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Abstract

In this paper, we propose a memory, space,
and time efficient framework to scale dis-
tributional similarity to the web. We
exploit sketch techniques, especially the
Count-Min sketch, which approximates
the frequency of an item in the corpus
without explicitly storing the item itself.
These methods use hashing to deal with
massive amounts of the streaming text. We
store all item counts computed from90
GB of web data in just2 billion coun-
ters (8 GB main memory) of CM sketch.
Our method returns semantic similarity
between word pairs in O(K) time and
can compute similarity between any word
pairs that are stored in the sketch. In our
experiments, we show that our framework
is as effective as using the exact counts.

1 Introduction

In many NLP problems, researchers (Brants et al.,
2007; Turney, 2008) have shown that having large
amounts of data is beneficial. It has also been
shown that (Agirre et al., 2009; Pantel et al., 2009;
Ravichandran et al., 2005) having large amounts
of data helps capturing the semantic similarity be-
tween pairs of words. However, computing distri-
butional similarity (Sec. 2.1) between word pairs
from large text collections is a computationally ex-
pensive task. In this work, we consider scaling dis-
tributional similarity methods for computing se-
mantic similarity between words to Web-scale.

The major difficulty in computing pairwise sim-
ilarities stems from the rapid increase in the num-
ber of unique word-context pairs with the size of
text corpus (number of tokens). Fig. 1 shows that
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Figure 1:Token Type Curve

the number of unique word-context pairs increase
rapidly compared to the number words when plot-
ted against the number of tokens1. For example,
a57 million word corpus2 generates224 thousand
unique words and15 million unique word-context
pairs. As a result, it is computationally hard to
compute counts of all word-context pairs with a gi-
ant corpora using conventional machines (say with
main memory of8 GB). To overcome this, Agirre
et al. (2009) used MapReduce infrastructure (with
2, 000 cores) to compute pairwise similarities of
words on a corpus of roughly1.6 Terawords.

In a different direction, our earlier work (Goyal
et al., 2010) developed techniques to make the
computations feasible on a conventional machines
by willing to accept some error in the counts. Sim-
ilar to that work, this work exploits the idea of
Count-Min (CM) sketch (Cormode and Muthukr-
ishnan, 2004) to approximate the frequency of
word pairs in the corpus without explicitly stor-
ing the word pairs themselves. In their, we stored

1Note that the plot is in log-log scale.
2‘Subset’ column of Table 1 in Section 5.1
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counts of all words/word pairs in fixed amount of
main memory. We used conservative update with
CM sketch (referred as CU sketch) and showed
that it reduces the average relative error of its ap-
proximate counts by a factor of two. The approx-
imate counts returned by CU Sketch were used
to compute approximate PMI between word pairs.
We found their that the approximate PMI values
are as useful as the exact PMI values for com-
puting semantic orientation (Turney and Littman,
2002) of words. In addition, our intrinsic evalua-
tions in their showed that the quality of approxi-
mate counts and approximate PMI is good.

In this work, we use CU-sketch to store counts
of items (words, contexts, and word-context pairs)
using fixed amount of memory of8 GB by using
only 2B counters. These approximate counts re-
turned by CU Sketch are converted into approx-
imate PMI between word-context pairs. The top
K contexts (based on PMI score) for each word
are used to construct distributional profile (DP) for
each word. The similarity between a pair of words
is computed based on the cosine similarity of their
respective DPs.

The above framework of using CU sketch to
compute semantic similarity between words has
five good properties. First, this framework can re-
turn semantic similarity between any word pairs
that are stored in the CU sketch. Second, it can
return the similarity between word pairs in time
O(K). Third, because we do not store items ex-
plicitly, the overall space required is significantly
smaller. Fourth, the additive property of CU
sketch (Sec. 3.2) enables us to parallelize most
of the steps in the algorithm. Thus it can be easily
extended to very large amounts of text data. Fifth,
this easily generalizes to any kind of association
measure and semantic similarity measure.

2 Background

2.1 Distributional Similarity

Distributional Similarity is based on the distribu-
tional hypothesis (Firth, 1968; Harris, 1985) that
words occur in similar contexts tend to be sim-
ilar. The context of a word is represented by
the distributional profile (DP), which contains the
strength of association between the word and each
of the lexical, syntactic, semantic, and/or depen-
dency units that co-occur with it3. The association

3In this work, we only consider lexical units as context.

is commonly measured using conditional proba-
bility, pointwise mutual information (PMI) or log
likelihood ratios. Then the semantic similarity be-
tween two words, given their DPs, is calculated
using similarity measures such as Cosine,α-skew
divergence, and Jensen-Shannon divergence. In
our work, we use PMI as association measure and
cosine similarity to compute pairwise similarities.

2.2 Large Scale NLP problems

Pantel et al. (2009) computed similarity between
500 million word pairs using the MapReduce
framework from a200 billion word corpus using
200 quad-core nodes. The inaccessibility of clus-
ters for every one has attracted NLP community to
use streaming, and randomized algorithms to han-
dle large amounts of data.

Ravichandran et al. (2005) used locality sensi-
tive hash functions for computing word-pair simi-
larities from large text collections. Their approach
stores a enormous matrix of all unique words and
their contexts in main memory which makes it
hard for larger data sets. In our work, we store
all unique word-context pairs in CU sketch with a
pre-defined size4.

Recently, the streaming algorithm paradigm has
been used to provide memory and time-efficient
platform to deal with terabytes of data. For
example, we (Goyal et al., 2009); Levenberg
and Osborne (2009) build approximate language
models and show their effectiveness in SMT. In
(Van Durme and Lall, 2009b), a TOMB Counter
(Van Durme and Lall, 2009a) was used to find the
top-K verbs “y” with the highest PMI for a given
verb “x”. The idea of TOMB is similar to CU
Sketch. However, we use CU Sketch because of
its simplicity and attractive properties (see Sec. 3).
In this work, we go one step further, and compute
semantic similarity between word-pairs using ap-
proximate PMI scores from CU sketch.

2.3 Sketch Techniques

Sketch techniques use a sketch vector as a data
structure to store the streaming data compactly in
a small-memory footprint. These techniques use
hashing to map items in the streaming data onto a
small sketch vector that can be easily updated and
queried. These techniques generally process the
input stream in one direction, say from left to right,

4We use only2 billion counters which takes up to8 GB
of main memory.
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without re-processing previous input. The main
advantage of using these techniques is that they
require a storage which is significantly smaller
than the input stream length. A survey by (Rusu
and Dobra, 2007; Cormode and Hadjieleftheriou,
2008) comprehensively reviews the literature.

3 Count-Min Sketch

The Count-Min Sketch (Cormode and Muthukr-
ishnan, 2004) is a compact summary data struc-
ture used to store the frequencies of all items in
the input stream.

Given an input stream of items of lengthN
and user chosen parametersδ andǫ, the algorithm
stores the frequencies of all the items with the fol-
lowing guarantees:

• All reported frequencies are withinǫN of
true frequencies with probability of atleastδ.

• Space used by the algorithm isO(1

ǫ
log 1

δ
).

• Constant time of O(log(1

δ
)) per each update

and query operation.

3.1 CM Data Structure

A Count-Min Sketch with parameters (ǫ,δ) is rep-
resented by a two-dimensional array with widthw

and depthd :







sketch[1, 1] · · · sketch[1, w]
...

.. .
...

sketch[d, 1] · · · sketch[d, w]







Among the user chosen parameters,ǫ controls the
amount of tolerable error in the returned count and
δ controls the probability with which the returned
count is not within this acceptable error. These
values ofǫ andδ determine the width and depth
of the two-dimensional array respectively. To
achieve the guarantees mentioned in the previous
section, we setw=2

ǫ
andd=log(1

δ
). The depthd

denotes the number of pairwise-independent hash
functions employed by the algorithm and there
exists an one-to-one correspondence between the
rows and the set of hash functions. Each of these
hash functionshk:{x1 . . . xN} → {1 . . . w}, 1 ≤
k ≤ d takes an item from the input stream and
maps it into a counter indexed by the correspond-
ing hash function. For example,h2(x) = 10 indi-
cates that the item “x” is mapped to the10th posi-
tion in the second row of the sketch array. These

d hash functions are chosen uniformly at random
from a pairwise-independent family.

Initialize the entire sketch array with zeros.
Update Procedure:When a new item “x” with

countc arrives5, one counter in each row, as de-
cided by its corresponding hash function, is up-
dated byc. Formally,∀1 ≤ k ≤ d

sketch[k,hk(x)] ← sketch[k,hk(x)] + c

Query Procedure: Since multiple items can be
hashed to the same counter, the frequency stored
by each counter is an overestimate of the true
count. Thus, to answer the point query, we con-
sider all the positions indexed by the hash func-
tions for the given item and return the minimum
of all these values. The answer to Query(x) is:
ĉ = mink sketch[k, hk(x)].

Both update and query procedures involve eval-
uatingd hash functions. Hence, both these proce-
dures are linear in the number of hash functions. In
our experiments (see Section5), we used=3 simi-
lar to our earlier work (Goyal et al., 2010). Hence,
the update and query operations take only constant
time.

3.2 Properties

Apart from the advantages of being space efficient
and having constant update and querying time, the
CM sketch has other advantages that makes it at-
tractive for scaling distributional similarity to the
web:

1. Linearity: given two sketchess1 ands2 com-
puted (using the same parametersw andd)
over different input streams, the sketch of the
combined data stream can be easily obtained
by adding the individual sketches.

2. The linearity allows the individual sketches
to be computed independent of each other.
This means that it is easy to implement it in
distributed setting, where each machine com-
putes the sketch over a subset of the corpus.

3.3 Conservative Update

Estan and Varghese introduce the idea of conserva-
tive update (Estan and Varghese, 2002) in the con-
text of networking. This can easily be used with
CM Sketch (CU Sketch) to further improve the es-
timate of a point query. To update an item, w with
frequency c, we first compute the frequencyĉ of

5In our setting,c is always1.
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this item from the existing data structure and the
counts are updated according to:∀1 ≤ k ≤ d

sketch[k,hk(x)] ← max{sketch[k,hk(x)], ĉ + c}

The intuition is that, since the point query returns
the minimum of all thed values, we will update a
counter only if it is necessary as indicated by the
above equation. This heuristic avoids the unneces-
sary updating of counter values and thus reduces
the error.

4 Efficient Distributional Similarity

To compute distributional similarity efficiently, we
store counts in CU sketch. Our algorithm has three
main steps:

1. Store approximate counts of all words, con-
texts, and word-context pairs in CU-sketch
using fixed amount of counters.

2. Convert these counts into approximate PMI
scores between word-context pairs. Use these
PMI scores to store topK contexts for a word
on the disk. Store these top K context vectors
for every word stored in the sketch.

3. Use cosine similarity to compute the similar-
ity between word pairs using these approxi-
mate top K context vectors constructed using
CU sketch.

5 Word pair Ranking Evaluations

As discussed earlier, the DPs of words are used to
compute similarity between a pair of words. We
used the following four test sets and their corre-
sponding human judgements to evaluate the word
pair rankings.

1. WS-353: WordSimilarity-3536 (Finkelstein
et al., 2002) is a set of353 word pairs.

2. WS-203: A subset of WS-353 containing 203
word pairs marked according to similarity7

(Agirre et al., 2009).

3. RG-65: (Rubenstein and Goodenough, 1965)
is set of65 word pairs.

4. MC-30: A smaller subset of the RG-65
dataset containing30 word pairs (Miller and
Charles, 1991).

6http://www.cs.technion.ac.il/ gabr/resources/data/word-
sim353/wordsim353.html

7http://alfonseca.org/pubs/ws353simrel.tar.gz

Each of these data sets come with human ranking
of the word pairs. We rank the word pairs based
on the similarity computed using DPs and evalu-
ate this ranking against the human ranking. We
report the spearman’s rank correlation coefficient
(ρ) between these two rankings.

5.1 Corpus Statistics

The Gigaword corpus (Graff, 2003) and a copy of
the web crawled by (Ravichandran et al., 2005)
are used to compute counts of all items (Table. 1).
For both the corpora, we split the text into sen-
tences, tokenize, convert into lower-case, remove
punctuations, and collapse each digit to a sym-
bol “0” (e.g. “1996” gets collapsed to “0000”).
We store the counts of all words (excluding num-
bers, and stop words), their contexts, and counts
of word-context pairs in the CU sketch. We de-
fine the context for a given word “x” as the sur-
rounding words appearing in a window of2 words
to the left and2 words to the right. The context
words are concatenated along with their positions
-2, -1, +1, and+2. We evaluate ranking of word
pairs on three different sized corpora: Gigaword
(GW), GigaWord +50% of web data (GW-WB1),
and GigaWord +100% of web data (GW-WB2).

Corpus Sub GW GW- GW-
set WB1 WB2

Size .32 9.8 49 90
(GB)

# of sentences 2.00 56.78 462.60 866.02
(Million)

Stream Size .25 7.65 37.93 69.41
(Billion)

Table 1: Corpus Description

5.2 Results

We compare our system with two baselines: Ex-
act and Exact1000 which use exact counts. Since
computing the exact counts of all word-context
pairs on these corpora is not possible using main
memory of only8 GB , we generate context vec-
tors for only those words which appear in the test
set. The former baseline uses all possible contexts
which appear with a test word, while the latter
baseline uses only the top1000 contexts (based on
PMI value) for each word. In each case, we use
a cutoff (of 10, 60 and120) on the frequency of
word-context pairs. These cut-offs were selected
based on the intuition that, with more data, you
get more noise, and not considering word-context
pairs with frequency less than120 might be a bet-
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Data GW GW-WB1 GW-WB2

Model Frequency cutoff Frequency cutoff Frequency cutoff
10 60 120 10 60 120 10 60 120

ρ ρ ρ

WS-353
Exact .25 .25 .22 .29 .28 .28 .30 .28 .28

Exact1000 .36 .28 .22 .46 .43 .37 .47 .44 .41
Our Model .39 .28 .22 -0.09 .48 .40 -0.03 .04 .47

WS-203
Exact .35 .36 .33 .38 .38 .37 .40 .38 .38

Exact1000 .49 .40 .35 .57 .55 .47 .56 .56 .52
Our Model .49 .39 .35 -0.08 .58 .47 -0.06 .03 .55

RG-65
Exact .21 .12 .08 .42 .28 .22 .39 .31 .23

Exact1000 .14 .09 .08 .45 .16 .13 .47 .26 .12
Our Model .13 .10 .09 -0.06 .32 .18 -0.05 .08 .31

MC-30
Exact .26 .23 .21 .45 .33 .31 .46 .39 .29

Exact1000 .27 .18 .21 .63 .42 .32 .59 .47 .36
Our Model .36 .20 .21 -0.08 .52 .39 -0.27 -0.29 .52

Table 2:Evaluating word pairs ranking with Exact and CU counts. Scores are evaluated usingρ metric.

ter choice than a cutoff of10. The results are
shown in Table 2

From the above baseline results, first we learn
that using more data helps in better capturing
the semantic similarity between words. Second,
it shows that using top (K) 1000 contexts for
each target word captures better semantic similar-
ity than using all possible contexts for that word.
Third, using a cutoff of10 is optimal for all differ-
ent sized corpora on all test-sets.

We use approximate counts from CU sketch
with depth=3 and2 billion (2B) counters (‘Our
Model’)8. Based on previous observation, we re-
strict the number of contexts for a target word to
1000. Table 2 shows that using CU counts makes
the algorithm sensitive to frequency cutoff. How-
ever, with appropriate frequency cutoff for each
corpus, approximate counts are nearly as effective
as exact counts. For GW, GW-WB1, and GW-
WB2, the frequency cutoffs of10, 60, and120 re-
spectively performed the best. The reason for de-
pendence on frequency cutoffs is due to the over-
estimation of low-frequent items. This is more
pronounced with bigger corpus (GW-WB2) as the
size of CU sketch is fixed to2B counters and
stream size is much bigger (69.41 billion) com-
pared to GW where the stream size is7.65 billion.

The advantages of using our model is that the
sketch contains counts for all words, contexts, and
word-context pairs stored in fixed memory of8
GB by using only2B counters. Note that it is not

8Our goal is not to build the best distributional similarity
method. It is to show that our framework scales easily to large
corpus and it is as effective as exact method.

feasible to keep track of exact counts of all word-
context pairs since their number increases rapidly
with increase in data (see Fig. 1). We can use our
model to create context vectors of sizeK for all
possible words stored in the Sketch and computes
semantic similarity between two words in O(K)
time. In addition, the linearity of sketch allows
us to include new incoming data into the sketch
without building the sketch from scratch. Also,
it allows for parallelization using the MapReduce
framework. We can generalize our framework to
any kind of association and similarity measure.

6 Conclusion

We proposed a framework which uses CU Sketch
to scale distributional similarity to the web. It can
compute similarity between any word pairs that
are stored in the sketch and returns similarity be-
tween them in O(K) time. In our experiments, we
show that our framework is as effective as using
the exact counts, however it is sensitive to the fre-
quency cutoffs. In future, we will explore ways to
make this framework robust to the frequency cut-
offs. In addition, we are interested in exploring
this framework for entity set expansion problem.
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