Inspecting the Structural Biases of Dependency Parsing Algorithms *

Yoav Goldberg and Michael Elhadad
Ben Gurion University of the Negev
Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel
yoavg|elhadad@cs.bgu.ac.il

Abstract

We propose the notion of a structural bias
inherent in a parsing system with respect
to the language it is aiming to parse. This
structural bias characterizes the behaviour
of a parsing system in terms of structures
it tends to under- and over- produce. We
propose a Boosting-based method for un-
covering some of the structural bias inher-
ent in parsing systems. We then apply
our method to four English dependency
parsers (an Arc-Eager and Arc-Standard
transition-based parsers, and first- and
second-order graph-based parsers). We
show that all four parsers are biased with
respect to the kind of annotation they are
trained to parse. We present a detailed
analysis of the biases that highlights spe-
cific differences and commonalities be-
tween the parsing systems, and improves
our understanding of their strengths and
weaknesses.

1 Introduction

Dependency Parsing, the task of inferring a depen-
dency structure over an input sentence, has gained
a lot of research attention in the last couple of
years, due in part to to the two CoNLL shared
tasks (Nivre et al., 2007; Buchholz and Marsi,
2006) in which various dependency parsing algo-
rithms were compared on various data sets. As a
result of this research effort, we have a choice of
several robust, efficient and accurate parsing algo-
rithms.

*We would like to thank Reut Tsarfaty for comments and
discussions that helped us improve this paper. This work is
supported in part by the Lynn and William Frankel Center for
Computer Science.

234

These different parsing systems achieve com-
parable scores, yet produce qualitatively different
parses. Sagae and Lavie (2006) demonstrated that
a simple combination scheme of the outputs of dif-
ferent parsers can obtain substantially improved
accuracies. Nivre and McDonald (2008) explore
a parser stacking approach in which the output of
one parser is fed as an input to a different kind of
parser. The stacking approach also produces more
accurate parses.

However, while we know how to produce accu-
rate parsers and how to blend and stack their out-
puts, little effort was directed toward understand-
ing the behavior of different parsing systems in
terms of structures they produce and errors they
make. Question such as which linguistic phenom-
ena are hard for parser Y? and what kinds of er-
rors are common for parser Z?, as well as the more
ambitious which parsing approach is most suitable
to parse language X?, remain largely unanswered.

The current work aims to fill this gap by propos-
ing a methodology to identify systematic biases in
various parsing models and proposing and initial
analysis of such biases.

McDonald and Nivre (2007) analyze the dif-
ference between graph-based and transition-based
parsers (specifically the MALT and MST parsers)
by comparing the different kinds of errors made by
both parsers. They focus on single edge errors, and
learn that MST is better for longer dependency
arcs while MALT is better on short dependency
arcs, that MALT is better than MST in predict-
ing edges further from the root and vice-versa, that
MALT has a slight advantage when predicting the
parents of nouns and pronouns, and that MST is
better at all other word categories. They also con-
clude that the greedy MALT Parser suffer from er-
ror propagation more than the globally optimized

Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 234-242,
Uppsala, Sweden, 15-16 July 2010. (©2010 Association for Computational Linguistics

MST Parser.

In what follows, we complement their work by
suggesting a different methodology of analysis of
parsers behaviour. Our methodology is based on
the notion of structural bias of parsers, further ex-
plained in Section 2. Instead of comparing two
parsing systems in terms of the errors they pro-
duce, our analysis compares the output of a pars-
ing system with a collection of gold-parsed trees,
and searches for common structures which are pre-
dicted by the parser more often than they appear in
the gold-trees or vice-versa. These kinds of struc-
tures represent the bias of the parsing systems, and
by analyzing them we can gain important insights
into the strengths, weaknesses and inner working
of the parser.

In Section 2.2 we propose a Boosting-based
algorithm for uncovering these structural biases.
Then, in Section 3 we go on to apply our analysis
methodology to four parsing systems for English:
two transition-based systems and two graph-based
systems (Sections 4 and 5). The analysis shows
that the different parsing systems indeed possess
different biases. Furthermore, the analysis high-
lights the differences and commonalities among
the different parsers, and sheds some more light
on the specific behaviours of each system.

Recent work by Dickinson (2010), published
concurrently with this one, aims to identify depen-
dency errors in automatically parsed corpora by
inspecting grammatical rules which appear in the
automatically parsed corpora and do not fit well
with the grammar learned from a manually anno-
tated treebank. While Dickinson’s main concern is
with automatic identification of errors rather than
characterizing parsers behaviour, we feel that his
work shares many intuitions with this one: auto-
matic parsers fail in predictable ways, those ways
can be analyzed, and this analysis should be car-
ried out on structures which are larger than single
edges, and by inspecting trends rather than indi-
vidual decisions.

2 Structural Bias

Language is a highly structured phenomena, and
sentences exhibit structure on many levels. For
example, in English sentences adjectives appear
before nouns, subjects tend to appear before their
verb, and syntactic trees show a tendency toward
right-branching structures.!

'As noted by (Owen Rambow, 2010), there is little sense
in talking about the structure of a language without referring

235

Different combinations of languages and anno-
tation strategies exhibit different structural prefer-
ences: under a specific combination of language
and annotation strategy some structures are more
frequent than others, some structures are illegal
and some are very rare.

We argue that parsers also exhibit such struc-
tural preferences in the parses they produce. These
preferences stem from various parser design deci-
sions. Some of the preferences, such as projectiv-
ity, are due to explicit design decisions and lie at
the core of some parsing algorithms. Other pref-
erences are more implicit, and are due to specific
interactions between the parsing mechanism, the
feature function, the statistical mechanism and the
training data.

Ideally, we would like the structural preferences
of a parser trained on a given sample to reflect the
general preferences of the language. However, as
we demonstrate in Section 3, that it is usually not
the case.

We propose the notion of structural bias for
quantifying the differences in structural prefer-
ences between a parsing system and the language
it is aiming to parse. The structural bias of a
parser with respect to a language is composed of
the structures that tend to occur more often in the
parser’s output than in the language, and vice-
versa.

Structural biases are related to but different than
common errors. Parser X makes many PP at-
tachment errors is a claim about a common error.
Parser X tends to produce low attachment for PPs
while the language tends to have high attachment
is a claim about structural bias, which is related to
parser errors. Parser X can never produce struc-
ture Y is a claim about a structural preference of
a parser, which may or may not be related to its
error patterns.

Structural bias is a vast and vague concept. In
order to give a more concrete definition, we pose
the following question:

Assuming we are given two parses of the same
sentence. Can we tell, by looking at the parses and
without knowing the correct parse, which parser
produced which parse?

Any predictor which can help in answering this
question is an indicator of a structural bias.

to a specific annotation scheme. In what follow, we assume a
fixed annotation strategy is chosen.

Definition: structural bias between sets of trees
Given two sets of parse trees, A and B, over the
same sentences, a structural bias between these
sets is the collection of all predictors which can
help us decide, for a tree ¢, whether it belongs to
Aorto B.

The structural bias between a parsing system
and an annotated corpus is then the structural bias
between the corpus and the output of the parser
on the sentences in the corpus. Note that this
definition adheres to the error vs. bias distinction
given above.

Under this task-based definition, uncovering
structural biases between two sets of trees amounts
to finding good predictors for discriminating be-
tween parses coming from these two sets of trees.
In what follows, we present a rich class of struc-
tural predictors, and an algorithm for efficiently
searching this predictor class for good predictors.

2.1 Representing Structure

A dependency representation of sentences in-
cludes words and dependency relations between
them (one word is the ROOT of the sentence, and
each other word has a single word as its parent).
Whenever possible, we would like to equate words
with their part-of-speech tags, to facilitate gener-
alization. However, in some cases the exact iden-
tity of the word may be of interest. When ana-
lyzing a language with a relatively fixed word or-
der, such as English, we are also interested in the
linear order between words. This includes the di-
rection between a parent and its dependent (does
the parent appear before or after the dependent in
the sentence?), as well as the order among several
dependents of the same parent. The length of a de-
pendency relation (distance in words between the
parent and dependent) may also be structurally in-
teresting.’

In order to capture this kind of information, we
take a structural element of a dependency tree to
be any connected subtree, coupled with informa-
tion about the incoming edge to the root of the
subtree. Examples of such structural elements are
given in Figure 1. This class of predictors is not
complete — it does not directly encode, for in-
stance, information about the number of siblings

Relations can also be labeled, and labeling fit naturally
in our representation. However, we find the commonly used
set of edge labels for English to be lacking, and didn’t include
edge labels in the current analysis.

236

3 2
/ xk« 7 S
JJ NN VB IN / with

() (b)

Figure 1: Structural Elements Examples. (a) is an adjective
with a parent 3 words to its right. (b) is a verb whose parent
is on the left, it has a noun dependent on its left, and a prepo-
sition dependent 2 words to its right. The lexical item of the
preposition is with. The lexical items and distance to parent
are optional, while all other information is required. There
is also no information about other dependents a given word
may have.

a node has or the location of the structure relative
to the root of the tree. However, we feel it does
capture a good deal of linguistic phenomena, and
provide a fine balance between expressiveness and
tractability.

The class of predictors we consider is the set of
all structural elements. We seek to find structural
elements which appear in many trees of set A but
in few trees of set B, or vice versa.

2.2 Boosting Algorithm with Subtree
Features

The number of possible predictors is exponential
in the size of each tree, and an exhaustive search is
impractical. Instead, we solve the search problem
using a Boosting algorithm for tree classification
using subtree features. The details of the algo-
rithm and its efficient implementation are given in
(Kudo and Matsumoto, 2004). We briefly describe
the main idea behind the algorithm.

The Boosting algorithm with subtree features
gets as input two parse sets with labeled, ordered
trees. The output of the algorithm is a set of sub-
trees t; and their weights w;. These weighted sub-
trees define a linear classifier over trees f(T')
> t;er Wi» where f(T') > 0 for trees in set A and
f(T') < 0 for trees in set B.

The algorithm works in rounds. Initially, all
input trees are given a uniform weight. At each
round, the algorithm seeks a subtree ¢ with a max-
imum gain, that is the subtree that classifies cor-
rectly the subset of trees with the highest cumu-
lative weight. Then, it re-weights the input trees,
so that misclassified trees get higher weights. It
continues to repeatedly seek maximum gain sub-
trees, taking into account the tree weights in the
gain calculation, and re-weighting the trees after
each iteration. The same subtree can be selected
in different iterations.

Kudo and Matsumoto (2004) present an effec-

(a JI— (b) VB«
d:3 NN— IN«—
/\
wiwith d:2

Figure 2: Encoding Structural Elements as Ordered Trees.
These are the tree encodings of the structural elements in Fig-
ure 1. Direction to parent is encoded in the node name, while
the optional lexical item and distance to parent are encoded
as daughters.

tive branch-and-bound technique for efficiently
searching for the maximum gain tree at each
round. The reader is referred to their paper for the
details.

Structural elements as subtrees The boosting
algorithm works on labeled, ordered trees. Such
trees are different than dependency trees in that
they contain information about nodes, but not
about edges. We use a simple transformation to
encode dependency trees and structural elements
as labeled, ordered trees. The transformation
works by concatenating the edge-to-parent infor-
mation to the node’s label for mandatory informa-
tion, and adding edge-to-parent information as a
special child node for optional information. Figure
2 presents the tree-encoded versions of the struc-
tural elements in Figure 1. We treat the direction-
to-parent and POS tag as required information,
while the distance to parent and lexical item are
optional.

2.3 Structural Bias Predictors

The output of the boosting algorithm is a set of
weighted subtrees. These subtrees are good can-
didates for structural bias predictors. However,
some of the subtrees may be a result of over-fitting
the training data, while the weights are tuned to
be used as part of a linear classifier. In our ap-
plication, we disregard the boosting weights, and
instead rank the predictors based on their number
of occurrences in a validation set. We seek predic-
tors which appear many times in one tree-set but
few times in the other tree-set on both the train-
ing and the validation sets. Manual inspection of
these predictors highlights the structural bias be-
tween the two sets. We demonstrate such an anal-
ysis for several English dependency parsers below.

In addition, the precision of the learned Boost-
ing classifier on the validation set can serve as a
metric for measuring the amount of structural bias

237

between two sets of parses. A high classification
accuracy means more structural bias between the
two sets, while an accuracy of 50% or lower means
that, at least under our class of predictors, the sets
are structurally indistinguishable.

3 Biases in Dependency Parsers

3.1 Experimental Setup

In what follows, we analyze and compare the
structural biases of 4 parsers, with respect to a de-
pendency representation of English.

Syntactic representation The dependency tree-
bank we use is a conversion of the English WSJ
treebank (Marcus et al., 1993) to dependency
structure using the procedure described in (Jo-
hansson and Nugues, 2007). We use the Mel’¢uk
encoding of coordination structure, in which the
first conjunct is the head of the coordination struc-
ture, the coordinating conjunction depends on the
head, and the second conjunct depend on the coor-
dinating conjunction (Johansson, 2008).

Data Sections 15-18 were used for training the
parsers’. The first 4,000 sentences from sections
10-11 were used to train the Boosting algorithm
and find structural predictors candidates. Sec-
tions 4-7 were used as a validation set for ranking
the structural predictors. In all experiments, we
used the gold-standard POS tags. We binned the
distance-to-parent values to 1,2,3,4-5,6-8 and 9+.

Parsers For graph-based parsers, we used
the projective first-order (MST1) and second-
order (MST2) variants of the freely available
MsT paI'SCI'4 (McDonald et al., 2005; McDon-
ald and Pereira, 2006). For the transition-based
parsers, we used the arc-eager (ARCE) variant of
the freely available MALT parser’ (Nivre et al.,
2006), and our own implementation of an arc-
standard parser (ARCS) as described in (Huang et
al., 2009). The unlabeled attachment accuracies of
the four parsers are presented in Table 1.

Procedure For each parser, we train a boosting
classifier to distinguish between the gold-standard
trees and the parses produced for them by the

3Most work on parsing English uses a much larger train-
ing set. We chose to use a smaller set for convenience. Train-
ing the parsers is much faster, and we can get ample test data
without resorting to jackknifing techniques. As can be seen
in Table 1, the resulting parsers are still accurate.
“http://sourceforge.net/projects/mstparser/
Shttp:/maltparser.org/

MsT1
88.8

MsT2 ARCE ARCS
89.8 87.6 87.4

Table 1: Unlabeled accuracies of the analyzed parsers

Parser || Train Accuracy | Val Accuracy
MsTl1 65.4 57.8
MsT2 62.8 56.6
ARCE 69.2 65.3
ARCS 65.1 60.1

Table 2: Distinguishing parser output from gold-trees based
on structural information

parser. We remove from the training and valida-
tion sets all the sentences which the parser got
100% correct. We then apply the models to the
validation set. We rank the learned predictors
based on their appearances in gold- and parser-
produced trees in the train and validation sets, and
inspect the highest ranking predictors.

Training the boosting algorithm was done us-
ing the bact® toolkit. We ran 400 iterations of
boosting, resulting in between 100 and 250 dis-
tinct subtrees in each model. Of these, the top 40
to 60 ranked subtrees in each model were good in-
dicators of structural bias. Our wrapping code is
available online’ in order to ease the application
of the method to other parsers and languages.

3.2 Quantitative Analysis

We begin by comparing the accuracies of the
boosting models trained to distinguish the pars-
ing results of the various parsers from the English
treebank. Table 2 lists the accuracies on both the
training and validation sets.

The boosting method is effective in finding
structural predictors. All parsers output is dis-
tinguishable from English trees based on struc-
tural information alone. The ArcEager variant of
MALT is the most biased with respect to English.
The transition-based parsers are more structurally
biased than the graph-based ones.

We now turn to analyze the specific structural
biases of the parsing systems. For each system
we present some prominent structures which are
under-produced by the system (these structures
appear in the language more often than they are
produce by the parser) and some structures which
are over-produced by the system (these structures

®http:/chasen.org/~taku/software/bact/
"http://www.cs.bgu.ac.il/~yoavg/software/

238

are produced by the parser more often than they
appear in the language).® Specifically, we manu-
ally inspected the predictors where the ratio be-
tween language and parser was high, ranked by
absolute number of occurrences.

4 Transition-based Parsers

We analyze two transition-based parsers (Nivre,
2008). The parsers differ in the transition sys-
tems they adopt. The ARCE system makes
use of a transition system with four transitions:
LEFT,RIGHT,SHIFT,REDUCE. The semantics of
this transition system is described in (Nivre,
2004). The ARCS system adopts an alterna-
tive transition system, with three transitions: AT-
TACHL,ATTACHR,SHIFT. The semantics of the
system is described in (Huang et al., 2009). The
main difference between the systems is that the
ARCE system makes attachments as early as pos-
sible, while the ARCS system should not attach a
parent to its dependent until the dependent has ac-
quired all its own dependents.

4.1 Biases of the Arc-Eager System

Over-produced structures The over-produced
structures of ARCE with respect to English are
overwhelmingly dominated by spurious ROOT at-
tachments.

The structures ROOT—*“ , ROOT—DT,
ROOT—WP are produced almost 300 times by
the parser, yet never appear in the language. The
structures ROOT—" , ROOT—WRB , ROOT—1]J
appear 14 times in the language and are produced
hundreds of time by the parser. Another interest-
ing case is ROOT 57 NN, produced 180 times by
the parser and appearing 7 times in the language.
As indicated by the distance marking (9+), nouns
are allowed to be heads of sentences, but then they
usually appear close to the beginning, a fact which
is not captured by the parsing system. Other, less
clear-cut cases, are ROOT as the parent of IN,
NN, NNS or NNP. Such structures do appear in
the language, but are 2-5 times more common in
the parser.

A different ROOT attachment bias is captured
by

™
ROOT VBZ VBD

K\
and ROOT VBD VBD

80ne can think of over- and under- produced structures
in terms of the precision and recall metrics: over-produced
structures have low precision, while under-produced struc-
tures have low recall.

appearing 3 times in the language and produced
over a 100 times by the parser.

It is well known that the ROOT attachment ac-
curacies of transition-based systems is lower than
that of graph-based system. Now we can refine
this observation: the ARCE parsing system fails
to capture the fact that some categories are more
likely to be attached to ROOT than others. It also
fails to capture the constraint that sentences usu-
ally have only one main verb.

Another related class of biases are captured by
the structures —VBD g7 VBD, —VBD 5=% VBD
and ROOT—VBZ—VBZ which are produced by
the parser twice as many times as they appear
in the language. When confronted with embed-
ded sentences, the parser has a strong tendency of
marking the first verb as the head of the second
one.

The pattern 74§ IN suggests that the parser
prefers high attachment for PPs. The pattern
9+

DT« NN captures the bias of the parser

toward associating NPs with the preceding verb
rather than the next one, even if this preceding verb
is far away.

Under-produced structures We now turn to
ARCE’s under-produced structures. These include
the structures IN/that<— , MD«+ , VBD+« (each 4
times more frequent in the language than in the
parser) and VBP« (twice more frequent in the
language). MD and that usually have their par-
ents to the left. However, in some constructions
this is not the case, and the parser has a hard time
learning these constructions.

The structure —$—RB appearing 20 times in
the language and 4 times in the parser, reflects a
very specific construction (“$ 1.5 up from $ 1.27).
These constructions pop up as under-produced by
all the parsers we analyze.

The structures 77 RB—IN and —RB—I1J ap-
pear twice as often in the language. These
stem from constructions such as “not/RB unex-
pected/JJ”, “backed away/RB from/IN”, “pushed
back/RB in/IN”, and are hard for the parser.

Lastly, the structure JJ«—NN«+—NNS+«, deviates
from the the “standard” NP construction, and is
somewhat hard for the parser (39 times parser, 67
in language). However, we will see below that this
same construction is even harder for other parsers.

4.2 Biases of the Arc-Standard System

Over-produced structures The over-produced
structures of ARCS do not show the spurious
ROOT attachment ambiguity of ARCE. They do
include ROOT—IN, appearing twice as often in
the parser output than in the language.

The patterns ROOT—VBZsz, , —VBPsz,
, »=VBDg7VBD and —VB—VBD all reflect
the parser’s tendency for right-branching struc-
ture, and its inability to capture the verb-hierarchy
in the sentence correctly, with a clear preference
for earlier verbs as parents of later verbs.

Similarly, 37INNP and gNNS indicate a ten-
dency to attach NPs to a parent on their left (as an
object) rather than to their right (as a subject) even
when the left candidate-parent is far away.

T T

WRB < MD — VB - produced
48 times by the parser and twice by the language,
is the projective parser’s way of annotating the
correct non-projective structure in which the wh-
adverb is dependent on the verb.

Finally,

Under-produced structures of ARCS in-

clude two structures wRB <—/_\7BN and

WRB QB , which are usually part of
non-projective structures, and are thus almost
never produced by the projective parser.

Other under-produced structures include appos-
itive NPs:

/\A—\
—IN NN ’ ’

(e.g., “by Merill , the nation’s largest firm , ”), and

~ ™

— NN DT < NN - which can
stand for apposition (“a journalist, the first jour-
nalist to ...”) or phrases such as “30 %/NN a
month”.

the structure

TO usually has its parent on its left. When this
is not the case (when it is a part of a quantifier,
such as “x to 'y %”, or due to fronting: “Due to
X, we did Y”), the parser is having a hard time to
adapt and is under-producing this structure.

Similar to the other parsers, ARCS also under-
produces NPs with the structure JJ«-NNG NN,
and the structure —$—RB.

Finally, the parser under-produces the con-
junctive structures —NN—CC—NN—IN and
—IN—CC—IN.

239

5 Graph-based Parsers

We analyze the behaviour of two graph-based
parsers (McDonald, 2006). Both parsers perform
exhaustive search over all projective parse trees,
using a dynamic programming algorithm. They
differ in the factorizations they employ to make
the search tractable. The first-order model em-
ploys a single-edge factorization, in which each
edge is scored independently of all other edges.
The second-order model employs a two-edge fac-
torization, in which scores are assigned to pairs
of adjacent edges rather than to a single edge at a
time.

5.1 Biases of First-order MST Parser

Over-produced structures of MST1 include:

A_\A A_\A
—IN NN NN —IN NNP NN
A_\ A—\

—IN NNP NNS —IN NN VBZ/D

where the parsers fails to capture the fact
that prepositions only have one dependent.

Similarly, in the pattern: — CC NN NNS

the parser fails to capture that only one phrase
should attach to the coordinator, and the patterns

m m
NN NN VBZ NNS NNS VBP

highlight the parser’s failing to capture that
verbs have only one object.

o
ROOT WRB VBD
duced by the parser 15 times more than it appears
in the language, the parser fails to capture the fact
that verbs modified by wh-adverbs are not likely
to head a sentence.

All of these over-produced structures are fine
examples of cases where MST1 fails due to its
edge-factorization assumption.

We now turn to analyzing the structures under-
produced by MST1.

In the structure , pro-

Under-produced structures The non-

projective structures
1

/—\ /—‘L
WRB «<— VBN and wRrB «<“— VB
clearly cannot be produced by the projective

parser, yet they appear over 100 times in the
language.

1

240

The structure WRB«VBD«—VBD which is
represented in the language five times more than
in the parser, complements the over-produced case
in which a verb modified by a wh-adverb heads the
sentence.

IN/that<, which was under-produced by
ARCE is under-produced here also, but less so
than in ARCE. —$—RB is also under-produced
by the parser.

The structure CC<T, usually due to conjunc-
tions such as either, nor, but is produced 29 times
by the parser and appear 54 times in the language.

An interesting under-produced structure is

A_\A/N .
—NN IN CC NN . This structure reflects

the fact that the parser is having a hard time coor-
dinating “heavy” NPs, where the head nouns are
modified by PPs. This bias is probably a result
of the “in-between pos-tag” feature, which lists
all the pos-tags between the head and dependent.
This feature was shown to be important to the
parser’s overall performance, but probably fails it
in this case.

The construction g—gJJ, where the adjective
functions as an adverb (e.g., “he survived X
unscathed” or “to impose Y corporate-wise’”)
is also under-produced by the parser, as well

as in which the preposition

IN <— NN
functions as a determiner/quantifier (“at least”,
“between”, “more than”).

Finally, MST1 is under-producing NPs with
somewhat “irregular” structures: JJ«—NN«—NNS
or JJ«—NN+«NNS (“common stock purchase war-
rants”, “cardiac bypass patients”), or JJ«—JJ«— (“a
good many short-sellers”, “West German insur-

ance giant”)

5.2 Biases of Second-order MST Parser

Over-produced structures by MST2 are differ-
ent than those of MST1. The less-extreme edge
factorization of the second-order parser success-
fully prevents the structures where a verb has two
objects or a preposition has two dependents.

One over-produced structure,
T AT A
NNS JJ NNP - , , produced

10 times by the parser and never in the language,
is due to one very specific construction, “bonds
due Nov 30, 1992 ,” where the second comma
should attach higher up the tree.

involves
names:

structure
of proper

Another over-produced
the internal structure

mr\ 3 29 3
NNP NNP NNP NNp (the “correct” analysis

more often makes the last NNP head of all the
others).

More interesting are: T CC—VBD and
T CC—NN—IN . These capture the parser’s in-
ability to capture the symmetry of coordinating
conjunctions.

Under-produced structures of MST?2 are over-
all very similar to the under-produced structures of
MsT1.

The structure CC<T which is under-produced by
MST1 is no longer under-produced by MST2. All
the other under-produced structures of MST1 reap-
pear here as well.

In addition, MST2 under-produces the struc-
tures ROOT—NNP—. (it tends not to trust NNPs
as the head of sentences) and g—3TO TV B (where
the parser is having trouble attaching TO correctly
to its parent when they are separated by a lot of
sentential material).

6 Discussion

We showed that each of the four parsing systems
is structurally biased with respect to the English
training corpus in a noticeable way: we were able
to learn a classifier that can tell, based on structural
evidence, if a parse came from a parsing system
or from the training corpus, with various success
rates. More importantly, the classifier’s models are
interpretable. By analyzing the predictors induced
by the classifier for each parsing system, we un-
covered some of the biases of these systems.

Some of these biases (e.g., that transition-based
system have lower ROOT-attachment accuracies)
were already known. Yet, our analysis refines this
knowledge and demonstrates that in the Arc-Eager
system a large part of this inaccuracy is not due
to finding the incorrect root among valid ambigu-
ous candidates, but rather due to many illegal root
attachments, or due to illegal structures where a
sentence is analyzed to have two main verbs. In
contrast, the Arc-Standard system does not share
this spurious root attachment behaviour, and its
low root accuracies are due to incorrectly choos-
ing among the valid candidates. A related bias of
the Arc-Standard system is its tendency to choose
earlier appearing verbs as parents of later occur-
ring verbs.

241

Some constructions were hard for all the parsing
models. For example, While not discussed in the
analysis above, all parsers had biased structures
containing discourse level punctuation elements
(some commas, quotes and dashes) — we strongly
believe parsing systems could benefit from special
treatment of such markers.

The NP construction (JJ«—NN«NNS«+) ap-
peared in the analyses of all the parsers, yet were
easier for the transition-based parsers than for the
graph-based ones. Other NP constructions (dis-
cussed above) were hard only for the graph-based
parsers.

One specific construction involving the dollar
sign and an adverb appeared in all the parsers,
and may deserve a special treatment. Simi-
larly, different parsers have different “soft spots”
(e.g., “backed away from”, “not unexpected” for
ARCE, “at least” for MST1, TO« for ARCS, etc.)
which may also benefit from special treatments.

It is well known that the first-order edge-
factorization of the MSTI parser is too strong.
Our analysis reveals some specific cases where
this assumptions indeed breaks down. These
cases do not appear in the second-order factoriza-
tion. Yet we show that the second-order model
under-produces the same structures as the first-
order model, and that both models have specific
problems in dealing with coordination structures,
specifically coordination of NPs containing PPs.
We hypothesize that this bias is due to the “pos-in-
between” features used in the MST Parser.

Regarding coordination, the analysis reveals
that different parsers show different biases with re-
spect to coordination structures.

7 Conclusions and Future Work

We presented the notion of structural bias — spe-
cific structures that are systematically over- or
under- represented in one set of parse trees relative
to another set of parse trees — and argue that differ-
ent parsing systems exhibit different structural bi-
ases in the parses they produced due to various ex-
plicit and implicit decisions in parser design. We
presented a method for uncovering some of this
structural bias, and effectively used it to demon-
strate that parsers are indeed biased with respect
to the corpus they are trained on, and that differ-
ent parsers show different biases. We then ana-
lyzed the biases of four dependency parsing sys-
tems with respect to an English treebank. We ar-

gue that by studying the structural biases of pars-
ing systems we can gain a better understanding on
where dependency parsers fail, and how they dif-
fer from each other. This understanding can in turn
lead us toward designing better parsing systems.

We feel that the current study is just the tip of
the iceberg with respect to the analysis of struc-
tural bias. Any parsing system for any language
and annotation scheme can benefit from such anal-
ysis.

References

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. of CoONLL.

Markus Dickinson. ~ 2010. Detecting errors in
automatically-parsed dependency relations. In Proc.
of ACL.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In Proc of EMNLP.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for en-
glish. In Proc of NODALIDA.

Richard Johansson. 2008. Dependency-based Seman-
tic Analysis of Natural-language Text. Ph.D. thesis,
Lund University.

Taku Kudo and Yuji Matsumoto. 2004. A Boost-
ing Algorithm for Classification of Semi-Structured
Text. In Proceedings of EMNLP.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marchinkiewicz. 1993. Building a large annotated
corpus of English: The penn treebank. Computa-
tional Linguistics, 19:313-330.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proc. of EMNLP.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc of EACL.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proc of ACL.

Ryan McDonald. 2006. Discriminative Training and
Spanning Tree Algorithms for Dependency Parsing.
Ph.D. thesis, University of Pennsylvania.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL, pages 950-958.

242

Joakim Nivre, Johan Hall, and Jens Nillson. 2006.
MaltParser: A data-driven parser-generator for de-
pendency parsing. In Proc. of LREC.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan Mc-
donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proc. of EUNLP-CoNLL.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. In Incremental Parsing:
Bringing Engineering and Cognition Together, ACL-
Workshop.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4), December.

Owen Rambow. 2010. The Simple Truth about De-
pendency and Phrase Structure Representations: An
Opinion Piece. In Proceedings of NAACL.

Kenji Sagae and Alon Lavie. 2006. Parser combina-
tion by reparsing. In Proceedings of HLT-NAACL,
pages 129-133.

