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Abstract

In this paper, we argue in favor of re-
considering models for word meaning, us-
ing as a basis results from cognitive sci-
ence on human concept representation.
More specifically, we argue for a more
flexible representation of word meaning
than the assignment of a single best-fitting
dictionary sense to each occurrence: Ei-
ther use dictionary senses, but view them
as having fuzzy boundaries, and assume
that an occurrence can activate multiple
senses to different degrees. Or move away
from dictionary senses completely, and
only model similarities between individ-
ual word usages. We argue that distri-
butional models provide a flexible frame-
work for experimenting with alternative
models of word meanings, and discuss ex-
ample models.

1 Introduction

Word sense disambiguation (WSD) is one of
the oldest problems in computational linguis-
tics (Weaver, 1949) and still remains challeng-
ing today. State-of-the-art performance on WSD
for WordNet senses is at only around 70-80%
accuracy (Edmonds and Cotton, 2001; Mihalcea
et al., 2004). The use of coarse-grained sense
groups (Palmer et al., 2007) has led to consider-
able advances in WSD performance, with accura-
cies of around 90% (Pradhan et al., 2007). But
this figure averages over lemmas, and the problem
remains that while WSD works well for some lem-
mas, others continue to be tough.

In WSD, polysemy is typically modeled
through a list of dictionary senses thought to be
mutually disjoint, such that each occurrence of
a word is characterized through one best-fitting
dictionary sense. Accordingly, WSD is typically

framed as a classification task. Interestingly, the
task of assigning a single best word sense is very
hard for human annotators, not just machines (Kil-
garriff and Rosenzweig, 2000).

In this paper we advocate the exploration of
alternative computational models of word mean-
ing. After all, one possible reason for the con-
tinuing difficulty of (manual as well as automatic)
word sense assignment is that the prevailing model
might be suboptimal. We explore three main hy-
potheses. The first builds on research on the hu-
man concept representation that has shown that
concepts in the human mind do not work like
sets with clear-cut boundaries; they show graded
membership, and there are typical members as
well as borderline cases (Rosch, 1975; Hamp-
ton, 2007). Accordingly, (A) we will suggest
that word meaning may be better modeled us-
ing a graded notion of sense membership than
through concepts with hard boundaries. Second,
even if senses have soft boundaries, the question
remains of whether they are disjoint. (B) We
will argue in favor of a framework where multi-
ple senses may apply to a single occurrence, to
different degrees. This can be viewed as a dy-
namical grouping of senses for each occurrence,
in contrast to static sense groups as in Palmer et
al. (2007). The first two hypotheses still rely on
an existing sense list. However, there is no univer-
sal agreement across dictionaries and across tasks
on the number of senses that words have (Hanks,
2000). Kilgarriff (1997) even argues that general,
task-independent word senses do not exist. (C) By
focusing on individual occurrences (usages) of
a lemma and their degree of similarity, we can
model word meaning without recourse to dic-
tionary senses.

In this paper, we are going to argue in favor of
the use of vector space as a basis for alternative
models of word meaning. Vector space models
have been used widely to model word sense (Lund
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and Burgess, 1996; Deerwester et al., 1990; Lan-
dauer and Dumais, 1997; Sahlgren and Karlgren,
2005; Padó and Lapata, 2007), their central prop-
erty being that proximity in space can be used to
predict semantic similarity. By viewing word oc-
currences as points in vector space, we can model
word meaning without recourse to senses. An ad-
ditional advantage of vector space models is that
they are also widely used in human concept rep-
resentation models, yielding many modeling ideas
that can be exploited for computational models.

In Section 2 we review the evidence that word
sense is a tough phenomenon to model, and we lay
out findings that support hypotheses (A)-(C). Sec-
tion 4 considers distributional models that repre-
sent word meaning without recourse to dictionary
senses, following (C). In Section 5 we discuss pos-
sibilities for embedding dictionary senses in vec-
tor space in a way that respects points (A) and (B).

2 Computational and cognitive models of
word meaning

In this section, we review the problems of (manual
and automatic) sense assignment, and we discuss
discusses cognitive models of concept representa-
tion and polysemy, following the three hypotheses
laid out in the introduction.

Word sense assignment. In computational lin-
guistics, the problem of polysemy is typically
phrased as one of choosing one best-fitting sense
for the given occurrence out of a dictionary-
defined sense list. However, this is a hard task
both for humans and for machines. With Word-
Net (Fellbaum, 1998), the electronic lexicon re-
source that is currently most widely used in com-
putational linguistics, inter-annotator agreement
(ITA) lies in the range of 67% to 78% (Landes
et al., 1998; Snyder and Palmer, 2004; Mihal-
cea et al., 2004), and state-of-the-art WSD sys-
tems achieve accuracy scores of 73% to 77% (Ed-
monds and Cotton, 2001; Mihalcea et al., 2004).
This problem is not specific to WordNet: Anal-
yses with the HECTOR dictionary led to simi-
lar numbers (Kilgarriff and Rosenzweig, 2000).
Sense granularity has been suggested as a reason
for the difficulty of the task (Palmer et al., 2007).
And in fact, the use of more coarse-grained senses
leads to greatly ITA as well as WSD accuracy,
with about a 10% improvement for either mea-
sure (Palmer et al., 2007; Pradhan et al., 2007). In
OntoNotes (Hovy et al., 2006), an ITA of 90% is

used as the criterion for the construction of coarse-
grained sense distinctions. However, intriguingly,
for some high-frequency lemmas such as leave
this ITA threshold is not reached even after mul-
tiple re-partitionings of the semantic space (Chen
and Palmer, 2009) – indicating that the meaning of
these words may not be separable into senses dis-
tinct enough for consistent annotation. A recent
analysis of factors influencing ITA differences be-
tween lemmas (Passonneau et al., 2010) found
three main factors: sense concreteness, specificity
of the context in which a target word occurs, and
similarity between senses. It is interesting to note
that only one of those factors, the third, can be ad-
dressed through a change of dictionary.

More radical solutions than sense grouping that
have been proposed are to restrict the task to deter-
mining predominant sense in a given domain (Mc-
Carthy et al., 2004), or to work directly with para-
phrases (McCarthy and Navigli, 2009).

(A) Graded sense membership. Research on
the human concept representation (Murphy, 2002;
Hampton, 2007) shows that categories in the
human mind are not simply sets with clear-cut
boundaries. Some items are perceived as more
typical than others (Rosch, 1975; Rosch and
Mervis, 1975). Also, some items are clear mem-
bers, others are rated as borderline (Hampton,
1979). On borderline items, people are more likely
to change their mind about category member-
ship (McCloskey and Glucksberg, 1978). How-
ever, these results concern mental concepts, which
raises the question of the relation between mental
concepts and word senses. This relation is dis-
cussed in most depth by Murphy (1991; 2002),
who argues that while not every human concept
is associated with a word, word meanings show
many of the same phenomena as concepts in gen-
eral; word meaning is “made up of pieces of con-
ceptual structure”. In cognitive linguistics there
has been much work on word meaning based on
models with graded membership and typically ef-
fects (Coleman and Kay, 1981; Lakoff, 1987;
Cruse, 1986; Taylor, 1989).

(B) Multiple senses per occurrence. While
most manual word sense annotation efforts al-
low annotators to assign more than one dictionary
sense to an occurrence, this is typically phrased
as an exception rather than the default. In the re-
cent WSsim annotation study (Erk et al., 2009),
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Senses
Sentence 1 2 3 4 5 6 7 Annotator
This question provoked arguments in America about the
Norton Anthology of Literature by Women, some of the
contents of which were said to have had little value as
literature.

1 4 4 2 1 1 3 Ann. 1
4 5 4 2 1 1 4 Ann. 2
1 4 5 1 1 1 1 Ann. 3

Table 1: From (Erk et al., 2009): A sample annotation from the WSsim dataset. The senses are: 1:state-
ment, 2:controversy, 3:debate, 4:literary argument, 5:parameter, 6:variable, 7:line of reasoning

we asked three human annotators to judge the ap-
plicability of WordNet senses on a graded scale of
1 (completely different) to 5 (identical) and giv-
ing a rating for each sense rather than picking one.
Table 1 shows an example sentence with annota-
tor ratings for the senses of the target argument.
For this sentence, the annotators agree that senses
2 and 3 are highly applicable, but there also indi-
vidual differences in the perceived meaning: Only
annotator 2 views sense 1 as applying to a high
degree. In an annotation setting with graded judg-
ments, it does not make sense to measure exact
agreement on judgments. We instead evaluated
ITA using Spearman’s rho, a nonparametric corre-
lation test, finding highly significant correlations
(p � 0.001) between each pair of annotators, as
well as highly significant correlations with the re-
sults of a previous, traditional word sense annota-
tion of the same dataset. The annotators made use
of the complete scale (1-5), often opting for inter-
mediate values of sense applicability. In addition,
we tested whether there were groups of senses
that always got the same ratings on any given sen-
tence (which would mean that the annotators im-
plicitly used more coarse-grained senses). What
we found instead is that the annotators seemed to
have mixed and matched senses for the individual
occurrences in a dynamic fashion.

(C) Describing word meaning without dictio-
nary senses. In lexicography, Kilgarriff (1997)
and Hanks (2000) cast doubt on the existence
of task-independent, distinct senses. In cogni-
tive science, Kintsch (2007) calls word meaning
“fluid and flexible”. And some researchers in lex-
ical semantics have suggested that word mean-
ings lie on a continuum between clear cut cases
of ambiguity on the one hand, and on the other
hand vagueness where clear cut boundaries do not
hold (Tuggy, 1993). There are some psycholog-
ical studies on whether different senses of a pol-
ysemous word are represented separately in the
mind or whether there is some joint representa-
tion. However, so far the evidence is inconclusive

1) We study the methods and concepts that each writer uses to
defend the cogency of legal, deliberative, or more generally
political prudence against explicit or implicit charges that
practical thinking is merely a knack or form of cleverness.

2) Eleven CIRA members have been convicted of criminal

charges and others are awaiting trial.

Figure 1: From (Erk et al., 2009): A sense pair
from the USim dataset, for the target charge.n.
Annotator judgments: 2,3,4

and varies strongly with the experimental setting.
Some studies found evidence for a separate rep-
resentation (Klein and Murphy, 2001; Pylkkanen
et al., 2006). Brown (2008) finds a linear change
in semantic similarity effects with sense distance,
which could possibly point to a continuous rep-
resentation of word meaning without clear sense
boundaries. But while there is no definitive answer
yet on the question of the mental representation
of polysemy, a computational model that does not
rely on distinct senses has the advantage of making
fewer assumptions. It also avoids the tough lexi-
cographic problem mentioned above, of deciding
on a best set of senses for a given domain.

In the recent USim annotation study (Erk et al.,
2009), we tested whether human annotators could
reliably and consistently provide word meaning
judgments without the use of dictionary senses.
Three annotators rated the similarity of pairs of oc-
currences (usages) of a common target word, again
on a scale of 1-5. Figure 1 shows an example,
with the corresponding annotator judgments. The
results on this task were encouraging: Again us-
ing correlation to measure ITA, we found a highly
significant correlation (p � 0.001) between the
judgments of each pair of annotators. Further-
more, there was a strong correlation on judgments
given with and without the use of dictionary senses
(USim versus WSsim) for the same data.
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3 Vector space models of word meaning
in isolation

This section gives a brief overview of the use of
vector spaces to model concepts and word mean-
ing in cognition and computational linguistics.

In two of the current main theories of concept
representation, feature vectors play a prominent
role. Prototype theory (Hampton, 1979; Smith and
Medin, 1981) models degree of category member-
ship through similarity to a single prototype. Ex-
emplar models (Medin and Schaffer, 1978; Nosof-
sky, 1992; Nosofsky and Palmeri, 1997) represent
a concept as a collection of all previously seen ex-
emplars and compute degree of category member-
ship as similarity to stored exemplars. Both pro-
totypes and exemplars are typically represented as
feature vectors. Many models represent a concept
as a region rather than a point in space, often char-
acterized by a feature vector plus a separate di-
mension weight vector (Smith et al., 1988; Hamp-
ton, 1991; Gärdenfors, 2004). The features are
individually meaningful and interpretable and in-
clude sensory and motor features as well as func-
tion and taxonomic features. There are several
datasets with features elicited from human sub-
jects (McRae et al., 2005; Vigliocco et al., 2004).

In computational linguistics, distributional
models represent the meaning of a word as a vec-
tor in a high-dimensional space whose dimensions
characterize the contexts in which the word typi-
cally occurs (Lund and Burgess, 1996; Landauer
and Dumais, 1997; Sahlgren and Karlgren, 2005;
Padó and Lapata, 2007). In the simplest case,
the dimensions are context words, and the values
are co-occurrence counts. In contrast to spaces
used in cognitive science, the dimensions in dis-
tributional models are typically not interpretable
(though see Almuhareb and Poesio (2005), Baroni
et al. (2010)). A central property of distributional
models is that proximity in vector space is a pre-
dictor of semantic similarity. These models have
been used successfully in NLP (Deerwester et al.,
1990; Manning et al., 2008), as well as in psy-
chology (Landauer and Dumais, 1997; Lowe and
McDonald, 2000; McDonald and Ramscar, 2001).

4 Vector space models of word meaning
in context

If we want to represent word meaning through
individual usages and their similarity only, with-
out the use of dictionary senses (along hypothesis

(C)), distributional models are an obvious choice,
if we can just represent each individual usage as
a point in space. However, vector space models
have mostly been used to represent the meaning of
a word in isolation: The vector for a word is com-
puted by summing over all its corpus occurrences,
thereby summing over all its meanings. There are
a few vector space models of meaning in context,
though they differ in what it is that they model.
One group of models computes a single vector for
a whole sentence, encoding both the words and the
syntactic structure (Smolensky, 1990; B. Coecke
and Clark, 2010). In this case, the dimensionality
of the vectors varies with the syntactic complexity
of the sentence in question. A second group also
computes a single vector for a whole expression,
but the vector for a larger expression is a combi-
nation of the word vectors for the words occurring
in the expression (Landauer and Dumais, 1997;
Mitchell and Lapata, 2008). Syntactic structure
is not encoded. The resulting vector, of the same
dimensionality as the word vectors, is then a com-
bination of the contexts in which the words of the
sentence occur. A third group of approaches de-
rives a separate vector for each word in a given
sentence (Erk and Padó, 2008; Thater et al., 2009;
Erk and Padó, 2010). While an approach of the
second type would derive a single, joint vector for,
say, the expression catch a ball, an approach from
the third group would derive two vectors, one for
the word catch in the context of ball, and one for
the word ball in the context of catch. In this third
group, the dimensionality of a vector for a word in
context is the same as for a word in isolation.

In this paper, we focus on the third type of ap-
proaches. Our aim is to study alternatives to dic-
tionary senses for characterizing word meaning.
So we need a meaning characterization for each
individual word in a given sentence context, rather
than a single vector for a larger expression.

We can also classify distributional approaches
to word meaning in context into prototype- and
exemplar-based approaches. Prototype-based ap-
proaches first compute a (prototype) vector for
each word in isolation, then modify this vec-
tor according to the context in a given occur-
rence (Landauer and Dumais, 1997; Mitchell
and Lapata, 2008; Erk and Padó, 2008; Thater
et al., 2009). Typical methods for combining
prototype vectors are addition, component-wise
multiplication (introduced by Mitchell and Lap-
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Figure 2: From (Erk and Padó, 2008): Left: Vector representations for verb catch and noun ball. Lexical
information plus selectional preferences. Right: Computing context-specific meaning by combining
predicate and argument via selectional preference vectors

ata (2008)), and component-wise minimum. Then
there are multiple prototype approaches that stat-
ically cluster synonyms or occurrences to induce
word senses(Schütze, 1998; Pantel and Lin, 2002;
Reisinger and Mooney, 2010). Exemplar-based
approaches represent a word in isolation as a col-
lection of its occurrences or paraphrases, then se-
lect only the contextually appropriate exemplars
for a given occurrence context (Kintsch, 2001; Erk
and Padó, 2010). In this paper we focus on the first
and third group of approaches, as they do not rely
on knowledge of how many word senses (clusters)
there should be.

A structured vector space model for word
meaning in context. In Erk and Padó (2008), we
proposed the structured vector space model (SVS),
which relies solely on syntactic context for com-
puting a context-specific vector. It is a prototype-
based model, , and called structured because it ex-
plicitly represents argument structure, using multi-
ple vectors to represent each word. Figure 2 (left)
illustrates the representation. A word, for exam-
ple catch, has one vector describing the meaning
of the word itself, the lexical vector ~catch. It is
a vector for the word in isolation, as is usual for
prototype-based models. In addition, the represen-
tation for catch contains further vectors describing
the selectional preferences for each argument po-
sition. The obj preference vector of catch is com-
puted from the lexical vectors of all words that
have been observed as direct objects of catch in
some syntactically parsed corpus. In the example
in Figure 2, we have observed the direct objects
cold, baseball, and drift. In the simplest case,
the obj preference vector of catch is then com-
puted as the (weighted) sum of the three vectors
~cold, ~baseball and ~drift. Likewise, ball is repre-

sented by one vector for ball itself, one for ball ’s

preferences for its modifiers (mod), one vector for
the verbs of which it is a subject (subj−1), and one
for the verbs of which is an object (obj−1).

The vector for catch in a given context, say in
the context catch ball, is then computed as illus-
trated on the right side of Figure 2: The lexical
vector ~catch is combined with the obj−1 vector of
ball, modifying the vector ~catch in the direction of
verbs that typically take ball as an object. For the
vector combination, any of the usual operations
can be used: addition, component-wise multipli-
cation, or minimum. Likewise, the lexical vector
~ball is combined with the obj preference vector of

catch to compute the meaning of ball in the con-
text catch ball.

The standard evaluation for vector models of
meaning in context is to predict paraphrase appro-
priateness. Paraphrases always apply to a word
meaning, not a word. For example, contract is
an appropriate paraphrase for catch in the context
John caught the flu, but it is not an appropriate
paraphrase in the context John caught a butterfly.
A vector space model can predict paraphrase ap-
propriateness as the similarity (measured, for ex-
ample, using Cosine) of the context-specific vec-
tor of catch with the lexical vector of contract:
The more similar the vectors, the higher the pre-
dicted appropriateness of the paraphrase. We eval-
uated SVS on two datasets. The first is a tightly
controlled psycholinguistic dataset of subject/verb
pairs with paraphrases for the verbs only (Mitchell
and Lapata, 2008). The other is the Lexical Sub-
stitution dataset, which has annotator-generated
paraphrases for target words in a larger senten-
tial context and which is thus closer to typical
NLP application scenarios (McCarthy and Nav-
igli, 2009). SVS showed comparable performance
to the model by Mitchell and Lapata (2008) on the
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former dataset, and outperformed the Mitchell and
Lapata model on the latter.

One obvious extension is to use all available
syntactic context, instead of focusing on a sin-
gle syntactic neighbor. We found no improve-
ment on SVS in a straightforward extension to
additional syntactic context items (Erk and Padó,
2009). However, Thater et al. (2009) did achieve
better performance with a different model that
used all syntactic context.

Taking larger context into account in an
exemplar-based model. But even if we take the
complete local syntactic context into account, we
are missing some evidence, in particular non-local
information. The word ball is interpreted differ-
ently in sentences (1a) and (1b) 1 even though its
predicate ran has more or less the same meaning in
both sentences. What is different is the subject of
ran, player versus debutante, which is not a direct
syntactic neighbor of the ambiguous word ball.

(1)
(a) the player ran to the ball
(b) the debutante ran to the ball

Even though we are not using dictionary senses,
the types of evidence that should be useful for
computing occurrence-specific vectors should be
the same as for traditional WSD; and one of the
main type of features used there is bag-of-words
context. In (Erk and Padó, 2010), we proposed an
exemplar-based model of word meaning in con-
text that relied on bag-of-words context informa-
tion from the whole sentence, but did not use syn-
tactic information. The model assumes that each
target lemma is represented by a set of exemplars,
where an exemplar is a sentence in which the tar-
get lemma occurs. Polysemy is then modeled by
activating (selecting) relevant exemplars of a tar-
get lemma in a given occurrence s.2 Both the ex-
emplars and the occurrence s are modeled as vec-
tors. We simply use first-order vectors that re-
flect the number of times each word occurs in a
given sentence. The activated exemplars are then
simply the ones whose vectors are most similar
to the vector of s. The results that we achieved
with the exemplar-based model on the Lexical
Substitution dataset were considerably better than

1These two examples are due to Ray Mooney.
2Instead of the binary selection of each exemplar that this

model uses, it would also be possible to assign each exemplar
a weight, making it partially selected.

those achieved with any of the syntax-based ap-
proaches (Erk and Padó, 2008; Erk and Padó,
2009; Thater et al., 2009).

While prototype models compute a vector by
first summing over all observed occurrences and
then having to suppress dimensions that are not
contextually appropriate, exemplar models only
take contextually appropriate exemplars into ac-
count in the first place, which is conceptually
simpler and thus more attractive. But there are
still many open questions, in particular the best
combination of bag-of-words context and syntac-
tic context as evidence for computing occurrence-
specific vector representations.

5 The role of dictionary senses

Word meaning models that rely only on individual
word usages and their similarities are more flex-
ible than dictionary-based models and make less
assumptions. On the other hand, dictionaries offer
not just sense lists but also a wealth of information
that can be used for inferences. WordNet (Fell-
baum, 1998) has relations between words and be-
tween synsets, most importantly synonymy and
hyponymy. VerbNet (Kipper et al., 2000) specifies
semantic properties of a predicate’s arguments, as
well as relations between the arguments.

In this section we discuss approaches for em-
bedding dictionary senses in a distributional model
in a way that supports hypotheses (A) and (B)
(graded sense membership, and description of an
occurrence through multiple senses) and that sup-
ports testing the applicability of dictionary-based
inference rules.

Mapping dictionary senses to points in vec-
tor space. Dictionary senses can be mapped to
points in vector space very straightforwardly if we
have sense-annotated corpus data. In that case,
we can compute a (prototype) vector for a sense
from all corpus occurrences annotated with that
sense. We used this simple model (Erk and Mc-
Carthy, 2009) to predict the graded sense appli-
cability judgments from the WSsim dataset. (See
Section 2 for more information on this dataset.)
The predictions of the vector space model sig-
nificantly correlate with annotator judgments. In
comparison with an approach that uses the con-
fidence levels of a standard WSD model as pre-
dictions, the vector space model shows higher re-
call but lower precision – for definitions of preci-
sion and recall that are adapted to the graded case.
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Another way of putting the findings is to say that
the WSD confidence levels tend to under-estimate
sense applicability, while the vector space model
tends to over-estimate it.

Attachment sites for inference rules. As dis-
cussed above, vector space models for word mean-
ing in context are typically evaluated on para-
phrase applicability tasks (Mitchell and Lapata,
2008; Erk and Padó, 2008; Erk and Padó, 2009;
Thater et al., 2009). They predict the applicabil-
ity of a paraphrase like (2) based on the similarity
between a context-specific vector for the lemma
(here, catch) and a context-independent vector for
the paraphrase. (in this case, contract).

X catch Y → X contract Y (2)

Another way of looking at this is to consider the
inference rule (2) to be attached to a point in
space, namely the vector for contract, and to trig-
ger the inference rule for an occurrence of catch if
it is close enough to the attachment site. If we
know the WordNet sense of contract for which
rule (2) holds – it happens to be sense 4 –, we can
attach the rule to a vector for sense 4 of contract,
rather than a vector computed from all occurrences
of the lemma. Note that when we use dictionar-
ies as a source for inference rules, for example
by creating an inference rule like (2) for each two
words that share a synset and for each direct hy-
ponym/hypernym pair, we do know the WordNet
sense to which each inference rule attaches.

Mapping dictionary senses to regions in vector
space. In Erk (2009) we expand on the idea of
tying inference rules to attachment sites by repre-
senting a word sense not as a point but as a region
in vector space. The extent of the regions is esti-
mated through the use of both positive exemplars
(occurrences of the word sense in question), and
negative exemplars (occurrences of other words).
The computational models we use are inspired by
cognitive models of concept representation that
represent concepts as regions (Smith et al., 1988;
Hampton, 1991), in particular adopting Shepard’s
law (Shepard, 1987), which states that perceived
similarity to an exemplar decreases exponentially
with distance from its vector.

In the longer term, the goal for the association
of inference rules with attachment sites is to obtain
a principled framework for reasoning with par-
tially applicable inference rules in vector space.

6 Conclusion and outlook

In this paper, we have argued that it may be time
to consider alternative computational models of
word meaning, given that word sense disambigua-
tion, after all this time, is still a tough problem for
humans as well as machines. We have followed
three hypotheses. The first two involve dictionary
senses, suggesting that (A) senses may best be
viewed as applying to a certain degree, rather than
in a binary fashion, and (B) that it may make sense
to describe an occurrence through multiple senses
as a default rather than an exception. The third
hypothesis then departs from dictionary senses,
suggesting (C) focusing on individual word us-
ages and their similarities instead. We have argued
that distributional models are a good match for
word meaning models following hypotheses (A)-
(C): They can represent individual word usages as
points in vector space, and they can also represent
dictionary senses in a way that allows for graded
membership and overlapping senses, and we have
discussed some existing models, both prototype-
based and exemplar-based.

One big question is, of course, about the us-
ability of these alternative models of word mean-
ing in NLP applications. Will they do better than
dictionary-based models? The current evaluations,
testing paraphrase applicability in context, are a
step in the right direction, but more task-oriented
evaluation schemes have to follow.

We have argued that it makes sense to look to
cognitive models of mental concept representa-
tion. They are often based on feature vectors, and
there are many interesting ideas in these models
that have not yet been used (much) in computa-
tional models of word meaning. One of the most
exciting ones, perhaps, is that cognitive models of-
ten have interpretable dimensions. While dimen-
sions of distributional models are usually not in-
dividually interpretable, there are some first mod-
els (Almuhareb and Poesio, 2005; Baroni et al.,
2010) that use patterns to extract meaningful di-
mensions from corpus data. This offers many new
perspectives: For which tasks can we improve per-
formance by selecting dimensions that are mean-
ingful specifically for that task (as in Mitchell et
al. (2008))? Can interpretable dimensions be used
for inferences? And, when we are computing vec-
tor space representations for word meaning in con-
text, is it possible to select meaningful dimensions
that are appropriate for a given context?

23



Acknowledgements. This work was supported
in part by National Science Foundation grant IIS-
0845925, and by a Morris Memorial Grant from
the New York Community Trust.

References
A. Almuhareb and M. Poesio. 2005. Finding concept

attributes in the web. In Proceedings of the Corpus
Linguistics Conference, Birmingham.

M. Sadrzadeh B. Coecke and S. Clark. 2010. Mathe-
matical foundations for a compositional distributed
model of meaning. Lambek Festschrift, Linguistic
Analysis, 36.

M. Baroni, B. Murphy, E. Barbu, and M. Poesio. 2010.
Strudel: A corpus-based semantic model based on
properties and types. Cognitive Science, 34(2):222–
254.

S. W. Brown. 2008. Choosing sense distinctions for
WSD: Psycholinguistic evidence. In Proceedings of
ACL/HLT, Columbus, OH.

J. Chen and M. Palmer. 2009. Improving English
verb sense disambiguation performance with lin-
guistically motivated features and clear sense dis-
tinction boundaries. Journal of Language Resources
and Evaluation, Special Issue on SemEval-2007,
43:181–208.

L. Coleman and P. Kay. 1981. The English word “lie”.
Linguistics, 57.

D. A. Cruse. 1986. Lexical Semantics. Cambridge
University Press.

S. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnaas, and R. A. Harshman. 1990. Indexing by
latent semantic analysis. Journal of the Society for
Information Science, 41(6):391–407.

P. Edmonds and S. Cotton, editors. 2001. Proceed-
ings of the SensEval-2 Workshop, Toulouse, France.
ACL. See http://www.sle.sharp.co.uk/
senseval.

K. Erk and D. McCarthy. 2009. Graded word sense
assignment. In Proceedings of EMNLP, Singapore.
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