
Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pages 223–233,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

On Reverse Feature Engineering of Syntactic Tree Kernels

Daniele Pighin
FBK-irst, DISI, University of Trento

Via di Sommarive, 14
I-38123 Povo (TN) Italy

daniele.pighin@gmail.com

Alessandro Moschitti
DISI, University of Trento

Via di Sommarive, 14
I-38123 Povo (TN) Italy

moschitti@disi.unitn.it

Abstract

In this paper, we provide a theoretical
framework for feature selection in tree ker-
nel spaces based on gradient-vector com-
ponents of kernel-based machines. We
show that a huge number of features can
be discarded without a significant decrease
in accuracy. Our selection algorithm is as
accurate as and much more efficient than
those proposed in previous work. Com-
parative experiments on three interesting
and very diverse classification tasks, i.e.
Question Classification, Relation Extrac-
tion and Semantic Role Labeling, support
our theoretical findings and demonstrate
the algorithm performance.

1 Introduction

Kernel functions are very effective at modeling
diverse linguistic phenomena by implicitly rep-
resenting data in high dimensional spaces, e.g.
(Cumby and Roth, 2003; Culotta and Sorensen,
2004; Kudo et al., 2005; Moschitti et al., 2008).
However, the implicit nature of the kernel space
causes two major drawbacks: (1) high computa-
tional costs for learning and classification, and (2)
the impossibility to identify the most important
features. A solution to both problems is the ap-
plication of feature selection techniques.

In particular, the problem of feature selection
in Tree Kernel (TK) spaces has already been ad-
dressed by previous work in NLP, e.g. (Kudo
and Matsumoto, 2003; Suzuki and Isozaki, 2005).
However, these approaches lack a theoretical char-
acterization of the problem that could support and
justify the design of more effective algorithms.

In (Pighin and Moschitti, 2009a) and (Pighin
and Moschitti, 2009b) (P&M), we presented a
heuristic framework for feature selection in kernel
spaces that selects features based on the compo-

nents of the weight vector, ~w, optimized by Sup-
port Vector Machines (SVMs). This method ap-
pears to be very effective, as the model accuracy
does not significantly decrease even when a large
number of features are filtered out. Unfortunately,
we could not provide theoretical or intuitive moti-
vations to justify our proposed apporach.

In this paper, we present and empirically val-
idate a theory which aims at filling the above-
mentioned gaps. In particular we provide: (i) a
proof of the equation for the exact computation of
feature weights induced by TK functions (Collins
and Duffy, 2002); (ii) a theoretical characteriza-
tion of feature selection based on ‖~w‖. We show
that if feature selection does not sensibly reduces
‖~w‖, the margin associated with ~w does not sen-
sibly decrease as well. Consequently, the theoret-
ical upperbound to the probability error does not
sensibly increases; (iii) a proof that the convolu-
tive nature of TK allows for filtering out an expo-
nential number of features with a small ‖~w‖ de-
crease. The combination of (ii) with (iii) suggests
that an extremely aggressive feature selection can
be applied. We describe a greedy algorithm that
exploits these results. Compared to the one pro-
posed in P&M, the new version of the algorithm
has only one parameter (instead of 3), it is more
efficient and can be more easily connected with the
amount of gradient norm that is lost after feature
selection.

In the remainder: Section 2 briefly reviews
SVMs and TK functions; Section 3 describes the
problem of selecting and projecting features from
very high onto lower dimensional spaces, and pro-
vides the theoretical foundation to our approach;
Section 4 presents a selection of related work; Sec-
tion 5 describes our approach to tree fragment se-
lection; Section 6 details the outcome of our ex-
periments; finally, in Section 7 we draw our con-
clusions.

223

2 Fragment Weights in TK Spaces

The critical step for feature selection in tree ker-
nel spaces is the computation of the weights of
features (tree fragments) in the kernel machines’
gradient. The basic parameters are the fragment
frequencies which are combined with a decay fac-
tor used to downscale the weight of large sub-
trees (Collins and Duffy, 2002). In this section, af-
ter introducing basic kernel concepts, we describe
a theorem that establishes the correct weight1 of
features in the STK space.

2.1 Kernel Based-Machines

Typically, a kernel machine is a linear classifier
whose decision function can be expressed as:

c(~x) = ~w · ~x+ b =
∑̀
i=1

αiyi ~xi · ~x+ b (1)

where ~x ∈ <N is a classifying example and
~w ∈ <N and b ∈ < are the separating hyper-
plane’s gradient and its bias, respectively. The
gradient is a linear combination of ` training
points ~xi ∈ <N multiplied by their labels
yi ∈ {−1,+1} and their weights αi ∈ <+.
Different optimizers use different strategies to
learn the gradient. For instance, an SVM learns
to maximize the distance between positive and
negative examples, i.e. the margin γ. Applying
the so-called kernel trick, it is possible to replace
the scalar product with a kernel function defined
over pairs of objects, which can more efficiently
compute it:

c(o) =
∑̀
i=1

αiyik(oi, o) + b,

where k(oi, o) = φ(oi) · φ(o), with the advantage
that we do not need to provide an explicit mapping
φ : O → <N of our example objects O in a vec-
tor space. In the next section, we show a kernel
directly working on syntactic trees.

2.2 Syntactic Tree Kernel (STK)

Tree Kernel (TK) functions are convolution ker-
nels (Haussler, 1999) defined over pairs of trees.
Different TKs are characterized by alternative
fragment definitions, e.g. (Collins and Duffy,
2002; Kashima and Koyanagi, 2002; Moschitti,
2006). We will focus on the syntactic tree kernel
described in (Collins and Duffy, 2002), which re-
lies on a fragment definition that does not allow to

1In P&M we provided an approximation of the real
weight.

break production rules (i.e. if any child of a node is
included in a fragment, then also all the other chil-
dren have to). As such, it is especially indicated
for tasks involving constituency parsed texts.

Tree kernels compute the number of common
substructures between two trees T1 and T2

without explicitly considering the whole feature
(fragment) space. Let F = {f1, f2, . . . , f|F|}
be the set of tree fragments, i.e. the explicit
representation for the components of the fragment
space, and χi(n) be an indicator function2, equal
to 1 if the target fi is rooted at node n and equal
to 0 otherwise. A tree kernel function over T1 and
T2 is defined as

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (2)

whereNT1 andNT2 are the sets of nodes in T1 and
T2, respectively and

∆(n1, n2) =
|F|∑
i=1

χi(n1)χi(n2). (3)

The ∆ function counts the number of common
subtrees rooted in n1 and n2 and weighs them
according to their size. It can be evaluated as
follows (Collins and Duffy, 2002):
1. if the productions at n1 and n2 are different,
then ∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same,
and n1 and n2 have only leaf children (i.e. they
are pre-terminal symbols) then ∆(n1, n2) = λ;
3. if the productions at n1 and n2 are the same,
and n1 and n2 are not pre-terminals then

∆(n1, n2) = λ

l(n1)∏
j=1

(1 + ∆(cjn1
, cjn2

)), (4)

where l(n1) is the number of children of n1, cjn
is the j-th child of node n and λ is a decay factor
penalizing larger structures.

2.3 Tree Fragment Weights

Eq. 3 shows that ∆ counts the shared fragments
rooted in n1 and n2 in the form of scalar product,
as evaluated by Eq. 2. However, when λ is used in
∆ as in Eq. 4, it changes the weight of the product
χi(n1)χi(n2). As λ multiplies ∆ in each recur-
sion step, we may be induced to assume3 that the

2We will consider it as a weighting function.
3In (Collins and Duffy, 2002), there is a short note about

the correct value weight of lambda for each product compo-
nents (i.e. pairs of fragments). This is in line with the formu-
lation we provide.

224

weight of a fragment is λd, where d is the depth of
the fragment. On the contrary, we show the actual
weight by providing the following:

Theorem 1. Let T and f be a tree and one of
its fragments, respectively, induced by STK. The
weight of f accounted by STK is λ

s(f)
2 , where

lf (n) is the number of children of n in f and
s(f) = |{n ∈ T : lf (n) > 0}| is the number
of nodes that have active productions in the frag-
ment, i.e. the size of the fragment.

In other words, the exponent of λ is the number
of fragment nodes that have at least one child (i.e.
active productions), divided by 2.

Proof. The thesis can be proven by induction on
the depth d of f . The base case is f of depth
1. Fragments of depth 1 are matched by step 2
of ∆(n1, n2) computation, which assigns a value
λ = χi(n1)χi(n2) independently of the number of
children (where fi = f). It follows that the weight
of f is χi(n1) = χi(n2) = λ1/2.

Suppose that the thesis is valid for depth d and
let us consider a fragment f of depth d+ 1, rooted
in r. Without loss of generality, we can assume
that f is in the set of the fragments rooted in n1

and n2, as evaluated by Eq. 4. It follows that
the production rules associated with n1 and n2 are
identical to the production rule in r. Let us con-
sider M = {i ∈ {1, .., l(n1)} : l(cir) > 0},
i.e. the set of child indices of r which have at
least a child. Thus, for j ∈ M , cir has a pro-
duction shared by cjn1

and cjn2
. Conversely, for

j /∈ M , there is no match and ∆(cjn1
, cjn2

) = 0.
Therefore, the product in Eq. 4 can be rewrit-
ten as λ

∏
j∈M ∆(cjn1

, cjn2
), where the term 1 in

(1 + ∆(cjn1
, cjn2

)) is not considered since it ac-
counts for those cases where there are no common
productions in the children, i.e. cjn1 6= cjn2∀j ∈
M .

We can now substitute ∆(cjn1
, cjn2

) with the
weight of the subtree tj of f rooted in cjr (and ex-
tended until its leaves), which is λs(tj) by induc-
tive hypothesis (since tj has depth lower than d).
Thus, the weight of f is s(f) = λ

∏
j∈M λs(tj) =

λ
1+
∑

j∈M s(tj), where
∑
j∈M s(tj) is the num-

ber of nodes in f ’s subtrees rooted in r’s chil-
dren and having at least one child; by adding
1, i.e. the root of f , we obtain s(f). Finally,
λs(f) = χi(n1)χi(n2), which satisfies our thesis:

χi(n1) = χi(n2) = λ
s(f)
2 .

2.4 Weights in Feature Vectors
In the light of this result, we can use the definition
of a TK function to project a tree t onto a linear
space by recognizing that t can be represented as a
vector ~xi = [x(1)

i , . . . , x
(N)
i] whose attributes are

the counts of the occurrences for each fragment,
weighed with respect to the decay factor λ.

For a normalized STK kernel, the value of the
j-th attribute of the example ~xi is therefore:

x
(j)
i =

ti,jλ
s(fj)

2

‖~xi‖
=

ti,jλ
s(fj)

2√∑N
k=1 t

2
i,kλ

s(fk)
(5)

where: ti,j is the number of occurrences of the
fragment fj , associated with the j-th dimension
of the feature space, in the tree ti. It follows that
the components of ~w (see Eq. 1) can be rewritten
as:

w(j) =
∑̀
i=1

αiyix
(j)
i =

∑̀
i=1

αiyiti,jλ
s(fj)

2√∑N
k=1 t

2
i,kλ

s(fk)
(6)

3 Projecting Exponentially Large Spaces

In order to provide a theoretical background to our
feature selection technique and to develop effec-
tive algorithms, we want to relate our approach to
statistical learning and, in particular, support vec-
tor classification theory. Since we select features
with respect to their weight w(j), we can use the
following theorem that establishes a general bound
for margin-based classifiers.

Theorem 2. (Bartlett and Shawe-Taylor, 1998)
Let C = {~x → ~w · ~x : ‖~w‖ ≤ 1, ‖~x‖ ≤ R}
be the class of real-valued functions defined in a
ball of radius R in <N . Then there is a con-
stant k such that ∀c ∈ C having a margin γ, i.e.
|~w · ~x| ≥ γ,∀~x ∈ X (training set), the error of c

is bounded by b/` +
√

k
`

(
R2

γ2 log2`+ log 1
δ

)
with

a probability 1 − δ, where ` = |X | and b is the
number of examples with margin less than γ.

In other words, if X is separated with a margin
γ by a linear classifier, then the error has a bound
depending on γ. Another conclusion is that a fea-
ture selection algorithm that wants to preserve the
accuracy of the original space should not affect the
margin.

Since we would like to exploit the availability
of the initial gradient ~w derived by the applica-
tion of SVMs, it makes sense to try to quantify the
percentage of γ reduction after feature selection,
which we indicate by ρ. We found out that γ is

225

linked to the reduction of ||~w||, as illustrated by
the next lemma.

Lemma 1. Let X be a set of points in a vector
space and ~w be the gradient vector which sepa-
rates them with a margin γ. If the selection de-
creases ||~w|| of a ρ rate, then the resulting hyper-
plane separates X by a margin larger than γin =
γ − ρR||~w||.

Proof. Let ~w = ~win+ ~wout, where ~win and ~wout ∈
<N are constituted by the components of ~w that
are selected in and out, respectively, and have zero
values in the remaining positions. By hypothesis
|~w · ~x| ≥ γ; without loss of generality, we can
consider just the case ~w · ~x ≥ γ, and write ~w ·
~x = ~win · ~x + ~wout · ~x ≥ γ ⇒ ~win · ~x ≥ γ −
~wout · ~x ≥ γ − |~wout · ~x| ≥ γ − ||~wout|| × ||~x||,
where the last inequality holds owing to Cauchy-
Schwarz inequality. The margin associated with
~win, i.e. γin, is therefore γ − ||~wout|| × ||~x|| ≥
γ − ||~wout||R = γ − ρR||~w||.

Remark 1. The lemma suggests that, even in case
of very aggressive feature selection, if a small per-
centage ρ of ||~w|| is lost, the margin reduction is
small. Consequently, through Theorem 2, we can
conclude that the accuracy of the model is by and
large preserved.

Remark 2. We prefer to show the lemma in the
more general form, but if we use normalized ~x and
classifiers with ||~w|| ≤ 1, then γin = γ−||~w||ρ >
γ − ρ.

The last result that we present justifies our se-
lection approach as it demonstrates that most of
the gradient norm is concentrated in relatively few
features, with respect to the huge space induced
by tree kernels. The selection of these few fea-
tures allows us to preserve most of the norm and
the margin.

Lemma 2. Let ~w be a linear separator of a set of
points X , where each ~xi ∈ X is an explicit vector
representations of a tree ti in the space induced by
STK and let ν be the largest s(ti), i.e. the max-
imum tree size. Then, if we discard fragments of

size greater than η, ||~wout|| ≤ ν
γ2

√
(λν)η−(λν)ν

1−λν .

Proof. By applying simple norm proper-
ties, ||~wout|| =

∥∥∥∑`
i=1 αiyi~xouti

∥∥∥ ≤ ∑`
i=1

||αiyi~xouti || =
∑`
i=1 αi||~xouti ||. To evaluate

the latter, we first re-organize the summation in
Eq. 5 (with no normalization) such that ‖~xi‖2

=
∑ν
k=1

∑
j:s(fj)=k t

2
i,jλ

s(fj). Since a fragment
fj can be at maximum rooted in ν nodes, then
ti,j ≤ ν. Therefore, by replacing the number of
trees of size k with the upperbound νk, we have
‖~xi‖ <

√∑ν
k=1 ν

2λkνk =
√∑ν

k=1 ν
2(νλ)k =√

ν2 1−µν
1−µ , where we applied geometric series

summation. Now if we assume that our algorithm
selects out (i.e. discards) fragments with size
s(f) > η, ‖~xouti‖ <

√
ν2 µ

η−µν
1−µ . It follows that

||~wout|| <
∑`
i=1 αi

√
ν2 µ

η−µν
1−µ . In case of hard-

margin SVMs, we have
∑`
i=1 αi = 1/γ2. Thus,

||~wout|| < ν
γ2

√
µη−µν
1−µ = ν

γ2

√
(λν)η−(λν)ν

1−λν .

Remark 3. The lemma shows that for an enough
large η and λ < 1/ν, ||~wout|| can be very small,
even though it includes an exponential number of
features, i.e. all the subtrees whose size ranges
from η to ν. Therefore, according to Lemma 1 and
Theorem 2, we can discard an exponential number
of features with a limited loss in accuracy.

Remark 4. Regarding the proposed norm bound,
we observe that νk is a rough overestimation of the
the real number of fragments having size k rooted
in the nodes of the target tree t. This suggests that
we don’t really need λ < 1/ν. Moreover, in case
of soft-margin SVMs, we can bound αi with the
value of the trade-off parameter C.

4 Previous Work

Initial work on feature selection for text, e.g.
(Yang and Pedersen, 1997), has shown that it may
improve the accuracy or, at least, improve effi-
ciency while preserving accuracy. Our context for
feature selection is different for several important
reasons: (i) we focus on structured features with
a syntactic nature, which show different behaviour
from lexical ones, e.g. they tend to be more sparse;
(ii) in the TK space, the a-priori weights are very
skewed, and large fragments receive exponentially
lower scores than small ones; (iii) there is high re-
dundancy and inter-dependency between such fea-
tures; (iv) we want to be able to observe the most
relevant features automatically generated by TKs;
and (v) the huge number of features makes it im-
possible to evaluate the weight of each feature in-
dividually.

Guyon and Elisseeff (2003) carries out a very
informative survey of feature selection techniques.
Non-filter approaches for SVMs and kernel ma-
chines are often concerned with polynomial and

226

Gaussian kernels, e.g. (Weston et al., 2001; Neu-
mann et al., 2005). In (Kudo and Matsumoto,
2003), an extension of the PrefixSpan algo-
rithm (Pei et al., 2001) is used to efficiently mine
the features in a low degree polynomial kernel
space. The authors discuss an approximation
of their method that allows them to handle high
degree polynomial kernels. Suzuki and Isozaki
(2005) present an embedded approach to feature
selection for convolution kernels based on χ2-
driven relevance assessment. With respect to their
work, the main differences in the approach that we
propose are that we want to exploit the SVM op-
timizer to select the most relevant features, and to
be able to observe the relevant fragments.

Regarding work that may directly benefit from
reverse kernel engineering is worthwhile mention-
ing: (Cancedda et al., 2003; Shen et al., 2003;
Daumé III and Marcu, 2004; Giuglea and Mos-
chitti, 2004; Toutanova et al., 2004; Kazama and
Torisawa, 2005; Titov and Henderson, 2006; Kate
and Mooney, 2006; Zhang et al., 2006; Bloehdorn
et al., 2006; Bloehdorn and Moschitti, 2007; Mos-
chitti and Zanzotto, 2007; Surdeanu et al., 2008;
Moschitti, 2008; Moschitti and Quarteroni, 2008;
Martins et al., 2009; Nguyen et al., 2009a)

5 Mining Fragments Efficiently

The high-level description of our feature selection
technique is as follows: we start by learning an
STK model and we greedily explore the support
vectors in search for the most relevant fragments.
We store them in an index, and then we decode (or
linearize) all the trees in the dataset, i.e. we repre-
sent them as vectors in a linear space where only a
very small subset of the fragments in the original
space are accounted for. These vectors are then
employed for learning and classification in the lin-
ear space.

To explore the fragment space defined by a set
of support vectors, we adopt the greedy strategy
described in Algorithm 5.1. Its arguments are a
model M , and the threshold factor L. The greedy
algorithm explores the fragment space in a small to
large fashion. The first step is the generation of the
all base fragments F encoded in each tree, i.e. the
smallest possible fragments according to the defi-
nition of the kernel function. For STK, such frag-
ments are all those consisting of a node and all its
direct children (i.e. production rules of the gram-
mar). We assess the cumulative relevance of each

Algorithm 5.1: GREEDY MODEL MINER(M,L)

B ← BASE FRAGS(model)
B ← REL(BEST(B))
σ ← B/L
Dprev ← FILTER(B, σ)
UPDATE(Dprev)
while Dprev 6= ∅

do



Dnext ← ∅
τ ← 1/ ∗ widthfactor ∗ /
Wprev ← Dprev
whileWprev 6= ∅

do



Wnext ← ∅
for each f ∈ Wprev

do


Ef ← EXPAND(f, τ)
F ← FILTER(Ef , σ)
if F 6= ∅

then

{
Wnext ←Wnext ∪ {f}
Dnext ← Dnext ∪ F
UPDATE(F)

τ ← τ + 1
Wprev ←Wnext

Dprev ← Dnext
return (result)

base fragment according to Eq. 6 and then use the
relevanceB of the heaviest fragment, i.e. the frag-
ment with the highest relevance in absolute value,
as a criterion to set our fragment mining threshold
σ to B/L. We then apply the FILTER(·) operator
which discards all the fragments whose cumula-
tive score is less than σ. Then, the UPDATE(·) op-
erator stores the ramaining fragments in the index.

The exploration of the kernel space is carried
out via the process of fragment expansion, by
which each fragment retained at the previous step
is incrementally grown to span more levels of the
tree and to include more nodes at each level. These
two directions of growth are controlled by the
outer and the inner while loops, respectively. Frag-
ment expansion is realized by the EXPAND(f, n)
operator, that grows the fragment f by including
the children of n expandable nodes in the frag-
ment. Expandable nodes are nodes which are
leaves in f but that have children in the tree that
originated f .

After each expansion, the FILTER(·) operator is
invoked on the set of generated fragments. If the
filtered set is empty, i.e. no fragments more rele-
vant than σ have been found during the previous
iteration, then the loop is terminated.

Unlike previous attempts, this algorithm relies
on just one parameter, i.e. L. As it revolves around
the weight of the most relevant fragment, it oper-
ates according to the norm-preservation principle
described in the previous sections. In fact, if we
call N the number of fragments mined for a given
value of L, the norm after feature selection can be

227

bounded by B
L

√
N ≤ ‖win‖ ≤ B

√
N .

The choice of B, i.e. the highest relevance of
a base fragment, as an upper bound for fragment
relevance is motivated as follows. In Eq. 6, we can
identify a term Ti = αiyi/‖ti‖ that is the same for
all the fragments in the tree ti. For 0 < λ ≤ 1,
if fj is an expansion of fk, then from our defini-

tion of fragment expansion it follows that λ
s(fj)

2 <

λ
s(fk)

2 . It can also be observed that ti,j ≤ ti,k. In-
deed, if ti,k is a subset of ti,j , then it will occur at
least as many times as its expansion ti,k, possibly
occurring as a seed fragment for different expan-
sions in other parts of the tree as well. Therefore,
if Ef is the set of expansions of f , for every two
fragments fi,j , fi,k coming from the same tree ti,
we can conclude that x(j)

i < x
(k)
i ∀fi,j ∈ Efi,k . In

other words, for each tree in the model, base frag-
ments are the most relevant, and we can assume
that the relevance of the heaviest fragment is an
upper bound for the relevance of any fragment 4.

6 Experiments

We ran a set of thorough experiments to sup-
port our claims with empirical evidence. We
show our results on three very different bench-
marks: Question Classification (QC) using TREC
10 data (Voorhees, 2001), Relation Extraction
(RE) based on the newswire and broadcast news
domain of the ACE 2004 English corpus (Dod-
dington et al., 2004) and Semantic Role Labeling
(SRL) on the CoNLL 2005 shared task data (Car-
reras and Màrquez, 2005). In the next sections we
elaborate on the setup and outcome of each set
of experiments. As a supervised learning frame-
work we used SVM-Light-TK5, which extends the
SVM-Light optimizer (Joachims, 2000) with sup-
port for tree kernel functions.

Unless differently stated, all the classifiers are
parametrized for optimal Precision and Recall on
a development set, obtained by selecting one ex-
ample in ten from the training set with the same
positive-to-negative example ratio. The results
that we show are obtained on the test sets by using
all the available data for training. For multi-class
scenarios, the classifiers are arranged in a one vs.

4In principle, the weight of some fragment encoded in the
model M may be greater than B. However, as an empirical
justification, we report that in all our experiments we have
never been able to observe such case. Thus, with a certain
probability, we can assume that the highest weight will be
obtained from the heaviest of the base fragments.

5
http://disi.unitn.it/˜moschitt/Tree-Kernel.htm

all configuration, where each sentence is a positive
example for one of the classes, and negative for
the others. While binary classifiers are evaluated
in terms of F1 measure, for multi-class classifiers
we show the final accuracy.

The next paragraphs describe the datasets used
for the experiments.

Question Classification (QC) Given a question,
the task consists in selecting the most appropriate
expected answer type from a given set of possibil-
ities. We adopted the question taxonomy known
as coarse grained, which has been described
in (Zhang and Lee, 2003) and (Li and Roth, 2006),
consisting of six non overlapping classes: Abbre-
viations (ABBR), Descriptions (DESC, e.g. def-
initions or explanations), Entity (ENTY, e.g. an-
imal, body or color), Human (HUM, e.g. group
or individual), Location (LOC, e.g. cities or coun-
tries) and Numeric (NUM, e.g. amounts or dates).

The TREC 10 QA data set accounts for 6,000
questions. For each question, we generate the
full parse of the sentence and use it to train our
models. Automatic parses are obtained with the
Stanford parser6 (Klein and Manning, 2003), and
we actually have only 5,953 sentences in our data
set due to parsing issues. During preliminary ex-
periments, we observed an uneven distribution of
examples in the traditional training/test split (the
same used in P&M). Therefore, we used a ran-
dom selection to generate an unbiased split, with
5,468 sentences for training and 485 for testing.
The resulting data set is available for download
at http://danielepighin.net/cms/research/

QC_dataset.tgz.

Relation Extraction (RE) The corpus
consists of 348 documents, and contains
seven relation classes defined over pairs of
mentions: Physical, Person/Social, Employ-
ment/Membership/Subsidiary, Agent-Artifact,
PER/ORG Affiliation, GPE Affiliation, and
Discourse. There are 4,400 positive and 38,696
negative examples when the potential relations
are generated using all the entity/mention pairs in
the same sentence.

Documents are parsed using the Stanford
Parser, where the nodes of the entities are enriched
with information about the entity type. Overall,
we used the setting and data defined in (Nguyen et
al., 2009b).

6
http://nlp.stanford.edu/software/lex-parser.shtml

228

Semantic Role Labeling (SRL) SRL can be de-
composed into two tasks: boundary detection,
where the word sequences that are arguments of
a predicate word w are identified, and role clas-
sification, where each argument is assigned the
proper role. For these experiments we concen-
trated on this latter task and used exactly the same
setup as P&M. We considered all the argument
nodes of any of the six PropBank (Palmer et al.,
2005) core roles7 (i.e. A0, . . . , A5) from all the
available training sections, i.e. 2 through 21, for a
total of 179,091 training instances. Similarly, we
collected 9,277 test instances from the annotations
of Section 23.

6.1 Model Comparison
To show the validity of Lemma 1 in practical sce-
narios, we compare the accuracy of our linearized
models against vanilla STK classifiers. We de-
signed two types of classifiers:

LIN, a linearized STK model, which uses the
weights estimated by the learner in the STK space
and linearized examples; in other words LIN uses
~wIN . It allows us to measure exactly the loss in
accuracy with respect to the reduction of ||~w||.

OPT, a linearized STK model that is re-
optimized in the linear space, i.e. for which we
retrained an SVM using the linearized training ex-
amples as input data. Since the LIN solution is
part of the candidate solutions from which OPT is
selected, we always expect higher accuracy from
it.

Additionally, we compare selection based on
gradient ~w (as detailed in Section 2.4) against to
χ2 selection, which evaluates the relevance of fea-
tures, in a similar way to (Suzuki and Isozaki,
2005). The relevance of a fragment is calculated
as

χ2 =
N(yN −Mx)2

x(N − x)M(N −M)
,

where N is the number of support vectors, M is
the number of positive vectors (i.e. αi > 0), and x
and y are the fractions ofN andM where the frag-
ment is instantiated, respectively. We specify the
selection models by means of Grad for the former
and Chi for the latter. For example, a model called
OPT/Grad is a re-trained model using the features
selected according the highest gradient weights,
while LIN/Chi would be a linearized tree kernel
model using χ2 for feature selection.

7We do not consider adjuncts because we preferred the
number of classes to be similar across the three benchmarks.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 10 100 1000 10000

Number of fragments (log)

ABBR
DESC
ENTY
HUM
LOC

NUM

1
−
ρ

Figure 1: Percentage of gradient Norm, i.e. 1− ρ,
according to the number of selected fragments, for
different QC classifiers.

STK Linearized

LIN OPT

F1 ||~w|| Frags F1 ||~win|| F1

A 80.00 11.77 566 66.67 7.13 90.91
D 86.26 41.33 5161 81.87 25.10 83.72
E 76.86 51.71 5,702 73.03 31.06 75.56
H 84.92 43.61 5,232 80.47 26.20 77.08
L 81.69 38.73 1,732 78.87 24.27 82.89
N 92.31 37.65 1,015 85.07 24.53 87.07

Table 1: Per-class comparison between STK and
the LIN/Grad and OPT/Grad models on the QC
task. Each class is identified by its initial (e.g.
A=ABBR). For each class, we considered a value
of the threshold factor parameter L so as to retain
at least 60% of the gradient norm after feature se-
lection.

6.2 Results

The plots in Figure 1 show, for each class, the per-
centage of the gradient norm (i.e. 1 − ρ, see Sec-
tion 3) retained when including a different num-
ber of fragments. This graph empirically validates
Lemma 2 since it clearly demonstrates that after
1,000-10,000 features the percentage of the norm
reaches a plateau (around 60-65%). This means
that after such threshold, which interestingly gen-
eralizes across all classifiers, a huge number of
features is needed for a small increase of the norm.
We recall that the maximum reachable norm is
around 70% since we apriori filter out fragments
of frequency lower than three.

Table 1 shows the F1 of the binary question clas-
sifiers learned with STK, LIN/Grad and OPT/Grad
models. It also shows the norm of the gradi-
ent before, ||~w||, and after, ||~win||, feature selec-

229

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

F1
 (

L
O

C
)

LIN/Grad
OPT/Grad

LIN/Chi
OPT/Chi

STK

1− ρ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 0.2 0.3 0.4 0.5 0.6

F1
 (

D
E

SC
)

LIN/Grad
OPT/Grad

LIN/Chi
OPT/Chi

STK

1− ρ

Figure 2: F1-measure of LOC and DESC wrt dif-
ferent 1− ρ values.

tion along with the number of selected fragments,
Frags. Instead of selecting an optimal number of
fragments on a validation set, we investigated the
60% value suggested by the previous plot. Thus,
for each category we selected the feature set reach-
ing approximately 60% of ||~w||. The table shows
that the accuracy of the OPT/Grad model is in
line with STK. In some cases, e.g. ABBR, the
projected model is more accurate, i.e. 90.91 vs.
80.00, whereas in others, e.g. HUM, STK per-
forms better, i.e. 84.92 vs. 77.08. It is interesting
to see how the empirical results clearly comple-
ment the theoretical findings of the previous sec-
tions. For example, the LOC classifier uses only
1,732 of the ∼ 1012 features encoded by the cor-
responding STK model, but since only 40% of the
norm of ~w is lost, classification accuracy is af-
fected only marginally.

As mentioned above, the selected number of
features is not optimal for every class. Fig-
ure 2 plots the accuracy of the LIN/Grad and
OPT/Grad for different numbers of fragments on
two classes 8. These show that the former, with

8The other classes, which show similar behaviour, are
omitted due to lack of space.

 20

 30

 40

 50

 60

 70

 80

 90

 100 1000 10000 100000

M
ul

tic
la

ss
 a

cc
ur

ac
y

Number of fragments (log)

OPT/Grad
OPT/Chi

STK

Figure 3: Multiclass accuracy obtained by includ-
ing a growing number of fragments.

more than 60% of the norm, approaches STK
whereas the latter requires less fragments. The
plots also show the comparison against the same
fragment mining algorithm and learning frame-
work when using χ2-based selection. This also
provides similar good results, as far as the reduc-
tion of ||~w|| is kept under control, i.e. as far as we
select the components of the gradient that mostly
affect its norm.

To concretely assess the benefits of our models
for QC, Figure 3 plots the accuracy of OPT/Grad
and OPT/Chi on the multiclass QC problem wrt
the number of fragments employed. The results
for the multi-class classifier are less biased by the
binary Precision/Recall classifiers thus they are
more stable and clearly show how, after selecting
the optimal number of fragments (1,000-10,000
i.e. 60-65% of the norm), the accuracy of the OPT
and CHI classifiers stabilize around levels of accu-
racy which are in line with STK.

STK OPT/Grad

F1 F1 Frags

QC 83.70 84.12 ∼2k
RE 67.53 66.31 ∼10k
SRL 87.56 88.17 ∼300k

Table 2: Multiclass classification accuracy on
three benchmarks.

Finally, Table 2 shows the best results that we
achieved on the three multi-class classification
tasks, i.e. QC, RE9 and SRL, and compares them
against the STK 10. For all the tasks OPT/Grad

9For RE, we show lower accuracy than in (Nguyen et al.,
2009b) since, to have a closer comparison with STK, we do
not combine structural features with manual designed fea-
tures.

10We should point out that this models are only partially

230

produces the best results for all the tests, even
though the difference with OPT/Chi is generally
not statistically significant. Out of three tasks,
OPT/Grad manages to slightly improve two of
them, i.e. QC (84.12 vs. 83.7) and SRL (88.17
vs. 87.56), while STK is more accurate on RE, i.e.
67.53 vs. 66.31.

6.3 Comparison with P&M

The results on SRL can be compared against
those that we presented in (Pighin and Moschitti,
2009a), where we measured an accuracy of 87.13
exactly on the same benchmark. As we can see in
Table 2, our model improves the classification ac-
curacy of about 1 point, i.e. 88.17. On the other
hand, such comparison is not really fair since the
algorithms rely on different parameter sets, and it
is almost impossible to find matching configura-
tions for the different versions of the algorithms
that would result in exactly the same number of
fragments. In a projected space with approxi-
mately 103 or 104 fragments, including a few hun-
dred more features can produce noticeably differ-
ent accuracy readings.

Generally speaking, the current model can
achieve comparable accuracy with P&M while
considering a smaller number of fragments. For
example, in (Pighin and Moschitti, 2009b) the
best model for the A1 binary classifier of the
SRL benchmark was obtained by including 50,000
fragments, achieving an F1 score of 89.04. With
the new algorithm, using approximately half the
fragments the accuracy of the linearized A1 clas-
sifier is 90.09. In P&M, the algorithm would only
consider expansions of a fragment f where at most
m nodes are expanded. Consequently, the set of
mined fragments may include some small struc-
tures which can be less relevant than larger ones.
Conversely, the new algorithm (see Alg. 5.1) may
include larger but more relevant structures, thus
accounting for a larger fraction of the gradient
norm with a smaller number of fragments.

Concerning efficiency, the complexity of both
mining algorithms is proportional to the number
of fragments that they generate. Therefore, we can
conclude that the new implementation is more effi-
cient by considering that we can achieve the same
accuracy with less fragments. As for the complex-

optimized, as we evaluated them by using the same threshold
factor parameter L for all the classes. Better performances
could be achieved by selecting an optimal value of L for in-
dividual classes when building the multi-class classifier.

ity of decoding, i.e. providing explicit vector rep-
resentations of the input trees, in P&M, we used
a very naive approach, i.e. the generation of all
the fragments encoded in the tree and then look up
each fragment in the index. This solution has ex-
ponential complexity with the number of nodes in
the tree. Conversely, the new implementation has
approximately linear complexity. The approach is
based on the idea of an FST-like index, that we
can query with a tree node. Every time the tree
matches one of the fragments, the index increases
the count of that fragment for the tree. The reduc-
tion in time complexity is made possible by en-
coding in the index the sequence of expansion op-
erations that produced each indexed fragment, and
by considering only those expansions at decoding
time.

7 Conclusions

Available feature selection frameworks for very
high dimensional kernel families, such as tree ker-
nels, suffer from the lack of a theory that could
justify the very aggressive selection strategies nec-
essary to cope with the exceptionally high dimen-
sional feature space.

In this paper, we have provided a theoretical
foundation in the context of margin classifiers by
(i) linking the reduction of the gradient norm to the
theoretical error bound and (ii) by proving that the
norm is mostly concentrated in a relatively small
number of features. The two properties suggest
that we can apply an extremely aggressive fea-
ture selection by keeping the same accuracy. We
described a very efficient algorithm to carry out
such strategy in the fragment space. Our experi-
ments empirically support our theoretical findings
on three very different NLP tasks.

Acknowledgements

We would like to thank Truc-Vien T. Nguyen for
providing us with the SVM learning and test files
of the Relation Extraction dataset. Many thanks to
the anonymous reviewers for their valuable sug-
gestions.
This research has been partially supported by the
EC project, EternalS: “Trustworthy Eternal Sys-
tems via Evolving Software, Data and Knowl-
edge”, project number FP7 247758.

231

References
P. Bartlett and J. Shawe-Taylor, 1998. Advances in Kernel

Methods — Support Vector Learning, chapter Generaliza-
tion Performance of Support Vector Machines and other
Pattern Classifiers. MIT Press.

Stephan Bloehdorn and Alessandro Moschitti. 2007. Struc-
ture and semantics for expressive text kernels. In In Pro-
ceedings of CIKM ’07.

Stephan Bloehdorn, Roberto Basili, Marco Cammisa, and
Alessandro Moschitti. 2006. Semantic kernels for text
classification based on topological measures of feature
similarity. In Proceedings of ICDM 06, Hong Kong, 2006.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and
Jean Michel Renders. 2003. Word sequence kernels.
Journal of Machine Learning Research, 3:1059–1082.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to
the CoNLL-2005 Shared Task: Semantic Role Labeling.
In Proceedings of CoNLL’05.

Michael Collins and Nigel Duffy. 2002. New Ranking Al-
gorithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron. In Proceedings of
ACL’02.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
Tree Kernels for Relation Extraction. In Proceedings of
ACL’04.

Chad Cumby and Dan Roth. 2003. Kernel Methods for Re-
lational Learning. In Proceedings of ICML 2003.

Hal Daumé III and Daniel Marcu. 2004. Np bracketing by
maximum entropy tagging and SVM reranking. In Pro-
ceedings of EMNLP’04.

G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw,
S. Strassel, and R. Weischedel. 2004. The Auto-
matic Content Extraction (ACE) Program–Tasks, Data,
and Evaluation. Proceedings of LREC 2004, pages 837–
840.

Ana-Maria Giuglea and Alessandro Moschitti. 2004.
Knowledge Discovering using FrameNet, VerbNet and
PropBank. In In Proceedings of the Workshop on On-
tology and Knowledge Discovering at ECML 2004, Pisa,
Italy.

Isabelle Guyon and André Elisseeff. 2003. An introduc-
tion to variable and feature selection. Journal of Machine
Learning Research, 3:1157–1182.

David Haussler. 1999. Convolution kernels on discrete struc-
tures. Technical report, Dept. of Computer Science, Uni-
versity of California at Santa Cruz.

T. Joachims. 2000. Estimating the generalization perfor-
mance of a SVM efficiently. In Proceedings of ICML’00.

Hisashi Kashima and Teruo Koyanagi. 2002. Kernels for
semi-structured data. In Proceedings of ICML’02.

Rohit J. Kate and Raymond J. Mooney. 2006. Using string-
kernels for learning semantic parsers. In Proceedings of
the 21st ICCL and 44th Annual Meeting of the ACL, pages
913–920, Sydney, Australia, July. Association for Compu-
tational Linguistics.

Jun’ichi Kazama and Kentaro Torisawa. 2005. Speeding up
training with tree kernels for node relation labeling. In
Proceedings of HLT-EMNLP’05.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL’03, pages
423–430.

Taku Kudo and Yuji Matsumoto. 2003. Fast methods for
kernel-based text analysis. In Proceedings of ACL’03.

Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005. Boosting-
based parse reranking with subtree features. In Proceed-
ings of ACL’05.

Xin Li and Dan Roth. 2006. Learning question classifiers:
the role of semantic information. Natural Language En-
gineering, 12(3):229–249.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro
M. Q. Aguiar, and Mário A. T. Figueiredo. 2009. Nonex-
tensive information theoretic kernels on measures. J.
Mach. Learn. Res., 10:935–975.

Alessandro Moschitti and Silvia Quarteroni. 2008. Kernels
on linguistic structures for answer extraction. In Proceed-
ings of ACL-08: HLT, Short Papers, Columbus, Ohio.

Alessandro Moschitti and Fabio Massimo Zanzotto. 2007.
Fast and effective kernels for relational learning from
texts. In Zoubin Ghahramani, editor, Proceedings of the
24th Annual International Conference on Machine Learn-
ing (ICML 2007).

Alessandro Moschitti, Daniele Pighin, and Roberto Basili.
2008. Tree kernels for semantic role labeling. Compu-
tational Linguistics, 34(2):193–224.

Alessandro Moschitti. 2006. Efficient convolution kernels
for dependency and constituent syntactic trees. In Pro-
ceedings of ECML’06, pages 318–329.

Alessandro Moschitti. 2008. Kernel methods, syntax and
semantics for relational text categorization. In Proceeding
of CIKM ’08, NY, USA.

Julia Neumann, Christoph Schnorr, and Gabriele Steidl.
2005. Combined SVM-Based Feature Selection and Clas-
sification. Machine Learning, 61(1-3):129–150.

Truc-Vien T. Nguyen, Alessandro Moschitti, and Giuseppe
Riccardi. 2009a. Convolution kernels on constituent, de-
pendency and sequential structures for relation extraction.
In Proceedings of EMNLP.

Truc-Vien T. Nguyen, Alessandro Moschitti, and Giuseppe
Riccardi. 2009b. Convolution kernels on constituent,
dependency and sequential structures for relation extrac-
tion. In EMNLP ’09: Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing,
pages 1378–1387, Morristown, NJ, USA. Association for
Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles. Comput. Linguist., 31(1):71–106.

J. Pei, J. Han, Mortazavi B. Asl, H. Pinto, Q. Chen, U. Dayal,
and M. C. Hsu. 2001. PrefixSpan Mining Sequential Pat-
terns Efficiently by Prefix Projected Pattern Growth. In
Proceedings of ICDE’01.

232

Daniele Pighin and Alessandro Moschitti. 2009a. Efficient
linearization of tree kernel functions. In Proceedings of
CoNLL’09.

Daniele Pighin and Alessandro Moschitti. 2009b. Reverse
engineering of tree kernel feature spaces. In Proceedings
of EMNLP, pages 111–120, Singapore, August. Associa-
tion for Computational Linguistics.

Libin Shen, Anoop Sarkar, and Aravind k. Joshi. 2003. Us-
ing LTAG Based Features in Parse Reranking. In Proceed-
ings of EMNLP’06.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2008. Learning to rank answers on large online
QA collections. In Proceedings of ACL-08: HLT, Colum-
bus, Ohio.

Jun Suzuki and Hideki Isozaki. 2005. Sequence and Tree
Kernels with Statistical Feature Mining. In Proceedings
of NIPS’05.

Ivan Titov and James Henderson. 2006. Porting statisti-
cal parsers with data-defined kernels. In Proceedings of
CoNLL-X.

Kristina Toutanova, Penka Markova, and Christopher Man-
ning. 2004. The Leaf Path Projection View of Parse
Trees: Exploring String Kernels for HPSG Parse Selec-
tion. In Proceedings of EMNLP 2004.

Ellen M. Voorhees. 2001. Overview of the trec 2001 ques-
tion answering track. In In Proceedings of the Tenth Text
REtrieval Conference (TREC, pages 42–51.

Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimil-
iano Pontil, Tomaso Poggio, and Vladimir Vapnik. 2001.
Feature Selection for SVMs. In Proceedings of NIPS’01.

Yiming Yang and Jan O. Pedersen. 1997. A comparative
study on feature selection in text categorization. In Dou-
glas H. Fisher, editor, Proceedings of ICML-97, 14th In-
ternational Conference on Machine Learning, pages 412–
420, Nashville, US. Morgan Kaufmann Publishers, San
Francisco, US.

Dell Zhang and Wee Sun Lee. 2003. Question classifica-
tion using support vector machines. In Proceedings of SI-
GIR’03, pages 26–32.

Min Zhang, Jie Zhang, and Jian Su. 2006. Exploring Syntac-
tic Features for Relation Extraction using a Convolution
tree kernel. In Proceedings of NAACL.

233

