tion of Wikipedia (Set W)1 . Table 52 lists some
selected feature templates which are basic word or
hedging properties for the three sets of BioScope
corpus and Wikipedia. From the table we can see
it is clear that the combinations of lemma, POS
and word form of words in context, which are usu-
ally basic and common elements in NLP, are also
effective for hedge detection. And as we expected,
the feature that represents whether the word is in
the hedge list or not is very useful especially in
hedge cue finding, indicating that methods based
on a hedge cue lists (Light et al., 2004) or keyword
selection (Szarvas, 2008) are quite significant way
to accomplish such tasks.

Some a little complicated syntactic features
based on dependencies are systemically exploited
as features for tasks. Table 6 enumerates some of
the syntactic features which proves to be highly
effective. We noticed that lowSupportNoun, high-
SupportNoun and features derived from dpPath is
notably useful. It can be explained by the aware-
ness that hedge labeling and scope finding are to
process literatures in the level of semantics where
syntactic features are often helpful.

We continue our feature selection procedures
for BioScope corpus after official outputs collec-
tion and obtain feature template sets that bring bet-
ter performance. Table 7 gives some of the fea-
tures in the optimized sets for BioScope corpus
resolution. One difference between the new sets
and the old ones is the former contain more syntac-
tic elements, indicating that exploiting syntactic
feature is a correct choice. Another difference is
the new sets assemble more information of words
before or after the current word, especially words
linearly far away but close in syntax tree. Appear-
ance of combination of these two factors such as
x−1.lm.form seems to provide an evidence of the
insufficiency training and development of our sys-
tem submitted to some extent.

4 Evaluation results

Two tracks (closed and open challenges) are pro-
vided for CoNLL-2010 shared task. We partici-
pated in the closed challenge, select features based

1num in the set of Wikipedia represents the sequential
number of word in the sentence

2Contact the authors to get the full feature lists, as well as
entire optimized sets in post-deadline experiment

- x.lemma + x1.lemma + x−1.lemma
+ x.dic + x1.dic + x−1.dic

- x.lemma + x1.pos + x−1.pos + x.pos
+ x1.lemma + x−1.lemma

- x.form
Set B x.pos + x1.pos + x−1.pos + x2.pos

+ x−2.pos
- x.dic + x1.dic + x−1.dic
- x1.pos
- x.dic + x1.dic + x−1.dic + x2.dic

+ x−2.dic
- x.pos + x−1.pos
- x.dic

Set H x.dic + x.lemma + x.pos + x.form
- x.pos + x1.pos + x−1.pos + x2.pos

+ x−2.pos
- x−2.form + x−2.lemma
- x−1.form + x.form
- x.dic + x1.dic + x−1.dic
- x.dic + x1.dic + x−1.dic + x2.dic

+ x−2.dic + x3.dic + x−3.dic
- x.indicator
- x.hedge + x1.hedge + x−1.hedge

Set S x.lemma + x1.pos + x−1.pos + x.pos
+ x1.lemma + x−1.lemma

- x.pos + x.hedge + x.dp + x.dprel
- x1.pos
- x.pos + x1.pos + x−1.pos + x2.pos

+ x−2.pos
- x.lemma + x1.lemma + x−1.lemma
- + x.dic + x1.dic + x−1.dic
- x.lemma + x1.lemma + x−1.lemma

+x2.lemma + x−2.lemma + x.dic
+ x1.dic + x−1.dic + x2.dic + x−2.dic

- x.lemma + x1.lemma
Set W x.hedge + x1.hedge + x−1.hedge

+ x2.hedge + x−2.hedge + x3.hedge
+ x−3.hedge

- x.pos + x1.pos + x−1.pos +x2.pos
+ x−2.pos + x.dic + x1.dic + x−1.dic
+ x2.dic + x−2.dic

- x.pos + x.dic
- x.num + x.dic

Table 5: Selected feature template sets
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- x.lowSupportNoun:x | dpPathArgu.dprel.seq
- x.lowSupportNoun:x|dpPathArgu.dprel.seq

+ x.lowSupportProp:x|dpPathArgu.dprel.seq
- x.lowSupoortNoun.pos
- x.pos + x.children.dprel.bag
- x.rm.dprel + x.form

Set B x.pphead.lemma
- x.form + x.children.dprel.bag
- x.lowSupportNoun:x—dpTreeRelation
- x.lowSupportProp.lemma
- x.form + x.children.dprel.noDup
- x.highSupportNoun:x|dpTreeRelation + x.form
- x.lowSupportVerb.form
- x.lowSupportProp:x|dpPathShared.dprel.seq
- x.lowSupportProp:x|dpPathShared.pos.seq
- x.highSupportNoun.pos
- x.highSupportNoun:x|dpTreeRelation
- x.highSupportNoun:x|dpPathArgu.dprel.seq

Set H + x.highSupportProp:x|dpPathArgu.dprel.seq
- xlowSupportProp.lemma
- x.rm.dprel
- x.lm.form
- x.lemma + x.pphead.form
- x.lowSupportVerb.form
- x.rm.lemma + x.rm.form
- x.children.dprel.noDup
- x.children.dprel.bag
- x.highSupportNoun:x|dpTreeRelation
- x.lemma + x.pphead.form

Set S x.highSupportNoun:x|dpTreeRelation + x.form
- x.lowSupportVerb.form
- x.lowSupportVerb.lemma
- x.h.children.dprel.bag
- x.highSupportVerb.form
- x.lm.form
- x.lemma + x.pphead.form
- x.lm.dprel + x.pos
- x.lowSupportProp:x|dpPathPred.dprel.seq
- x.pphead.lemma

Set W x.rm.lemma
- x.lowSupportProp:x|dpTreeRelation
- x.lowSupportVerb:x|dpPathPred.dprel.seq
- x.lowSupportVerb:x|dpPathPred.pos.seq
- x.lowSupportVerb:x|dpPathShared.pos.seq
- x.lowSupportProp:x|dpPathShared.pos.seq
- x.lowSupportProp.form

Table 6: Syntactic features

- x−1.lemma
- x.dic + x1.dic + x−1.dic + x2.dic

+ x−2.dic + x3.dic + x−3.dic
- x−1.pos + x1.pos

Set H x.rm.lemma
- x.rm.dprel
- x.lm.dprel + x.pos
- x.lowSupportNoun:x | dpPathArgu.dprel.seq
- x.lowSupportNoun:x|dpPathArgu.dprel.seq

+ x.lowSupportProp:x|dpPathArgu.dprel.seq
- x−1.lemma
- x.lemma + x1.lemma + x−1.lemma + x.dic

+ x1.dic + x−1.dic
- x.form + x.lemma + x.pos + x.dic

Set B x−2.form + x−1.form
- x.highSupportNoun:x|dpTreeRelation
- x.highSupportNoun:x|dpPathArgu.dprel.seq
- x.lowSupportProp:x|dpPathShared.dprel.seq
- x−1.lm.form
- x1.form
- x.pos + x.dic
- x.hedge + x1.hedge + x−1.hedge
- x.pos + x1.pos + x−1.pos + x2.pos + x−2.pos

Set S x.children.dprel.bag
- x.lemma + x.pphead.form
- x.highSupportVerb.form
- x.highSupportNoun:x|dpTreeRelation + x.form
- x.lowSupportNoun:x|dpTreeRelation + x.form

Table 7: Selected improved feature template sets
for BioScope corpus

on the in-domain data and evaluated our system
on the in-domain and cross-domain evaluation set.
All the experiments are implemented and run by
Maximum Entropy Markov Models (McCallum,
2000).

4.1 Official results
The official results for tasks are in Table 8, in
which three in-domain tests and cue matching
result for biomedical texts are listed. For the
first task for BioCorpus, our system gives F-score
0.8363 in in-domain test and for Wikipedia we
give F-score 0.5618 in closed evaluation. For the
second task, our system gives results in closed and
open test, with F-score 0.4425 and 0.4441 respec-
tively.

We compare the F-score of our system with the
best in the final result in Table 9. We rank pretty
high in Wikipedia hedge detection, while other
three are quite steady but not prominent. This is
mainly due to two reasons:

1. Feature selection procedures are not perfectly
conducted.

2. Abstracts and fulltexts in BioScope are mixed
to be the training set, which proves quite in-
appropriate when the evaluation set contains
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only fulltext literature, since abstract and full-
text are quite different in terms of hedging.

Dataset F-score Best
Task1-closed 0.8363 0.8636

BioScope Task2-closed 0.4425 0.5732
Cue-matching 0.7853 0.8134

Wikipedia Task1-closed 0.5618 0.6017

Table 9: Comparing results with the best

4.2 Further results

Intact feature selection procedures for BioScope
corpus are conducted after official outputs collec-
tions. The results of evaluation with completely
selected features compared with the incomplete
one are given in Table 7. The system performs a
higher score on evaluation data (Table 10), which
is more competitive in both tasks on BioScope cor-
pus. The improvement for task 2 is significant, but
the increase of performance of hedge cue detec-
tion is less remarkable. We believe that a larger
fulltext training set and a more considerate train-
ing plan will help us to do better job in the future
work.

Dataset Complete Incomplete
Task1-closed 0.8522 0.8363

BioScope Task2-closed 0.5151 0.4425
Cue-matching 0.7990 0.7853

Table 10: Comparing improved outputs with the
best

5 Conclusion

We describe the system that uses sequence label-
ing with normalized feature selection and rich fea-
tures to detect hedges and find scopes for hedge
cues. Syntactic features which are derived from
dependencies are exploited, which prove to be
quite favorable. The evaluation results show that
our system is steady in performance and does
pretty good hedging and scope finding in both Bio-
Scope corpus and Wikipedia, especially when the
feature selection procedure is carefully and totally
conducted. The results suggest that sequence la-
beling and a feature-oriented method are effective
in such NLP tasks.
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Abstract 

Detecting speculative assertions is essential 
to distinguish the facts from uncertain 
information for biomedical text. This paper 
describes a system to detect hedge cues and 
their scope using CRF model. HCDic feature 
is presented to improve the system perfor-
mance of detecting hedge cues on BioScope 
corpus. The feature can make use of cross-
domain resources.  

1 Introduction 

George Lakoff (1972) first introduced linguistic 
hedges which indicate that speakers do not back 
up their opinions with facts. Later other linguists 
followed the social functions of hedges closely. 
Interestingly, Robin Lakoff (1975) introduces 
that hedges might be one of the “women’s 
language features” as they have higher frequency 
in women’s languages than in men’s. 

In the natural language processing domain, 
hedges are very important, too. Along with the 
rapid development of computational and 
biological technology, information extraction 
from huge amount of biomedical resource 
becomes more and more important. While the 
uncertain information can be a noisy factor 
sometimes, affecting the performance of 
information extraction. Biomedical articles are 
rich in speculative, while 17.70% of the 
sentences in the abstracts section of the 
BioScope corpus and 19.44% of the sentences in 
the full papers section contain hedge cues 
(Vincze et al., 2008). In order to distinguish facts 
from uncertain information, detecting speculative 
assertions is essential in biomedical text.  

Hedge detection is paid attention to in the 
biomedical NLP field. Some researchers regard 
the problem as a text classification problem (a 
sentence is speculative or not) using simple 
machine learning techniques. Light et al. (2004) 
use substring matching to annotate speculation in 
biomedical text. Medlock and Briscoe (2007) 
create a hedging dataset and use an SVM 
classifier and get to a recall/precision Break-

Even Point (BEP) of 0.76. They report that the 
POS feature performs badly, while lemma 
feature works well. Szarvas (2008) extends the 
work of Medlock and Briscoe with feature 
selection, and further improves the result to a 
BEP of 0.85 by using an external dictionary. 
Szarvas concludes that scientific articles contain 
multiword hedging cues more commonly, and 
the portability of hedge classifiers is limited. 
Halil Kilicoglu and Sabine Bergler (2008) 
propose an algorithm to weight hedge cues, 
which are used to evaluate the speculative 
strength of sentences. Roser Morante and Walter 
Daelemans (2009) introduce a metalearning 
approach to process the scope of negation, and 
they identify the hedge cues and their scope with 
a CRF classifier based on the original work. 
They extract a hedge cues dictionary as well, but 
do not combine it with the CRF model. 

In the CoNLL-2010 shared task (Farkas et al., 
2010), there are two subtasks for worldwide 
participants to choose: 

• Task 1: learning to detect sentences 
contain-ing uncertainty.  

• Task 2: learning to resolve the in-
sentence scope of hedge cues.  

This paper describes a system using CRF 
model for the task, which is partly based on 
Roser Morante and Walter Daelemans’ work. 

2 Hedges in the training dataset of 
BioScope and Wikipedia Corpus 

Two training datasets, the BioScope and Wiki-
pedia corpus are provided in the CoNLL-2010 
shared task. BioScope consists of two parts, full 
articles and abstracts collected from biomedical 
papers. The latter is analyzed for having larger 
scale and more information of hedges.  

In Table 1, the percentage of the speculative 
sentences in the abstracts section of BioScope 
corpus is the same as Vincze et al. (2008) 
reported. We can estimate 1.28 cue words per 
sentence, meaning that each sentence usually just 
has one hedge cue. The statistics in Table 1 also 
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indicate that a hedge cue appears 26.7 times on 
average. 
 

Dataset ITEM # 
Sentences 11871 

Certain sentences 9770 

Uncertain 
sentences 

2101 
(17.7%) 

Hedge cues 2694 

cues# per sentence 1.28 

Different hedge 
cues 

143 

Abstracts 
of 

BioScope 

Max length of the 
cues 

4 

Sentences 11111 

Certain sentences 8627 

Uncertain 
sentences 

2484 
(22.4%) 

weasel cues 3133 

Different weasel 
cues 

1984 

Wikipedia 

Max length of the 
cues 

13 words 

 
Table 1: Statistics about the abstracts section of 

the BioScope corpus and Wikipedia corpus. 
 

We extract all the hedge cues from the 
abstracts section of BioScope corpus, getting 143 
different hedge cues and 101 cues with ignoring 
morphological changes. The maximum length of 
the cues is 4, with 1.44 words per hedge cue. 
This suggests that most hedge cues happen to be 
a single word. We assume that hedge cues set is 
a limited one in BioScope corpus. Most hedge 
cues could be identified if the known dataset of 
hedge cues is large enough. The cue words 
collected from the BioScope corpus play an 
important role in the speculative sentences 
detection. 

In contrast to the biomedical abstracts, the 
weasel cues on Wikipedia corpus make a little 
difference. Most weasel cues consist of more 
than one word, and usually appear once. This 
leads to different results in our test. 

A hedge cue word may appear in the non-
speculative sentences. Occurrences of the four 
typical words in speculative and non-speculative 
sentences are counted. 

As shown in Table 2, the cue words can be 
divided into two classes generally. The hedge 
cue words “feel” and “suggesting”, which are 
grouped as one class, only act as hedge cues with 

never appearing in the non-speculative sentences. 
While “may” and “or” appear both in the 
speculative and non-speculative sentences, which 
are regard as the other one. Moreover, we treat 
the words “may” and “or” in the same class 
differently, while “may” is more likely to be a 
hedge cue than “or”. The treatment is also 
unequal between “feel” and “suggesting”. In the 
training datasets, the non-S#/S# ratio can give a 
weight to distinguish the words in each class. 
After all, we can divide the hedge cues into 4 
groups. 

 
word S# non-S# 
feel 1 0 
suggesting 150 0 
may 516 1 
or 118 6218 

 
Table 2: Statistics of cue words. (S# short for the 
occurrence times in speculative sentences, non-

S# for the count in non-speculative ones) 

3 Methods 

Conditional random fields (CRF) model was 
firstly introduced by Lafferty et al. (2001). CRF 
model can avoid the label bias problem of 
HMMs and other learning approaches. It was 
applied to solve sequence-labeling problems, and 
has shown good performance in NER task. We 
consider hedge cues detection as some kind of 
sequence-labeling problem, and the model will 
contribute to a good result.  

We use CRF++ (version 0.51) to implement 
the CRF model. Cheng Yong, one of our team 
members has evaluated the several widespread 
used CRF tool kits, and he points out that 
CRF++ has better precision and recall but longer 
training time. Fortunately, the training time cost 
of BioScope corpus is acceptable. In our system, 
all the data training and testing processing step 
can be completed within 8 minutes (Intel Xeon 
2.0GHz CPU, 6GB RAM). It is likely due to the 
small scale of the training dataset and the limited 
types of the annotation. 

To identify sentences in the biomedical texts 
that contain unreliable or uncertain information 
(CoNLL-2010 shared task1), we start with hedge 
cues detection: 

• If one or more than one hedge cues are 
detected in the sentence, then it will be 
annotated “uncertain” 

• If not, the sentence will be tagged as 
“certain”. 
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3.1 Detecting hedge cues 

The BioScope corpus annotation guidelines1 
show that most typical instances of keywords can 
be grouped into 4 types as Auxiliaries, Verbs of 
hedging or verbs with speculative content, 
Adjectives or adverbs, and Conjunctions. So the 
POS (part-of-speech) is thought to be the feature 
reasonably. Lemma feature of the word and 
chunk features are also considered to improve 
system performance. Chunk features may help to 
the recognition of biomedical entity boundaries. 
GENIA Tagger (Tsuruoka et al., 2005) is em-
ployed to obtain part-of-speech (POS) features, 
chunk features and lemma features. It works well 
for biomedical documents. 

In the biomedical abstracts section of Bio-
Scope corpus, the hedge cues are collected into a 
dictionary (HCDic, short for the Hedge Cues 
Dictionary). As mentioned in section 2, one 
hedge cue appears 26.7 times on average, and we 
assume the set of hedge cues is limited. The 
HCDic consist of 143 different hedge cues 
extracted from the abstracts. The dictionary 
(HCDic) extracted from the corpus is very 
valuable for the system. We can focus on 
whether the word such as “or” listed in table 2 is 
a hedge cue or not. The cue words in HCDic are 
divided into 4 different levels with the non-S#/S# 
ratio. 

The four types are described as “L”, “H”, 
“FL” and “FH”. “L” shows low confidence of 
the cue word being a hedge cue, while “H” 
indicates high confidence about it. The prefix ‘F’ 
for “FL”/“FH” shows false negatives may 
happen to the cue word in HCDic. The threshold 
for the non-S#/S# ratio to distinguish “FL” type 
from “FH” is set 1.0. As the non-S#/S# ratio of 
“L” and “H” is always zero, we set the hedge cue 
whose S# is more than 5 as “H” type as shown in 
table 3. The four types are added into the HCDic 
along with the hedge cues,  

In our experiment, HCDic types of word 
sequence are tagged as follows: 

• If words are found in HCDic using 
maximum matching method, label them 
with their types in HCDic. For hedges of 
multi-word, label them with BI scheme 
which will be described later. 

• If not, tag the words as ‘O’ type.  

                                                 
1 http://www.inf.u-szeged.hu/rgai/bioscope 

The processing assigns each token of a 
sentence with an HCDic type. The BIO types for 
each token are involved as features for the CRF. 

The HCDic can be expanded to a larger scale. 
Hedge cues extracted from different corpora can 
be added into HCDic, and regular expression of 
hedge cues can be used, too. This will be helpful 
to the usage of cross-domain resources. 

 
word S# non-S# type  
feel 1 0 L 
suggesting 150 0 H 
may 516 1 FH 
or 118 6218 FL 

 
Table 3: Types of the HCDic words. (S# and 
non-S# have the same meaning as in Table 2) 
 
The features F (F stands for all the Features) 

including unigram, bigram, and trigram types is 
used for CRF as follows: 

 
F(n)(n=-2,-1,0,+1,+2) 
F(n-1)F(n)(n=-1,0,+1,+2) 
F(n-2)F(n-1)F(n) (n=0,+1,+2) 
Where F(0) is the current feature, F(-1) is the 

previous one, F(1) is the following one, etc. 
 
We regard each word in a sentence as a token 

and each token is tagged with a cue-label. The 
BIO scheme is used for tagging multiword hedge 
cues, such as “whether or not” in our HCDic. 
where B-cue (tag for “whether”) represents that 
the token is the start of a hedge cue, I-cue (tag 
for “or”, “not”) stands for the inside of a hedge 
cue, and O (tag for the other words in the 
sentence) indicates that the token does not 
belong to any hedge cue. 

We also have the method tested on Wikipedia 
corpus with a preprocessing of the HCDic. 

Section 2 reports that most weasel cues in 
Wikipedia corpus are multiword, and usually 
appear once. Different from our assumption in 
BioScope corpus, the set of weasel cues seems 
numerous. The HCDic of Wikipedia would be 
not so valuable if it tags few tokens for a new 
given text. To prevent these from happening, a 
preprocessing of the HCDic is taken. 

Most of the hedge cues in Wikipedia corpus 
accord with the structure of “adjective + noun” 
e.g. “many persons”. Although most cue words 
appear just once, the adjective usually happens to 
be the same, and we call them core words. 
Therefore, the hedge cue dictionary (HCDic) can 
be simplified with the core words. It helps to 
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reduce the scale of the hedges cues from 1984 
cues down to 170. Then, we process the 
Wikipedia text the same way as the BioScope 
corpus. 

3.2 Detecting scope of hedge cues  

This phase (for CoNLL-2010 shared task 2) is 
based on Roser Morante and Walter Daelemans’ 
scope detection system. 

CRF model is applied in this part, too. The 
word, POS, lemma, chunk and HCDic tags are 
also applied to be the features as in the step of 
hedge cues detection. In section 3.1, we can 
obtain the hedge cues in a sentence. The scope 
relies on its cue vary much. We make the BIO 
schema of detected hedge cues to be the 
important features of this part. Besides, the 
sentences tagged as “certain” type are neglected 
in this step. 

Here is an example of golden standard of 
scope label.  

 
<sentence id="S5.149"> We <xcope id="X5.149. 
3"><cue ref="X5.149.3" type= "specula-tion"> 
propose </cue> that IL-10-producing Th1 cells 
<xcope id="X5.149.2"> <cue ref="X5.149.2" 
type= "speculation" >may</cue> be the essential 
regulators of acute infection-induced inflammation 
</xcope> and that such “self-regulating” Th1 cells 
<xcope id= "X5.149.1"> <cue ref= "X5.149.1" 
type= "speculation" >may</cue> be essential for 
the infection to be cleared without inducing 
immune-mediated pathology </xcope> </xcope>. 
 
As shown, each scope is a block with a 

beginning and an end, and we refer to the 
beginning of scope as scope head (<xcope…>), 
and the end of the scope as scope tail 
(</xcope>). 

The types of the scope are labeled as: 
 
1. Label the token next to scope head as 

“xcope-H” ( e.g. propose, may ) 
2. Tag the token before scope tail as “xcope-

T”(e.g. pathology for both scopes)  
3. The other words tag ‘O’ , including the 

words inside the scope and out of it. This 
is very different from the BIO scheme. 

 
The template for each feature is the same as in 

section 3.1. 
Following are our rules to form the scope of a 

hedge: 
 

1. Most hedge cues have only one scope tag, 
meaning there is one-to-one relationship 

between hedge cue and its scope. 
2. The scope labels may be nested. 
3. The scope head of the cue words appears 

nearest before hedge cue. 
4. The scope tail appears far from the cue 

word. 
5. The most frequent head/tail positions of the 

scope are shown in Table 4. 
a) The scope head usually is just before 

the cue words. 
b) The scope tail appears in the end of the 

sentence frequently. 
 
Scopes of hedge cues in BioScope corpus 

should be found for the shared task. The training 
dataset of abstract part is analyzed for its larger 
scale  

 

item Following strings  
with high frequency % 

1 
scope 
head 

<cue...>(cue words) 0.861 

‘.’(sentence end) 0.695 

</xcope> 
(another scope tail) 

0.144 
2 

scope 
tail 

‘,’  ‘;’  ‘:’ 0.078  

 
Table 4: Statistics of the strings nearby the scope 

head and tail. Item 1 shows the word follow 
scope head, and item 2 shows the frequent words 

next to the scope tail. 
 

We analyze the words around the scope head 
and the scope tail. The item 1 in Table 4 shows 
that 86.1% of the following words of the scope 
head are hedge cues. Other following words not 
listed are less than 1%, according to our 
statistics. The item 2 lists the strings with high 
frequency next to the scope tail as well. The first 
2 words in item 2 can be combined sometimes, 
so the percentage of scope tail at the end of the 
sentence can be more than 80%. The strings 
ahead of scope head and tail not listed are also 
counted, but they do not give such valuable 
information as the two items listed in Table 4. 

Therefore, when the CRF model gives low 
confidence, we just set the most probable 
positions of scope head and tail. 

For the one-to-one relationship between hedge 
cues and their scopes, we make rules to insure 
each cue has only one scope, including the scope 
head and scope tail. 
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Rule 1: if more than one scope heads or tails 
are predicted, we get rid of the farther head or 
nearer tail. 

Rule 2: if none of scope head or tail is pre-
dicted, the head is set to the word just before the 
cue words; the tail is set at the end of the 
sentence. 

Rule 3: if one scope head and one tail are 
predicted, we consider them the result of scope 
detection. 

4 Results 

Our experiments are based on the CoNLL-2010 
shared task’s datasets, including BioScope and 
Wikipedia corpus. All the experiments for 
BioScope use abstracts and full papers for 
training data and the provided evaluation for 
testing. 

We employ CRF model to detect the hedge 
cues in the BioScope. The experiments are 
carried out on different feature sets: words 
sequence with the chunk feature only, lemma 
feature only and POS feature only. The effect of 
the HCDic feature is also evaluated. 

 
Features prec. recall F-score 
Chunk only 0.7236 0.6275 0.6721 

Lemma only 0.7278 0.6103 0.6639 

POS only 0.7320 0.6208 0.6718 

Without 
HCDic 

0.7150 0.6447 0.6781 

ALL 0.7671 0.7393 0.7529 

 
Table 5: Results at hedge cue-level 

 
As described in section 1 of this paper, the 

feature of POS may be not so significant as the 
lemma, but we do not agree with this point of 
view for given POS feature's better performance 
in F-score (in Table 5). The interesting cue-level 
result does not go into for time limitations. The 
F-score of the three features, chunk, lemma and 
POS are approximately equal. When all of the 
three features are used for CRF model, the 
performance is not improved so significantly. 
The recall rate is a bit low in the experiment 
without HCDic features. As shown in Table 5, 
the feature of HCDic is effective to get a better 
score both in precision rate and in recall rate. As 
our assumption, hedges in the evaluation dataset 
are limited, too. Most of them along with some 
non-hedges can be tagged with HCDic. Then the 
tag could contribute to a good recall. It also helps 

the classifier to focus on whether the words with 
“L”, “FL”, and “FH” are hedge cues or not, 
which will be good for a better precision. 

With detected hedge cues, we can get senten-
ces containing uncertainty for the shared task 1. 
A sentence is tagged as “uncertain” type if any 
hedge cue is found in it.  

 
 precision recall F-score 
Without 
HCDic 

0.8965 0.7898 0.8398 

ALL  0.8344 0.8481 0.8412 
 

Table 6: Evaluation result of task 1 
 

Statistics in Table 6 show that even poor 
performance in cue-level test can get a 
satisfactory F-score of speculative sentences 
detection as well. It seems that hedges detection 
at cue-level is not proportionate to the sentence-
level. Think about instance of more than one 
cues in a sentence such as the example of golden 
standard in section 3.2, the sentence will be 
tagged even if only one hedge cue has been 
identified (lower recall at cue-level). Moreover, 
in the speculative sentence with one hedge cue, 
false positives (lower precision at cue-level) can 
also lead to the correct result at sentence-level. 

The method is also tested on Wikipedia corpus, 
using provided training dataset and evaluation 
data. The method has a bad performance in our 
close test. The results are listed in Table 7. 

As talked in section 2, hedges in Wikipedia 
corpus are very different from in BioScope 
corpus. Besides, the string matching method for 
simplified HCDic is not so effective. The useful-
ness of HCDic is not so significant for a good 
recall in Wikipedia corpus.  

 
dataset precision recall F-score 
Wikipedia 0.7075 0.2001 0.3120 
BioScope 0.7671 0.7393 0.7529 

 
Table 7: Results of weasel/hedge detection in 

Wikipedia and BioScope corpus. 
 
In CoNLL-2010 shared task 2, the evaluation 

result shows our precision, recall and F-score are 
34.8%, 41% and 37.6%. The performance of 
identifying the scope relies on the cue-level 
detection. Therefore, the false positive and false 
negatives of hedge cues can lead to recognition 
errors. The result shows that our lexical-level 
method for the semantic problem is limited. For 
the time constraints, we do not probe deeply. 
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5 Conclusions 

This paper presents an approach for extracting 
the hedge cues and their scopes in BioScope 
corpus using two CRF models for CoNLL-2010 
shared task. In the first task, the HCDic feature is 
proposed to improve the system performances, 
getting better performance (84.1% in F-score) 
than the baseline. The HCDic feature is also 
helpful to make use of cross-domain resources. 
The comparison of our methods based on 
between BioScope and Wikipedia corpus is 
given, which shows that ours are good at hedge 
cues detection in BioScope corpus but short at 
the in Wikipedia corpus. To detect the scope of 
hedge cues, we make rules to post process the 
text. For future work, we will look forward to 
constructing regulations for the HCDic to 
improve our system.  
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Abstract 

In this paper, we present a machine learning 
approach that detects hedge cues and their 
scope in biomedical texts. Identifying hedged 
information in texts is a kind of semantic 
filtering of texts and it is important since it 
could extract speculative information from 
factual information. In order to deal with the 
semantic analysis problem, various evidential 
features are proposed and integrated through a 
Conditional Random Fields (CRFs) model. 
Hedge cues that appear in the training dataset 
are regarded as keywords and employed as an 
important feature in hedge cue identification 
system. For the scope finding, we construct a 
CRF-based system and a syntactic 
pattern-based system, and compare their 
performances. Experiments using test data 
from CoNLL-2010 shared task show that our 
proposed method is robust. F-score of the 
biological hedge detection task and scope 
finding task achieves 86.32% and 54.18% in 
in-domain evaluations respectively. 

1. Introduction 

Identifying sentences in natural language texts 
which contain unreliable or uncertain information 
is an increasingly important task of information 
extraction since the extracted information that 
falls in the scope of hedge cues cannot be 
presented as factual information. Szarvas et al. 
(2008) report that 17.69% of the sentences in the 
abstracts section of the BioScope corpus and 
22.29% of the sentences in the full papers section 
contain hedge cues. Light et al. (2004) estimate 
that 11% of sentences in MEDLINE abstracts 
contain speculative fragments. Szarvas (2008) 
reports that 32.41% of gene names mentioned in 
the hedge classification dataset described in 
Medlock and Briscoe (2007) appear in a 
speculative sentence. Many Wikipedia articles 

contain a specific weasel tag which mark 
sentences as non-factual (Ganter and Strube, 
2009). 

There are some Natural Language Processing 
(NLP) researches that demonstrate the benefit of 
hedge detection experimentally in several 
subjects, such as the ICD-9-CM coding of 
radiology reports and gene named Entity 
Extraction (Szarvas, 2008), question answering 
systems (Riloff et al., 2003), information 
extraction from biomedical texts (Medlock and 
Briscoe, 2007). 

The CoNLL-2010 Shared Task (Farkas et al., 
2010) “Learning to detect hedges and their scope 
in natural language text” proposed two tasks 
related to speculation research. Task 1 aimed to 
identify sentences containing uncertainty and 
Task 2 aimed to resolve the in-sentence scope of 
hedge cues. We participated in both tasks. 

In this paper, a machine learning system is 
constructed to detect sentences in texts which 
contain uncertain or unreliable information and to 
find the scope of hedge cues. The system works 
in two phases: in the first phase uncertain 
sentences are detected, and in the second phase 
in-sentence scopes of hedge cues are found. In the 
uncertain information detecting phase, hedge 
cues play an important role. The sentences that 
contain at least one hedge cue are considered as 
uncertain, while sentences without cues are 
considered as factual. Therefore, the task of 
uncertain information detection can be converted 
into the task of hedge cue identification. Hedge 
cues that appear in the training dataset are 
collected and used as keywords to find hedges. 
Furthermore, the detected keywords are 
employed as an important feature in hedge cue 
identification system. In addition to keywords, 
various evidential features are proposed and 
integrated through a machine learning model. 
Finding the scope of a hedge cue is to determine 
at sentence level which words are affected by the 
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hedge cue. In the scope finding phase, we 
construct a machine learning-based system and a 
syntactic pattern-based system, and compare their 
performances. 

For the learning algorithm, Conditional random 
fields (CRFs) is adopted relying on its flexible 
feature designs and good performance in 
sequence labeling problems as described in 
Lafferty et al. (2001). The main idea of CRFs is 
to estimate a conditional probability distribution 
over label sequences, rather than over local 
directed label sequences as with Hidden Markov 
Models (Baum and Petrie, 1966) and Maximum 
Entropy Markov Models (McCallum et al., 
2000). 

Evaluation is carried out on the CoNLL-2010 
shared task (Farkas et al., 2010) dataset in which 
sentences containing uncertain information are 
annotated. For the task of detecting uncertain 
information, uncertain cues are annotated. And 
for the task of finding scopes of hedge cues, 
hedge cues and their scope are annotated as 
shown in sentence (a): hedge cue indicate that, 
and its scope indicate that dhtt is widely 
expressed at low levels during all stages of 
Drosophila development are annotated. 

 
(a)Together, these data <xcope 

id="X8.74.1"><cue ref="X8.74.1" 
type="speculation">indicate that</cue> dhtt 
is widely expressed at low levels during all 
stages of Drosophila development</xcope>. 

2. Related Work 

In the past few years, a number of studies on 
hedge detection from NLP perspective have been 
proposed. Elkin et al. (2005) exploited 
handcrafted rule-based negation/uncertainty 
detection modules to detect the negation or 
uncertainty information. However, their detection 
modules were hard to develop due to the lack of 
standard corpora that used for evaluating the 
automatic detection and scope resolution. Szarvas 
et al. (2008) constructed a corpus annotated for 
negations, speculations and their linguistic scopes. 
It provides a common resource for the training, 
testing and comparison of biomedical NLP 
systems. 

Medlock and Briscoe (2007) proposed an 
automatic classification of hedging in biomedical 
texts using weakly supervised machine learning. 
They started with a very limited amount of 
annotator-labeled seed data. Then they iterated 
and acquired more training seeds without much 

manual intervention. The best classifier using 
their model achieved 0.76 precision/recall 
break-even-point (BEP). Further, Medlock 
(2008) illuminated the hedge identification task 
including annotation guidelines, theoretical 
analysis and discussion. He argued for separation 
of the acquisition and classification phases in 
semi-supervised machine learning method and 
presented a probabilistic acquisition model. In 
probabilistic model he assumed bigrams and 
single terms as features based on the intuition that 
many hedge cues are bigrams and single terms 
and achieves a peak performance of around 0.82 
BEP.  

Morante and Daelemans (2009) presented a 
meta-learning system that finds the scope of 
hedge cues in biomedical texts. The system 
worked in two phases: in the first phase hedge 
cues are identified, and in the second phase the 
full scopes of these hedge cues are found. The 
performance of the system is tested on three 
subcorpora of the BioScope corpus. In the hedge 
finding phase, the system achieves an F-score of 
84.77% in the abstracts subcorpus. In the scope 
finding phase, the system with predicted hedge 
cues achieves an F-score of 78.54% in the 
abstracts subcorpus. 

The research on detecting uncertain 
information is not restricted to analyze 
biomedical documents. Ganter and Strube (2009) 
investigated Wikipedia as a source of training 
data for the automatic hedge detection using word 
frequency measures and syntactic patterns. They 
showed that the syntactic patterns worked better 
when using the manually annotated test data, 
word frequency and distance to the weasel tag 
was sufficient when using Wikipedia weasel tags 
themselves. 

3. Identifying Hedge Cues 

Previous studies (Light et al., 2004) showed that 
the detection of hedging could be solved 
effectively by looking for specific keywords 
which were useful for deciding whether a 
sentence was speculative. Szarvas (2008) reduces 
the number of keyword candidates without 
excluding helpful keywords for hedge 
classification. Here we also use a simple 
keyword-based hedge cue detection method. 

3.1 Keyword-based Hedge Cue Detection 

In order to recall as many hedge cues as possible, 
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all hedge cues that appear in the training dataset 
are used as keywords. Hedge cues are represented 
by one or more tokens. The list of all hedge cues 
in the training dataset is comprised of 143 cues. 
90 hedge cues are unigrams, 24 hedge cues are 
bigrams, and the others are trigrams, four-grams 
and five-grams. Besides, hedge cues that appear 
in the training dataset and their synonyms in 
WordNet1  are also selected as keywords for 
hedge cue detection. The complete list of them 
contains 438 keywords, 359 of which are 
unigrams. Many tokens appear in different grams 
cues, such as possibility appears in five-grams 
cue cannot rule out the possibility, four-gram cue 
cannot exclude the possibility, trigrams cue raise 
the possibility and unigram cue possibility. To 
find the complete cues, keywords are matched 
through a maximum matching method (MM) (Liu 
et al., 1994). For example, though indicate and 
indicate that are both in keywords list, indicate 
that is extracted as a keyword in sentence (a) 
through MM. 

3.2 CRF-based Hedge Cue Detection 

Candidate cues are extracted based on keywords 
list in keyword-based hedge cue detection stage. 
But the hedge cue is extremely ambiguous, so 
CRFs are applied to correct the false 
identification results that occurred in the 
keyword-based hedge cue detection stage. The 
extracted hedge cues are used as one feature for 
CRFs-based hedge cue detection. 

A CRF identifying model is generated by 
applying a CRF tool to hedge cue labeled 
sequences. Firstly, hedge cue labeled sentences 
are transformed into a set of tokenized word 
sequences with IOB2 labels: 

 
B-cue Current token is the beginning of a 

hedge cue 
I-cue Current token is inside of  a hedge cue 

O Current token is outside of any hedge 
cue  

 
For sentence (a) the system assigns the B-cue 

tag to indicate, the I-cue tag to that and the O tag 
to the rest of tokens as shown in Figure1. 

The hedge cues that are found by 
keyword-based method is also given IOB2 labels 
feature as shown in Figure1. 

                                                           
1 Available at http://wordnet.princeton.edu/ 

 

 

 

 

 

 

 

 

 

 

Text 

… 

these 

data 

indicate 

that 

dhtt 

is 

... 

Keyword Labels Feature 

...       

O   

O 

B 

I 

O 

O 

...                            

Cue Labels  

...       

O   

O 

B-cue 

I-cue 

O 

O 

...                            

 
Figure 1: Example of Cues labels and Keywords 

labels Feature 
 

Diverse features including keyword feature are 
employed to our CRF-based hedge cue detection 
system. 

 
(1) Word Features 
• Word (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
Where Word (0) is the current word, Word (-1) 

is the first word to the left, Word (1) is the first 
word to the right, etc. 

 
(2) Stem Features 
The motivation for stemming in hedge 

identification is that distinct morphological forms 
of hedge cues are used to convey the same 
semantics (Medlock, 2008). In our method, 
GENIA Tagger2 (Tsuruoka et al., 2005) is applied 
to get stem features. 

• Stem (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
where Stem (0) is the stem for the current word, 

Stem(-1) is the first stem to the left, Stem (1) is the 
first stem to the right, etc. 

 
(3) Part-Of-Speech Features  
Since most of hedge cues in the training dataset 

are verbs, auxiliaries, adjectives and adverbs. 
Therefore, Part-of-Speech (POS) may provide 
useful evidence about the hedge cues and their 
boundaries. GENIA Tagger is also used to 
generate this feature.  

• POS (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
where POS (0) is the current POS, POS (-1) is 

the first POS to the left, POS (1) is the first POS 
to the right, etc. 

 
(4) Chunk Features 
Some hedge cues are chunks consisting of more 

than one token. Chunk features may contribute to 
the hedge cue boundaries. We use GENIA 
Tagger to get chunk features for each token. The 

                                                           
2 Available at 

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 
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chunk features include unigram, bigram, and 
trigram types, listed as follows: 

• Chunk (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
• Chunk (i−1)+Chunk(i) (i =−1,0,+1,+2) 
• Chunk (i−2) + Chunk (i−1)+Chunk (i) (i= 

0,+1,+2) 
where Chunk (0) is the chunk label for the 

current word, Chunk (−1) is the chunk label for 
the first word to the left , Chunk (1) is the chunk 
label for the first word to the right, etc. 

 
(5) Keyword Features 
Keyword labels feature is an important feature. 
• Keyword (i) (i=-n, …, −2, −1, 0, +1, +2, …, 

+n) 
where Keyword (0) is the current keyword label, 

Keywords (-1) is the keyword label for the first 
keyword to the left, Keywords (1) is the keyword 
label for the first keyword to the right, etc. 

Feature sets can be easily redefined by 
changing the window size n. The relationship of 
the window size and the F-score observed in our 
experiments will be reported in Section 5. 

4. Hedge Scope Finding 

In this task, a CRFs classifier is applied to predict 
for all the tokens in the sentence whether a token 
is the first token of the scope sequence (F-scope), 
the last token of the scope sequence (L-scope), or 
neither (None). For sentence (a) in Section 1, the 
classifier assigns F-scope to indicate, L-scope to 
benchmarks, and None to the rest of the tokens. 
Only sentences that assigned cues in the first 
phase are selected for hedge scope finding. 
Besides, a syntactic pattern-based system is 
constructed, and compared with the CRF-based 
system. 

4.1 CRF-based System 

The features that used in CRF-based hedge cue 
detection systems are also used for scope finding 
except for the keyword features. The features are: 
 

(1) Word Features 
• Word (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
 
(2) Stem Features 
• Stem (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
(3) Part-Of-Speech Features  
• POS (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
 
(4) Chunk Features 
The chunk features include unigram, bigram, 

and trigram types, listed as follows: 
 
• Chunk (i) (i=-n, …, −2, −1, 0, +1, +2, …, +n) 
• Chunk (i−1)+Chunk(i) (i =−1,0,+1,+2) 
• Chunk (i−2) + Chunk (i−1)+Chunk (i) (i= 

0,+1,+2) 
 
(5) Hedge cues Features 
Hedge cues labels that are doped out in Task 1 

are selected as an important feature. 
 
• Hedge cues (i) (i=-n, …, −2, −1, 0, +1, +2, …, 

+n) 
where Hedge cues (0) is the cue label for the 

current word, Hedge cues (−1) is the cue label for 
the first word to the left , Hedge cues (1) is the 
cue label for the first word to the right, etc. 

The scope of the sequence must be consistent 
with the hedge cues. That means that the number 
of the F-scope and L-scope must be the same with 
the hedge cues. However, sometimes their 
number predicted by classifier is not same. 
Therefore, we need to process the output of the 
classifier to get the complete sequence of the 
scope. The following post processing rules are 
adapted. 

 
• If the number of F-scope, L-scope and hedge 
cue is the same, the sequence will start at the 
token predicted as F-scope, and end at the 
token predicted as L-scope. 
• If one token has been predicted as F-scope 
and none has been predicted as L-scope, the 
sequence will start at the token predicted as 
F-scope and end at the end of the sentence. 
Since when marking the scopes of keywords, 
linguists always extend the scope to the biggest 
syntactic unit possible. 
• If one token has been predicted as L-scope 
and none has been predicted as F-scope, the 
sequence will start at the hedge cue and end at 
the token predicted as L-scope. Since scopes 
must contain their cues. 
• If one token has been predicted as F-scope 
and more than one has been predicted as 
L-scope, the sequence will end at the first token 
predicted as L-scope. Statistics from prediction 
on CoNLL-2010 Shared Task evaluation data 
show that 20 sentences are in this case. And the 
scope of 6 sentences extends to the first 
L-scope, and the scope of 3 sentences end at 
the last L-scope, the others are predicted 
mistakenly. Our system prediction and 
gold-standard annotation are shown in sentence 
(b1) and (b2) respectively. 
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(b1) our system annotation: 
dRas85DV12 <xcope id="X3.64.1"><cue 
ref="X3.64.1" type="speculation">may</cue> 
be more potent than dEGFRλ</xcope> because 
dRas85DV12 can activate endogenous PI3K 
signaling</xcope> [16]. 
 
(b2) gold-standard annotation: 
dRas85DV12 <xcope id="X3.64.1"><cue 
ref="X3.64.1" 
type="speculation">may</cue> be more 
potent than dEGFRλ</xcope> because 
dRas85DV12 can activate endogenous PI3K 
signaling [16]. 
 
• If one token has been predicted as L-scope 
and more than one has been predicted as 
F-scope, the sequence will start at the first 
token predicted as F-scope. 
• If an L-scope is predicted before an F-scope, 
the sequence will start at the token predicted as 
F-scope, and finished at the end of the sentence.  

4.2 Syntactic Pattern-based System 

Hedge scopes usually can be determined on the 
basis of syntactic patterns dependent on the cue. 
Therefore, a syntactic pattern-based system is 
also implemented for hedge scope finding. When 
the sentence is predicted as uncertain, the toolkit 
of Stanford Parser3 (Klein and Manning, 2003) is 
utilized to parse the sentence into a syntactic tree, 
which can release a lot of information about the 
grammatical structure of sentences that is 
beneficial for the finding of hedge scope. For 
sentence (c) the Stanford Parser gives the 
syntactic tree as showed in Figure 2. 
 
(c) This <xcope id="X*.*.*"><cue ref="X*.*.*" 
type="speculation"> may </cue> represent a 
viral illness</xcope>. 

It is obvious to see from the syntactic tree, all 
the words of the parsed sentence concentrate at 
the places of leaves. We use the following rules to 
find the scope. 

• If the tag of the word is “B-cue”, it is predicted 
as F-scope. 

• If the POS of the hedge cue is verbs and 
auxiliaries, the L-scope is signed at the end of the 
clause. 

• If the POS of the hedge cue is attributive 

                                                           
3 Available at 

http://nlp.stanford.edu/software/lex-parser.shtml  

adjectives, the L-scope is signed at the following 
noun phrase.  

• If the POS of the hedge cue is prepositions, the 
L-scope is signed at the following noun phrase. 

• If none of the above rules apply, the scope of a 
hedge cue starts with the hedge cue and ends at 
the following clause. 

 

 
 

Figure 2: Syntactic tree parsed by Stanford 
Parser 

5. Experiments and Discussion 

We evaluate our method using CoNLL-2010 
shared task dataset. The evaluation of uncertain 
information detection task is carried out using the 
sentence-level F-score of the uncertainty class. 
As mentioned in Section 1, Task 1 is converted 
into the task of hedge cues identification. 
Sentences can be classified as certain or uncertain 
according to the presence or absence of a few 
hedge cues within the sentences. In task of 
finding in-sentence scopes of hedge cues, a scope 
is correct if all the tokens in the sentence have 
been assigned the correct scope class for a 
specific hedge signal. 

5.1 Detecting Uncertain Information 

In the CoNLL-2010 Shared Task 1, our 
in-domain system obtained the F-score of 85.77%. 
Sentence-level results of in-domain systems 
under the condition n=3 (window size) are 
summarized in Table 1.  
 

System Prec. Recall F-score 
Keyword-based 41.15 99.24 58.18 
CRF-based system 
(without keyword 
features) 

88.66 80.13 84.18 

CRF-based system 
+ keyword features 

86.21 84.68 85.44 

CRF-based system 86.49 85.06 85.77 
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+ keyword features 
+ MM 

 
Table 1: Official in-domain results for Task 1 

(n=3) 
 
The keyword-based system extracts hedge cues 

through maximum matching method (MM). As 
can be seen in Table 1, the system achieves a high 
recall (99.24%). This can be explained that 
almost all of the hedge cues in the test dataset are 
in the keywords list. However, it also brings 
about the low precision since not all potential 
speculative keywords convey real speculation. So 
the keyword-based method can be combined with 
our CRF-based method to get better performance. 

All the CRF-based systems in Table 1 
significantly outperform the keyword-based 
system, since the multi-features achieve a high 
precision. And the result with keyword features is 
better than the result without it. The keyword 
features improve the performance by recalling 39 
true positives. In addition, further improvement is 
achieved by using Maximum Matching method 
(MM). 

In the test dataset, there should be a few hedge 
cues not in the training dataset. And the 
additional resources besides the manually labeled 
data are allowed for in-domain predictions. 
Therefore, the synonyms of the keywords can be 
used for in-domain systems. The synonyms of the 
keywords are added to the keywords list, and are 
expected to improve detecting performance. The 
synonyms are obtained from WordNet. 

Table 2 shows the relationship between the 
window size and the sentence-level results. This 
table shows the results with and without 
synonyms. Generally, the results with synonyms 
are better than the results without them. With 
respect to window size, the wider the window 
size, the better precision can be achieved. 
However, large window size leads to low recall 
which is probably because of data sparse. The 
best F-score 86.32 is obtained when the window 
size is +/-4. 

 
Window 

size 
Synonym

s 
 

Prec. Recall F-score 

without 
synonyms 

85.27 86.46 85.86 1 

with 
synonyms 

85.66 86.20 85.93 

without 
synonyms 

86.35 85.70 86.02 2 

with 86.14 84.94 85.53 

without 
synonyms 

86.49 85.06 85.77 3 

with 
synonyms 

86.69 84.94 85.81 

without 
synonyms 

86.34 84.81 85.57 4 

with 
synonyms 

87.21 85.44 86.32 

 
Table 2: Sentence-level results relative to 

synonyms and window size for speculation 
detection 

5.2 Finding Hedge Scope 

In the CoNLL-2010 Shared Task 2, our 
in-domain system obtained the F-score of 44.42%. 
Table 3 shows the scope finding results. For 
in-domain scope finding system, we use the 
hedge cues extracted by the submitted CRF-based 
in-domain system (the best result 85.77 in Table 
1). The result of the syntactic pattern-based 
system is not ideal probably due to the syntactic 
parsing errors and limited annotation rules. 
 

System Prec. Recall F-score 
syntactic pattern-based 44.31 42.59 43.45 
CRF-based 45.32 43.56 44.42 

 
Table 3: Official in-domain results for Task 2 

 
Through analyzing the false of our scope 

finding system, we found that many of our false 
scope were caused by such scope as sentence (d1) 
shows. Our CRF-based system signed the 
L-scope to the end of sentence mistakenly. The 
incorrectly annotation of our system and 
gold-standard annotation are shown in sentence 
(d1) and (d2) respectively. So an additional rule is 
added to our CRF-based system to correct the 
L-scope. The rule is: 
• If one token has been predicted as L-scope, 

and if the previous token is “)”, or “]”, the 
L-scope will be modified just before the 
paired token “(” or “[”. 

 
(d1) The incorrectly predicted version: 
These factors were <cue ref="X1.178.1" 
type="speculation">presumed</cue> to be 
pathogenic</xcope> (85).  
(d2) Gold-standard annotation: 
These factors were <cue ref="X1.178.1" 
type="speculation">presumed</cue> to be 
pathogenic (85) </xcope>. 
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F-score is reached to 51.83 by combining this 
additional rule with the submitted CRF-based 
in-domain system as shown in Table 4. 
 

TP FP FN Prec. Recall F-score 

525 468 508 52.87 50.82 51.83 

 
Table 4: Official in-domain results for Task 2 
 
Several best results of Task 1 are exploited to 

investigate the relationship between the window 
size and the scope finding results. From the 
results of Table 5, we can see that the case of n=4 
gives the best precision, recall and F-score. And 
the case of n=2 and the case of n=3 based on the 
same task 1 system have a very similar score. 
With respect to the different systems of Task 1, in 
principle, the higher the F-score of Task 1, the 
better the performance of Task 2 can be expected. 
However, the result is somewhat different from 
the expectation. The best F-score of Task 2 is 
obtained under the case F-score (task 1) =86.02. 
This indicates that it is not certain that Task 2 
system based on the best Task 1 result gives the 
best scope finding performance.  
 

F-score 
(Task 1) 

Window 
size 

Prec. Recall F-score 

86.32 4 
3 
2 

54.32 
52.59 
52.90 

51.69 
50.05 
50.34 

52.98 
51.29 
51.59 

86.02 4 
3 
2 

54.85 
53.13 
53.13 

52.57 
50.92 
50.92 

53.68 
52.00 
52.00 

85.86 4 
3 
2 

54.19 
52.50 
52.50 

52.57 
50.92 
50.92 

53.37 
51.70 
51.70 

 
Table 5: Scope finding results relative to the 

results of task 1 and window size 
 

In the case that scopes longer than n (window 
size) words, the relevant cue will thus not fall into 
the +/-n word window of the L-scope and all 
hedge cue features will be O tag. The hedge cue 
features will be useless for detecting L-scopes. 
Taking into account the importance of hedge cue 
features, the following additional features are 
also incorporated to capture hedge cue features. 

 
• Distance to the closest preceding hedge cue 
• Distance to the closest following hedge cue 
• Stem of the closest preceding hedge cue 
• Stem of the closest following hedge cue  
• POS of the closest preceding hedge cue 

• POS of the closest following hedge cue 
 
Table 6 shows the results when the additional 

hedge cue features are used. The results with 
additional hedge cue feature set are constantly 
better than the results without them. In most of 
cases, the improvement is significant. The best 
F-score 54.18% is achieved under the case 
F-score (task 1) =86.02 and n=4. 

 
F-score 
(Task 1) 

Window 
size 

Prec. Recall F-score 

86.32 4 
3 
2 

54.73 
54.22 
53.41 

52.08 
51.60 
50.82 

53.37 
52.88 
52.08 

86.02 4 
3 
2 

55.35 
54.75 
53.94 

53.05 
52.47 
51.69 

54.18 
53.58 
52.79 

85.86 4 
3 
2 

54.49 
53.79 
53.09 

52.86 
52.18 
51.50 

53.66 
52.97 
52.29 

 
Table 6: Scope finding results relative to the 

results of Task 1 and window size with additional 
cue features 

 
The upper-bound results of CRF-based system 

assuming gold-standard annotation of hedge cues 
are show in Table 7. 
 

TP FP FN Prec. Recall F-score 

618 427 415 59.14 59.83 59.48 

 
Table 7: Scope finding result with gold-standard 

hedge signals 
 

A comparative character analysis of syntactic 
pattern-based method and CRF-based method 
will be interesting, which can provide insights 
leading to better methods in the future. 

6. Conclusion 

In this paper, we have exploited various useful 
features evident to detect hedge cues and their 
scope in biomedical texts. For hedge detection 
task, keyword-based system is integrated with 
CRF-based system by introducing keyword 
features to CRF-based system. Our experimental 
results show that the proposed method improves 
the performance of CRF-based system by the 
additional keyword features. Our system has 
achieved a state of the art F-score 86.32% on the 
sentence-level evaluation. For scope finding task, 
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two different systems are established: CRF-based 
and syntactic pattern-based system. CRF-based 
system outperforms syntactic pattern-based 
system due to its evidential features. 

In the near future, we will improve the hedge 
cue detection performance by investigating more 
implicit information of potential keywords. On 
the other hand, we will study on how to improve 
scope finding performance by integrating 
CRF-based and syntactic pattern-based scope 
finding systems. 
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Abstract

This paper describes the approach to
hedge detection we developed, in order to
participate in the shared task at CoNLL-
2010. A supervised learning approach is
employed in our implementation. Hedge
cue annotations in the training data are
used as the seed to build a reliable hedge
cue set. Maximum Entropy (MaxEnt)
model is used as the learning technique to
determine uncertainty. By making use of
Apache Lucene, we are able to do fuzzy
string match to extract hedge cues, and
to incorporate part-of-speech (POS) tags
in hedge cues. Not only can our system
determine the certainty of the sentence,
but is also able to find all the contained
hedges. Our system was ranked third on
the Wikipedia dataset. In later experi-
ments with different parameters, we fur-
ther improved our results, with a 0.612
F-score on the Wikipedia dataset, and a
0.802 F-score on the biological dataset.

1 Introduction

A hedge is a mitigating device used to lessen the
impact of an utterance1. As a very important way
to precisely express the degree of accuracy and
truth assessment in human communication, hedg-
ing is widely used in both spoken and written lan-
guages. Detecting hedges in natural language text
can be very useful for areas like text mining and
information extraction. For example, in opinion
mining, hedges can be used to assess the degree
of sentiment, and refine sentiment classes from
{positive, negative, objective} to {positive, some-
how positive, objective, somehow objective, nega-
tive, somehow negative}.

1http://en.wikipedia.org/wiki/
Hedge(linguistics)

Hedge detection related work has been con-
ducted by several people. Light et al. (2004)
started to do annotations on biomedicine article
abstracts, and conducted the preliminary work of
automatic classification for uncertainty. Medlock
and Briscoe (2007) devised detailed guidelines
for hedge annotations, and used a probabilistic
weakly supervised learning approach to classify
hedges. Ganter and Strube (2009) took Wikipedia
articles as training corpus, used weasel words’ fre-
quency and syntactic patterns as features to clas-
sify uncertainty.

The rest of the paper is organized as follows.
Section 2 shows the architecture of our system.
Section 3 explains how we make use of Apache
Lucene to do fuzzy string match and incorporate
POS tag in hedge cues and our method to gener-
ate hedge cue candidates. Section 4 describes the
details of using MaxEnt model to classify uncer-
tainty. We present and discuss experiments and
results in section 5, and conclude in section 6.

2 System Architecture

Our system is divided into training and testing
modules. The architecture of our system is shown
in Figure 1.

In the training module, we use the training cor-
pus to learn a reliable hedge cue set with bal-
anced support and confidence, then train a Max-
Ent model for each hedge cue to classify the un-
certainty for sentences matched by that hedge cue.

In the testing module, the learned hedge cues
are used to match the sentences to classify, then
each matched sentence is classified using the cor-
responding MaxEnt model. A sentence will be
classified as uncertain if the MaxEnt model deter-
mines it is. Because of this design, our system is
not only able to check if a sentence is uncertain,
but also can detect the contained hedges.
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Figure 1: System Architecture

3 Learn Hedge Cues

The training data provided by CoNLL-2010
shared task contain “<ccue></ccue>” annota-
tions for uncertain sentences. Most of the annota-
tions are either too strict, which makes them hard
to use to match other sentences, or too general,
which means that most of the matched sentences
are not uncertain.

Similar to how Liu (2007) measures the useful-
ness of association rules, we use support and con-
fidence to measure the usefulness of a hedge cue.

Support is the ratio of sentences containing a
hedge cue to all sentences. Because in a train-
ing dataset, the number of all the sentences is a
fixed constant, we only use the number of sen-
tences containing the hedge cue as support, see
formula 1. In the other part of this paper, sentences
matched by hedge cues means sentences contains
hedge cues. We use support to measure the degree
of generality of a hedge cue.

sup = count of matched sentences (1)

Confidence is the ratio of sentences which con-
tain a hedge cue and are uncertain to all the sen-
tences containing the hedge cue, as formula 2.
We use confidence to measure the reliability for
a word or phrase to be a hedge cue.

conf =
count of matched and uncertain

count of matched sentences
(2)

3.1 Usage of Apache Lucene

Apache Lucene2 is a full text indexing Java library
provided as an open source project of Apache
Foundation. It provides flexible indexing and
search capability for text documents, and it has
very high performance. To explain the integra-
tion of Lucene into our implementation, we need
to introduce several terms, some of which come
from McCandless et al. (2010).

• Analyzer: Raw texts are preprocessed before
being added to the index: text preprocessing
components such as tokenization, stop words
removal, and stemming are parts of an ana-
lyzer.

• Document: A document represents a collec-
tion of fields, it could be a web page, a text
file, or only a paragraph of an article.

• Field: A field represents a document or the
meta-data associated with that document, like
the author, type, URL. A field has a name and
a value, and a bunch of options to control how
Lucene will index its value.

• Term: The very basic unit of a search. It con-
tains a field name and a value to search.

2http://lucene.apache.org
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• Query: The root class used to do search upon
an index.

In our implementation, Lucene is used for the
following 3 purposes:

• Enable quick counting for combinations of
words and POS tags.

• Store the training and testing corpus for fast
counting and retrieval.

• Allow gap between words or POS tags in
hedge cues to match sentences.

Lucene provides the capability to build cus-
tomized analyzers for complex linguistics analy-
sis. Our customized Lucene analyzer employs to-
kenizer and POS tagger from OpenNLP tools3 to
do tokenization and POS tagging. For every word
in the sentence, we put two Lucene tokens in the
same position, by setting up the second token’s Po-
sitionIncremental attribute to be 0.

For example, for sentence it is believed to be
very good, our analyzer will make Lucene store it
as Figure 2 in its index.

It to beis believed very good

PRP TO VBVBZ VBN RB VBN

60 1 2 3 4 5

Figure 2: Customized Tokenizer Example

Indexing text in that way, we are able to match
sentences cross words and POS tags. For example,
the phrase it is believed will be matched by it is be-
lieved, it is VBN, it VBZ believed. This technique
enables us to generalize a hedge cue.

In our implementation, all the data for training
and testing are indexed. The indexing schema is: a
sentence is treated as a Lucene document; the con-
tent of the sentence is analyzed by our customized
analyzer; other information like sentence id, sen-
tence position, uncertainty is stored as fields of the
document. In this way, we can query all those
fields, and when we find a match, we can easily
get all the information out just from the index.

Lucene provides various types of queries to
search the indexed content. We use SpanNear-
Query and BooleanQuery to search the matched
sentences for hedge cues. We rely on SpanNear-
Query’s feature of allowing positional restriction

3http://opennlp.sourceforge.net

when matching sentences. When building a Span-
NearQuery, we can specify the position gap al-
lowed among the terms in the query. We build a
SpanNearQuery from a hedge cue, put each token
as a term of the query, and set the position gap to
be 2. Take Figure 3 as an example, because the
gap between token is and said is 1, is less than the
specified gap setting 2, so It is widely said to be
good will count as a match with hedge cue is said.

Figure 3: SpanNearQuery Matching Example

We use BooleanQuery with nested SpanNear-
Query and TermQuery to count uncertain sen-
tences, then to calculate the confidence of a hedge
cue.

3.2 Hedge Cue Candidate Generation
We firstly tried to use the token as the basic unit for
hedge cues. However, several pieces of evidence
suggest it is not appropriate.

• Low Coverage. We only get 42 tokens in
Wikipedia training data, using 20, 0.4 as the
thresholds for support and confidence.

• Irrelevant words or stop words with lower
thresholds. When we use 5, 0.3 as the thresh-
olds for coverage and confidence, we get 279
tokens, however, words like is, his, musical,
voters, makers appear in the list.

We noticed that many phrases with similar
structures or fixed collocations appear very often
in the annotations, like it is believed, it is thought,
many of them, many of these and etc. Based on this
observation, we calculated the support and confi-
dence for some examples, see table 1.

Hedge Cue Sup. Conf.
it is believed 14 .93
by some 30 .87
many of 135 .65

Table 1: Hedge Cue Examples

We decided to use the phrase or collocation as
the basic unit for hedge cues. There are two prob-
lems in using the original annotations as hedge
cues:

116



• High confidence but low coverage: annota-
tions that contain proper nouns always have
very high confidence, usually 100%, how-
ever, they have very low support.

• High coverage but low confidence: annota-
tions with only one token are very frequent,
but only a few of them result in enough con-
fidence.

To balance confidence and support, we built our
hedge cue candidate generator. Its architecture is
presented in Figure 4.

Cue Annotations

Cue Candidates

Annotation Extender

Tokens > 1

NO

Token Pruner

POS Tag Replacer

YES

Figure 4: Hedge Cue Candidate Generator

The three main components of the hedge cue
candidate generator are described below.

Annotation Extender: When the input hedge
cue annotation contains only 1 token, this compo-
nent will be used. It will generate 3 more hedge
cue candidates by adding the surrounding tokens.
We expect to discover candidates with higher con-
fidence.

Token Pruner: According to our observations,
proper nouns rarely contribute to the uncertainty
of a sentence, and our Lucene based string match-
ing method ensures that the matched sentences re-
main matched after we remove tokens from the
original cue annotation. So we remove proper
nouns in the original cue annotation to generate
hedge cue candidates. By using this component,
we expect to extract hedge cues with higher sup-
port.

POS Tag Replacer: This component is used to
generalize similar phrases, by using POS tags to
replace the concrete words. For example, we use
the POS tag VBN to replace believed in it is be-
lieved to generate it is VBN. Hence, when a sen-
tence contains it is thought in the testing dataset,
even if it is thought never appeared in the train-
ing data set, we will still be able to match it and

classify it against the trained MaxEnt model. We
expect that this component will be able to increase
support. Due to the O(2n) time complexity, we did
not try the brute force approach to replace every
word, only the words with the POS tags in Table 2
are replaced in the process.

POS Description Example
VBN past participle verb it is believed
NNS plural common noun some countries
DT determiner some of those
CD numeral, cardinal one of the best

Table 2: POS Tag Replacer Examples

After hedge cue candidates are generated, we
convert them to Lucene queries to calculate their
confidence and support. We prune those that fall
below the predefined confidence and support set-
tings.

4 Learn Uncertainty

Not all the learned hedge cues have 100% uncer-
tainty confidence, given a hedge cue, we need to
learn how to classify whether a matched sentence
is uncertain or not. The classification model is,
given a tuple of (Sentence, Hedge Cue), in which
the sentence contains the hedge cue, we classify it
to the outcome set {Certain, Uncertain}.

MaxEnt is a general purpose machine learn-
ing technique, it makes no assumptions in addi-
tion to what we know from the data. MaxEnt has
been widely used in Natural Language Processing
(NLP) tasks like POS tagging, word sense disam-
biguation, and proved its efficiency. Due to Max-
Ent’s capability to combine multiple and depen-
dent knowledge sources, we employed MaxEnt as
our machine learning model. Features we used to
train the model include meta information features
and collocation features.

Meta Information Features include three fea-
tures:

• Sentence Location: The location of the sen-
tence in the article, whether in the title or in
the content. We observed sentences in the ti-
tle are rarely uncertain.

• Number of Tokens: The number of tokens
in the sentence. Title of article is usually
shorter, and more likely to be certain.
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• Hedge Cue Location: The location of
matched tokens in a sentence. We consider
them to be in the beginning, if the first token
of the matched part is the first token in the
sentence; to be at the end, if the last token of
the matched part is the last token of the sen-
tence; otherwise, they are in the middle. We
were trying to use this feature as a simplified
version to model the syntactic role of hedge
cues in sentences.

Collocation Features include the word and POS
tag collocation features:

• Word Collocation: Using a window size of 5,
extract all the word within that window, ex-
cluding punctuation.

• POS Tag Collocation: Using a window size
of 5, extract all the POS tags of tokens within
that window, excluding punctuation.

We use the OpenNLP MaxEnt4 Java library as
the MaxEnt trainer and classifier. For each hedge
cue, the training is iterated 100 times, with no cut
off threshold for events.

5 Experiments and Discussion

We first ran experiments to evaluate the perfor-
mance of the entire system. We used official
dataset as training and testing, with different con-
fidence and support thresholds. The result on offi-
cial Wikipedia dataset is presented in Table 3. Re-
sult on the biological dataset is listed in Table 4.
In the result tables, the first 2 columns are the con-
fidence and support threshold; “Cues” is the num-
ber of generated hedge cues; the last 3 columns are
standard classifier evaluation measures.

Our submitted result used 0.35, 5 as the thresh-
olds for confidence and support. We officially
placed third on the Wikipedia dataset, with a
0.5741 F-score, and third from last on the biolog-
ical dataset, with a 0.7692 F-score. In later ex-
periments, we used different parameters, which re-
sulted in a 0.03 F-score improvement. We believe
the big difference of ranking on different datasets
comes from the incomplete training. Due to incor-
rect estimation of running time, we only used the
smaller training file in our submitted biological re-
sult.

From Table 3 and 4, we can see that a higher
confidence threshold gives higher precision, and

4http://maxent.sourceforge.net

Conf. Sup. Cues Prec. Recall F

0.4
10 360 0.658 0.561 0.606
15 254 0.672 0.534 0.595
20 186 0.682 0.508 0.582

0.45
10 293 0.7 0.534 0.606
15 190 0.717 0.503 0.591
20 137 0.732 0.476 0.577

0.5

5 480 0.712 0.536 0.612
10 222 0.736 0.492 0.590
15 149 0.746 0.468 0.575
20 112 0.758 0.443 0.559

Table 3: Evaluation Result on Wikipedia Dataset

Conf. Sup. Cues Prec. Recall F

0.4
10 330 0.68 0.884 0.769
15 229 0.681 0.861 0.76
20 187 0.679 0.842 0.752

0.45
10 317 0.689 0.878 0.772
15 220 0.69 0.857 0.764
20 179 0.688 0.838 0.756

0.5

5 586 0.724 0.899 0.802
10 297 0.742 0.841 0.788
15 206 0.742 0.819 0.779
20 169 0.74 0.8 0.769

Table 4: Evaluation Result on Biological Dataset

a lower support threshold leads to higher recall.
Since the lower support threshold could generate
more hedge cues, it will generate less training in-
stances for hedge cues with both low confidence
and support, which affects the performance of the
MaxEnt classifier. In both datasets, it appears that
0.5 and 5 are the best thresholds for confidence
and support, respectively.

Beyond the performance of the entire system,
our hedge cue generator yields very promising re-
sults. Using the best parameters we just noted
above, our hedge cue generator generates 52 hedge
cues with confidence 100% on the Wikipedia
dataset, and 332 hedge cues in the biological
dataset. Some hedge cue examples are shown in
Table 5.

We also ran experiments to verify the perfor-
mance of our MaxEnt classifier. We used the same
setting of datasets as for the system performance
evaluation. Given a hedge cue, we extracted all
the matched sentences from the training set to train
a MaxEnt classifier, and used it to classify the
matched sentences by the hedge cue in testing set.
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Hedge Cue Sup. Conf. TestSize Prec. Recall F
indicated that 63 0.984 6 1.0 1.0 1.0
by some 30 0.867 29 0.966 1.000 0.983
are considered 29 0.724 10 0.750 0.857 0.800
some of NNS 62 0.613 27 1.000 0.778 0.875
the most JJ 213 0.432 129 0.873 0.475 0.615

Table 6: MaxEnt Classifier Performance

Hedge Cue Conf. Sup.
probably VBN 1.0 21
DT probably 1.0 15
many NNS believe 1.0 10
NNS suggested DT 1.0 248
results suggest 1.0 122
has VBN widely VBN 1.0 10

Table 5: Generated Hedge Cue Examples

Table 6 shows the results, the hedge cues were
manually chosen with relative higher support.

We can see that the performance of the MaxEnt
classifier correlates tightly with confidence and
support. Higher confidence means a more accu-
rate detection for a phrase to be hedge cue, while
higher support means more training instances for
the classifier: the best strategy would be to find
hedge cues with both high confidence and support.

While experimenting with the system, we found
several potential improvements.

• Normalize words. Take the word suggest as
an example. In the generated hedge cues,
we found that its other forms are everywhere,
like it suggested, NNS suggests a, and DT
suggesting that. As we put POS tags into
Lucene index, we can normalize words to
their base forms using a morphology parser,
and put base forms into index. After that, the
query with suggest will match all the forms.

• Use more sophisticated features to train the
MaxEnt classifier. Currently we only use
shallow linguistics information as features,
however we noticed that the role of the phrase
could be very important to decide whether it
indicates uncertainty. We can deep parse sen-
tences, extract the role information, and add
it to the feature list of classifier.

6 Conclusion

In this paper, we described the hedge detection
system we developed to participate in the shared
task of CoNLL-2010. Our system uses a heuristic
learner to learn hedge cues, and uses MaxEnt as
its machine learning model to classify uncertainty
for sentences matched by hedge cues. Hedge cues
in our system include both words and POS tags,
which make them more general. Apache Lucene is
integrated into our system to efficiently run com-
plex linguistic queries on the corpus.
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Abstract

With the dramatic growth of scientific
publishing, Information Extraction (IE)
systems are becoming an increasingly im-
portant tool for large scale data analy-
sis. Hedge detection and uncertainty clas-
sification are important components of a
high precision IE system. This paper
describes a two part supervised system
which classifies words as hedge or non-
hedged and sentences as certain or uncer-
tain in biomedical and Wikipedia data. In
the first stage, our system trains a logistic
regression classifier to detect hedges based
on lexical and Part-of-Speech collocation
features. In the second stage, we use the
output of the hedge classifier to generate
sentence level features based on the num-
ber of hedge cues, the identity of hedge
cues, and a Bag-of-Words feature vector
to train a logistic regression classifier for
sentence level uncertainty. With the result-
ing classification, an IE system can then
discard facts and relations extracted from
these sentences or treat them as appropri-
ately doubtful. We present results for in
domain training and testing and cross do-
main training and testing based on a sim-
ple union of training sets.

1 Introduction

With the rapid increase in domain specific (bio-
medical) and domain general (WWW) text collec-
tions information extraction is an increasingly im-
portant tool for making use of these data sets. In
order to maximize the usefulness of extracted rela-
tions an Information Extraction (IE) system needs
the ability to separate the factual and reliable re-
lationships from the uncertain and unreliable rela-
tionships. Most work on this problem has focused

on the task of hedge detection where the goal is
to classify a span of text as hedged or as non-
hedged with the goal of facilitating sentence level
classification of certain or uncertain. Much of the
work was conducted within the framework of the
BioNLP 2009 shared task sub task on uncertainty
detection focusing on biomedical datasets (Kim et
al., 2009) motivating further work in the biomedi-
cal NLP field (Aramaki et al., 2009; Conway et al.,
2009). Other work has focused on creating anno-
tated datasets from both a linguistically sophisti-
cated perspective (Saurı́ and Pustejovsky, 2009) or
from a language engineering perspective (Vincze
et al., 2008).

Early work by Light et al. (2004) framed the
task as determining the degree of speculation or
uncertainty at the sentence level. The presence
of a hedge cue, a phrase indicating that authors
cannot back up their opinions or statements with
facts, is a high precision feature of sentence level
uncertainty. Other early work focused on semi-
supervised learning due to a lack of annotated
datasets (Medlock and Briscoe, 2007). Linguis-
tically motivated approaches achieved a robust
baseline on the sentence classification task (Kil-
icoglu and Bergler, 2008) although their training
methods are hand tuned. Morante and Daele-
mans (2009) cast the problem as a sequence label-
ing task and show that performance is highly do-
main dependent and requires high precision hedge
detection in order to perform the complex task
of hedge scope labeling. Szarvas (2008) demon-
strates that semi-supervised learning is even more
effective with more labeled training data and so-
phisticated feature selection.

HedgeHunter is built to perform the CoNLL-
2010 sentence uncertainty classification task. The
task is a supervised learning task with training
data drawn from Wikipedia and biomolecular ar-
ticles and abstracts. Each training sentence is la-
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beled as certain or uncertain and every hedge cue
is also labeled. HedgeHunter separates the task
into two stages: hedge detection and uncertainty
classification, with the goal of producing an in-
dependent high precision hedge detection system
for use in other tasks such as hedge scope detec-
tion. The system is designed to be expanded using
semi-supervised learning although this is not im-
plemented at this time. This paper will describe
the hedge detection stage in Section 2 and the sen-
tence classification stage in Section 3. Section 4
describes the evaluation of the system and Section
5 discusses the results. Section 6 discusses the re-
sults in a larger context and suggest future areas
for improvement. Section 7 summarizes the con-
clusions.

2 Hedge Detection

Hedge detection is largely based on the identi-
fication of lexical items like suggest and might
which indicate sentence level uncertainty. As a
result, reasonable hedge detection in English can
be accomplished by collecting a list of all lexical
items that convey hedging. These include epis-
temic verbs (may, might, could, should, can, ought
to), psychological verbs of perception, knowing or
concluding (seems, guess, suppose, hope, assume,
speculate, estimate), adverbs (possibly, unlikely,
probably, approximately), adjectives (quite, rare,
apparent) and many nouns. While some of these,
especially the epistemic verbs, are often applied
across domains to indicate hedge cues, many are
unique to a particular domain. Further complicat-
ing hedge detection in English is the fact that the
same word types occasionally have different, non-
hedging uses.

The form of a hedge cue often acts as a high pre-
cision feature, whenever one is present in a sen-
tence it is highly likely to be labeled as a hedge
cue in the training set. Lexical hedge cues often
vary from domain to domain and contain multi-
ple words so non-lexical features are required for
recognizing hedge cues robustly across domains
although they are unlikely to provide a large bene-
fit due to the largely lexical nature of hedges. As a
result HedgeHunter uses both lexical and POS fea-
tures for classification. Some hedges like ought to
span multiple words so we also use positional fea-
tures in order to capture multi-word hedges.

The hedge detection stage labels each word in a
sentence independently. Labeling is done by lo-

gistic regression using Quasi-Newton minimiza-
tion to set feature weights. This is a classifica-
tion method that is both fast and robust for binary
classification tasks like the one at hand. Features
are drawn from the target word to be labeled and
its context, the three words to the left and right of
the target word. For the target word we extract
features based on the word form, the word lemma
and its POS as determined by a maximum entropy
POS tagger trained on the PennTreebank imple-
mented in Stanford JavaNLP. For the 6 words in
the context window we also extract features based
on the word, its lemma and its POS.

3 Uncertainty Classification

Uncertainty classification involves partitioning the
set of sentences in a dataset into certain and uncer-
tain classes. In most scientific writing sentences
are generally certain so uncertain sentences are the
minority class. This holds even more so for the
Wikipedia dataset due to the method by which an-
notations were obtained and the encyclopedic na-
ture of the dataset. Wikipedia hedge cues were
identified by the presence of the weasel word tag
which editors are allowed to append to spans of
text in a Wikipedia article. These are often applied
in a manner similar to hedge cues in the annotated
biomedical datasets but they also focus on identi-
fying non universal statements like those quanti-
fied by some or few. Due to the collaborative na-
ture of Wikipedia, what qualifies as a weasel word
varies greatly contributing to the increased varia-
tion in hedge cues in this dataset. Weasel words
often get edited quickly so there are not many ex-
amples in the training set creating further difficul-
ties.

The presence of one or more hedge cues in a
sentence is a good indication that the sentence
should be classified as uncertain, although as we
will see in the results section, non-hedge features
are also useful for this task. To capture this we
extract features from each sentence including the
number of hedge cues found by the hedge detec-
tion stage and the string value of the first four lex-
ical hedge cues found in each sentence. To cap-
ture any other non-hedge words which may con-
tribute to sentence level uncertainty, we also in-
clude BOW features based on vocabulary items
with frequencies above the mean frequency in the
corpus. This is achieved by creating binary fea-
tures for the presence of every word in the vocab-
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ulary.
Classification is again performed by a logis-

tic regression using Quasi-Newton minimization.
It should be stressed that all hedge related fea-
tures used by the uncertainty classification stage
are taken from the results of the hedge detection
stage and not from the gold standard annotation
data. This was done to allow the system to fold
new unannotated sentences into the training set
to perform semi-supervised learning. Time con-
straints and implementation difficulties prevented
fully implementing this system component. Fu-
ture work plans to extract high class conditional
likelihood features from unannotated sentences,
annotate the sentences based on treating these fea-
tures as hedges, and retrain the hedge detection
stage and uncertainty classification stage in an it-
erative manner to improve coverage.

4 Evaluation

The dataset provided for the CoNLL-2010 shared
task consists of documents drawn from three sepa-
rate domains. Two domains, biomedical abstracts
and full articles, are relatively similar while the
third, selected Wikipedia articles, differs consider-
ably in both content and hedge cues for the reasons
previously discussed. Overall the dataset contains
11,871 sentences from abstracts, 2,670 from full
articles, and 11,111 from Wikipedia articles.

Performance for the hedge detection system
was calculated at the word level while perfor-
mance for the uncertainty classification stage was
calculated at the sentence level using the classes of
hedged and uncertain as the positive class for pre-
cision, recall and F1 statistics. We compare our
hedge detection system to a state of the art sys-
tem presented in Morante and Daelemans (2009)
and trained on a dataset of 20,924 sentences drawn
from clinical reports and biomedical abstracts and
articles. The Morante system used 10 fold cross
validation while our system randomly withholds
10 percent of the dataset for testing so our results
may be viewed as less reliable. We do provide
the first evaluation of one system on both domain
specific and domain general datasets. Table 1 pro-
vides a breakdown of performance by system and
dataset.

We evaluated the performance of the Hedge-
Hunter system on the withheld training data
including 5003 evaluation sentences from the
biomedical domain and 9634 sentences from

System Precision Recall F1
Morante
Abstracts .9081 .7984 .8477
Articles .7535 .6818 .7159
Clinical .8810 .2751 .41.92
HedgeHunter
Abstracts .8758 .5800 .6979
Articles .8704 .4052 .5529
Wikipedia .5453 .2434 .3369
All .6289 .3464 .4467

Table 1: Hedge detection performance

Wikipedia. For uncertainty classification we com-
pare our system to the results from the CoNLL-
2010 shared task comparing to the state of the art
systems. For more details see the task description
paper (Farkas et al., 2010). Table 2 summarizes
the results for the closed domain training subtask.
Table 3 summarizes the best performing systems
in the Wikipedia and biomedical domain on the
cross domain training subtask and compares to the
HedgeHunter system.

System Precision Recall F1
Tang
Biomedical .8503 .8777 .8636
Georgescul
Wikipedia .7204 .5166 .6017
HedgeHunter
Biomedical .7933 .8063 .7997
Wikipedia .7512 .4203 .5390

Table 2: Uncertainty classification performance
closed

System Precision Recall F1
Li
Biomedical .9040 .8101 .8545
Ji
Wikipedia .6266 .5528 .5874
HedgeHunter
Biomedical .7323 .6405 .6833
Wikipedia .7173 .4168 .5272

Table 3: Uncertainty classification performance
cross
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5 Results

The Hedge Detection stage performed slightly
worse than the state of the art system. Although
precision was comparable for biomedical articles
and abstracts our system suffered from very low
recall compared to the Morante system. The
Morante system included chunk tagging as an ap-
proximation of syntactic constituency. Since many
multi word hedge cues are constituents of high
precision words and very frequent words (ought
to) this constituency information likely boosts re-
call. Like the Morante system, HedgeHunter suf-
fered a significant performance drop when tested
across domains, although our system suffered
more due to the greater difference in domains be-
tween biomedical and Wikipedia articles than be-
tween biomedical and clinical reports and due to
the annotation standards for each dataset. Hedge-
Hunter achieved better results on biomedical ab-
stracts than the full articles due to higher recall
based on the significantly larger dataset. Our
system produced the worst performance on the
Wikipedia data although this was mostly due to
a drop in precision compared to the biomedical
domain. This is in line with the drop in perfor-
mance experienced by other systems outside of the
biomedical domain and indicates that Wikipedia
data is noisier than the peer reviewed articles that
appear in the biomedical literature confirming our
informal observations. Since the dataset has an
overwhelming number of certain sentences and
unhedged words, there is already a large bias to-
wards those classes as evidenced by high over-
all classification accuracy (87% for certainty de-
tection and 97% for hedge detection on all data)
despite sometimes poor F1 scores for the minor-
ity classes. During development we experimented
with SVMs for training but abandoned them due
to longer training times and it is possible that we
could improve the recall of our system by using a
different classifier, a weaker prior or different pa-
rameters that allowed for more recall by paying
less attention to class priors. We plan to expand
our system using semi-supervised learning so it is
not necessarily a bad thing to have high precision
and low recall as this will allow us to expand our
dataset with high quality sentences and by lever-
aging the vast amounts of unannotated data we
should be able to overcome our low recall.

The uncertainty classification system performed
robustly despite the relatively poor performance of

the hedge detection classifier. The use of BOW
features supplemented the low recall of the hedge
detection stage while still relying on the hedge fea-
tures when they were available as shown by fea-
ture analysis. We did not implement bi or tri-
gram features although this would likely give a
further boost in recall. Wikipedia data was still
the worst performing domain although our cross
domain system performed near the state of the art
system with higher precision.

Overall our system produced a high precision
hedge detection system for biomedical domain
data which fed a high precision uncertainty classi-
fier. Recall for the hedge detection stage was low
overall but the use of BOW features for the uncer-
tainty classification stage overcame this to a small
degree. The amount of annotated training data has
a significant impact on performance of the Hedge-
Hunter system with more data increasing recall for
the hedge detection task. For the sentence uncer-
tainty task the system still performed acceptably
on the Wikipedia data.

6 Discussion

HedgeHunter confirmed many of the findings of
previous research. The most significant finding is
that domain adaptation in the task of hedge detec-
tion is difficult. Most new domains contain differ-
ent vocabulary and hedges tend to be highly lex-
icalized and subject to variation across domains.
This is reinforced by feature analysis where the
top weighted features for our hedge detection clas-
sifier were based on the word or its lemma and not
on its POS. Once our system learns that a partic-
ular lexical item is a hedge it is easy enough to
apply it precisely, the difficulty is getting the nec-
essary training examples covering all the possible
lexical hedge cues the system may encounter. The
lexicon of hedge cues used in biomedical articles
tends to be smaller so it is easier to get higher re-
call in this domain because the chance of seeing a
particular hedge cue in training is increased. With
the Wikipedia data, however, the set of hedge cues
is more varied due to the informal nature of the
articles. This makes it less likely that the hedge
detection system will be exposed to a particular
hedge in training.

One possible avenue for future work should
consider using lexical resources like WordNet,
measures of lexical similarity, or n-gram language
models to provide backoff feature weights for un-
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seen lexical items. This would increase the recall
of the system despite the limited nature of anno-
tated training sets by leveraging the lexical nature
of hedges and their relatively closed class status.

We also found that the size of the training set
matters significantly. Each domain employs a cer-
tain number of domain specific hedge cues along
with domain general cues. While it is easy enough
to learn the domain general cues, domain specific
cues are difficult and can only be learned by see-
ing the specific lexical items to be learned. It is
important that the training dataset include enough
examples of all the lexical hedge cues for a spe-
cific domain if the system is to have decent re-
call. Even with thousands of sentences to train on,
HedgeHunter had low recall presumably because
there were still unseen lexical hedge cues in the
test set. Future work should concentrate on meth-
ods of expanding the size of the training sets in or-
der to cover a larger portion of the domain specific
hedging vocabulary because it does not appear that
there are good non-lexical features that are robust
at detecting hedges across domains. This may in-
clude using lexical resources as described previ-
ously or by leveraging the high precision nature
of hedge cues and the tendency for multiple cues
to appear in the same sentence to perform semi-
supervised learning.

This work also confirmed that hedge cues pro-
vide a very high precision feature for uncertainty
classification. The highest weighed features for
the classifier trained in the uncertainty classifi-
cation stage were those that indicated the pres-
ence and number of lexical hedge cues. Contrary
to some previous work which found that features
counting the number of hedge cues did not im-
prove performance, HedgeHunter found that the
number of hedge cues was a strong feature with
more hedge cues indicating an increased likeli-
hood of being uncertain (Szarvas, 2008). It is
largely a limitation of the task that we treat all un-
certain sentences as equally uncertain. From a lin-
guistic perspective a speaker uses multiple hedge
cues to reinforce their uncertainty and our system
seems to confirm that in terms of the likelihood
of class membership even if the datasets do not
encode the degree of uncertainty directly. Future
work should focus on creating more sophisticated
models of uncertainty that recognize the fact that
it is at least a scalar phenomena and not a binary
classification. Ideally a hedge detection and uncer-

tainty quantification system would function to at-
tach a probability to every fact or relation extracted
from a sentence in an IE system determined in part
by the hedging vocabulary used to express that
fact or relation. This would yield a more nuanced
view of how language conveys certainty and allow
for interesting inference possibilities for systems
leveraging the resulting IE system output.

One surprising finding was that uncertain sen-
tences often contained multiple hedge cues, some-
times up to 4 or more. This is useful because it
allows us to hypothesize that a sentence that is
unannotated and has a high chance of being un-
certain due to containing a hedge cue that we have
seen in training, possibly contains other hedge
cues that we have not seen. We can then use the
large amounts of unannotated sentences that are
available to extract n-gram features that have high
uncertainty class conditional probability and add
them to our training set with those features labeled
as hedges as described in Medlock and Briscoe
(2007). Because hedges are high precision fea-
tures for uncertainty this should not hurt precision
greatly. This allows us to increase the size of our
training set substantially in order to expose our
system to a greater variety of hedge cues in a semi-
supervised manner. As with most semi-supervised
systems we run the risk of drift resulting in a drop
in precision. Future work will have to determine
the correct balance between precision and recall,
ideally by embedding this task within the larger
IE framework to provide extrinsic evaluation

This work neglected to address the more diffi-
cult task of hedge scope detection. Determining
hedge scope requires paring spans of sentences
that fall within the hedge scope to a given hedge
cue. Along with a move towards a scalar notion
of uncertainty we should move towards a scope
based instead of sentence based representation of
uncertainty. Hedges take scope over subparts of
a sentence so just because a relation occurs in the
same sentence as a hedge cue does not mean that
the given relation is hedged. It seems unnecessar-
ily strict to ignore all relations or facts in a sen-
tence just because it contains a hedge. Hedge de-
tection is an important precursor to hedge scope
detection. Without a high performing hedge de-
tection system we cannot hope to link hedge cues
with their respective scopes. This work hopes to
produce a method for training such a hedge de-
tection system for use as a component of a hedge
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scope finding system.
This work also failed to integrate constituency

or dependency features into either stage of the
system. Dependencies encode important informa-
tion and we plan to include features based on de-
pendency relationships into future versions of the
system. At the hedge detection stage it should
improve recall by allowing the system to detect
which multi word hedge cues are part of the same
cue. At the uncertainty classification stage it
should allow the extraction of multiword features
not just based on n-gram frequency. For semi-
supervised learning it should allow the system
to more accurately annotated multi word features
that have a high class conditional probability. This
should be even more important when performing
the task of hedge scope detection where scope is
often delimitated at the phrase level and determin-
ing the dependency relations between words can
capture this observation.

7 Conclusion

This work described HedgeHunter, a two stage
hedge detection and uncertainty classification sys-
tem. It confirmed the lexical nature of the hedge
detection task, the importance of hedge cues to un-
certainty classification and sharpened the need for
large amounts of training data in order to achieve
broad coverage. It highlights the issues involved in
developing an open domain system by evaluating
across very disparate datasets. It provides a frame-
work that can be extended to semi-supervised
learning in order to leverage large amounts of
unannotated data to improve both in domain and
cross domain performance.
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Abstract

Our CoNLL-2010 speculative sentence
detector disambiguates putative keywords
based on the following considerations: a
speculative keyword may be composed of
one or more word tokens; a speculative
sentence may have one or more specula-
tive keywords; and if a sentence contains
at least one real speculative keyword, it is
deemed speculative. A tree kernel classi-
fier is used to assess whether a potential
speculative keyword conveys speculation.
We exploit information implicit in tree
structures. For prediction efficiency, only
a segment of the whole tree around a spec-
ulation keyword is considered, along with
morphological features inside the segment
and information about the containing doc-
ument. A maximum entropy classifier
is used for sentences not covered by the
tree kernel classifier. Experiments on the
Wikipedia data set show that our system
achieves 0.55 F-measure (in-domain).

1 Introduction

Speculation and its impact on argumentation has
been studied by linguists and logicians since at
least as far back as Aristotle (trans 1991, 1407a,
1407b), and under the category of linguistic
“hedges” since Lakoff (1973). Practical appli-
cation of this research has emerged due to the
efforts to create a biomedical database of sen-
tences tagged with speculation information: Bio-
Scope (Szarvas et al., 2008) and because of the
association of some kinds of Wikipedia data with
the speculation phenomenon (Ganter and Strube,
2009). It is clear that specific words can be con-
sidered as clues that can qualify a sentence as
speculative. However, the presence of a specu-
lative keyword not always conveys a speculation

assertion which makes the speculation detection a
tough problem. For instance, the sentences below
contain the speculative keyword “may”, but only
the sentence (a) is speculative.

(a) These effects may be reversible.

(b) Members of an alliance may not attack each other.

The CoNLL-2010 Shared Task (Farkas et al.,
2010), “Learning to detect hedges and their scope
in natural language text” proposed two tasks re-
lated to speculation research. Task 1 aims to detect
sentences containing uncertainty and Task 2 aims
to resolve the intra-sentential scope of hedge cues.
We engaged in the first task in the biomedical and
Wikipedia domains as proposed by the organizers,
but eventually we got to submit only Wikipedia
domain results. However, in this paper we include
results in the biomedical domain as well.

The BioScope corpus is a linguistically hand an-
notated corpus of negation and speculation phe-
nomena for medical free texts, biomedical article
abstracts and full biomedical articles. The afore-
said phenomena have been annotated at sentence
level with keyword tags and linguistic scope tags.
Some previous research on speculation detection
and boundary determination over biomedical data
has been done by Medlock & Briscoe (2007) and
Özgür & Radev (2009) from a computational view
using machine learning methods.

The Wikipedia speculation dataset was gener-
ated by exploiting a weasel word marking. As
weasel words convey vagueness and ambiguity by
providing an unsupported opinion, they are dis-
couraged by Wikipedia editors. Ganter & Strube
(2009) proposed a system to detect hedges based
on frequency measures and shallow information,
achieving a F-score of 0.691.

We formulate the speculation detection prob-
lem as a word disambiguation problem and de-
veloped a system as a pipelined set of natural

1They used different Wikipedia data.

126



language processing tools and procedures to pre-
process the datasets. A Combinatory Categorial
Grammar parsing (CCG) (Steedman, 2000) tool
and a Tree Kernel (TK) classifier constitute the
core of the system.

The Section 2 of this paper describes the over-
all architecture of our system. Section 3 depicts
the dataset pre-processing. Section 4 shows how
we built the speculation detection module, outlines
the procedure of examples generation and the use
of the Tree-kernel classifier. Section 5 presents
the experiments and results, we show that sentence
CCG derivation information helps to differentiate
between apparent and real speculative words for
speculation detection. Finally Section 6 gives our
conclusions.

2 Speculation detection system

Our system for speculation detection is a machine
learning (ML) based system (Figure 1). In the pre-
processing module a dataset of speculative/non-
speculative sentences goes through a process of
information extraction of three kinds: specula-
tive word or keyword extraction,2 sentence extrac-
tion and document feature extraction (i.e docu-
ment section). Later the extracted keywords are
used to tag potential speculative sentences in the
training/evaluation datasets and used as features
by the classifiers. The sentences are submitted to
the tokenization and parsing modules in order to
provide a richer set of features necessary for creat-
ing the training/evaluation datasets, including the
document features as well.

In the ML module two types of dataset are built:
one used by a TK classifier and other one by a bag-
of-features based maximum entropy classifier. As
the first one processes only those sentences that
contain speculative words, we use the second clas-
sifier, which is able to process samples of all the
sentences.

The models built by these classifiers are com-
bined in order to provide a better performance and
coverage for the speculation problem in the clas-
sification module which finally outputs sentences
labeled as speculative or non-speculative. Used
tools are the GeniaTagger (Tsuruoka et al., 2005)
for tokenization and lemmatization, and the C&C
Parser (Clark and Curran, 2004). The next sec-
tions explain in detail the main system compo-
nents.

2Extraction of keywords for the training stage.

3 Dataset pre-processing for rich feature
extraction

The pre-processing module extracts keywords,
sentences and document information.

All sentences are processed by the tok-
enizer/lemmatizer and at the same time specific in-
formation about the keywords is extracted.

Speculative keywords
Speculative sentences are evidenced by the pres-
ence of speculation keywords. We have the fol-
lowing observations:

• A hedge cue or speculative keyword 3 may be
composed of one or more word tokens.

• In terms of major linguistic categories, the
word tokens are heterogeneous: they may be
verbs, adjectives, nouns, determiners, etc. A
stop-word removing strategy was dismissed,
since no linguistic category can be elimi-
nated.

• A keyword may be covered by another longer
one. For instance, the keyword most can be
seen in keywords like most of all the heroes
or the most common.

Considering these characteristics for each sen-
tence, in the training stage, the keyword extraction
module retrieves the speculative/non-speculative
property of each sentence, the keyword occur-
rences, number of keywords in a sentence, the ini-
tial word token position and the number of word
tokens in the keyword. We build a keyword lex-
icon with all the extracted keywords and their
frequency in the training dataset, this speculative
keyword lexicon is used to tag keyword occur-
rences in non-speculative training sentences and
in all the evaluation dataset sentences.

The overlapping problem when tagging key-
words is solved by maximal matching strategy. It
is curious that speculation phrases come in de-
grees of specificity; the approach adopted here
favors “specific” multi-word phrases over single-
word expressions.

Sentence processing
Often, speculation keywords convey certain in-
formation that can not be successfully expressed
by morphology or syntactic relations provided by
phrase structure grammar parsers. On the other

3Or just “keyword” for sake of simplicity.
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Figure 1: Block diagram for the speculation detection system.

hand, CCG derivations or dependencies provide
deeper information, in form of predicate-argument
relations. Previous works on semantic role label-
ing (Gildea and Hockenmaier, 2003; Boxwell et
al., 2009) have used features derived from CCG
parsings and obtained better results.

C&C parser provides CCG predicate-argument
dependencies and Briscoe and Carroll (2006) style
grammatical relations. We parsed the tokenized
sentences to obtain CCG derivations which are
binary trees as shown in the Figure 2. The
CCG derivation trees contain function category
and part-of-speech labels; this information is con-
tained in the tree structures to be used in building
a subtree dataset for the TK classifier.

4 Speculative sentence classifier

4.1 Tree Kernel classification

The subtree dataset is processed by a Tree Kernel
classifier (Moschitti, 2006) based on Support Vec-
tor Machines. TK uses a kernel function between
two trees, allowing a comparison between their
substructures, which can be subtrees (ST) or sub-
set trees (SST). We chose the comparison between
subset trees since it expands the kernel calculation
to those substructures with constituents that are
not in the leaves. Our intuition is that real specula-
tive sentences have deep semantic structures that
are particularly different from those ones in ap-
parent speculative sentences, and consequently the
comparison between the structures of well identi-
fied and potential speculative sentences may en-
hance the identification of real speculative key-
words.

4.2 Extracting tree structures

The depth of a CCG derivation tree is propor-
tional to the number of word tokens in the sen-
tence. Therefore, the processing of a whole deriva-
tion tree by the classifier is highly demanding and
many subtrees are not relevant for the classifica-
tion of speculative/non-speculative sentences, in
particular when the scope of the speculation is a
small proportion of a sentence.

In order to tackle this problem, a fragment of
the CCG derivation tree is extracted. This frag-
ment or subtree spans the keyword together with
neighbors terms in a fixed-size window of n word
tokens, (i.e. n word tokens to the left and n word
tokens to the right of the keyword) and has as root
the lower upper bound node of the first and last
tokens of this span. After applying the subtree ex-
traction, the subtree can contain more word tokens
in addition to those contained in the n-span, which
are replaced by a common symbol.

Potential speculative sentences are turned into
training examples. However, as described in Sec-
tion 3, a speculative sentence can contain one or
more speculative keywords. This can produce an
overlapping between their respective n-spans of
individual keywords during the subtree extraction,
producing subtrees with identical roots for both
keywords. For instance, in the following sen-
tence(c), the spans for the keywords suggests and
thought will overlap if n = 3.

(c) This suggests that diverse agents thought to ac-

tivate NF-kappa B ...

The overlapping interacts with the windows size
and potential extraction of dependency relations
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It was reported to have burned for a day
PRP VBD VBN TO VB VBN IN DT NN
NP (S[dcl]\NP)/(S[pss]\NP) (S[pss]\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/(S[pt]\NP) S[pt]\NP ((S\NP)\(S\NP))/NP NP[nb]/N N

NP[nb]

(S[X]\NP)\(S[X]\NP)
S[pt]\NP

S[b]\NP
S[to]\NP

S[pss]\NP
S[dcl]\NP
S[dcl]

Figure 2: CCG derivations tree for It was reported to have burned for a day.

shared by terms belonging to the two different
spans. We deal with this issue by extracting one
training example if two spans have a common root
and two different examples otherwise.

4.3 Bag of features model

By default, our system classifies the sentences not
covered by the TK model using a baseline clas-
sifier that labels a sentence as speculative if this
has at least one keyword. Alternatively, a bag of
features classifier is used to complement the tree
kernel, aimed to provide a more precise method
that might detect even speculative sentences with
new keywords in the evaluation dataset. The set of
features used to build this model includes:

a) Word unigrams;
b) Lemma unigrams;
c) Word+POS unigrams;
d) Lemma+POS unigrams;
e) Word+Supertag unigrams;
f) Lemma+Supertag unigrams;
g) POS+Supertag unigrams;
h) Lemma bigrams;
i) POS bigrams;
j) Supertag bigrams;
k) Lemma+POS bigrams;
l) Lemma+Supertag bigrams;

m) POS+Supertag bigrams;
n) Lemma trigrams;
o) POS trigrams;
p) Supertag trigrams;
q) Lemma+POS trigrams;
r) Lemma+Supertag trigrams;
s) POS+Supertag trigrams;
t) Number of tokens;
u) Type of section in the document (Title, Text,

Section);
v) Name of section in the document;
w) Position of the sentence in a section starting

from beginning;

Dataset Dev. Train. Eval.
Biomedical 39 14541 5003
Wikipedia 124 11111 9634

Table 1: Datasets sizes.

x) Position of the sentence in a section starting
from end.

Position of the sentence information, composed by
the last four features, represents the information
about the sentence relative to a whole document.
The bag of features model is generated using a
Maximum Entropy algorithm (Zhang, 2004).

5 Experiments and results

5.1 Datasets
In the CoNLL-2010 Task 1, biomedical and
Wikipedia datasets were provided for develop-
ment, training and evaluation in the BioScope
XML format. Development and training datasets
are tagged with cue labels and a certainty feature.4

The number of sentences for each dataset 5 is de-
tailed in Table 1.

After manual revision of sentences not parsed
by C&C parser, we found that they contain equa-
tions, numbering elements (e.g. (i), (ii).. 1),
2) ), or long n-grams of named-entities, for in-
stance: ...mannose-capped lipoarabinomannan (
ManLAM ) of Mycobacterium tuberculosis ( M.
tuberculosis )... that out of a biomedical domain
appear to be ungrammatical. Similarly, in the
Wikipedia datasets, some sentences have many
named entities. This suggests the need of a spe-
cific pre-processor or a parser for this kind of sen-
tences like a named entity tagger.

In Table 2, we present the number of parsed sen-
tences, processed sentences by the TK model and
examples obtained in the tree structure extraction.

4certainty=“uncertain” and certainty=“certain”.
5The biomedical abstracts and biomedical articles training

datasets are processed as a single dataset.
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Dataset Parsed Process. Samples
Biomedical train. 14442 10852 23511
Biomedical eval. 4903 3395 7826
Wikipedia train. 10972 7793 13461
Wikipedia eval. 9559 4666 8467

Table 2: Count of processed sentences.

5.2 Experimental results

The CoNLL-2010 organizers proposed in-domain
and cross-domain evaluations. In cross-domain
experiments, test datasets of one domain can be
used with classifiers trained on the other or on the
union of both domains. We report here our results
for the Wikipedia and biomedical datasets.

So far, we mentioned two settings for our clas-
sifier: a TK classifier complemented by a baseline
classifier (BL) and TK classifier complemented
by a bag of features classifier (TK+BF). Table
3 shows the scores of our submitted system (in-
domain Task 1) on the Wikipedia dataset, whereas
Table 4 gives the scores of the baseline system.

TP FP FN Precision Recall F
Our system 1033 480 1201 0.6828 0.4624 0.5514
Max. 1154 448 1080 0.7204 0.5166 0.6017
Min. 147 9 2087 0.9423 0.0658 0.123

Table 3: Comparative scores for our system with
CoNLL official maximum and minimum scores in
Task 1, Wikipedia dataset in-domain.

TP FP FN Precision Recall F
Biomedical 786 2690 4 0.2261 0.9949 0.3685
Wikipedia 1980 2747 254 0.4189 0.8863 0.5689

Table 4: Baseline results.

Additionally, we consider a bag of features clas-
sifier (BF) and a classifier that combines the base-
line applied to the sentences that have at least one
keyword plus the BF classifier for the remaining
sentences (BL+BF). In Tables 5 to 10, results for
the four classifiers (TK, TK+BF, BF, BL+BF) with
evaluations in-domain and cross-domain are pre-
sented6.

The baseline scores confirm that relying on just
the keywords is not enough to identify speculative
sentences. In the biomedical domain, the classi-
fiers give high recall but too low precision result-
ing in low F-scores. Still, the TK, TK+BF and BF
(in-domain configurations) gives much better re-
sults than BL and BL+BF which indicates that the
information from CCG improves the performance

6It is worth to note that the keyword lexicons have been
not used in cross-domain way, so the TK and TK+BF models
have not been tested in regards to keywords.

TP FP FN Precision Recall F
BL 1980 2747 254 0.4189 0.8863 0.5689
TK 1033 480 1201 0.6828 0.4624 0.5514
TK+BF 1059 516 1175 0.6729 0.4740 0.5560
BF 772 264 1462 0.7452 0.3456 0.4722
BL+BF 2028 2810 206 0.4192 0.9078 0.5735

Table 5: Results for Wikipedia dataset in-domain.

TP FP FN Precision Recall F
BL 1980 2747 254 0.4189 0.8863 0.5689
TK 1776 2192 458 0.4476 0.7950 0.5727
TK+BF 1763 2194 471 0.4455 0.7892 0.5695
BF 403 323 1831 0.5551 0.1804 0.2723
BL+BF 1988 2772 246 0.4176 0.8899 0.5685

Table 6: Wikipedia data classified with biomedical
model scores (cross-domain).

TP FP FN Precision Recall F
BL 1980 2747 254 0.4189 0.8863 0.5689
TK 1081 624 1153 0.6340 0.4839 0.5489
TK+BF 1099 636 1135 0.6334 0.4919 0.5538
BF 770 271 1464 0.7397 0.3447 0.4702
BL+BF 2017 2786 217 0.4199 0.9029 0.5733

Table 7: Wikipedia data classified with biomedical
+ Wikipedia model scores (cross-domain).

TP FP FN Precision Recall F
BL 786 2690 4 0.2261 0.9949 0.3685
TK 759 777 31 0.4941 0.9606 0.6526
TK+BF 751 724 39 0.5092 0.9506 0.6631
BF 542 101 248 0.8429 0.6861 0.7565
BL+BF 786 2695 4 0.2258 0.9949 0.3681

Table 8: Biomedical data scores (in-domain).

TP FP FN Precision Recall F
BL 786 2690 4 0.2261 0.9949 0.3685
TK 786 2690 4 0.2261 0.9949 0.3685
TK+BF 771 2667 19 0.2243 0.9759 0.3647
BF 174 199 616 0.4665 0.2206 0.2992
BL+BF 787 2723 3 0.2242 0.9962 0.3660

Table 9: Biomedical data classified with
Wikipedia model scores (cross-domain).

TP FP FN Precision Recall F
BL 786 2690 4 0.2261 0.9949 0.3685
TK 697 357 93 0.6613 0.8823 0.7560
TK+BF 685 305 105 0.6919 0.8671 0.7697
BF 494 136 296 0.7841 0.6253 0.6958
BL+BF 786 2696 4 0.2257 0.9949 0.3679

Table 10: Biomedical data classified with biomed-
ical + Wikipedia model scores (cross-domain).

of the classifiers when compared to the baseline
classifier.

Even though in the Wikipedia domain the
TK+BF score is less than the baseline score, still
the performance of the classifiers do not fall much
in any of the in-domain and cross-domain exper-
iments. On the other hand, BF does not have a
good performance in 5 of 6 the experiments. To
make a more precise comparison between TK and
BF, the TK and BL+BF scores show that BL+BF
performs better than TK in only 2 of the 6 ex-
periments but the better performances achieved
by BL+BF are very small. This suggests that
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the complex processing made by tree kernels is
more useful when disambiguating speculative key-
words than BF. Nonetheless, the bag-of-features
approach is also of importance for the task at hand
when combined with TK. We observe that the TK
classifer and BF classifier perform well making us
believe that the CCG derivations provide relevant
information for speculation detection. The use of
tree kernels needs further investigations in order to
evaluate the suitability of this approach.

6 Concluding remarks

Speculation detection is found to be a tough task
given the high ambiguity of speculative keywords.
We think these results can be improved by study-
ing the influences of context on speculation asser-
tions.

This paper presents a new approach for disam-
biguating apparent speculative keywords by us-
ing CCG information in the form of supertags and
CCG derivations. We introduce the use of the tree
kernel approach for CCG derivations trees. The
inclusion of other features like grammatical rela-
tions provided by the parser needs to be studied
before incorporating this information into the cur-
rent classifier and possibly to resolve the boundary
speculation detection problem.
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Abstract

In this work, we explore the use of SVMs
and CRFs in the problem of predicting cer-
tainty in sentences. We consider this as a
task of tagging uncertainty cues in context,
for which we used lexical, wordlist-based
and deep-syntactic features. Results show
that the syntactic context of the tokens in
conjunction with the wordlist-based fea-
tures turned out to be useful in predicting
uncertainty cues.

1 Introduction

Extracting factual information from text is a crit-
ical NLP task which has important applications
in Information Extraction, Textual Entailment etc.
It is found that linguistic devices such as hedge
phrases help to distinguish facts from uncertain
information. Hedge phrases usually indicate that
authors do not or cannot back up their opin-
ions/statements with facts. As part of the CoNLL
shared task 2010 (Farkas et al., 2010), we explored
the applicability of different machine learning ap-
proaches and feature sets to learn to detect sen-
tences containing uncertainty.

In Section 2, we present the task formally and
describe the data used. Section 3 presents the
system description and explains the features used
in the task in detail. We investigated two differ-
ent machine learning frameworks in this task and
did experiments on various feature configurations.
Section 4 presents those experiments and analyzes
the results. Section 5 describes the system used
for the shared task final submission and presents
the results obtained in the evaluation. Section 6
concludes the paper and discusses a few future di-
rections to extend this work.

2 Task Description and Data

We attempt only the Task 1 of the CoNLL shared
task which was to identify sentences in texts which

contain unreliable or uncertain information. In
particular, the task is a binary classification prob-
lem, i.e. to distinguish factual versus uncertain
sentences.

As training data, we use only the corpus of
Wikipedia paragraphs with weasel cues manually
annotated (Ganter and Strube, 2009). The annota-
tion of weasel/hedge cues was carried out on the
phrase level, and sentences containing at least one
cue are considered as uncertain, while sentences
with no cues are considered as factual. The corpus
contained 11, 110 sentences out of which 2, 484
were tagged as uncertain. A sentence could have
more than one cue phrases. There were 3143 cue
phrases altogether.

3 System Description

3.1 Approach
We considered this task as a cue tagging task
where in phrases suggesting uncertainty will be
tagged in context. This is a 3-way classification
problem at token level - B-cue, I-cue and O denot-
ing beginning, inside and outside of a cue phrase.
We applied a supervised learning framework for
this task, for which We experimented with both
SVMs and CRFs. For SVM, we used the Yam-
cha1 system which is built on top of the tinySVM2

package. Yamcha has been shown useful in simi-
lar tasks before. It was the best performing system
in the CoNLL-2000 Shared task on chunking. In
this task, Yamcha obtained the best performance
for a quadratic kernel with a c value of 0.5. All
results presented here use this setting. For CRF,
we used the Mallet3 software package. Experi-
ments are done only with order-0 CRFs. CRFs
proved to marginally improve the prediction accu-
racy while substantially improving the speed. For
e.g, for a configuration of 10 features with context
width of 2, Yamcha took around 5-6 hrs for 9-fold

1http://chasen.org/ taku/software/YamCha/
2http://chasen.org/ taku/software/TinySVM/
3http://mallet.cs.umass.edu/
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cross validation on the whole training set, where
as Mallet took only around 30-40 minutes only.

3.2 Features

Our approach was to explore the use of deep syn-
tactic features in this tagging task. Deep syntac-
tic features had been proven useful in many simi-
lar tagging tasks before. We used the dependency
parser MICA (Bangalore et al., 2009) based on
Tree Adjoining Grammar (Joshi et al., 1975) to ex-
tract these deep syntactic features.

We classified the features into three classes -
Lexical (L), Syntactic (S) and Wordlist-based (W).
Lexical features are those which could be found at
the token level without using any wordlists or dic-
tionaries and can be extracted without any parsing
with relatively high accuracy. For example, isNu-
meric, which denotes whether the word is a num-
ber or alphabetic, is a lexical feature. Under this
definition, POS tag will be considered as a lexical
feature.

Syntactic features of a token access its syntactic
context in the dependency tree. For example, par-
entPOS, the POS tag of the parent word in the
dependency parse tree, is a syntactic feature. The
tree below shows the dependency parse tree output
by MICA for the sentence Republican leader Bill
Frist said the Senate was hijacked.

said

Frist

Republican leader Bill

hijacked

Senate

the

was

In this case, the feature haveReportingAnces-
tor of the word hijacked is ‘Y’ because it is a verb
with a parent verb said. Similarly, the feature
haveDaughterAux would also be ’Y’ because of
daughter was, whereas whichAuxIsMyDaughter
would get the value was.

Wordlist-based features utilized a list of words
which occurred frequently as a cue word in the
training corpus. We used two such lists – one
which included adjectives like many, most, some
etc. The other list contained adverbs like proba-
bly, possibly etc. The complete list of words in
these wordlists are given in Table 1.

For finding the best performing feature set -
context width configuration, we did an exhaustive
search on the feature space, pruning away features

which were proven not useful by results at stages.
The list of features we used in our experiments

are summarized in Table 1 and Table 2. Ta-
ble 1 contains features which were useful and
are present in the results presented in section 4.
Out of the syntactic features, parentPOS and is-
MyNNSparentGeneric turned out to be the most
useful. It was noticed that in most cases in which
a generic adjective (i.e., a quantifier such as many,
several, ...) has a parent which is a plural noun,
and this noun has only adjectival daughters, then
it is part of a cue phrase. This distinction can be
made clear by the below example.

• 〈ccue〉 Many people 〈/ccue〉 enjoy having
professionally made ’family portraits’

• Many departments, especially those in which
students have research or teaching responsi-
bilities ...

In the first case, the noun people comes with the
adjective Many, but is not qualified further. This
makes it insufficiently defined and hence is tagged
as a cue phrase. However in the second case, the
clause which starts with especially is qualifying
the noun departments further and hence the phrase
is not tagged as a cue word despite the presence
of Many. This scenario occurred often with other
adjectives like most, some etc. This distinction
was caught to a good extent by the combination
of isMyNNSparentGeneric and isGenericAdj.
Hence, the best performing configuration used fea-
tures from both W and S categories.

The features which were found to be not useful
is listed in Table 2. We used only two wordlist
features, both of which were useful.

4 Experiments

To find the best configuration, we used 10% of the
training data as the development set to tune param-
eters. Since even the development set was fairly
large, we used 9-fold cross validation to evaluate
each models. The development set was divided
into 9 folds of which 8 folds were used to train a
model which was tested on the 9th fold. All the
reported results in this section are averaged over
the 9 folds. We report Fβ=1 (F)-measure as the
harmonic mean between (P)recision and (R)ecall.

We categorized the experiments into three dis-
tinct classes as shown in Table 3. For each class,
we did experiments with different feature sets and
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No Feature Description

Lexical Features

1 verbType Modal/Aux/Reg ( = ’nil’ if the word is not a verb)
2 lemma Lemma of the token
3 POS Word’s POS tag
4 whichModalAmI If I am a modal, what am I? ( = ’nil’ if I am not a modal)

Word List Features

1 isGenericAdj Am I one of some, many, certain, several?
2 isUncertainAdv Am I one of generally, probably, usually, likely, typically, possibly, commonly, nearly,

perhaps, often?
3 levinClass If I am a verb, which levin class do I belong to?

Syntactic Features

1 parentPOS What is my parent’s POS tag?
2 leftSisPOS What is my left sister’s POS tag?
3 rightSisPOS What is my right sister’s POS tag?
4 whichModalIsMyDaughter If I have a daughter which is a modal, what is it? ( = ’nil’ if I do not have a modal

daughter)
5 Voice Active/Passive (refer MICA documentation for details)
6 Mpos MICA’s mapping of POS tags (refer MICA documentation for details)
7 isMyNNSparentGeneric If I am an adjective and if my parent is NNS and does not have a child other than

adjectives
8 haveDaughterAux Do I have a daughter which is an auxiliary.
9 whichAuxIsMyDaughter If I have a daughter which is an auxiliary, what is it? ( = ’nil’ if I do not have an

auxiliary daughter)

Table 1: Features used in the configurations listed in Table 4 and Table 6

Class Description

L Lexical features
LW Lexical and Wordlist features
LS Lexical and Syntactic features
LSW Lexical, Syntactic and Wordlist fea-

tures

Table 3: Experiment Sets

(linear) context widths. Here, context width de-
notes the window of tokens whose features are
considered. For example, a context width of 2
means that the feature vector of any given token
includes, in addition to its own features, those of
2 tokens before and after it as well as the predic-
tion for 2 tokens before it. We varied the context
widths from 1 to 5, and found that the best results
were obtained for context width of 1 and 2.

4.1 Experimental Results

In this section, we present the results of experi-
ments conducted on the development set as part
of this task. The results for the system using Yam-
cha and Mallet are given in Table 4. CW stands for
Context Width and P, R and F stands for Precision,
Recall and F-measure, respectively. These results
include the top performing 5 feature set - context
width configurations using all three classes of fea-

tures in both cases. It includes cue level predic-
tion performance as well as sentence level predic-
tion performance, where in a sentence is tagged
as uncertain if it contains at least one cue phrase.
In case of Mallet, it is observed that the best per-
forming top 5 feature sets were all from the LSW
category whereas in Yamcha, even configurations
of LS category worked well.

We also present cue level results across feature
categories for the Mallet experiments. Table 5
shows the best feature set - context width configu-
ration for each class of experiments.

Class Feature Set CW

L POS, verbType 2
LW lemma, POS, modalMe, isGenericAdj,

isUncertainAdj
2

LS POS, parentPOS, modalDaughter, left-
SisPOS, rightSisPOS, voice

2

LSW POS, parentPOS, modalMe, isDaughter-
Aux, leftSisPOS, mpos, isUncertainAdj,
isGenericAdj, myNNSparentIsGeneric

1

Table 5: Best Feature sets - Across feature classes

Table 6 shows the cue level results of the best
model for each class of experiments.
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No Feature Description

Lexical Features

1 Stem Word stem (Using Porter Stemmer)
2 isNumeric Word is Alphabet or Numeric?

Syntactic Features

1 parentStem Parent word stem (Using Porter Stemmer)
2 parentLemma Parent word’s Lemma
3 wordSupertag Word’s Super Tag (from Penn Treebank)
4 parentSupertag Parent word’s super tag (from Penn Treebank)
5 isRoot Is the word the root of the MICA Parse tree?
6 pred Is the word a predicate? (pred in MICA features)
7 drole Deep role (drole in MICA features)
8 haveDaughterTo Do I have a daughter ’to’?
9 haveDaughterPerfect Do I have a daughter which is one of has, have, had?
10 haveDaughterShould Do I have a daughter should?
11 haveDaughterWh Do I have a daughter who is one of where, when, while, who, why?

Table 2: Features which turned out to be not useful

Class Cue P Cue R Cue F

L 54.89 21.99 30.07
LW 51.14 20.70 28.81
LS 52.08 25.71 33.23
LSW 51.13 29.38 36.71

Table 6: Cue level Results - Across feature classes

4.2 Analysis

It is observed that the best results were observed
on LSW category. The main constituent of this
category was the combination of isMyNNSpar-
entGeneric and isGenericAdj. Also, it was
found that W features used without S features de-
creased the prediction performance. Out of the
syntactic features, parentPOS, leftSisPOS and
rightSisPOS proved to be the most useful in ad-
dition to isMyNNSparentGeneric.

Also, the highest cue level precision of 54.89%
was obtained for L class, whereas it was lowered
to 51.13% by the addition of S and W features.
However, the performance improvement is due to
the improved recall, which is as per the expec-
tation that syntactic features would help identify
new patterns, which lexical features alone cannot.
It is also worth noting that addition of W features
decreased the precision by 3.75 percentage points
whereas addition of S features decreased the pre-
cision by 2.81 percentage points. Addition of S
features improved the recall by 3.72 percentage
points where as addition of both S and W features
improved it by 7.39 percentage points. However,
addition of W features alone decreased the recall
by 1.29 percentage points. This suggests that the
words in the wordlists were useful only when pre-

sented with the syntactic context in which they oc-
curred.

Mallet proved to consistently over perform
Yamcha in this task in terms of prediction perfor-
mance as well as speed. For e.g, for a configura-
tion of 10 features with context width of 2, Yam-
cha took around 5-6 hrs to perform the 9-fold cross
validation on the entire training dataset, whereas
Mallet took only around 30-40 minutes.

5 System used for Evaluation

In this section, we explain in detail the system
which was used for the results submitted in the
shared task evaluation.

For predicting the cue phrases on evaluation
dataset for the shared task, we trained a model us-
ing the best performing configuration (feature set
and machinery) from the experiments described in
Section 4. The best configuration used the feature
set <POS, parentPOS, modalMe, isDaugh-
terAux, leftSisPOS, mpos, isUncertainAdj, is-
GenericAdj, myNNSparentIsGeneric> with a
context width of 1 and it was trained using Mal-
let’s CRF. The cross validation results of this con-
figuration is reported in Table 4 (First feature set in
the Mallet section). This model was trained on the
entire Wikipedia training set provided for Task 1.
We used this model to tag the evaluation dataset
with uncertainty cues and any sentence where a
cue phrase was tagged was classified as an uncer-
tain sentence.
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Feature Set CW
Cue Sent

P R F P R F

Yamcha - Top 5 Configurations

POS, parentPOS, modalDaughter, leftSisPOS, rightSisPOS,
levinClass, myNNSparentIsGeneric

2 51.59 26.96 34.10 65.27 38.33 48.30

POS, parentPOS, amIuncertain 1 43.13 29.41 33.79 55.37 41.77 47.62
POS, parentPOS, modalDaughter, leftSisPOS, rightSisPOS,
voice

2 52.08 25.71 33.23 66.52 37.10 47.63

POS, parentPOS, modalDaughter, leftSisPOS 2 54.25 25.16 33.20 69.38 35.63 47.08
POS, parentPOS, modalDaughter, leftSisPOS, rightSisPOS,
mpos

2 51.82 25.56 33.01 65.62 36.12 46.59

Mallet - Top 5 Configurations

POS, parentPOS, modalMe, isDaughterAux, leftSisPOS,
mpos, isUncertainAdj, isGenericAdj, myNNSparentIsGeneric

1 51.13 29.38 36.71 66.29 42.71 51.95

POS, parentPOS, modalMe, isDaughterAux, leftSisPOS,
mpos, voice, isUncertainAdj, isGenericAdj, myNNSparentIs-
Generic

1 49.81 29.07 36.04 65.64 42.24 51.40

POS, parentPOS, modalMe, isUncertainAdj, isGenericAdj,
myNNSparentIsGeneric

2 52.57 28.96 35.55 65.18 39.56 49.24

POS, parentPOS, modalMe, auxDaughter, leftSisPOS, mpos,
voice, isUncertainAdj, isGenericAdj, myNNSparentIsGeneric

1 48.22 28.67 35.40 65.25 42.80 51.69

POS, parentPOS, modalMe, leftSisPOS, mpos, voice,
isUncertainAdj, isGenericAdj, myNNSparentIsGeneric

1 52.26 28.12 35.34 65.99 40.05 49.85

Table 4: Overall Results

5.1 Evaluation Results

This section presents the results obtained on the
shared task evaluation in detail. The sentence level
results are given in Table 7. Our system obtained
a high precision of 87.95% with a low recall of
28.42% and F-measure of 42.96% on the task.
This was the 3rd best precision reported for the
Wikipedia task 1.

System Precision Recall F-Measure

Best System 72.04 51.66 60.17
... ... ... ...
This System 87.95 28.42 42.96
Last System 94.23 6.58 12.30

Table 7: Evaluation - Cue Level Results

Table 8 presents the cue level results for the
task. Our system had a cue level prediction pre-
cision of 67.14% with a low recall of 16.70% and
F-measure of 26.75%, which is the 3rd best F-
measure result among the published cue level re-
sults4.

We ran the best model trained on Wikipedia cor-
pus on the biomedical evaluation dataset. As ex-
pected, the results were much lower. It obtained a
precision of 67.54% with a low recall of 19.49%
and F-measure of 30.26%.

4In the submitted result, cues were tagged in IOB format.
Hence, cue level statistics were not computed and published
in the CoNLL website.

System Precision Recall F-Measure

X 63.01 25.94 36.55
X 76.06 21.64 33.69
This System 67.14 16.70 26.75
X 28.95 14.70 19.50
X 24.57 7.35 11.32

Table 8: Evaluation - Cue Level Results

6 Conclusion and Future Work

A simple bag of words approach at the sentence
level could have given similar or even better per-
formance for the sentence level prediction task.
However, identifying cues in context is important
to extend this task to application where we need to
make semantic inferences or even identifying the
scope of uncertainty (which was the task 2 of the
shared task). Hence, we infer that this or a simi-
lar cue tagging approach with a more sophisticated
feature set and machinery should be explored fur-
ther.

Our experiments show that the addition of syn-
tactic features helps in improving recall. However,
the advantage given by syntactic features were sur-
prisingly marginal. In detailed error analysis, it
was found that the syntactic patterns that proved
helpful for this task were fairly local. So, proba-
bly exploring shallow syntactic features instead of
deep syntactic features might be helpful for this
task. Also, we assume that using more sophis-
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ticated lexical features or custom made lexicons
could also improve performance.
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Abstract
We present a sequential labeling approach
to hedge cue detection submitted to the bi-
ological portion of task 1 for the CoNLL-
2010 shared task. Our main approach is
as follows. We make use of partial syntac-
tic information together with features ob-
tained from the unlabeled corpus, and con-
vert the task into one of sequential BIO-
tagging. If a cue is found, a sentence is
classified as uncertain and certain other-
wise. To examine a large number of fea-
ture combinations, we employ a genetic al-
gorithm. While some features obtained by
this method are difficult to interpret, they
were shown to improve the performance of
the final system.

1 Introduction

Research on automatically extracting factual in-
formation from biomedical texts has become pop-
ular in recent years. Since these texts are abundant
with hypotheses postulated by researchers, one
hurdle that an information extraction system must
overcome is to be able to determine whether or not
the information is part of a hypothesis or a factual
statement. Thus, detecting hedge cues that indi-
cate the uncertainty of the statement is an impor-
tant subtask of information extraction (IE). Hedge
cues include words such as “may”, “might”, “ap-
pear”, “suggest”, “putative” and “or”. They also
includes phrases such as “. . .raising an intriguing
question that. . .” As these expressions are sparsely
scattered throughout the texts, it is not easy to gen-
eralize results of machine learning from a training
set to a test set. Furthermore, simply finding the
expressions listed above does not guarantee that
a sentence contains a hedge. Their function as a
hedge cue depends on the surrounding context.

The primary objective of the CoNLL-2010
shared task (Farkas et al., 2010) is to detect hedge

cues and their scopes as are present in biomedi-
cal texts. In this paper, we focus on the biological
portion of task 1, and present a sequential labeling
approach to hedge cue detection. The following
summarizes the steps we took to achieve this goal.
Similarly to previous work in hedge cue detec-
tion (Morante and Daelemans, 2009), we first con-
vert the task into a sequential labeling task based
on the BIO scheme, where each word in a hedge
cue is labeled as B-CUE, I-CUE, or O, indicating
respectively the labeled word is at the beginning
of a cue, inside of a cue, or outside of a hedge
cue; this is similar to the tagging scheme from
the CoNLL-2001 shared task. We then prepared
features, and fed the training data to a sequential
labeling system, a discriminative Markov model
much like Conditional Random Fields (CRF), with
the difference being that the model parameters are
tuned using Bayes Point Machines (BPM), and
then compared our model against an equivalent
CRF model. To convert the result of sequential
labeling to sentence classification, we simply used
the presence of a hedge cue, i.e. if a cue is found, a
sentence is classified as uncertain and certain oth-
erwise.

To prepare features, we ran the GENIA tag-
ger to add partial syntactic parse and named en-
tity information. We also applied Porter’s stem-
mer (Jones and Willet, 1997) to each word in the
corpus. For each stem, we acquired the distribu-
tion of surrounding words from the unlabeled cor-
pus, and calculated the similarity between these
distributions and the distribution of hedge cues in
the training corpus. Given a stem and its similari-
ties to different hedge cues, we took the maximum
similarity and discretized it. All these features are
passed on to a sequential labeling system. Using
these base features, we then evaluated the effects
of feature combinations by repeatedly training the
system and selecting feature combinations that in-
creased the performance on a heldout set. To au-
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tomate this process, we employed a genetic algo-
rithm.

The contribution of this paper is two-fold. First,
we describe our system, outlined above, that we
submitted to the CoNLL-2010 shared task in more
detail. Second, we analyze the effects of partic-
ular choices we made when building our system,
especially the feature combinations and learning
methods.

The rest of this paper is organized as follows.
In Section 2, we detail how the task of sequential
labeling is formalized in terms of linear classifi-
cation, and explain the Viterbi algorithm required
for prediction. We next present several algorithms
for optimizing the weight vector in a linear classi-
fier in Section 3. We then detail the complete list
of feature templates we used for the task of hedge
cue detection in Section 4. In order to evaluate the
effects of feature templates, in Section 5, we re-
move each feature template and find that several
feature templates overfit the training set. We fi-
nally conclude with Section 6.

2 Sequential Labeling

We discriminatively train a Markov model us-
ing Bayes Point Machines (BPM). We will first
explain linear classification, and then apply a
Markov assumption to the classification formal-
ism. Then we will move on to BPM. Note that
we assume all features are binary in this and up-
coming sections as it is sufficient for the task at
hand.

In the setting of sequential labeling, given the
input sequence x = (x1, x2, x3, ...xn), a system
is asked to produce the output sequence y =
(y1, y2, y3, ...yn). Considering that y is a class,
sequential labeling is simply a classification with
a very large number of classes. Assuming that the
problem is one of linear classification, we may cre-
ate a binary feature vector φ(x) for an input x and
have a weight vector wy of the same dimension
for each class y. We choose a class y that has the
highest dot product between the input vector and
the weight vector for the class y. For binary classi-
fication, this process is very simple: compare two
dot product values. Learning is therefore reduced
to specifying the weight vectors.

To follow the standard notations in sequential
labeling, let weight vectors wy be stacked into
one large vector w, and let φ(x,y) be a binary
feature vector such that w>φ(x,y) is equal to

w>
y φ(x). Classification is to choose y such that

y = argmaxy′(w>φ(x,y′)).
Unfortunately, a large number of classes created

out of sequences makes the problem intractable,
so the Markov assumption factorizes y into a se-
quence of labels, such that a label yi is affected
only by the label before and after it (yi−1 and yi+1

respectively) in the sequence. Each structure, or
label y is now associated with a set of the parts
parts(y) such that y can be recomposed from the
parts. In the case of sequential labeling, parts con-
sist of states yi and transitions yi → yi+1 between
neighboring labels. We assume that the feature
vector for an entire structure y decomposes into
a sum over feature vectors for individual parts as
follows: φ(x,y) =

∑
r∈parts(y) φ(x, r). Note that

we have overloaded the symbol φ to apply to either
a structure y or its parts r.

The Markov assumption for factoring labels lets
us use the Viterbi algorithm (much like a Hidden
Markov Model) in order to find

y = argmaxy′ (w>φ(x,y′))
= argmaxy′ (

∑n

j=1
w>φ(x, y′j)

+
∑n−1

j=1
w>φ(x, y′j → y′j+1)).

3 Optimization

We now turn to the optimization of the weight pa-
rameter w. We compare three approaches – Per-
ceptron, Bayes Point Machines and Conditional
Random Fields, using our c++ library for struc-
tured output prediction 1.

Perceptron is an online update scheme that
leaves the weights unchanged when the predicted
output matches the target, and changes them when
it does not. The update is:

wk := wk − φ(xi,y) + φ(xi,yi).

Despite its seemingly simple update scheme, per-
ceptron is known for its effectiveness and perfor-
mance (Collins, 2002).

Conditional Random Fields (CRF) is a condi-
tional model

P (y|x) =
1

Zx
exp(w>φ(x,y))

where w is the weight for each feature and Zx is a
normalization constant for each x.

Zx =
∑

y

exp(w>φ(x,y))

1Available at http://soplib.sourceforge.net/
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for structured output prediction. To fit the weight
vector w using the training set {(xi,yi)}ni=1, we
use a standard gradient-descent method to find the
weight vector that maximizes the log likelihood∑n

i logP (yi|xi) (Sha and Pereira, 2003). To
avoid overfitting, the log likelihood is often pe-
nalized with a spherical Gaussian weight prior:∑n

i logP (yi|xi) − C||w||
2 . We also evaluated this

penalized version, varying the trade-off parameter
C.

Bayes Point Machines (BPM) for structured
prediction (Corston-Oliver et al., 2006) is an en-
semble learning algorithm that attempts to set the
weight w to be the Bayes Point which approxi-
mates to Bayesian inference for linear classifiers.
Assuming a uniform prior distribution over w, we
revise our belief of w after observing the training
data and produce a posterior distribution. We cre-
ate the final wbpm for classification using a poste-
rior distribution as follows:

wbpm = Ep(w|D)[w] =
|V (D)|∑

i=1

p(wi|D)wi

where p(w|D) is the posterior distribution of the
weights given the data D and Ep(w|D) is the ex-
pectation taken with respect to this distribution.
V (D) is the version space, which is the set of
weights wi that classify the training data correctly,
and |V (D)| is the size of the version space. In
practice, to explore the version space of weights
consistent with the training data, BPM trains a few
different perceptrons (Collins, 2002) by shuffling
the samples. The approximation of Bayes Point
wbpm is the average of these perceptron weights:

wbpm = Ep(w|D)[w] ≈
K∑

k=1

1
K

wk.

The pseudocode of the algorithm is shown in Al-
gorithm 3.1. We see that the inner loop is simply
a perceptron algorithm.

4 Features

4.1 Base Features

For each sentence x, we have state features, rep-
resented by a binary vector φ(x, y′j) and transition
features, again a binary vector φ(x, y′j → y′j+1).

For transition features, we do not utilize lexical-
ized features. Thus, each dimension of φ(x, y′j →

Algorithm
3.1: BPM(K, T, {(xi,yi)}ni=1)

wbpm := 0;
for k := 1 to K

Randomly shuffle the sequential order of
samples {(xi,yi)}ni=1

wk := 0;
for t := 1 to T # Perceptron iterations

for i := 1 to n # Iterate shuffled samples
y := argmaxy′(w>

k φ(xi,y′))
if (y 6= yi)

wk := wk − φ(xi,y) + φ(xi,yi);
wbpm := wbpm + 1

K wk;
return (wbpm)

y′j+1) is an indicator function that tests a com-
bination of labels, for example, O→B-CUE, B-
CUE→I-CUE or I-CUE→O.

For state features φ(x, y′j), the indicator func-
tion for each dimension tests a combination of
y′j and lexical features obtained from x =
(x1, x2, x3, ...xn). We now list the base lexical
features that were considered for this experiment.

F 0 a token, which is usually a word. As a part of
preprocessing, words in each input sentence
are tokenized using the GENIA tagger 2. This
tokenization coincides with Penn Treebank
style tokenization 3.

We add a subscript to indicate the position. F 0
j is

exactly the input token xj . From xj , we also create
other lexical features such as F 1

j , F 2
j , F 3

j , and so
on.

F 1 the token in lower case, with digits replaced
by the symbol #.

F 2 1 if the letters in the token are all capitalized,
0 otherwise.

F 3 1 if the token contains a digit, 0 otherwise.

F 4 1 if the token contains an uppercase letter, 0
otherwise.

F 5 1 if the token contains a hyphen, 0 otherwise.
2Available at: http:// www-tsujii.is.s.u-tokyo.ac.jp/ GE-

NIA/ tagger/
3A tokenizer is available at: http:// www.cis.upenn.edu/

treebank/ tokenization.html
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F 6 first letter in the token.

F 7 first two letters in the token.

F 8 first three letters in the token.

F 9 last letter in the token.

F 10 last two letters in the token.

F 11 last three letters in the token.

The features F 0 to F 11 are known to be useful
for POS tagging. We postulated that since most
frequent hedge cues tend not to be nouns, these
features might help identify them.

The following three features are obtained by
running the GENIA tagger.

F 12 a part of speech.

F 13 a CoNLL-2000 style shallow parse. For ex-
ample, B-NP or I-NP indicates that the token
is a part of a base noun phrase, B-VP or I-VP
indicates that it is part of a verb phrase.

F 14 named entity, especially a protein name.

F 15 a word stem by Porter’s stemmer 4. Porter’s
stemmer removes common morphological
and inflectional endings from words in En-
glish. It is often used as part of an informa-
tion retrieval system.

Upon later inspection, it seems that Porter’s
stemmer may be too aggressive in stemming
words. The word putative, for example, after be-
ing processed by the stemmer, becomes simply put
(which is clearly erroneous).

The last nine types of features utilize the unla-
beled corpus for the biological portion of shared
task 1, provided by the shared task organizers.
For each stem, we acquire a histogram of sur-
rounding words, with a window size of 3, from
the unlabeled corpus. Each histogram is repre-
sented as a vector; the similarity between his-
tograms was then computed. The similarity met-
ric we used is called the Tanimoto coefficient, also
called extended/vector-based Jaccard coefficient.

vi · vj

||vi||+ ||vj || − vi · vj

It is based on the dot product of two vectors and
reduces to Jaccard coefficient for binary features.

4Available at: http://tartarus.org/ martin/PorterStemmer/

This metric is known to perform quite well for
near-synonym discovery (Hagiwara et al., 2008).
Given a stem and its similarities to different hedge
cues, we took the maximum similarity and dis-
cretized it.

F 16 1 if similarity is bigger than 0.9, 0 otherwise.

...

F 19 1 if similarity is bigger than 0.6, 0 otherwise.

...

F 24 1 if similarity is bigger than 0.1, 0 otherwise.

This concludes the base features we considered.

4.2 Combinations of Base Features

In order to discover combinations of base features,
we implemented a genetic algorithm (Goldberg,
1989). It is an adaptive heuristic search algorithm
based on the evolutionary ideas of natural selec-
tion and genetics. After splitting the training set
into three partitions, given the first partition as the
training set, the fitness is measured by the score
of predicting the second partition. We removed
the feature sets that did not score high, and intro-
duced mutations – new feature sets – as replace-
ments. After several generations, surviving fea-
ture sets performed quite well. To avoid over fit-
ting, occasionally feature sets were evaluated on
the third partition, and we finally chose the feature
set according to this partition.

The features of the submitted system are listed
in Table 1. Note that Table 1 shows the dimensions
of the feature vector that evaluate to 1 given x and
y′j . The actual feature vector is created by instan-
tiating all the combinations in the table using the
training set.

Surprisingly, our genetic algorithm removed
features F 10 and F 11, the last two/three let-
ters in a token. It also removed the POS in-
formation F 12, but kept the sequence of POS
tags F 12

j−1, F
12
j , F 12

j+1, F
12
j+2, F

12
j+3. The reason for

longer sequences is due to our heuristics for muta-
tions. Occasionally, we allowed the genetic algo-
rithm to insert a longer sequence of feature com-
binations at once. One other notable observation
is that shallow parses and NEs are removed. Be-
tween the various thresholds from F 16 to F 24,
it only kept F 19, discovering 0.6 as a similarity
threshold.
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State φ(x, y′j)
y′j
y′j , F

0
j−2

y′j , F
0
j−1

y′j , F
0
j

y′j , F
0
j , F 19

j

y′j , F
0
j−1, F

0
j , F 0

j+1, F
0
j+2, F

0
j+3, F

0
j+4 –(1)

y′j , F
0
j+1

y′j , F
0
j+2

y′j , F
1
j

y′j , F
2
j –(2)

y′j , F
3
j

y′j , F
4
j

y′j , F
4
j−2, F

4
j−1, F

4
j , F 4

j+1, F
4
j+2

y′j , F
5
j

y′j , F
5
j , F 7

j−1

y′j , F
6
j

y′j , F
7
j

y′j , F
8
j

y′j , F
9
j−1, F

9
j , F 9

j+1, F
9
j+2, F

9
j+3

y′j , F
12
j−1, F

12
j , F 12

j+1, F
12
j+2, F

12
j+3

y′j , F
15
j , F 15

j+1, F
15
j+2, F

15
j+3

y′j , F
19
j−2, F

19
j−1, F

19
j , F 19

j+1, F
19
j+2

Table 1: Features for Sequential Labeling

5 Experiments

In order to examine the effects of learning parame-
ters, we conducted experiments on the test data af-
ter it was released to the participants of the shared
task.

While BPM has two parameters, K and T , we
fixed T = 5 and varied K, the number of percep-
trons. As increasing the number of perceptrons re-
sults in more thorough exploration of the version
space V (D), we expect that the performance of
the classifier would improve as K increases. Ta-
ble 2 shows how the number of perceptrons affects
the performance.

TP stands for True Positive, FP for False Pos-
itive, and FN for False Negative. The evaluation
metrics were precision P (the number of true pos-

K TP FP FN P (%) R (%) F1 (%)
10 641 80 149 88.90 81.14 84.84
20 644 79 146 89.07 81.52 85.13
30 644 80 146 88.95 81.52 85.07
40 645 81 145 88.84 81.65 85.09
50 645 80 145 88.97 81.65 85.15

Table 2: Effects of K in Bayes Point Machines

itives divided by the total number of elements la-
beled as belonging to the positive class) recall R
(the number of true positives divided by the to-
tal number of elements that actually belong to the
positive class) and their harmonic mean, the F1

score (F1 = 2PR/(P + R)). All figures in this
paper measure hedge cue detection performance at
the sentence classification level, not word/phrase
classification level. From the results, once the
number of perceptrons hits 20, the performance
stabilizes and does not seem to show any improve-
ment.

Next, in order to examine whether or not we
have overfitted to the training/heldout set, we re-
moved each row of Table 1 and reevaluated the
performance of the system. Reevaluation was
conducted on the labeled test set released by the
shared task organizers after our system’s output
had been initially evaluated. Thus, these figures
are comparable to the sentence classification re-
sults reported in Farkas et al. (2010).

TP FP FN P (%) R (%) F1 (%)
1 647 79 143 89.12 81.90 85.36
2 647 80 143 89.00 81.90 85.30

1,2 647 81 143 88.87 81.90 85.24

Table 3: Effects of removing features (1) or (2), or
both

Table 3 shows the effect of removing (1), (2),
or both (1) and (2), showing that they overfit the
training data. Removing any other rows in Ta-
ble 1 resulted in decreased classification perfor-
mance. While there are other large combination
features such as ones involving F 4, F 9, F 12, F 15

and F 19, we find that they do help improving the
performance of the classifier. Since these fea-
tures seem unintuitive to the authors, it is likely
that they would not have been found without the
genetic algorithm we employed. Error analysis
shows that inclusion of features involving F 9 af-
fects prediction of “believe”, “possible”, “puta-
tive”, “assumed”, “seemed”, “if”, “presumably”,
“perhaps”, “suggestion”, “suppose” and “intrigu-
ing”. However, as this feature template is unfolded
into a large number of features, we were unable to
obtain further linguistic insights.

In the following experiments, we used the cur-
rently best performing features, that is, all fea-
tures except (1) in Table 1, and trained the classi-
fiers using the formalism of Perceptron and Con-
ditional Random Fields besides Bayes Point Ma-
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chines as we have been using. The results in Table
4 shows that BPM performs better than Percep-
tron or Conditional Random Fields. As the train-
ing time for BPM is better than CRF, our choice
of BPM helped us to run the genetic algorithm re-
peatedly as well. After several runs of empirical
tuning and tweaking, the hyper-parameters of the
algorithms were set as follows. Perceptron was
stopped at 40 iterations (T = 40). For BPM, we
fixed T = 5 and K = 20. For Conditional Ran-
dom Fields, we compared the penalized version
with C = 1 and the unpenalized version (C = 0).
The results in Table 4 is that of the unpenalized
version, as it performed better than the penalized
version.

Perceptron
TP FP FN P (%) R (%) F1 (%)
671 128 119 83.98 84.94 84.46

Conditional Random Fields
TP FP FN P (%) R (%) F1 (%)
643 78 147 89.18 81.39 85.11

Bayes Point Machines
TP FP FN P (%) R (%) F1 (%)
647 79 143 89.12 81.90 85.36

Table 4: Performance of different optimization
strategies

6 Conclusion

To tackle the hedge cue detection problem posed
by the CoNLL-2010 shared task, we utilized a
classifier for sequential labeling following previ-
ous work (Morante and Daelemans, 2009). An
essential part of this task is to discover the fea-
tures that allow us to predict unseen hedge expres-
sions. As hedge cue detection is semantic rather
than syntactic in nature, useful features such as
word stems tend to be specific to each word and
hard to generalize. However, by using a genetic al-
gorithm to examine a large number of feature com-
binations, we were able to find many features with
a wide context window of up to 5 words. While
some features are found to overfit, our analysis
shows that a number of these features are success-
fully applied to the test data yielding good general-
ized performance. Furthermore, we compared dif-
ferent optimization schemes for structured output
prediction using our c++ library, freely available

for download and use. We find that Bayes Point
Machines have a good trade-off between perfor-
mance and training speed, justifying our repeated
usage of BPM in the genetic algorithm for feature
selection.
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Abstract

We present in this paper a simple hedge
identification method and its application
on biomedical text. The problem at hand
is a subtask of CoNLL-2010 shared task.
Our solution consists of two classifiers, a
statistical one and a CRF model, and a
simple combination schema that combines
their predictions. We report in detail on
each component of our system and discuss
the results. We also show that a more so-
phisticated combination schema could im-
prove the F-score significantly.

1 Problem definition

The CoNLL-2010 Shared Task focused on the
identification and localization of uncertain infor-
mation and its scope in text. In the first task, a
binary classification of sentences had to be per-
formed, based on whether they are uncertain or
not. The second task concentrated on the identi-
fication of the source of uncertainty – specifying
the keyword/phrase that makes its context uncer-
tain –, and the localization of its scope. The orga-
nizers provided training data from two application
domains: biomedical texts and Wikipedia articles.
For more details see the overview paper by the or-
ganizers (Farkas et al., 2010). We focused on task
1 and worked with biomedical texts exclusively.

The biomedical training corpus contains se-
lected abstracts and full text articles from the Bio-
Scope corpus (Vincze et al., 2008). The corpus
was manually annotated for hedge cues on the
phrase level. Sentences containing at least one cue
are considered as uncertain, while sentences with
no cues are considered as factual. Though cue tag-
ging was given in the training data, their marking
in the submission was not mandatory.

The evaluation of systems at task 1 was per-
formed on the sentence level with the F-measure

of the uncertain class being the official evaluation
metric. For evaluation, corpora also from both do-
mains were provided that allowed for in-domain
and cross-domain experiments as well. Neverthe-
less, we restricted the scope of our system to the
in-domain biomedical subtask.

2 Background

Automatic information extraction methods may
incorrectly extract facts that are mentioned in a
negated or speculative context. If aiming at high
accuracy, it is therefore crucial to be able to clas-
sify assertions to avoid such false positives. The
importance of assertion classification has been re-
cently recognized by the text mining community,
which yielded several text-mining challenges cov-
ering this task. For example, the main task of
Obesity Challenge (Uzuner, 2008) was to iden-
tify based on a free text medical record whether
a patient is known to, speculated to or known
not to have a disease; in the BioNLP ’09 Shared
Task (Kim et al., 2009), mentions of bio-molecular
events had to be classified as either positive or neg-
ative statements or speculations.

Approaches to tackle assertion classification
can be roughly organized into following classes:
rule based models (Chapman et al., 2001), sta-
tistical models (Szarvas, 2008), machine learning
(Medlock and Briscoe, 2007), though most con-
tributions can be seen as a combination of these
(Uzuner et al., 2009). Even when classifying sen-
tences, the most common approach is to look for
cues below the sentence-level (Özgür and Radev,
2009). The common in these approaches is that
they use a text representation richer than bag-of-
words, usually tokens from a fixed-width window
with additional surface features.

Evaluation of assertion classification is mostly
performed at the sentence level, where state-of-
the-art systems have been reported to achieve
an F-measure of 83–85% for hedge detection in
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biomedical literature (Medlock and Briscoe, 2007;
Szarvas, 2008).

3 Methods

Although the problem itself is a binary categoriza-
tion problem, we approach the problem at the to-
ken/phrase level. We search for hedge cues and
used the decision model also applied by the an-
notators of the training corpus: when a sentence
contains at least one uncertainty cue then it is un-
certain, otherwise factual.

We applied two different models to identify
hedge cues:

• a statistical model that creates a candidate list
of cue words/phrases from the training sam-
ples, and cuts off the list based on the preci-
sion measured on the trial set;

• a sequence tagger CRF model, trained again
with hedge cues using various feature sets.

Finally, we combined the outputs of the meth-
ods at the sentence level. Here we applied two
very simple ways of combination: the aggres-
sive one assigns a sentence to the uncertain class
if any of the models finds a cue phrase therein
(OR merger), while the conservative only if both
models predict the sentence as uncertain (AND
merger). We submitted the version which pro-
duced better result on the trial set. The overview
of our system is depicted on Figure 1.

3.1 Preprocessing

The biomedical corpus was provided in two
train/trial pairs (abstracts and full texts), see also
Table 1. Because the ratio of uncertain sentences
is similar in both train and trial sets, we merged
the two train sets and the two trial sets, respec-
tively, to obtain a single train/trial pair. Since the
trial set was originally included also in the train
set, we removed the elements of the merged trial
set from the merged train set. In the following, we
refer to them as train and trial sets. All data (train,
trial, evaluation) were given as separate sentences;
therefore no sentence segmentation had to be per-
formed.

Merging train and trial sets was also motivated
by the sparsity of data and the massively differ-
ent train/trial ratio observed for the two types of
biomedical texts (Table 1). Therefore building
separate models for abstracts and full texts may

CRF model
Statistical 

model

Input

CRF 

classification

Statistical 

classification

OR merger

Final 

classification

Figure 1: System overview

only yield overfitting, particularly because such a
distinction is not available for the evaluation set.

3.2 Statistical model

The statistical model considers a sentence uncer-
tain, if it contains at least one cue from a validated
set of cue phrases. To determine the set of cue
phrases to be used, we first collected all annotated
cues from the training data. From this candidate
cue set we retained those ones that had a precision
over a predefined threshold. To this end we mea-
sured on the training set the precision of each cue
phrase. We depicted on Figure 2 the precision, re-
call and F-measure values obtained on the trial set
with different cue phrase precision thresholds.

The candidate cue set contains 186 cue phrases,
among which 83 has precision 1.0 and 141 has
precision greater or equal 0.5. Best cue phrases
include words/phrases like cannot + verb phrase,
hypothesis, indicate, may, no(t) + verb/noun, raise
the + noun, seem, suggest, whether etc., while low
precision cues are, e.g., assume, not fully under-
stood, not, or, prediction, likelihood.

3.3 CRF model

Identifying entities such as speculation cues can be
efficiently solved by training conditional random
field (CRF) models. As a general sequence tagger,
a CRF can be naturally extended to incorporate to-
ken features and features of neighboring tokens.
The trained CRF model is then applied to unseen

145



Train set Trial set Evaluation set

sentences uncertain ratio sentences uncertain ratio sentences uncertain ratio

Abstract 11 832 2 091 17.7 % 39 10 25.6 % – – –
Full text 2 442 468 19.2 % 228 51 22.4 % – – –

Total 14 274 2 559 17.9 % 267 61 22.9 % 5 003 790 15.8 %

Table 1: Basic statistics of the provided train, trial, and evaluation sets
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Figure 2: Cue phrase threshold selection

text, whenever a speculation cue is found the con-
taining sentence is annotated as being speculative.
In our experiments, we used MALLET (McCal-
lum, 2002) to train CRF models using custom to-
kenization (Section 3.3.1) and feature sets (Sec-
tion 3.3.2). We included features of 2–2 neigh-
boring tokens in each direction, not surpassing the
sentence limits.

3.3.1 Tokenization
We split text into tokens using punctuation and
white-space tokenization, keeping punctuation
symbols as separate tokens.

3.3.2 Feature sets
We experimented with the following binary sur-
face features:

1. token text
2. token text in lowercase
3. stem of token in lowercase
4. indicator of the token being all lowercase
5. indicator whether the token is in sentence

case (first character upper-, others lowercase)
6. indicator whether the token contains at least

one digit
7. indicator of token being a punctuation sym-

bol
These features were evaluated both in isolation

and in combination on the trial set. The best per-
forming combination was then used to train the fi-
nal model.

3.3.3 Feature selection
Evaluating all combinations of the above features,
we found that the combination of features 2 and 4
produced the best results on the trial set. For com-
putational efficiency, when selecting the best per-
forming feature subset, we considered lower fea-
ture count to overrule a slight increase in perfor-
mance.

4 Results

Table 2 and Table 3 summarize the results for the
statistical and CRF models and their AND and OR
combinations on the trial and on the evaluation
sets, respectively. For the latter, we used naturally
all available labeled data (train and trial sets) for
training. Numbers shown correspond to the out-
put of the official evaluation tool. Results on the
combination OR represent our official shared task
evaluation.

5 Discussion

In the development scenario (Table 2), the main
difference between the statistical and CRF model
was that the former was superior in recall while the
latter in precision. It was thus unclear which of the
combinations OR and AND would perform better,
we chose OR, the combination method which per-
formed better on the trial set. Unfortunately, the
rank of combination methods was different when
measured on the evaluation set (Table 3). A possi-
ble explanation for this non-extrapolability is the
different prior probability of speculative sentences
in each set, e.g., 17.9% on the train set while
22.9% on the trial set and 15.8% on the evaluation
set.

While using only a minimal amount of features,
both of our models were on par with other partic-
ipants’ solutions. Overfitting was observed by the
statistical model only (14% drop in precision on
the evaluation set), the CRF model showed more
consistent behavior across the datasets.
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Model

Statistical CRF Combination AND Combination OR

Precision (%) 84.4 92.3 93.9 83.6
Recall (%) 88.6 78.7 75.4 91.8
F-measure (%) 86.4 85.0 83.6 87.5

Table 2: Results on trial set (development)

Model

Statistical CRF Combination AND Combination OR

Precision (%) 70.5 87.0 88.0 70.1
Recall (%) 89.4 82.7 81.0 91.0
F-measure (%) 78.8 84.8 84.4 79.2

Table 3: Results on evaluation set

6 Conclusion

We presented our method to identify hedging in
biomedical literature, and its evaluation at the
CoNLL-2010 shared task. We solved the sen-
tence level assertion classification problem by us-
ing an ensemble of statistical and CRF mod-
els that identify speculation cue phrases. The
non-extrapolability of the combination methods’
performance observed emphasizes the sensitivity
of ensemble methods to the distributions of the
datasets they are applied to. While using only a
minimal set of standard surface features, our CRF
model was on par with participants’ systems.
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Richárd Farkas, Veronika Vincze, György Móra, János
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Abstract

We apply a baseline approach to the
CoNLL-2010 shared task data sets on
hedge detection. Weights have been as-
signed to cue words marked in the train-
ing data based on their occurrences in
certain and uncertain sentences. New
sentences received scores that correspond
with those of their best scoring cue word,
if present. The best acceptance scores for
uncertain sentences were determined us-
ing 10-fold cross validation on the training
data. This approach performed reasonably
on the shared task’s biological (F=82.0)
and Wikipedia (F=62.8) data sets.

1 Introduction

CoNLL-2010 offered two shared tasks which in-
volve finding text parts which express uncertainty
or unreliability (Farkas et al., 2010). We focus
on Task 1, identifying sentences which contain
statements which can be considered uncertain or
unreliable. We train a basic statistical model on
the training data supplied for the task, apply the
trained model to the test data and discuss the re-
sults. The next section describes the format of
the data and introduces the model that was used.
Section three discusses the experiments with the
model and their results. Section four concludes
the paper.

2 Data and model

The CoNLL-2010 shared task training data sets
contain sentences which are classified as either
certain or uncertain. Sentences of the uncertain
class contain one or more words which have been
marked as indicator of uncertainty, the so-called
hedge cues. Here is an example of such a sentence
with the hedge cues written in bold font:

These results indicate that in mono-
cytic cell lineage, HIV-1 could mimic
some differentiation/activation stimuli
allowing nuclear NF-KB expression.

CoNLL-2010 offers two shared tasks: classify-
ing sentences in running text as either certain or
uncertain (Task 1) and finding hedge cues in sen-
tences classified as uncertain together with their
scopes (Task 2). We have only participated in
Task 1.

We built a basic model for the training data, tak-
ing advantage of the fact that the hedge cues were
marked explicitly. We estimated the probability of
each training data word appearing in a hedge cue
with unigram statistics:

P (w in cue) =
f(w in cue)

f(w)

where P (w in cue) is the probability that word w
appears in a hedge cue, f(w) is frequency of the
word w in the data and f(w in c) is the frequency
of the word inside hedge cues. We performed only
little text preprocessing, converting all words to
lower case and separating six common punctua-
tion signs from the words.

In the classification stage, we assigned to each
word the estimated hedge cue probability accord-
ing to the training data. Next, we assigned a score
to each sentence that was equal to one minus the
highest individual score of its words:

P (s is certain) = 1− argmax
w in s

P (w in cue)

P (s is certain) is the estimated probability that
the sentence s is certain, and it is equal to one mi-
nus the highest probability of any of its words be-
ing part of a hedge cue. So a sentence contain-
ing only words that never appeared as a hedge cue
would receive score 1.0. Meanwhile a sentence
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with a single word that had appeared in a hedge
cue in the training data would receive one minus
the probability associated with that word. This
model ignores any relations between the words
of the sentence. We experimented with combin-
ing the scores of the different words but found the
minimum word score to perform best.

3 Experiments

Apart from the word probabilities, we needed to
obtain a good threshold score for deciding whether
to classify a sentence as certain or uncertain.
For this purpose, we performed a 10-fold cross-
validation experiment on each of the two training
data files (biological and Wikipedia) and measured
the effect of different threshold values. The results
can be found in Figure 1.

The model performed well on the biological
training data, with F scores above 80 for a large
range of threshold values (0.15–0.85). It per-
formed less well on the Wikipedia training data,
with a maximum F score of less than 60 and 50+
scores being limited to the threshold range 0.45–
0.85. The maximum F scores were reached for
threshold values 0.55 and 0.65 for biological data
(F=88.8) and Wikipedia data (F=59.4), respec-
tively. We selected the threshold value 0.55 for
our further work because the associated precision
and recall values were closer to each other than for
value 0.65.

We build domain-specific models with the bio-
logical data (14,541 sentences) and the Wikipedia
data (11,111 sentences) and applied the models to
the related training data. We obtained an F score
of 80.2 on the biological data (13th of 20 partici-
pants) and a score of 54.4 on the Wikipedia data
(9th of 15 participants). The balance between pre-
cision and recall scores that we strived for when
processing the training data, was not visible in the
test results. On the biological test data the sys-
tem’s recall score was 13 points higher than the
precision score while on the Wikipedia test data
precision outperformed recall by 31 points (see
Table 1).

Next, we tested the effect of increasing the data
sets with data from another domain. We repeated
the cross-validation experiments with the training
data, this time adding the available data of the
other domain to each of the sets of nine folds used
as training data. Unfortunately, this did not re-
sult in a performance improvement. The best per-

train-test thre. Precis. Recall Fβ=1

bio-bio .55 74.3% 87.1% 80.2±1.0
wik-wik .55 74.0% 43.0% 54.4±0.9
all-bio .55 69.3% 74.6% 71.8±1.2
all-wik .55 69.0% 44.6% 54.2±1.0

Table 1: Performances of the models for different
combinations of training and test data sets with the
associated acceptance threshold values. Training
and testing with data from the same domain pro-
duces the best scores. Higher recall scores were
obtained for biological data than for Wikipedia
data. Standard deviations for F scores were esti-
mated with bootstrap resampling (Yeh, 2000).

formance for the biological data dropped to F =
84.2 (threshold 0.60) while the top score for the
Wikipedia data dropped to F = 56.5 (0.70).

We kept the threshold value of 0.55, built a
model from all available training data and tested
its performance on the two test sets. In both cases
the performances were lower than the ones ob-
tained with domain dependent training data: F =
71.8 for biological data and F = 54.2 for Wikipedia
data (see Table 1).

As post-deadline work, we added statistics for
word bigrams to the model, following up work
by Medlock (2008), who showed that considering
word bigrams had a positive effect on hedge detec-
tion. We changed the probability estimation score
of words appearing in a hedge cue to

P (wi−1wi in cue) =
f(wi−1wi in cue)

f(wi−1wi)

where wi−1wi is a bigram of successive words in a
sentence. Bigrams were considered to be part of a
hedge cue when either or both words were inside
the hedge cue. Unigram probabilities were used
as backoff for known words that appeared outside
known bigrams while unknown words received the
most common score for known words (0). Sen-
tences received a score which is equal to one mi-
nus the highest score of their word bigrams:

P (s is certain) = 1− argmax
wi−1wi in s

P (wi−1wi in cue)

We repeated the threshold estimation experiments
and found that new bigram scores enabled the
models to perform slightly better on the training
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Figure 1: Precision-recall plot (left) and F plot (right) for different values of the certainty acceptance
thresholds measured by 10-fold cross-validation experiments on the two shared task training data sets
(biological and Wikipedia). The best attained F scores were 88.8 for biological data (threshold 0.55) and
59.4 for Wikipedia data (0.65).

data. The maximum F score for biological training
data improved from 88.8 to 90.1 (threshold value
0.35) while the best F score for the Wikipedia
training data moved up slightly to 59.8 (0.65).

We applied the bigram models with the two op-
timal threshold values for the training data to the
test data sets. For the biological data, we obtained
an F score of 82.0, a borderline significant im-
provement over the unigram model score. The
performance on the Wikipedia data improved sig-
nificantly, by eight points, to F = 62.8 (see Table
2). This is also an improvement of the official
best score for this data set (60.2). We believe that
the improvement originates from using the bigram
model as well as applying a threshold value that
is better suitable for the Wikipedia data set (note
that in our unigram experiments we used the same
threshold value for all data sets).

4 Concluding remarks

We applied a baseline model to the sentence clas-
sification part of the CoNLL-2010 shared task on
hedge detection. The model performed reason-
ably on biological data (F=82.0) but less well on
Wikipedia data (F=62.8). The model performed
best when trained and tested on data of the same
domain. Including additional training data from
another domain had a negative effect. Adding bi-
gram statistics to the model, improved its perfor-
mance on Wikipedia data, especially for recall.

Although the model presented in this paper per-
forms reasonably on the hedge detection tasks, it
is probably too simple to outperform more com-
plex models. However, we hope to have shown its

train-test thre. Precis. Recall Fβ=1

bio-bio .35 79.8% 84.4% 82.0±1.1
wik-wik .65 62.2% 63.5% 62.8±0.8
all-bio .50 73.2% 77.7% 75.4±1.2
all-wik .60 63.5% 57.9% 60.6±0.9

Table 2: Performances of bigram models for dif-
ferent combinations of training and test data sets.
The bigram models performed better than the uni-
gram models (compare with Table 1).

usefulness as baseline and as possible feature for
more advanced models. We were surprised about
the large difference in performance of the model
on the two data sets. However, similar perfor-
mance differences were reported by other partic-
ipants in the shared task, so they seem data-related
rather than being an effect of the chosen model.
Finding the origin of the performance differences
would be an interesting goal for future work.
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Abstract 

We present our CoNLL-2010 Shared Task 
system in the paper. The system operates in 
three steps: sequence labeling, syntactic de-
pendency parsing, and classification. We have 
participated in the Shared Task 1. Our experi-
mental results measured by the in-domain and 
cross-domain F-scores on the biological do-
main are 81.11% and 67.99%, and on the 
Wikipedia domain 55.48% and 55.41%. 

1 Introduction 

The goals of the Shared Task (Farkas et al., 2010) 
are: (1) learning to detect sentences containing 
uncertainty and (2) learning to resolve the in-
sentence scope of hedge cues. We have partici-
pated in the in-domain and cross-domain chal-
lenges of Task 1. Specifically, the aim of Task 1 
is to identify sentences in texts that contain unre-
liable or uncertain information, and it is formu-
lated as a binary classification problem. 

Similar to Morante et al. (2009), we use the 
BIO-cue labels for all tokens in a sentence to 
predict whether a token is the first one of a hedge 
cue (B-cue), inside a hedge cue (I-cue), or out-
side of a hedge cue (O-cue). Thus we formulate 
the problem at the token level, and our task is to 
label tokens in every sentence with BIO-cue. Fi-
nally, sentences that contain at least one B-cue or 
I-cue are considered as uncertain.  

Our system operates in three steps: sequence 
labeling, syntactic dependency parsing, and clas-
sification. Sequence labeling is a preprocessing 
step for splitting sentence into tokens and obtain-
ing features of tokens. Then a syntactic depend-
ency parser is applied to obtain the dependency 
information of tokens. Finally, we employ an 
ensemble classifier based on combining CRF 
(conditional random field) and MaxEnt (maxi-
mum entropy) classifiers to label each token with 
the BIO-cue. 

Our experiments are conducted on two train-
ing data sets: one is the abstracts and full articles 
from BioScope (biomedical domain) corpus 
(Vincze et al., 2008)1, the other one is paragraphs 
from Wikipedia possibly containing weasel in-
formation. Both training data sets have been an-
notated manually for hedge/weasel cues. The 
annotation of weasel/hedge cues is carried out at 
the phrase level. Sentences containing at least 
one hedge/weasel cue are considered as uncertain, 
while sentences with no hedge/weasel cues are 
considered as factual. The results show that em-
ploying the ensemble classifier outperforms the 
single classifier system on the Wikipedia data set, 
and using the syntactic dependency information 
in the feature set outperform the system without 
syntactic dependency information on the biologi-
cal data set (in-domain). 

In related work, Szarvas (2008) extended the 
methodology of Medlock and Briscoe (2007), 
and presented a hedge detection method in bio-
medical texts with a weakly supervised selection 
of keywords. Ganter and Strube (2009) proposed 
an approach for automatic detection of sentences 
containing linguistic hedges using Wikipedia 
weasel tags and syntactic patterns. 

The remainder of this paper is organized as 
follows. Section 2 presents the technical details 
of our system. Section 3 presents experimental 
results and performance analysis. Section 4 pre-
sents our discussion of the experiments. Section 
5 concludes the paper and proposes future work. 

2 System Description 

This section describes the implementation of our 
system. 

2.1 Information Flow of Our System 

Common classification systems consist of two 
steps: feature set construction and classification. 
The feature set construction process of our sys-

                                                 
1 http://www.inf.u-szeged.hu/rgai/bioscope 
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tem consists of sequence labeling and syntactic 
dependency parsing. Figure 1 shows the main 
information flow of our system. 

 
Figure 1: The main information flow of our sys-

tem 

2.2 Sequence labeling 

The sequence labeling step consists of the fol-
lowing consecutive stages: (1) tokenizing, (2) 
chunking, (3) POS-tagging, (4) lemmatizing. 
Firstly, the PTBTokenizer2 is employed to split 
sentence into tokens. Then, tokens are labeled 
with BIO-tags by the OpenNLP3  chunker. Fi-
nally, Stanford Parser4 is used to obtain the POS 
and lemma of tokens. 

2.3 Syntactic Dependency Parsing 

In the syntactic dependency parsing stage, we 
use the Stanford Parser again to obtain depend-
ency information of tokens. Based on the Stan-
ford typed dependencies manual (Marneffe and 
Manning 2008), we have decided to obtain the 
tree dependencies structure. During the process 
of parsing, we found that the parser may fail due 

                                                 
2 a tokenizer from Stanford Parser. 
3 http://www.opennlp.org/ 
4 http://nlp.stanford.edu/software/lex-parser.shtml 

to either empty sentences or very long sentences. 
To deal with very long sentences, we decided to 
allocate more memory. To deal with empty sen-
tences, we decided to simply label them as cer-
tain ones because there are only a few empty 
sentences in the training and test data sets and we 
could ignore their influence. 

2.4 Features 

After sequence labeling and syntactic depend-
ency parsing, we obtain candidate features. In 
our system, all the features belong to the follow-
ing five categories: (1) token features, (2) de-
pendency features, (3) neighbor features, (4) data 
features, (5) bigram and trigram features. 

Token features of the current token are listed 
below: 

• token: the current token. 

• index: index of the current token in the sen-
tence 

• pos: POS of the current token. 

• lemma: lemma of the current token. 

• chunk: BIO-chunk tags of the current token. 

Dependency features of the current token are 
listed below: 

• parent_index: the index of the parent token 
of the current token. 

• parent_token: the parent token of the current 
token. 

• parent_lemma: the lemma of the parent token 
of the current token. 

• parent_pos: the POS of the parent token of 
the current token. 

• parent_relation: the dependency relation of 
the current token and its parent token. 

Neighbor features of the current token include 
token, lemma, pos, chunk tag of three tokens to 
the right and three to the left. 

Data features of current token are listed below: 
• type: indicating documentPart5  type of the 

sentence which contains the current token, 
such as Text, SectionTitle and so on.  

• domain: distinguishing the Wikipedia and 
biological domain. 

• abstract_article: indicating document type of 
the sentence which contains the current token, 
abstract or article. 

                                                 
5 documentPart, SectionTitle, Text and so on are tags 
in the training and test data sets. 
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We empirically selected some bigram features 
and trigram features as listed below: 

• left_token_2+left_token_1 

• left_token_1+token 

• token+right_token_1 

• right_token_1+right_token_2 

• left_token_2+left_token_1+token 

• left_token_1+token+right_token_1 

• token+right_token_1+right_token_2 

These are the complete set of features for our 
system. If the value of a feature is empty, we set 
it to a default value. In the ensemble classifier, 
we have selected different features for each indi-
vidual classifier. Details of this are described in 
the next subsection. 

2.5 Classification 

In our system, we have combined CRF++6 and 
OpenNLP MaxEnt7 classifiers into an ensemble 
classifier. The set of features for each classifier 
are shown in the column named “system” of Ta-
ble 6. And the two classifiers are used in training 
and prediction separately, based on their individ-
ual set of features. Then we merge the results in 
this way: for each token, if the two predictions 
for it are both O-cue, then we label the token 
with an O-cue; otherwise, we label the token 
with a B-cue (one of the predictions is B-cue) or 
an I-cue (no B-cue in the predictions). The moti-
vation of the ensemble classifier approach is 
based on the observation of our internal experi-
ments using 10-fold cross validation, which we 
describe in Section 3. In addition, the parameters 
of OpenNLP MaxEnt classifier are all set to de-
fault values (number of iterations is 100, cutoff is 
0 and without smoothing). For CRF++, we only 
set the option “-f” as 3 and the option “-c” as 1.5, 
and the others are set to default values. 

3 Experimental Results 

We have participated in four subtasks, biological 
in-domain challenge (Bio-in-domain), biological 
cross-domain challenge (Bio-cross-domain), 
Wikipedia in-domain challenge (Wiki-in-
domain) and Wikipedia cross-domain challenge 
(Wiki-cross-domain). In all the experiments, TP, 
FP, FN and F-Score for the uncertainty class are 
used as the performance measures. We have 

                                                 
6 http://crfpp.sourceforge.net/ 
7 http://maxent.sourceforge.net/ 

tested our system with the test data set and ob-
tained official results as shown in Table 1. In 
addition, we have performed several internal ex-
periments on the training data set and several 
experiments on the test data set, which we de-
scribe in the next two subsections. The feature 
sets used for each subtask in our system are 
shown in Table 6, where each column denotes a 
feature set named after the title of the column 
(“System”, “dep”, …).  Actually, for different 
subtasks, we make use of the same feature set 
named “system”. 

 
SubTask TP FP FN F-Score 
Bio-in-domain 717 261 73 81.11 
Bio-cross-domain 566 309 224 67.99 
Wiki-in-domain 974 303 1260 55.48 
Wiki-cross-domain 991 352 1243 55.41 

 
Table 1: Official results of our system. 

3.1 Internal Experiments 

Initially we only used a single classifier instead 
of an ensemble classifier. We performed 10-fold 
cross validation experiments on the training data 
set at the sentence level with different feature 
sets. The results of these experiments are shown 
in Table 2 and Table 3. 

In internal experiments, we mainly focus on 
the results of different models and different fea-
ture sets. In Table 2 and Table 3, CRF and ME 
(MaxEnt) indicate the two classifiers; ENSMB 
stands for the ensemble classifier obtained by 
combining CRF and MaxEnt classifiers; the three 
words “dep”, “neighbor” and “together” indicate 
the feature sets for different experiments shown 
in Table 6, and “together” is the union set of 
“dep” and “neighbor”. 

The results of ME and CRF experiments (third 
column of Table 2 and Table 3) show that the 
individual classifier wrongly predicts many un-
certain sentences as certain ones. The number of 
such errors is much greater than the number of 
errors of predicting certain ones as uncertain. In 
other words, FN is greater than FP in our ex-
periments and the recall ratio is very low, espe-
cially for the Wikipedia data set. 
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Biological in-domain Biological cross-domain Experiment 

TP FP FN F-Score TP FP FN F-Score 
ME-dep 244 28 34 88.73 220 24 58 84.29 
CRF-dep 244 20 34 90.04 230 19 48 87.29 

ENSMB-dep 248 32 30 88.89 235 28 43 86.88 
ME-neighbor 229 14 49 87.91 211 12 67 84.23 
CRF-neighbor 244 16 34 90.71 228 21 50 86.53 

ENSMB-neighbor 247 22 31 90.31 241 26 37 88.44 
ME-together 234 11 44 89.48 205 12 73 82.83 
CRF-together 247 13 31 91.82 234 21 44 87.80 

ENSMB-together 253 17 25 92.36 242 26 36 88.64 
 

Table 2: Results of internal experiments on the biological training data set. 
 

Wikipedia in-domain Wikipedia cross-domain Experiment 
TP FP FN F-Score TP FP FN F-Score 

ME-dep 131 91 117 55.74 145 108 103 57.88 
CRF-dep 108 51 140 53.07 115 60 133 54.37 

ENSMB-dep 148 103 100 59.32 153 119 95 58.85 
ME-neighbor 106 52 142 52.22 130 77 118 57.14 
CRF-neighbor 123 44 125 59.28 123 72 125 55.53 

ENSMB-neighbor 145 71 103 62.50 154 116 94 59.46 
ME-together 100 57 148 49.38 117 69 131 53.92 
CRF-together 125 54 123 58.55 127 67 121 57.47 

ENSMB-together 141 83 107 59.75 146 104 102 58.63 
 

Table 3: Results of internal experiments on the Wikipedia training data set. 
 

Biological in-domain Biological cross-domain Experiment 
TP FP FN F-Score TP FP FN F-Score 

System-ME 650 159 140 81.30 518 265 272 65.86 
System-CRF 700 197 90 82.99 464 97 326 68.69 

System-ENSMB 717 261 73 81.11 566 309 224 67.99 
 

Table 4: Results of additional experiment of biological test data set. 
 

Wikipedia in-domain Wikipedia cross-domain Experiment 
TP FP FN F-Score TP FP FN F-Score 

System-ME 794 235 1440 48.67 798 284 1436 48.13 
System-CRF 721 112 1513 47.02 747 153 1487 47.67 

System-ENSMB 974 303 1260 55.48 991 352 1243 55.41 
 

Table 5: Results of additional experiment of Wikipedia test data set. 
 

Based on this analysis, we propose an ensem-
ble classifier approach to decrease FN in order to 
improve the recall ratio. The results of the en-
semble classifier show that: along with the de-
creasing of FN, FP and TP are both increasing. 
Although the recall ratio increases, the precision 
ratio decreases at the same time. Therefore, the 
ensemble classifier approach is a trade-off be-
tween precision and recall. For data sets with low 
recall ratio, such as Wikipedia, the ensemble 
classifier outperforms each single classifier in 
terms of F-score, just as the ME, CRF and 
ENSMB experiments show in Table 2 and Table 
3. 

In addition, we have performed simple feature 
selection in the internal experiments. The com-
parison of “dep”, “neighbor” and “together” ex-
periments shown in Table 2 demonstrates that 
the dependency and neighbor features are both 
beneficial only for the biological in-domain ex-
periment. This may be because that sentences of 
the biological data are more regular than those of 
the Wikipedia data. 

3.2 Additional experiments on test data set 

We have also performed experiments on the test 
data set, and the results are shown in Table 4 and 
Table 5. With the same set of features of our sys-
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tem as shown in Table 6, we have performed 
three experiments: System-ME (ME denotes 
MaxEnt classifier), System-CRF (CRF denotes 
CRF classifier) and System-ENSMB (ENSMB 
denotes ensemble classifier), where “System” 
denotes the feature set in Table 6. The meanings 
of these words are similar to internal experiments. 

As Table 4 and Table 5 show, for the Wikipe-
dia test data set, the ensemble classifier outper-
forms each single classifier in terms of F-score 
by improving the recall ratio with a larger extent 
than the extent of the decreasing of the precision 
ratio. For the biological test data set, the ensem-
ble classifier outperforms System-ME but under-
performs System-CRF. This may be due to the 
relatively high values of the precision and recall 
ratios already obtained by each single classifier. 

4 Discussion 

The features in our experiments are selected em-
pirically, and the performance of our system 
could be improved with more elaborate feature 
selection. From the experimental results, we ob-
serve that there are still many uncertain sen-
tences predicted as certain ones. This indicates 
that the ability of learning uncertain information 
with the current classifiers and feature sets needs 
to be improved. We had the plan of exploring the 
ensemble classifier by combining CRF, MaxEnt 
and SVM (Support Vector Machine), but it was 
given up due to limited time. In addition, we 
were not able to complete experiments with 
MaxEnt classifier based on bigram and trigram 
features due to limited time. Actually only two 
labels I and O are needed for Task 1. We have 
not done the experiments with only I and O la-
bels, and we plan to do it in the future. 

According to our observation, the low F-score 
on the Wikipedia data set is due to many uncer-
tain phrases. By contrast, for the biological data 
set, the uncertain information consists of mostly 
single words rather than phrases. It is difficult for 
a classifier to learn uncertain information con-
sisting of 3 words or more. As we have observed, 
these uncertain phrases follow several patterns. 
A hybrid approach based on rule-based and sta-
tistical approaches to recognize them seems to be 
a promising. 

5 Conclusion and Future Work 

Our CoNLL-2010 Shared Task system operates 
in three steps: sequence labeling, syntactic de-
pendency parsing, and classification. The results 
show that employing the ensemble classifier out-

performs each single classifier for the Wikipedia 
data set, and using the syntactic dependency in-
formation in the feature set outperform the sys-
tem without syntactic dependency information 
for the biological data set (in-domain). Our final 
system achieves promising results. Due to lim-
ited time, we have only performed simple feature 
selection empirically. In the future, we plan to 
explore more elaborate feature selection and ex-
plore ensemble classifier by combining more 
classifiers. 
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Feature System Dep Neighbor Together 
token mc mc mc mc 
index m m m m 
pos mc mc mc mc 

lemma mc mc mc mc 
chunk  mc mc mc 

parent_index mc mc  mc 
parent_token  mc  mc 
parent_lemma mc mc  mc 
parent_relation mc mc  mc 

parent_pos mc mc  mc 
left_token_1 c  c c 
left_lemma_1 mc  mc mc 

left_pos_1 mc  mc mc 
left_chunk_1   mc mc 
left_token_2 c  c c 
left_lemma_2 c  mc mc 

left_pos_2 mc  mc mc 
left_chunk_2   mc mc 
left_token_3     
left_lemma_3 mc  m m 

left_pos_3 mc  m m 
left_chunk_3   m m 
right_token_1 c  c c 
right_lemma_1 mc  mc mc 
right _pos_1 mc  mc mc 

right _chunk_1   mc mc 
right_token_2 c  c c 

right _lemma_2 mc  mc mc 
right _pos_2 c  mc mc 

right _chunk_2   mc mc 
right_token_3     

right _lemma_3 c  m m 
right _pos_3 mc  m m 

right _chunk_3   m m 
type m mc mc mc 

domain m mc mc mc 
abstract_article m mc mc mc 

left_token_2+left_token_1 c  c c 
left_token_1+token c  c c 
token+right_token_1 c  c c 

right_token_1+right_token_2 c  c c 
left_token_2+left_token_1+token c  c c 

left_token_1+token+right_token_1 c  c c 
token+right_token_1+right_token_2 c  c c 

 
Table 6: Features selected for different experiments. The symbol m indicates MaxEnt classifier and c indicates 

CRF classifier.  
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