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Abstract

We present a simple technique for learn-
ing better SVMs using fewer training ex-
amples. Rather than using the standard
SVM regularization, we regularize toward
low weight-variance. Our new SVM ob-
jective remains a convex quadratic func-
tion of the weights, and is therefore com-
putationally no harder to optimize than a
standard SVM. Variance regularization is
shown to enable dramatic improvements
in the learning rates of SVMs on three lex-
ical disambiguation tasks.

1 Introduction

Discriminative training is commonly used in NLP
and speech to scale the contribution of different
models or systems in a combined predictor. For
example, discriminative training can be used to
scale the contribution of the language model and
translation model in machine translation (Och and
Ney, 2002). Without training data, it is often rea-
sonable to weight the different models equally. We
propose a simple technique that exploits this intu-
ition for better learning with fewer training exam-
ples. We regularize the feature weights in a Sup-
port Vector Machine (Cortes and Vapnik, 1995) to-
ward a low-variance solution. Since the new SVM
quadratic program is convex, it is no harder to op-
timize than the standard SVM objective.

When training data is generated through hu-
man effort, faster learning saves time and money.
When examples are labeled automatically, through
user feedback (Joachims, 2002) or from tex-
tual pseudo-examples (Smith and Eisner, 2005;
Okanohara and Tsujii, 2007), faster learning can
reduce the lag before a new system is useful.

We demonstrate faster learning on lexical dis-
ambiguation tasks. For these tasks, a system pre-
dicts a label for a word in text, based on the

word’s context. Possible labels include part-of-
speech tags, named-entity types, and word senses.
A number of disambiguation systems make pre-
dictions with the help of N-gram counts from a
web-scale auxiliary corpus, typically via a search-
engine (Lapata and Keller, 2005) or N-gram cor-
pus (Bergsma et al., 2009). When discriminative
training is used to weigh the counts for classifi-
cation, many of the learned feature weights have
similar values. Good weights have low variance.

For example, consider the task of preposition
selection. A system selects the most likely prepo-
sition given the context, and flags a possible error
if it disagrees with the user’s choice:

• I worked in Russiafrom 1997 to 2001.

• I worked in Russia *during 1997 to 2001.

Bergsma et al. (2009) use a variety of web counts
to predict the correct preposition. They have fea-
tures for COUNT(in Russia from), COUNT(Russia
from 1997), COUNT(from 1997 to), etc. If these are
high, from is predicted. Similarly, they have fea-
tures forCOUNT(in Russiaduring), COUNT(Russia
during 1997), COUNT(during 1997 to). These fea-
tures predictduring . All counts are in the log
domain. The task has thirty-four different prepo-
sitions to choose from. A 34-way classifier is
trained on examples of correct preposition usage;
it learns which context positions and sizes are most
reliable and assigns feature weights accordingly.

A very strong unsupervised baseline, however,
is to simply weight all the count features equally.
In fact, in Bergsma et al. (2009), the supervised
approach requires over 30,000 training examples
before it outperforms this baseline. In contrast,
we show that by regularizing a classifier toward
equal weights, a supervised predictor outperforms
the unsupervised approach after only ten exam-
ples, and does as well with 1000 examples as the
standard classifier does with 100,000.
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Section 2 first describes a general multi-class
SVM. We call the base vector of information
used by the SVM theattributes. A standard
multi-class SVM creates features for the cross-
product of attributes and classes. E.g., the attribute
COUNT(Russiaduring 1997) is not only a feature
for predicting the prepositionduring , but also for
predicting the 33 other prepositions. The SVM
must therefore learn to disregard many irrelevant
features. We observe that this is not necessary,
and develop an SVM that only uses the relevant
attributes in the score for each class. Building on
this efficient framework, we incorporate variance
regularization into the SVM’s quadratic program.

We apply our algorithms to three tasks: prepo-
sition selection, context-sensitive spelling correc-
tion, and non-referential pronoun detection (Sec-
tion 4). We reproduce Bergsma et al. (2009)’s
results using a multi-class SVM. Our new mod-
els achieve much better accuracy with fewer train-
ing examples. We also exceed the accuracy of a
reasonable alternative technique for increasing the
learning rate: including the output of the unsuper-
vised system as a feature in the SVM.

Variance regularization is an elegant addition to
the suite of methods in NLP that improve perfor-
mance when access to labeled data is limited. Sec-
tion 5 discusses some related approaches. While
we motivate our algorithm as a way to learn better
weights when the features are counts from an aux-
iliary corpus, there are other potential uses of our
method. We outline some of these in Section 6,
and note other directions for future research.

2 Three Multi-Class SVM Models

We describe three max-margin multi-class classi-
fiers and their corresponding quadratic programs.
Although we describe linear SVMs, they can be
extended to nonlinear cases in the standard way
by writing the optimal function as a linear combi-
nation of kernel functions over the input examples.

In each case, after providing the general tech-
nique, we relate the approach to our motivating
application: learning weights for count features in
a discriminative web-scale N-gram model.

2.1 Standard Multi-Class SVM

We define aK-class SVM following Crammer and
Singer (2001). This is a generalization of binary
SVMs (Cortes and Vapnik, 1995). We have a set
{(x̄1, y1), ..., (x̄M , yM )} of M training examples.

Eachx̄ is anN -dimensional attribute vector, and
y ∈ {1, ...,K} are classes. A classifier,H, maps
an attribute vector,̄x, to a class,y. H is parame-
terized by aK-by-N matrix of weights,W:

HW(x̄) =
K

argmax
r=1

{W̄r · x̄} (1)

whereW̄r is therth row of W. That is, the pre-
dicted label is the index of the row ofW that has
the highest inner-product with the attributes,x̄.

We seek weights such that the classifier makes
few errors on training data and generalizes well
to unseen data. There areKN weights to learn,
for the cross-product of attributes and classes.
The most common approach is to trainK sep-
arate one-versus-all binary SVMs, one for each
class. The weights learned for therth SVM pro-
vide the weightsW̄r in (1). We call this approach
OvA-SVM . Note in some settings various one-
versus-one strategies may be more effective than
one-versus-all (Hsu and Lin, 2002).

The weights can also be found using a single
constrained optimization (Vapnik, 1998; Weston
and Watkins, 1998). Following the soft-margin
version in Crammer and Singer (2001):

min
W,ξ1,...,ξM

1

2

K∑

i=1

||W̄i||
2 + C

m∑

i=1

ξi

subject to : ξi ≥0

∀r 6= yi, W̄yi · x̄i − W̄r · x̄
i ≥1 − ξi (2)

The constraints require the correct class to be
scored higher than other classes by a certain mar-
gin, with slack for non-separable cases. Minimiz-
ing the weights is a form of regularization. Tuning
theC-parameter controls the emphasis on regular-
ization versus separation of training examples.

We call this theK -SVM . The K-SVM out-
performed theOvA-SVM in Crammer and Singer
(2001), but see Rifkin and Klautau (2004). The
popularity ofK-SVM is partly due to convenience;
it is included in popular SVM software likeSVM-
multiclass1 andLIBLINEAR (Fan et al., 2008).

Note that with two classes,K-SVM is less effi-
cient than a standard binary SVM. A binary classi-
fier outputs class 1 if (̄w · x̄ > 0) and class 2 other-
wise. TheK-SVM encodes a binary classifier using
W̄1 = w̄ andW̄2 = −w̄, therefore requiring twice
the memory of a binary SVM. However, both bi-
nary and 2-class formulations have the same solu-
tion (Weston and Watkins, 1998).

1
http://svmlight.joachims.org/svm multiclass.html
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2.1.1 Web-Scale N-gramK -SVM

K-SVM was used with N-gram models in Bergsma
et al. (2009). For preposition selection, attributes
were web counts of patterns filled with 34 preposi-
tions, corresponding to the 34 classes. Each prepo-
sition serves as thefiller of eachcontext pattern.
Fourteen patterns were used for each filler: all five
5-grams, four 4-grams, three 3-grams, and two 2-
grams spanning the position to be predicted. There
areN = 14∗34 = 476 total attributes, and therefore
KN = 476 ∗ 34 = 16184 weights inW.

This K-SVM classifier can potentially exploit
very subtle information. LetW̄in and W̄before

be weights for the classesin andbefore. Notice
some of the attributes weighted in the inner prod-
uctsW̄before · x̄ andW̄in · x̄ will be for counts of
the prepositionafter. Relatively high counts for a
context withafter should deter us from choosing
in more than from choosingbefore. These cor-
relations can be encoded in the classifier via the
corresponding weights onafter-counts inW̄in and
W̄before. How useful are these correlations and
how much training data is needed before they can
be learned and exploited effectively?

We next develop a model that, for each class,
only scores those attributes deemed to be directly
relevant to the class. Our experiments thus empir-
ically address these questions for different tasks.

2.2 SVM with Class-Specific Attributes

Suppose we can partition our attribute vectors into
sub-vectors that only include attributes that we de-
clare as relevant to the corresponding class:x̄ =
(x̄1, ..., x̄K). We develop a classifier that only
uses the class-specific attributes in the score for
each class. The classifier uses anN -dimensional
weight vector,w̄, which follows the attribute par-
tition, w̄ = (w̄1, ..., w̄K). The classifier is:

Hw̄(x̄) =
K

argmax
r=1

{w̄r · x̄r} (3)

We call this classifier theCS-SVM (an SVM with
Class-Specific attributes).

The weights can be determined using the follow
(soft-margin) optimization:

min
w̄,ξ1,...,ξm

1

2
w̄T w̄ + C

m∑

i=1

ξi

subject to : ξi ≥0

∀r 6= yi, w̄yi · x̄i
yi − w̄r · x̄

i
r ≥1 − ξi (4)

There are several advantages to this formula-
tion. Foremost, rather than havingKN weights,
it can have onlyN . For linear classifiers, the
number of examples needed to reach optimum
performance is at most linear in the number of
weights (Vapnik, 1998; Ng and Jordan, 2002). In
fact, both the total number and number ofactive
features per example decrease byK. Thus this re-
duction saves far more memory than what could
be obtained by an equal reduction in dimensional-
ity via pruning infrequent attributes.

Also, note that unlike theK-SVM (Section 2.1),
in the binary case theCS-SVM is completely equiv-
alent (thus equally efficient) to a standard SVM.

We will not alwaysa priori know the class as-
sociated with each attribute. Also, some attributes
may be predictive of multiple classes. In such
cases, we can include ambiguous attributes in ev-
ery sub-vector (needingN+D(K-1) total weights
if D attributes are duplicated). In the degenerate
case where every attribute is duplicated,CS-SVM

is equivalent toK-SVM; both haveKN weights.

2.2.1 Optimization as a Binary SVM

We could solve the optimization problem in (4)
directly using a quadratic programming solver.
However, through an equivalent transformation
into a binary SVM, we can take advantage of effi-
cient, custom SVM optimization algorithms.

We follow Har-Peled et al. (2003) in transform-
ing a multi-class example into a set of binary
examples, each specifying a constraint from (4).
We extend the attribute sub-vector corresponding
to each class to beN -dimensional. We do this
by substituting zero-vectors for all the other sub-
vectors in the partition. The attribute vector for the
rth class is then̄zr = (0̄, ..., 0̄, x̄r, 0̄, ..., 0̄). This is
known as Kesler’s Construction and has a long his-
tory in classification (Duda and Hart, 1973; Cram-
mer and Singer, 2003). We then create binary rank
constraints for a ranking SVM (Joachims, 2002)
(ranking SVMs reduce to standard binary SVMs).
We createK instances for each multi-class exam-
ple (x̄i, yi), with the transformed vector of the true
class,̄zyi , assigned a higher-rank than all the other,
equally-ranked classes,̄z{r 6=yi}. Training a rank-
ing SVM using these constraints gives the same
weights as solving (4), but allows us to use effi-
cient, custom SVM software.2 Note theK-SVM

2One subtlety is whether to use a single slack,ξi, for all
K-1 constraints per examplei (Crammer and Singer, 2001),
or a different slack for each constraint (Joachims, 2002). Us-
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can also be trained this way, by including every
attribute in every sub-vector, as described earlier.

2.2.2 Web-Scale N-gramCS-SVM

Returning to our preposition selection example, an
obvious attribute partition for theCS-SVM is to
include as attributes for predicting prepositionr

only those counts for patterns filled with preposi-
tion r. Thusx̄in will only include counts for con-
text patterns filled within and x̄before will only
include counts for context patterns filled withbe-
fore. With 34 sub-vectors and 14 attributes in each,
there are only14 ∗ 34 = 476 total weights. In con-
trast,K-SVM had16184 weights to learn.

It is instructive to compare theCS-SVM in (3) to
the unsupervised SUMLM approach in Bergsma et
al. (2009). That approach can be written as:

H(x̄) =
K

argmax
r=1

{1̄ · x̄r} (5)

where1̄ is anN -dimensional vector of ones. This
is CS-SVM with all weights set to unity. The
counts for each preposition are simply summed,
and whichever one scores the highest is taken as
the output (actually only a subset of the counts are
used, see Section 4.1). As mentioned earlier, this
system performs remarkably well on several tasks.

2.3 Variance Regularization SVMs

Suppose we choose our attribute partition well and
train theCS-SVM on a sufficient number of exam-
ples to achieve good performance. It is a reason-
able hypothesis that the learned weights will be
predominantly positive. This is because each sub-
vector x̄r was chosen to only include attributes
that are predictive of classr. Unlike the classifier
in (1) which weighs positive and negative evidence
together for each class, inCS-SVM, negative evi-
dence only plays a roll as it contributes to the score
of competing classes.

If all the attributes are equally important, the
weights should be equal, as in the unsupervised
approach in (5). If some are more important than
others, the training examples should reflect this
and the learner can adjust the weights accord-
ingly.3 In the absence of this training evidence, it
is reasonable to bias the classifier toward an equal-
weight solution.

ing the former may be better as it results in a tighter bound
on empirical risk (Tsochantaridis et al., 2005).

3E.g., the true preposition might be better predicted by the
counts of patterns that tend to include the preposition’s gram-
matical object, i.e., patterns that include more right-context.

Rather than the standard SVM regularization
that minimizes the norm of the weights as in (4),
we therefore regularize toward weights that have
low variance. More formally, we can regard the
set of weights,w1, ..., wN , as the distribution of a
discrete random variable,W . We can calculate the
mean and variance of this variable from its distri-
bution. We seek a variable that has low variance.

We begin with a more general objective and
then explain how a specific choice of covariance
matrix,C, minimizes the variance of the weights.
We propose the regularizer:

min
w̄,ξ1,...,ξm

1

2
w̄T

Cw̄ + C

m∑

i=1

ξi

subject to : ξi ≥0

∀r 6= yi, w̄yi · x̄i
yi − w̄r · x̄

i
r ≥1− ξi (6)

whereC is a normalized covariance matrix such
that

∑
i,j Ci,j = 0. This ensures uniform weight

vectors receive zero regularization penalty. Since
all covariance matrices are positive semi-definite,
the quadratic program (QP) remains convex inw̄,
and thus amenable to general purpose QP-solvers.

Since the unsupervised system in (5) has zero
weight variance, the SVM learned in (6) should do
as least as well as (5) as we tune theC-parameter
on development data. That is, asC approaches
zero, variance minimization becomes the sole ob-
jective of (6), and uniform weights are produced.

We use covariance matrices of the form:

C = diag(p̄) − p̄p̄T (7)

wherediag(p̄) is the matrix constructed by putting
p̄ on the main diagonal. Here,̄p is an arbitrary
N -dimensional weighting vector, such thatp ≥
0 and

∑
i pi = 1. p̄ dictates the contribution of

eachwi to the mean and variance of the weights
in w̄. It is easy to see that

∑
i,j Ci,j =

∑
i pi −∑

i

∑
j pipj = 0.

We now show thatw̄T (diag(p̄) − p̄p̄T )w̄ ex-
presses the variance of the weights inw̄ with re-
spect to the probability weightinḡp. The variance
of a random variable with meanE[W ] = µ is:

Var[W ] = E[(W − µ)2] = E[W 2] − E[W ]2

The mean of the weights using probability weight-
ing p̄ is E[W ] = w̄T p̄ = p̄w̄. Also, E[W 2] =
w̄T diag(p̄)w̄. Thus:

Var[W ] = w̄T diag(p̄)w̄ − (w̄T p̄)(p̄w̄)

= w̄T (diag(p̄) − p̄p̄)w̄
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In our experiments, we deem each weight to be
equally important to the variance calculation, and
setpi = 1

N
,∀i = 1, . . . , N .

The goal of the regularization in (6) usingC
from (7) can be regarded as directing the SVM to-
ward a good unsupervised system, regardless of
the constraints (training examples). In some un-
supervised systems, however, only a subset of the
attributes are used. In other cases, distinct subsets
of weights should have low variance, rather than
minimizing the variance across all weights. There
are examples of these situations in Section 4.

We can account for these cases in our QP. We
provide separate terms in our quadratic function
for the subsets of̄w that should have low vari-
ance. Suppose we createL subsets of̄w: ω̃1, ...ω̃L,
whereω̃j is w̄ with elements set to zero that are not
in subsetj. We then minimize1

2
(ω̃T

1 C1ω̃1 + ... +
ω̃T

LCLω̃L). If the terms in subsetj have low vari-
ance,Cj = C from (7) is used. If the subset corre-
sponds to attributes that are nota priori known to
be useful, an identity matrix can instead be used,
Cj = I, and these weights will be regularized to-
ward zero as in a standard SVM.4

Variance regularization therefore exploits extra
knowledge by the system designer. The designer
decides which weights should have similar values,
and the SVM is biased to prefer this solution.

One consequence of being able to regularize
different subsets of weights is that we can also ap-
ply variance regularization to the standard multi-
class SVM (Section 2.1). We can use an identity
Ci matrix for all irrelevant weights, i.e., weights
that correspond to class-attribute pairs where the
attribute is not directly relevant to the class. In our
experiments, however, we apply variance regular-
ization to the more efficientCS-SVM.

We refer to aCS-SVM trained using the variance
minimization quadratic program as theVAR-SVM.

2.3.1 Web-Scale N-gram VAR-SVM

If variance regularization is applied to all weights,
attributesCOUNT(in Russiaduring), COUNT(Russia
during 1997), andCOUNT(during 1997 to) will be
encouraged to have similar weights in the score for
classduring . Furthermore, these will be weighted
similarly to other patterns, filled with other prepo-
sitions, used in the scores for other classes.

4Weights must appear in≥1 subsets (possibly only in the
Cj = I subset). Each occurs in at most one in our experi-
ments. Note it is straightforward to express this as a single
covariance matrix regularizer over̄w; we omit the details.

Alternatively, we could minimize the variance
separately over all 5-gram patterns, then over all
4-gram patterns, etc., or over all patterns with a
filler in the same position. In our experiments, we
took a very simple approach: we minimized the
variance of all attributes that are weighted equally
in the unsupervised baselines. If a feature is not in-
cluded in a baseline, it is regularized toward zero.

3 Experimental Details

We use the data sets from Bergsma et al. (2009).
These are the three tasks where web-scale N-gram
counts were previously used as features in a stan-
dardK-SVM. In each case a classifier makes a de-
cision for a particular word based on the word’s
surrounding context. The attributes of the classi-
fier are the log counts of different fillers occurring
in the context patterns. We retrieve counts from
the web-scale Google Web 5-gram Corpus (Brants
and Franz, 2006), which includes N-grams of
length one to five. We apply add-one smoothing
to all counts. Every classifier also has bias fea-
tures (for every class). We simply include, where
appropriate, attributes that are always unity.

We useLIBLINEAR (Fan et al., 2008) to train
K-SVM and OvA-SVM, and SVMrank (Joachims,
2006) to trainCS-SVM. For VAR-SVM, we solve
the primal form of the quadratic program directly
in CPLEX (2005), a general optimization package.

We vary the number of training examples for
each classifier. TheC-parameters of all SVMs are
tuned on development data. We evaluate usingac-
curacy: the percentage of test examples that are
classified correctly. We also provide the accuracy
of the majority-class baseline and best unsuper-
vised system, as defined in Bergsma et al. (2009).

As an alternative way to increase the learning
rate, we augment a classifier’s features using the
output of the unsupervised system: For each class,
we include one feature for the sum of all counts (in
the unsupervised system) that predict that class.
We denote these augmented systems with a+ as
in K-SVM+ andCS-SVM+.

4 Applications

4.1 Preposition Selection

Preposition errors are common among new En-
glish speakers (Chodorow et al., 2007). Systems
that can reliably identify these errors are needed
in word processing and educational software.
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Training Examples
System 10 100 1K 10K 100K
OvA-SVM 16.0 50.6 66.1 71.1 73.5
K-SVM 13.7 50.0 65.8 72.0 74.7
K-SVM+ 22.2 56.8 70.5 73.7 75.2
CS-SVM 27.1 58.8 69.0 73.5 74.2
CS-SVM+ 39.6 64.8 71.5 74.0 74.4
VAR-SVM 73.8 74.2 74.7 74.9 74.9

Table 1: Accuracy (%) of preposition-selection
SVMs. Unsupervised accuracy is 73.7%.

In our experiments, a classifier must choose the
correct preposition among 34 candidates, using
counts for filled 2-to-5-gram patterns. We use
100K training, 10K development, and 10K test
examples. The unsupervised approach sums the
counts of all 3-to-5-gram patterns for each prepo-
sition. We therefore regularize the variance of the
3-to-5-gram weights in VAR-SVM, and simultane-
ously minimize the norm of the 2-gram weights.

4.1.1 Results

The majority-class is the prepositionof; it occurs
in 20.3% of test examples. The unsupervised sys-
tem scores 73.7%. For further perspective on these
results, note Chodorow et al. (2007) achieved 69%
with 7M training examples, while Tetreault and
Chodorow (2008) found the human performance
was around 75%. However, these results are not
directly comparable as they are on different data.

Table 1 gives the accuracy for different amounts
of training data. Here, as in the other tasks,K-SVM

mirrors the learning rate in Bergsma et al. (2009).
There are several distinct phases among the rela-
tive ranking of the systems. For smaller amounts
of training data (≤1000 examples)K-SVM per-
forms worst, while VAR-SVM is statistically sig-
nificantly better than all other systems, and al-
ways exceeds the performance of the unsupervised
approach.5 Augmenting the attributes with sum
counts (the+ systems) strongly helps with fewer
examples, especially in conjunction with the more
efficient CS-SVM. However, VAR-SVM clearly
helps more. We noted earlier that VAR-SVM is
guaranteed to do as well as the unsupervised sys-
tem on the development data, but here we confirm
that it can also exploit even small amounts of train-
ing data to further improve accuracy.

CS-SVM outperformsK-SVM except with 100K

5Significance is calculated using aχ2 test over the test set
correct/incorrect contingency table.

Training Examples
System 10 100 1K 10K 100K
CS-SVM 86.0 93.5 95.1 95.7 95.7
CS-SVM+ 91.0 94.9 95.3 95.7 95.7
VAR-SVM 94.9 95.3 95.6 95.7 95.8

Table 2: Accuracy (%) of spell-correction SVMs.
Unsupervised accuracy is 94.8%.

examples, whileOvA-SVM is better thanK-SVM

for small amounts of data.6 K-SVM performs best
with all the data; it uses the most expressive repre-
sentation, but needs 100K examples to make use
of it. On the other hand, feature augmentation
and variance regularization provide diminishing
returns as the amount of training data increases.

4.2 Context-Sensitive Spelling Correction

Context-sensitive spelling correction, or real-word
error/malapropism detection (Golding and Roth,
1999; Hirst and Budanitsky, 2005), is the task of
identifying errors when a misspelling results in a
real word in the lexicon, e.g., usingsitewhensight
or citewas intended. Contextual spell checkers are
among the most widely-used NLP technology, as
they are included in commercial word processing
software (Church et al., 2007).

For every occurrence of a word in a pre-defined
confusion set (e.g.{cite, sight, cite}), the clas-
sifier selects the most likely word from the set.
We use the five confusion sets from Bergsma et al.
(2009); four are binary and one is a 3-way classi-
fication. We use 100K training, 10K development,
and 10K test examples for each, and average ac-
curacy across the sets. All 2-to-5 gram counts are
used in the unsupervised system, so the variance
of all weights is regularized in VAR-SVM.

4.2.1 Results

On this task, the majority-class baseline is much
higher, 66.9%, and so is the accuracy of the top un-
supervised system: 94.8%. Since four of the five
sets are binary classifications, whereK-SVM and
CS-SVM are equivalent, we only give the accuracy
of the CS-SVM (it does perform better on the one
3-way set). VAR-SVM again exceeds the unsuper-
vised accuracy for all training sizes, and generally

6Rifkin and Klautau (2004) argueOvA-SVM is as good
asK-SVM, but this is “predicated on the assumption that the
classes are ‘independent’,” i.e., that examples from class0
are no closer to class 1 than to class 2. This is not true of this
task (e.g.̄xbefore is closer tox̄after thanx̄in, etc.).
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Training Examples
System 10 100 1K
CS-SVM 59.0 71.0 84.3
CS-SVM+ 59.4 74.9 84.5
VAR-SVM 70.2 76.2 84.5
VAR-SVM+FreeB 64.2 80.3 84.5

Table 3: Accuracy (%) of non-referential detection
SVMs. Unsupervised accuracy is 80.1%.

performs as well as the augmentedCS-SVM+ us-
ing an order of magnitude less training data (Ta-
ble 2). Differences from≤1K are significant.

4.3 Non-Referential Pronoun Detection

Non-referential detection predicts whether the En-
glish pronounit refers to a preceding noun (“it
lost money”) or is used as a grammatical place-
holder (“it is important to...”). This binary clas-
sification is a necessary but often neglected step
for noun phrase coreference resolution (Paice and
Husk, 1987; Bergsma et al., 2008; Ng, 2009).

Bergsma et al. (2008) use features for the counts
of various fillers in the pronoun’s context patterns.
If it is the most common filler, the pronoun is
likely non-referential. If other fillers are common
(like theyor he), it is likely a referential instance.
For example, “he lost money” is common on the
web, but “he is important to” is not. We use the
same fillers as in previous work, and preprocess
the N-gram corpus in the same way.

The unsupervised system picks non-referential
if the difference between the summed count of
it fillers and the summed count ofthey fillers is
above a threshold (note this no longer fits (5),
with consequences discussed below). We thus
separately minimize the variance of theit pattern
weights and thetheypattern weights. We use 1K
training, 533 development, and 534 test examples.

4.3.1 Results

The most common class isreferential, occurring
in 59.4% of test examples. The unsupervised sys-
tem again does much better, at 80.1%.

Annotated training examples are much harder
to obtain for this task and we experiment with a
smaller range of training sizes (Table 3). The per-
formance of VAR-SVM exceeds the performance
of K-SVM across all training sizes (bold accura-
cies are significantly better than eitherCS-SVM for
≤100 examples). However, the gains were not
as large as we had hoped, and accuracy remains

worse than the unsupervised system when not us-
ing all the training data. When using all the data,
a fairly large C-parameter performs best on devel-
opment data, so regularization plays less of a role.

After development experiments, we speculated
that the poor performance relative to the unsuper-
vised approach was related to class bias. In the
other tasks, the unsupervised system chooses the
highest summed score. Here, the difference init
andtheycounts is compared to athreshold. Since
the bias feature is regularized toward zero, then,
unlike the other tasks, using a lowC-parameter
does not produce the unsupervised system, so per-
formance can begin below the unsupervised level.

Since we wanted the system to learn this thresh-
old, even when highly regularized, we removed
the regularization penalty from the bias weight,
letting the optimization freely set the weight to
minimize training error. With more freedom, the
new classifier (VAR-SVM+FreeB) performs worse
with 10 examples, but exceeds the unsupervised
approach with 100 training points. Although
this was somewhat successful, developing better
strategies for bias remains useful future work.

5 Related Work

There is a large body of work on regularization in
machine learning, including work that uses posi-
tive semi-definite matrices in the SVM quadratic
program. The graph Laplacian has been used to
encourage geometrically-similar feature vectors to
be classified similarly (Belkin et al., 2006). An ap-
pealing property of these approaches is that they
incorporate information from unlabeled examples.
Wang et al. (2006) use Laplacian regularization
for the task of dependency parsing. They regular-
ize such that features for distributionally-similar
words have similar weights. Rather than penal-
ize pairwise differences proportional to a similar-
ity function, we simply penalize weight variance.

In the field of computer vision, Tefas et al.
(2001) (binary) and Kotsia et al. (2009) (multi-
class) also regularize weights with respect to a co-
variance matrix. They use labeled data to find the
sum of the sample covariance matrices from each
class, similar to linear discriminant analysis. We
propose the idea in general, and instantiate with
a differentC matrix: a variance regularizer over
w̄. Most importantly, our instantiated covariance
matrix does not require labeled data to generate.

In a Bayesian setting, Raina et al. (2006) model
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feature correlations in a logistic regression clas-
sifier. They propose a method to construct a co-
variance matrix for a multivariate Gaussian prior
on the classifier’s weights. Labeled data for other,
related tasks is used to infer potentially correlated
features on the target task. Like in our results, they
found that the gains from modeling dependencies
diminish as more training data is available.

We also mention two related online learning ap-
proaches. Similar to our goal of regularizing to-
ward a good unsupervised system, Crammer et al.
(2006) regularizēw toward a (different) target vec-
tor at each update, rather than strictly minimizing
||w̄||2. The target vector is the vector learned from
the cumulative effect of previous updates. Dredze
et al. (2008) maintain the variance of each weight
and use this to guide the online updates. However,
covariance between weights is not considered.

We believe new SVM regularizations in gen-
eral, and variance regularization in particular, will
increasingly be used in combination with related
NLP strategies that learn better when labeled data
is scarce. These may include: using more-general
features, e.g. ones generated from raw text (Miller
et al., 2004; Koo et al., 2008), leveraging out-of-
domain examples to improve in-domain classifi-
cation (Blitzer et al., 2007; Daumé III, 2007), ac-
tive learning (Cohn et al., 1994; Tong and Koller,
2002), and approaches that treat unlabeled data as
labeled, such as bootstrapping (Yarowsky, 1995),
co-training (Blum and Mitchell, 1998), and self-
training (McClosky et al., 2006).

6 Future Work

The primary direction of future research will be
to apply the VAR-SVM to new problems and tasks.
There are many situations where a system designer
has an intuition about the role a feature will play in
prediction; the feature was perhaps added with this
role in mind. By biasing the SVM to use features
as intended, VAR-SVM may learn better with fewer
training examples. The relationship between at-
tributes and classes may be explicit when, e.g.,
a rule-based system is optimized via discrimina-
tive learning, or annotators justify their decisions
by indicating the relevant attributes (Zaidan et al.,
2007). Also, if features area priori thought to
have different predictive worth, the attributeval-
uescould be scaled such that variance regulariza-
tion, as we formulated it, has the desired effect.

Other avenues of future work will be to extend

the VAR-SVM in three directions: efficiency, rep-
resentational power, and problem domain.

While we optimized the VAR-SVM objective in
CPLEX, general purpose QP-solvers “do not ex-
ploit the special structure of [the SVM optimiza-
tion] problem,” and consequently often train in
time super-linear with the number of training ex-
amples (Joachims et al., 2009). It would be useful
to fit our optimization problem to efficient SVM
training methods, especially for linear classifiers.

VAR-SVM’s representational power could be ex-
tended by using non-linear SVMs. Kernels can
be used with a covariance regularizer (Kotsia et
al., 2009). SinceC is positive semi-definite, the
square root of its inverse is defined. We can there-
fore map the input examples using(C− 1

2 x̄), and
write an equivalent objective function in terms of
kernel functions over the transformed examples.

Also, since structured-prediction SVMs build
on the multi-class framework (Tsochantaridis et
al., 2005), variance regularization can be incor-
porated naturally into more complex prediction
tasks, such as parsers, taggers, and aligners.

VAR-SVM may also help in new domains where
annotated data is lacking. VAR-SVM should be
stronger cross-domain thanK-SVM; regulariza-
tion with domain-neutral prior-knowledge can off-
set domain-specific biases. Learned weight vec-
tors from other domains may also provide cross-
domain regularization guidance.

7 Conclusion

We presented variance-regularization SVMs, an
approach to learning that creates better classi-
fiers using fewer training examples. Variance reg-
ularization incorporates a bias for known good
weights into the SVM’s quadratic program. The
VAR-SVM can therefore exploit extra knowledge
by the system designer. Since the objective re-
mains a convex quadratic function of the weights,
the program is computationally no harder to opti-
mize than a standard SVM. We also demonstrated
how to design multi-class SVMs using only class-
specific attributes, and compared the performance
of this approach to standard multi-class SVMs on
the task of preposition selection.

While variance regularization is most helpful on
tasks with many classes and features, like prepo-
sition selection, it achieved gains on all our tasks
when training with smaller sample sizes. It should
be useful on a variety of other NLP problems.
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