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Introduction

This volume includes the papers presented at the GEMS 2010 Workshop - Geometrical Models for
Natural Language Semantics, held on the 16th July 2010, jointly with the Conference of the Association
for Computational Linguistics, ACL 2010, and endorsed by SigLex and SigSem.

Distributional models and semantic spaces represent a core topic in contemporary computational
linguistics for their impact on advanced tasks and on other knowledge fields (such as social science
and the humanities). Semantic spaces based on simple contextual units have been early used in
information retrieval, showing dramatic impact on accuracy and scalability of many tasks. Later on,
more linguistically principled spaces have been introduced for large-scale natural language learning
problems, such as the acquisition of lexical taxonomies, word sense discrimination, pattern acquisition
and conceptual clustering. More recently, specialized distributional models have been successfully
applied to solve complex NLP tasks such as question answering, textual entailment and sentiment
analysis. Cutting-edge applications include the adoption of semantic spaces as models of rich lexical
semantic resources (e.g. lexical networks and lexicalized meaning theories, as frame semantics), and of
machine learning approaches based on kernel methods.

The GEMS 2010 Workshops builds on the successful first edition held in Athens in 2009 jointly with the
Conference of the European Chapter of the Association for Computational Linguistics, which counted
more than 40 registered people and a large audience. As a follow-up of the GEMS 2009 Workshop, the
Special Issue of the Journal of Natural Engineering dedicated to “Distributional Lexical Semantics”1 is
a further proof of the high interest in this research area. The 2010 edition aims at consolidating GEMS’
contribution to the field, by stimulating research on semantic spaces and distributional methods for NLP,
by pushing for an interdisciplinary view, and by amplifying exchange of ideas, results and resources
among often independent communities.

The Workshop has successfully gathered high quality contributions to problems of meaning
representation, acquisition and use, including a total of 15 paper submissions. After a peer-review phase,
the program committee has selected 8 papers to be presented at the workshop, all of which have been
included in these proceedings. The papers are representative of the current state of the art in distributional
semantics, including:

• cutting edge researches on geometric techniques and machine learning, such as tensor analysis,
non-linear embeddings, kernel methods, and latent topic models;

• applications of semantic space models to lexical acquisition tasks;

• novel optimization techniques for efficient and scalable distributional methods.

We would like to thank all the authors for the hard work dedicated to the submissions, and the members of
the program committee for their precious reviewing. A special thanks goes to Katrin Erk for her invited
contribution that provides a challenging and inspiring vision on the topic. Finally, we acknowledge the
ACL 2010 organization and mostly the workshop chairs, Pushpak Bhattacharyia and David Weir, for
their constant support across all the preparatory work.

Roberto Basili, University of Roma, Tor Vergata, Italy
Marco Pennacchiotti, Yahoo! Inc, Sunnyvale, USA.

June, 2010

1http://art.uniroma2.it/jnle
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Abstract

Dimensionality reduction has been shown
to improve processing and information ex-
traction from high dimensional data. Word
space algorithms typically employ lin-
ear reduction techniques that assume the
space is Euclidean. We investigate the ef-
fects of extracting nonlinear structure in
the word space using Locality Preserv-
ing Projections, a reduction algorithm that
performs manifold learning. We apply
this reduction to two common word space
models and show improved performance
over the original models on benchmarks.

1 Introduction

Vector space models of semantics frequently em-
ploy some form of dimensionality reduction for
improvement in representations or computational
overhead. Many of the dimensionality reduc-
tion algorithms assume that the unreduced word
space is linear. However, word similarities have
been shown to exhibit many non-metric proper-
ties: asymmetry, e.g North Korea is more sim-
ilar to Red China than Red China is to North
Korea, and non-transitivity, e.g. Cuba is similar
the former USSR, Jamaica is similar to Cuba,
but Jamaica is not similar to the USSR (Tversky,
1977). We hypothesize that a non-linear word
space model might more accurately preserve these
non-metric relationships.

To test our hypothesis, we capture the non-
linear structure with dimensionality reduction by
using Locality Preserving Projection (LPP) (He
and Niyogi, 2003), an efficient, linear approxi-
mation of Eigenmaps (Belkin and Niyogi, 2002).
With this reduction, the word space vectors are as-
sumed to exist on a nonlinear manifold that LPP
learns in order to project the vectors into a Eu-
clidean space. We measure the effects of us-
ing LPP on two basic word space models: the

Vector Space Model and a Word Co-occurrence
model. We begin with a brief overview of these
word spaces and common dimensionality reduc-
tion techniques. We then formally introduce LPP.
Following, we use two experiments to demonstrate
LPP’s capacity to accurately dimensionally reduce
word spaces.

2 Word Spaces and Reductions

We consider two common word space models
that have been used with dimensionality reduc-
tion. The first is the Vector Space Model (VSM)
(Salton et al., 1975). Words are represented as
vectors where each dimension corresponds to a
document in the corpus and the dimension’s value
is the number of times the word occurred in the
document. We label the second model the Word
Co-occurrence (WC) model: each dimension cor-
respond to a unique word, with the dimension’s
value indicating the number of times that dimen-
sion’s word co-occurred.

Dimensionality reduction has been applied to
both models for three kinds of benefits: to im-
prove computational efficiency, to capture higher
order relationships between words, and to reduce
noise by smoothing or eliminating noisy features.
We consider three of the most popular reduction
techniques and the general word space models to
which they have been applied: linear projections,
feature elimination and random approximations.

The most frequently applied linear projection
technique is the Singular Value Decomposition
(SVD). The SVD factors a matrixA, which rep-
resents a word space, into three matricesUΣV ⊤

such thatΣ is a diagonal matrix containing the
singular values ofA, ordered descending based on
their effect on the variance in the values ofA. The
original matrix can be approximated by using only
the topk singular values, setting all others to 0.
The approximation matrix,̂A = UkΣkV

⊤

k , is the
least squares best-fit rank-k approximation ofA.

1



The SVD has been used with great success on
both models. Latent Semantic Analysis (LSA)
(Landauer et al., 1998) extends the (VSM) by de-
composing the space using the SVD and mak-
ing the word space the left singular vectors,Uk.
WC models have also utilized the SVD to improve
performance (Scḧutze, 1992; Bullinaria and Levy,
2007; Baroni and Lenci, 2008).

Feature elimination reduces the dimensional-
ity by removing those with low information con-
tent. This approach has been successfully applied
to WC models such as HAL (Lund and Burgess,
1996) by dropping those with low entropy. This
technique effectively removes the feature dimen-
sions of high frequency words, which provide lit-
tle discriminatory content.

Randomized projections have also been suc-
cessfully applied to VSM models, e.g. (Kanerva
et al., 2000) and WC models, e.g. (Sahlgren et al.,
2008). This reduction statistically approximates
the original space in a much lower dimensional
space. The projection does not take into account
the structure of data, which provides only a com-
putational benefit from fewer dimensions, unlike
the previous two reductions.

3 Locality Preserving Projection

For a set of vectors,x1, x2, . . . , xn ∈ R
m, LPP

preserves the distance in thek-dimensional space,
wherek ≪ m, by solving the following minimiza-
tion problem,

min
w

∑

ij

(w⊤xi −w
⊤
xj)

2Sij (1)

wherew is a transformation vector that projectsx

into the lower dimensional space, andS is a ma-
trix that represents the local structure of the origi-
nal space. Minimizing this equation is equivalent
to finding the transformation vector that best pre-
serves the local distances in the original space ac-
cording toS. LPP assumes that the data pointsxi

exist on a manifold. This is in contrast to the SVD,
which assumes that the space is Euclidean and per-
forms a global, rather than local, minimization. In
treating the space as a manifold, LPP is able to dis-
cover some of the nonlinear structure of the data
from its local structure.

To solve the minimization problem in Equation
1, LPP uses a linear approximation of the Lapla-
cian Eigenmaps procedure (Belkin and Niyogi,
2002) as follows:

1. LetX be a matrix wherexi is theith row vec-
tor. Construct an adjacency matrix,S, which
represents the local structure of the original
vector space, by making an edge between
pointsxi andxj if xj is locally proximate to
xi. Two variations are available for determin-
ing proximity: either thek-nearest neighbors,
or all the data points with similarity> ǫ.

2. Weight the edges inS proportional to the
closeness of the data points. Four main op-
tions are available: a Gaussian kernel, a poly-
nomial kernel, cosine similarity, or binary.

3. Construct the diagonal matrixD where entry
Dii =

∑
j Sij . Let L = D − S. Then solve

the generalized eigenvector problem:

XLX⊤
w = λXDX⊤

w. (2)

He and Niyogi (2003) show that solving this
problem is equivalent to solving Equation 1.

4. LetWk = [w1, . . . ,wk] denote the matrix of
transformation vectors, sorted in descending
order according to their eigenvaluesλ. The
original space is projected intok dimensions
by W⊤

k X → Xk.

For many applications of LPP, such as doc-
ument clustering (He et al., 2004), the original
data matrixX is transformed by first perform-
ing Principle Component Analysis and discarding
the smallest principle components, which requires
computing the full SVD. However, for large data
sets such as those frequently used in word space
algorithms, performing the full SVD is computa-
tionally infeasible.

To overcome this limitation, Cai et al. (2007a)
show how Spectral Regression may be used as
an alternative for solving the same minimization
equation through an iterative process. The princi-
ple idea is that Equation 2 may be recast as

Sy = λDy (3)

wherey = X⊤
w, which ensuresy will be an

eigenvector with the same eigenvalue for the prob-
lem in Equation 2. Finding the transformation
matrix Wk, used in step 4, is done in two steps.
First, Equation 3 is solved to produce eigenvectors
[y0, . . . ,yk], sorted in decreasing order according
to their eigenvaluesλ. Second, the set of trans-
formation vectors composingWk, [w1, . . . ,wk],
is found by a least-squares regression:

wj = argmin
w

n∑

i=1

(w⊤xi − y
j
i )

2 + α||w||2 (4)
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wherey
j
i denotes the value of thejth dimension

of yi. The α parameter penalizes solutions pro-
portionally to their magnitude, which Cai et al.
(2007b) note ensures the stability ofw as an ap-
proximate eigenproblem solution.

4 Experiments

Two experiments measures the effects of nonlin-
ear dimensionality reduction for word spaces. For
both, we apply LPP to two basic word space mod-
els, the VSM and WC. In the first experiment,
we measure the word spaces’ abilities to model
semantic relations, as determined by priming ex-
periments. In the second experiment, we evaluate
the representation capabilities of the LPP-reduced
models on standard word space benchmarks.

4.1 Setup

For the VSM-based word space, we consider three
different weighting schemes: no weighting, TF-
IDF and the log-entropy (LE) used in (Landauer
et al., 1998). For the WC-based word space, we
use a 5 word sliding window. Due to the large pa-
rameter space for LPP models, we performed only
a limited configuration search. An initial analysis
using the 20 nearest neighbors and cosine simi-
larity did not show significant performance differ-
ences when the number of dimensions was varied
between 50 and 1000. We therefore selected 300
dimensions for all tests. Further work is needed to
identify the impact of different parameters. Stop
words were removed only for the WC+LPP model.
We compare the LPP-based spaces to three mod-
els: VSM, HAL, and LSA.

Two corpora are used to train the models in both
experiments. The first corpus, TASA, is a collec-
tion of 44,486 essays that are representative of the
reading a student might see upon entering college,
introduced by (Landauer et al., 1998). The cor-
pus consists of 98,420 unique words; no filtering
is done when processing this corpus. The second
corpus, WIKI, is a 387,082 article subset of a De-
cember 2009 Wikipedia snapshot consisting of all
the articles with more than 1,000 tokens. The cor-
pus is filtered to retain the top 100,000 most fre-
quent tokens in addition to all the tokens used in
each experiment’s data set.

4.2 Experiment 1

Semantic priming measures word association
based on human responses to a provided cue.

Priming studies have been used to evaluate word
spaces by equating vector similarity with an in-
creased priming response. We use data from two
types of priming experiments to measure whether
LPP models better correlate with human perfor-
mance than non-LPP word spaces.

Normed Priming Nelson et al. (1998) collected
free association responses to 5,019 prime words.
An average of 149 participants responded to each
prime with the first word that came to mind.

Based on this dataset, we introduce a new
benchmark that correlates word space similarity
with the associative strength of semantic priming
pairs. We use three measures for modeling prime-
target strength, which were inspired by Steyvers
et al. (2004). LetWab be the percentage of partici-
pants who responded to primea with targetb. The
three measures of associative strength are

S1

ab = Wab

S2

ab = Wab + Wba

S3

ab = S2

ab +
∑

c S2
acS

2

cb

These measure three different levels of semantic
relatedness between wordsa andb. S1

ab measures
the relationship froma to b, which is frequently
asymmetric due to ordering, e.g. “orange” pro-
duces “juice” more frequently than “juice” pro-
duces “orange.”S2

ab measures the symmetric asso-
ciation betweena andb; Steyvers et al. (2004) note
that this may better model the associative strength
by including weaker associates that may have been
a suitable second response.S3

ab further increases
the association by including the indirect associa-
tions betweena andb from all cued primes.

For each measure, we rank a prime’s targets
according to their strength and then compute the
Spearman rank correlation with the prime-target
similarities in the word space. The rank compari-
son measures how well word space similarity cor-
responds to the priming association. We report the
average rank correlation of associational strengths
over all primes.

Priming Effect The priming study by Hodgson
(1991), which evaluated how different semantic
relationships affected the strength of priming, pro-
vides the data for our second priming test. Six re-
lationships were examined in the study: antonymy,
synonymy, conceptual association (sleep and bed),
categorical coordinates (mist and rain), phrasal as-
sociates (pony and express), and super- and sub-
ordinates. Each relationship contained an average

3



Antonymy Conceptual Coordinates

Algorithm Rb U E R U E R U E

VSM+LPP+LE 0.103 0.018 0.085 0.197 0.050 0.147 0.071 0.027 0.044
VSM+LPP+TF-IDF 0.348 0.321 0.027 0.408 0.414 -0.005 0.323 0.294 0.029
VSM+LPP 0.247 0.122 0.124 0.312 0.120 0.193 0.230 0.111 0.119
VSM+LPPa 0.298 0.070 0.228 0.284 0.033 0.252 0.321 0.0370.284
WC+LPP 0.255 0.071 0.185 0.413 0.110 0.303 0.431 0.1340.298
HAL 0.813 0.716 0.096 0.845 0.814 0.031 0.861 0.809 0.052
HALa 0.915 0.879 0.037 0.867 0.846 0.021 0.913 0.861 0.052
LSA 0.235 0.023 0.213 0.392 0.028 0.364 0.199 0.014 0.185
LSAa 0.287 0.061 0.226 0.362 0.041 0.321 0.316 0.037 0.278
VSM 0.051 0.011 0.040 0.111 0.012 0.099 0.032 0.008 0.024

Phrasal Ordinates Synonymy

Algorithm R U E R U E R U E

VSM+LPP+LE 0.147 0.039 0.108 0.225 0.032 0.193 0.081 0.027 0.053
VSM+LPP+TF-IDF 0.438 0.425 0.013 0.277 0.290 -0.013 0.344 0.328 0.017
VSM+LPP 0.234 0.107 0.127 0.273 0.115 0.158 0.237 0.157 0.080
VSM+LPPa 0.202 0.031 0.171 0.270 0.032 0.238 0.299 0.069 0.230
WC+LPP 0.274 0.087 0.186 0.324 0.076 0.248 0.345 0.111 0.233
HAL 0.805 0.776 0.029 0.825 0.789 0.036 0.757 0.681 0.076
HALa 0.866 0.856 0.010 0.881 0.857 0.024 0.898 0.879 0.019
LSA 0.280 0.021 0.258 0.258 0.018 0.240 0.197 0.019 0.178
LSAa 0.269 0.030 0.238 0.326 0.032 0.294 0.327 0.052 0.275
VSM 0.104 0.013 0.091 0.061 0.008 0.053 0.052 0.009 0.043
a Processed using the WIKI corpus
b R are related primes, U are unrelated primes, E is the priming effect

Table 1: Experiment 1 priming results for the six relation categories from Hodgson (1991)

Word Choice Word Association

Algorithm Corpus TOEFL ESL RDWP F. et al. R.&G. Deese

VSM+LPP+le TASA 24.000 50.000 45.313 0.296 0.092 0.034
VSM+LPP+tf-idf TASA 22.667 25.000 37.209 0.023 0.086 0.001
VSM+LPP TASA 41.333 54.167 39.063 0.219 0.136 0.045
VSM+LPP Wiki 33.898 48.780 43.434 0.530 0.503 0.108
WC+LPP TASA 46.032 40.000 45.783 0.423 0.414 0.126
HAL TASA 44.00 20.83 50.00 0.173 0.180 0.318
HAL Wiki 50.00 31.11 43.44 0.261 0.195 0.042
LSA TASA 56.000 50.000 55.814 0.516 0.651 0.349
LSA Wiki 60.759 54.167 59.200 0.614 0.681 0.206
VSM TASA 61.333 52.083 84.884 0.396 0.496 0.200

Table 2: Results from Experiment 2 on six word space benchmarks

of 23 word pairs. Hodgson’s results showed that
priming effects were exhibited by the prime-target
pairs in all six categories.

We use the same methodology as Padó and La-
pata (2007) for this data set; the prime-target (Re-
lated Primes) cosine similarity is compared with
the average cosine similarity between the prime
and all other targets (Unrelated Primes) within the
semantic category. The priming effect is the dif-
ference between the two similarity values.

4.3 Experiment 2

We use six standard word space benchmarks to
test our hypothesis that LPP can accurately capture

general semantic knowledge and association based
relations. The benchmarks come in two forms:
word association and word choice tests.

Word choice tests provide a target word and a
list of options, one of which has the desired rela-
tion to the target. To answer these questions, we
select the option with the highest cosine similar-
ity with the target. Three word choice synonymy
benchmarks are used: the Test of English as a For-
eign Language (TOEFL) test set from (Landauer
et al., 1998), the English as a Second Language
(ESL) test set from (Turney, 2001), and the Cana-
dian Reader’s Digest Word Power (RDWP) from
(Jarmasz and Szpakowicz, 2003).

4



Algorithm Corpus S
1

S
2

S
3

VSM+LPP+LE TASA 0.457 0.413 0.255
VSM+LPP+TF-IDF TASA 0.464 0.390 0.207
VSM+LPP TASA 0.457 0.427 0.275
VSM+LPP Wiki 0.472 0.440 0.333
WC+LPP TASA 0.469 0.437 0.315
HAL TASA 0.485 0.434 0.310
HAL Wiki 0.462 0.406 0.266
LSA TASA 0.494 0.481 0.414
LSA Wiki 0.489 0.472 0.398
VSM TASA 0.484 0.460 0.407

Table 3: Experiment 1 results for normed priming.

Word association tests measure the semantic re-
latedness of two words by comparing their simi-
larity in the word space with human judgements.
These tests are more precise than word choice tests
because they take into account the specific value
of the word similarity. Three word association
benchmarks are used: the word similarity data set
of Rubenstein and Goodenough (1965), the word-
relatedness data set of Finkelstein et al. (2002),
and the antonymy data set of Deese (1964), which
measures the degree to which high similarity cap-
tures the antonymy relationship. The Finkelstein
et al. test is notable in that the human judges were
free to score based on any word relationship.

5 Results and Discussion

The LPP-based models show mixed performance
in comparison to existing models on normed prim-
ing tasks, shown in Table 3. Adding LPP to
the VSM decreased performance; however, when
WIKI was used instead of TASA, the VSM+LPP
model increased .15 on all correlations, whereas
LSA’s performance decreased. This suggests that
LPP needs more data than LSA to properly model
the word space manifold. WC+LPP performs
comparably to HAL, which indicates that LPP
is effective in retaining the original WC space’s
structure in significantly fewer dimensions.

For the categorical priming tests shown in Ta-
ble 1, LPP-based models show competitive results.
VSM+LPP with the WIKI corpus performs much
better than other VSM+LPP configurations. Un-
like in the previous priming experiment, adding
LPP to the base models resulted in a significant
performance improvement. We also note that both
HAL models and the VSM+LPP+TF-IDF model
have high similarity ratings for unrelated primes.
We posit that these models’ feature weighting re-
sults in poor differentiation between words in the

same semantic category, which causes their de-
creased performance.

For experiment 2, LPP-based spaces showed
mixed results on word choice benchmarks, while
showing notable improvement on the more pre-
cise word association benchmarks. Table 2 lists
the results. Notably, LPP-based spaces performed
well on the ESL synonym benchmark but poorly
on the TOEFL synonym benchmark, even when
the larger WIKI corpus was used. This suggests
that LPP was not effective in retaining the re-
lationship between certain classes of synonyms.
Given that performance did not improve with the
WIKI corpus, further analysis is needed to iden-
tify whether a different representation of the local
structure would improve results or if the poor per-
formance is due to another factor. While LSA and
VSM model performed best on all benchmarks,
LPP-based spaces performed competitively on the
word association tests. In all but two tests, the
WC+LPP model outperformed HAL.

The results from both experiments indicate that
LPP is capable of accurately representing distri-
butional information in a much lower dimensional
space. However, in many cases, applications using
the SVD-reduced representations performed bet-
ter. In addition, application of standard weight-
ing schemes worsened LPP-models’ performance,
which suggests that the local neighborhood is ad-
versely distorted. Nevertheless, we view these re-
sults as a promising starting point for further eval-
uation of nonlinear dimensionality reduction.

6 Conclusions and Future Work

We have shown that LPP is an effective dimen-
sionality reduction technique for word space algo-
rithms. In several benchmarks, LPP provided a
significant benefit to the base models and in a few
cases outperformed the SVD. However, it does not
perform consistently better than existing models.
Future work will focus on four themes: identifying
optimal LPP parameter configurations; improving
LPP with weighting; measuring LPP’s capacity to
capture higher order co-occurrence relationships,
as was shown for the SVD (Lemaire et al., 2006);
and investigating whether more computationally
expensive nonlinear reduction algorithms such as
ISOMAP (Tenenbaum et al., 2000) are better for
word space algorithms. We plan to release imple-
mentations of the LPP-based models as a part of
the S-Space Package (Jurgens and Stevens, 2010).
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Abstract

This work focuses on the empirical inves-
tigation of distributional models for the
automatic acquisition of frame inspired
predicate words. While several seman-
tic spaces, both word-based and syntax-
based, are employed, the impact of ge-
ometric representation based on dimen-
sionality reduction techniques is inves-
tigated. Data statistics are accordingly
studied along two orthogonal perspectives:
Latent Semantic Analysis exploits global
properties while Locality Preserving Pro-
jection emphasizes the role of local reg-
ularities. This latter is employed by em-
bedding prior FrameNet-derived knowl-
edge in the corresponding non-euclidean
transformation. The empirical investiga-
tion here reported sheds some light on the
role played by these spaces as complex
kernels for supervised (i.e. Support Vector
Machine) algorithms: their use configures,
as a novel way to semi-supervised lexical
learning, a highly appealing research di-
rection for knowledge rich scenarios like
FrameNet-based semantic parsing.

1 Introduction

Automatic Semantic Role Labeling (SRL) is a
natural language processing (NLP) technique that
maps sentences to semantic representations and
identifies the semantic roles conveyed by senten-
tial constituents (Gildea and Jurafsky, 2002). Sev-
eral NLP applications have exploited this kind of
semantic representation ranging from Information
Extraction (Surdeanu et al., 2003; Moschitti et al.,
2003)) to Question Answering (Shen and Lapata,
2007), Paraphrase Identification (Pado and Erk,
2005), and the modeling of Textual Entailment re-
lations (Tatu and Moldovan, 2005). Large scale

annotated resources have been used by Seman-
tic Role Labeling methods: they are commonly
developed using a supervised learning paradigm
where a classifier learns to predict role labels
based on features extracted from annotated train-
ing data. One prominent resource has been de-
veloped under the Berkeley FrameNet project as
a semantic lexicon for the core vocabulary of En-
glish, according to the so-called frame seman-
tic model (Fillmore, 1985). Here, a frame is a
conceptual structure modeling a prototypical sit-
uation, evoked in texts through the occurrence of
its lexical units (LU) that linguistically expresses
the situation of the frame. Lexical units of the
same frame share semantic arguments. For ex-
ample, the frame KILLING has lexical units such
as assassin, assassinate, blood-bath, fatal, mur-
derer, kill or suicide that share semantic arguments
such as KILLER, INSTRUMENT, CAUSE, VICTIM.
The current FrameNet release contains about 700
frames and 10,000 LUs. A corpus of 150,000 an-
notated examples sentences, from the British Na-
tional Corpus (BNC), is also part of FrameNet.

Despite the size of this resource, it is un-
der development and hence incomplete: several
frames are not represented by evoking words and
the number of annotated sentences is unbalanced
across frames. It is one of the main reason for the
performance drop of supervised SRL systems in
out-of-domain scenarios (Baker et al., 2007) (Jo-
hansson and Nugues, 2008). The limited cover-
age of FrameNet corpus is even more noticeable
for the LUs dictionary: it only contains 10,000
lexical units, far less than the 210,000 entries in
WordNet 3.0. For example, the lexical unit crown,
according to the annotations, evokes the ACCOU-
TREMENT frame. It refers to a particular sense:
according to WordNet, it is “an ornamental jew-
eled headdress signifying sovereignty”. Accord-
ing to the same lexical resource, this LU has 12
lexical senses and the first one (i.e. “The Crown
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(or the reigning monarch) as the symbol of the
power and authority of a monarchy”) could evoke
other frames, like LEADERSHIP. In (Pennacchiotti
et al., 2008) and (De Cao et al., 2008), the prob-
lem of LU automatic induction has been treated
in a semi-supervised fashion. First, LUs are mod-
eled by exploiting the distributional analysis of an
unannotated corpus and the lexical information of
WordNet. These representations were used in or-
der to find out frames potentially evoked by novel
words in order to extend the FrameNet dictionary
limiting the effort of manual annotations.

In this work the distributional model of LUs
is further developed. As in (Pennacchiotti et al.,
2008), several word spaces (Pado and Lapata,
2007) are investigated in order to find the most
suitable representation of the properties which
characterize a frame. Two dimensionality reduc-
tion techniques are applied here in this context.
Latent Semantic Analysis (Landauer and Dumais,
1997) uses the Singular Value Decomposition to
find the best subspace approximation of the orig-
inal word space, in the sense of minimizing the
global reconstruction error projecting data along
the directions of maximal variance. Locality Pre-
serving Projection (He and Niyogi, 2003) is a
linear approximation of the nonlinear Laplacian
Eigenmap algorithm: its locality preserving prop-
erties allows to add a set of constraints forcing
LUs that belong to the same frame to be near in
the resulting space after the transformation. LSA
performs a global analysis of a corpus capturing
relations between LUs and removing the noise in-
troduced by spurious directions. However it risks
to ignore lexical senses poorly represented into the
corpus. In (De Cao et al., 2008) external knowl-
edge about LUs is provided by their lexical senses
from a lexical resource (e.g WordNet). In this
work, prior knowledge about the target problem is
directly embedded into the space through the LPP
transformation, by exploiting locality constraints.
Then a Support Vector Machine is employed to
provide a robust acquisition of lexical units com-
bining global information provided by LSA and
the local information provided by LPP into a com-
plex kernel function.

In Section 2 related work is presented. In Sec-
tions 3 the investigated distributional model of
LUs is presented as well as the dimensionality re-
duction techniques. Then, in Section 4 the exper-
imental investigation and comparative evaluations

are reported. Finally, in Section 5 we draw final
conclusions and outline future work.

2 Related Work

As defined in (Pennacchiotti et al., 2008), LU in-
duction is the task of assigning a generic lexical
unit not yet present in the FrameNet database (the
so-called unknown LU) to the correct frame(s).
The number of possible classes (i.e. frames) and
the multiple assignment problem make it a chal-
lenging task. LU induction has been integrated
at SemEval-2007 as part of the Frame Seman-
tic Structure Extraction shared task (Baker et al.,
2007), where systems are requested to assign the
correct frame to a given LU, even when the LU is
not yet present in FrameNet. Several approaches
show low coverage (Johansson and Nugues, 2007)
or low accuracy, like (Burchardt et al., 2005). This
task is presented in (Pennacchiotti et al., 2008) and
(De Cao et al., 2008), where two different mod-
els which combine distributional and paradigmatic
(i.e. lexical) information have been discussed. The
distributional model is used to select a list of frame
suggested by the corpus’ evidences and then the
plausible lexical senses of the unknown LU are
used to re-rank proposed frames.

In order to exploit prior information provided
by the frame theory, the idea underlying is that se-
mantic knowledge can be embedded from exter-
nal sources (i.e the FrameNet database) into the
distributional model of unannotated corpora. In
(Basu et al., 2006) a limited prior knowledge is ex-
ploited in several clustering tasks, in term of pair-
wise constraints (i.e., pairs of instances labeled
as belonging to same or different clusters). Sev-
eral existing algorithms enhance clustering qual-
ity by applying supervision in the form of con-
straints. These algorithms typically utilize the
pairwise constraints to either modify the clustering
objective function or to learn the clustering distor-
tion measure. The approach discussed in (Basu et
al., 2006) employs Hidden Markov Random Fields
(HMRFs) as a probabilistic generative model for
semi-supervised clustering, providing a principled
framework for incorporating constraint-based su-
pervision into prototype-based clustering.

Another possible approach is to directly embed
the prior-knowledge into data representations. The
main idea is to employ effective and efficient algo-
rithms for constructing nonlinear low-dimensional
manifolds from sample data points embedded
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in high-dimensional spaces. Several algorithms
are defined, including Isometric feature mapping
(ISOMAP) (Tenenbaum et al., 2000), Locally Lin-
ear Embedding (LLE) (Roweis and Saul, 2000),
Local Tangent Space alignment (LTSA) (Zhang
and Zha, 2004) and Locality Preserving Projec-
tion (LPP) (He and Niyogi, 2003) and they have
been successfully applied in several computer vi-
sion and pattern recognition problems. In (Yang
et al., 2006) it is demonstrated that basic nonlinear
dimensionality reduction algorithms, such as LLE,
ISOMAP, and LTSA, can be modified by taking
into account prior information on exact mapping
of certain data points. The sensitivity analysis
of these algorithms shows that prior information
improves stability of the solution. In (Goldberg
and Elhadad, 2009), a strategy to incorporate lexi-
cal features into classification models is proposed.
Another possible approach is the strategy pursued
in recent works on deep learning techniques to
NLP tasks. In (Collobert and Weston, 2008) a
unified architecture for NLP that learns features
relevant to the tasks at hand given very limited
prior knowledge is presented. It embodies the
idea that a multitask learning architecture coupled
with semi-supervised learning can be effectively
applied even to complex linguistic tasks such as
Semantic Role Labeling. In particular, (Collobert
and Weston, 2008) proposes an embedding of lex-
ical information using Wikipedia as source, and
exploits the resulting language model for the mul-
titask learning process. The extensive use of unla-
beled texts allows to achieve a significant level of
lexical generalization in order to better capitalize
on the smaller annotated data sets.

3 Geometrical Embeddings as models of
Frame Semantics

The aim of this distributional approach is to model
frames in semantic spaces where words are repre-
sented from the distributional analysis of their co-
occurrences over a corpus. Semantic spaces are
widely used in NLP for representing the meaning
of words or other lexical entities. They have been
successfully applied in several tasks, such as in-
formation retrieval (Salton et al., 1975) and har-
vesting thesauri (Lin, 1998). The fundamental in-
tuition is that the meaning of a word can be de-
scribed by the set of textual contexts in which it
appears (Distributional Hypothesis as described in
(Harris, 1964)), and that words with similar vec-

tors are semantically related. Contexts are words
appearing together with a LU: such a space mod-
els a generic notion of semantic relatedness, i.e.
two LUs spatially close in the space are likely to
be either in paradigmatic or syntagmatic relation
as in (Sahlgren, 2006). Here, LUs delimit sub-
spaces modeling the prototypical semantic of the
corresponding evoked frames and novel LUs can
be induced by exploiting their projections.

Since a semantic space supports the language
in use from the corpus statistics in an unsuper-
vised fashion, vectors representing LUs can be
characterized by different distributions. For exam-
ple, LUs of the frame KILLING, such as blood-
bath, crucify or fratricide, are statistically infe-
rior in a corpus if compared to a wide-spanning
term as kill. Moreover other ambiguous LUs, as
liquidate or terminate, could appear in sentences
evoking different frames. These problems of data-
sparseness and distribution noise can be over-
come by applying space transformation techniques
augmenting the space expressiveness in model-
ing frame semantics. Semantic space models very
elegantly map words in vector spaces (there are
as many dimensions as words in the dictionary)
and LUs collections into distributions of data-
points. Every distribution implicitly expresses two
orthogonal facets: global properties, as the occur-
rence scores computed for terms across the entire
collection (irrespectively from their word senses
or evoking situation) and local regularities, for ex-
ample the existence of subsets of terms that tend to
be used every time a frame manifests. These also
tend to be closer in the space and should be closer
in the transformed space too. Another important
aspect that a transformation could account is exter-
nal semantic information. In the new space, prior
knowledge can be exploited to gather a more regu-
lar LUs representation and a clearer separation be-
tween subspaces representing different frame se-
mantics.

In the following sections the investigated dis-
tributional model of LUs will be discussed. As
many criteria can be adopted to define a LU con-
text, one of the goals of this investigation is to find
a co-occurrence model that better captures the no-
tion of frames, as described in Section 3.1. Then,
two dimensionality reduction techniques, exploit-
ing semantic space distributions to improve frames
representation, are discussed. In Section 3.2 the
role of global properties of data statistics will be
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investigated through the Latent Semantic Analy-
sis while in Section 3.3 the Locality Preserving
Projection algorithm will be discussed in order to
combine prior knowledge about frames with local
regularities of LUs obtained from text.

3.1 Choosing the space
Different types of context define spaces with dif-
ferent semantic properties. Such spaces model a
generic notion of semantic relatedness. Two LUs
close in the space are likely to be related by some
type of generic semantic relation, either paradig-
matic (e.g. synonymy, hyperonymy, antonymy)
or syntagmatic (e.g. meronymy, conceptual and
phrasal association), as observed in (Sahlgren,
2006). The target of this work is the construc-
tion of a space able to capture the properties which
characterize a frame, assuming those LUs in the
same frame tend to be either co-occurring or sub-
stitutional words (e.g. murder/kill). Two tradi-
tional word-based co-occurrence models capture
the above property:

Word-based space: Contexts are words, as
lemmas, appearing in a n-window of the LU.
The window width n is a parameter that allows
the space to capture different aspects of a frame:
higher values risk to introduce noise, since a frame
could not cover an entire sentence, while lower
values lead to sparse representations.

Syntax-based space: Contexts words are en-
riched through information about syntactic rela-
tions (e.g. X-VSubj-killer where X is the LU), as
described in (Pado and Lapata, 2007). Two LUs
close in the space are likely to be in a paradig-
matic relation, i.e. to be close in an IS-A hierarchy
(Budanitsky and Hirst, 2006; Lin, 1998). Indeed,
as contexts are syntactic relations, targets with the
same part of speech are much closer than targets
of different types.

3.2 Latent Semantic Analysis
Latent Semantic Analysis (LSA) is an algorithm
presented in (Furnas et al., 1988) afterwards dif-
fused by Landauer (Landauer and Dumais, 1997):
it can be seen as a variant of the Principal Compo-
nent Analysis idea. LSA aims to find the best sub-
space approximation to the original word space,
in the sense of minimizing the global reconstruc-
tion error projecting data along the directions of
maximal variance. It captures term (semantic)
dependencies by applying a matrix decomposi-
tion process called Singular Value Decomposition

(SVD). The original term-by-term matrix M is
transformed into the product of three new matri-
ces: U , S, and V so that M = USV T . Matrix
M is approximated by Ml = UlSlV

T
l in which

only the first l columns of U and V are used, and
only the first l greatest singular values are consid-
ered. This approximation supplies a way to project
term vectors into the l-dimensional space using
Yterms = UlS

1/2
l . Notice that the SVD process

accounts for the eigenvectors of the entire original
distribution (matrix M ). LSA is thus an example
of a decomposition process strongly dependent on
a global property. The original statistical informa-
tion aboutM is captured by the new l-dimensional
space which preserves the global structure while
removing low-variant dimensions, i.e. distribu-
tion noise. These newly derived features may be
thought of as artificial concepts, each one repre-
senting an emerging meaning component as a lin-
ear combination of many different words (i.e. con-
texts). Such contextual usages can be used instead
of the words to represent texts. This technique has
two main advantages. First, the overall computa-
tional cost of the model is reduced, as similarities
are computed on a space with much fewer dimen-
sions. Secondly, it allows to capture second-order
relations among LUs, thus improving the quality
of the similarity measure.

3.3 The Locality Preserving Projection
Method

An alternative to LSA, much tighter to local prop-
erties of data, is the Locality Preserving Projection
(LPP ), a linear approximation of the non-linear
Laplacian Eigenmap algorithm introduced in (He
and Niyogi, 2003). LPP is a linear dimensional-
ity reduction method whose goal is, given a set of
LUs x1, x2, .., xm in Rn, to find a transformation
matrix A that maps these m points into a set of
points y1, y2, .., ym in Rk (k � n). LPP achieves
this result through a cascade of processing steps
described hereafter.

Construction of an Adjacency graph. Let G
denote a graph with m nodes. Nodes i and j have
got a weighted connection if vectors xi and xj are
close, according to an arbitrary measure of simi-
larity. There are many ways to build an adjacency
graph. The cosine graph with cosine weighting
scheme is explored: given two vectors xi and xj ,
the weight wij between them is set by

wij = max{0, cos(xi, xj)− τ
|cos(xi, xj)− τ |

· cos(xi, xj)} (1)
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where a cosine threshold τ is necessary. The ad-
jacency graph can be represented by using a sym-
metricm×m adjacency matrix, namedW , whose
element Wij contains the weight between nodes i
and j. The method of constructing an adjacency
graph outlined above is correct if the data actually
lie on a low dimensional manifold. Once such an
adjacency graph is obtained, LPP will try to opti-
mally preserve it in choosing projections.

Solve an Eigenmap problem. Compute the
eigenvectors and eigenvalues for the generalized
eigenvector problem:

XLXT a = λXDXT a

where X is a n×m matrix whose columns are the
original m vectors in Rn, D is a diagonal m ×m
matrix whose entries are column (or row) sums of
W , Dii =

∑
j Wij and L = D −W is the Lapla-

cian matrix. The solution of this problem is the
set of eigenvectors a0, a1, .., an−1, ordered accord-
ing to their eigenvalues λ0 < λ1 < .. < λn−1.
LPP projection matrix A is obtained by selecting
the k eigenvectors corresponding to the k smallest
eigenvalues: therefore it is a n × k matrix whose
columns are the selected n-dimensional k eigen-
vectors. Final projection of original vectors into
Rk can be linearly performed by Y = ATX . This
transformation provides a valid kernel that can be
efficiently embedded into a classifier.

Embedding predicate knowledge through
LPPs. While LSA finds a projection, according to
the global properties of the space, LPP tries to pre-
serve the local structures of the data. LPP exploits
the adjacency graph in order to represent neigh-
borhood information. It computes a transforma-
tion matrix which maps data points into a lower di-
mensional subspace. As the construction of an ad-
jacency graph G can be based on any principle, its
definition could account on some external infor-
mation reflecting prior knowledge available about
the task.

In this work, prior knowledge about LUs is em-
bedded by exploiting their membership to frame
dictionaries, thus removing from the graph all con-
nections between LUs xi and xj that do not evoke
the same prototypical situation. More formally
Equation 1 can be rewritten more formally as:

wij = max{0, cos(xi, xj)− τ
|cos(xi, xj)− τ |

· cos(xi, xj) · δ(i, j)}

where

δ(i, j) =

{
1 iff ∃F s.t. LUi ∈ F ∧ LUj ∈ F
0 otherwise

so the resulting manifold keeps close all LUs
evoking the same frame. Since the number of con-
nections could introduce too many constraints to
the Eigenmap problem, a threshold is introduced
to avoid the space collapse: for each LU, only
the most-similar c connections are selected. The
adoption of the proper a priori knowledge about
the target task can be thus seen as a promising re-
search direction.

4 Empirical Analysis

In this section the empirical evaluation of distribu-
tional models applied to the task of inducing LUs
is presented. Different spaces obtained through
the dimensionality reduction techniques imply dif-
ferent kernel functions used to independently train
different SVMs. Our aim is to investigate the im-
pact of these kernels in capturing both the frames
and LUs’ properties, as well as the effectiveness
of their possible combination.

The problem of LUs’ induction is here treated
as a multi-classification problem, where each LU
is considered as a positive or negative instance of a
frame. We use Support Vector Machines (SVMs),
(Joachims, 1999) a maximum-margin classifier
that realizes a linear discriminative model. In case
of not linearly separable examples, convolution
functions φ(·) can be used in order to transform
the initial feature space into another one, where a
hyperplane that separates the data with the widest
margin can be found. Here new similarity mea-
sures, the kernel functions, can be defined through
the dot-product K(oi, oj) = 〈φ(oi) · φ(oj)〉 over
the new representation. In this way, kernel func-
tions KLSA and KLPP can be induced through
the dimensionality reduction techniques φLSA and
φLPP respectively, as described in sections 3.2
and 3.3. Kernel methods are advantageous be-
cause the combination of of kernel functions can
be integrated into the SVM as they are still kernels.
Consequently, the kernel combination αKLSA +
βKLPP linearly combines the global properties
captured by LSA and the locality constraints im-
posed by the LPP transformation. Here, parame-
ters α and β weight the combination of the two
kernels. The evoking frame for a novel LU is
the one whose corresponding SVM has the high-
est (possibly negative) margin, according to a one-
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train tune test overall
max 107 35 34 176
avg 28 8 8 44
total 2466 722 723 3911

Table 1: Number of LU examples for each data set
from the 100 frames

vs-all scheme. In order to evaluate the quality of
the presented models, accuracy is measured as the
percentage of LUs that are correctly re-assigned to
their original (gold-standard) frame. As the sys-
tem can suggest more than one frame, different
accuracy levels can be obtained. A LU is cor-
rectly assigned if its correct frame (according to
FrameNet) belongs to the set of the best b pro-
posals by the system (i.e. the first b scores from
the underlying SVMs). Assigning different val-
ues to b, we obtained different levels of accuracy
as the percentage of LUs that is correctly assigned
among the first b proposals, as shown in Table 3.

4.1 Experimental Setup

The adopted gold standard is a subset of the
FrameNet database and it consists of the most 100
represented frames in term of annotated examples
and LUs. As the number of example is extremely
unbalanced across frames1, the LUs dictionary of
each selected frame contains at least 10 LUs. It is
a reasonable amount of information for the SVMs
training and it is still a representative data set, be-
ing composed of 3,911 LUs, i.e. the 55% of the
entire dictionary2 of 7,230 evoking words. All
word spaces are derived from the British National
Corpus (BNC), which is underlying FrameNet and
consisting of about 100 million words for English.
Each selected frame is represented into the BNC
by at least 362 annotated sentences, as the lack
of a reasonable number of examples hardly pro-
duces a good distributional model of LUs. Each
frame’s list of LUs is split into train (60%), tuning
(20%) and test set (20%) and LUs having Part-of-
speech different from verb, noun or adjective are
removed. In Table 1 the number of LUs for each
set, as well as the maximum and the average num-
ber per frame, are summarized.

Four different approaches for the Word Space

1For example the SELF MOTION frame counts 6,248 ex-
amples while 119 frames are represented by less than 10 ex-
amples

2The entire database contains 10,228 LUs and the number
of evoking word is 7,230, without taking in account multiple
frame assignments.

construction are used. The first two correspond to
a Word-Based space, the last to a Syntax-Based,
as described in section 3.1:
Window-n (Wn): contextual features correspond
to the set of the 20,000 most frequent lemmatized
words in the BNC. The association measure be-
tween LUs and contexts is the Point-wise Mu-
tual Information (PMI). Valid contexts for LUs are
fixed to a n-window. Hereafter two window width
values will be investigated: Window5 (W5) and
Window10 (W10).
Sentence (Sent): contextual features are the same
above, but the valid contexts are extended to the
entire sentence length.
SyntaxBased (SyntB): contextual features have
been computed according to the “dependency-
based” vector space discussed3 in (Pado and La-
pata, 2007). Observable contexts here are made of
syntactically-typed co-occurrences within depen-
dency graphs built from the entire set of BNC sen-
tences. The most frequent 20,000 basic features,
i.e. (syntactic relation,lemma) pairs, have been
employed as contextual features corresponding to
PMI scores. Syntactic relations are extracted using
the Minipar parser.

Word space models thus focus on the LUs of the
selected 100 frames and the dimensionality have
been reduced by applying LSA and LPP at a new
size of l = 100. Any prior knowledge informa-
tion is provided to the tuning and test sets during
the LPP transformation: the construction of the
reduced feature space takes in account only LUs
from the train set while remaining predicates are
represented through the LPP linear projection. In
these experiments the cosine threshold τ and the
maximum number of constraints c are estimated
over the tuning set and the best parametrizations
are shown in Table 2. The adopted implementa-
tion of SVM is SVM-Light-TK 4.

4.2 Results

In these experiments the impact of the lexical
knowledge gathered by different word-spaces is
evaluated over the LU induction task. Moreover,
the improvements achieved through LSA and LPP
is measured. SVM classifiers are trained over the
semantic spaces produced through the dimension-

3The Minimal context provided by the De-
pendency Vectors tool is used. It is available at
http://www.nlpado.de/∼sebastian/dv.html

4SVM-Light-TK is available at the url
http://disi.unitn.it/∼moschitt/Tree-Kernel.htm
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α/β
τ c1.0/0.0 .9/.1 .8/.2 .7/.3 .6/.4 .5/.5 .4/.6 .3/.7 .2/.8 .1/.9 0.0/1.0

W5 0.668 0.669 0.672 0.673 0.669 0.662 0.649 0.632 0.612 0.570 0.033 0.55 5
W10 0.615 0.619 0.618 0.612 0.604 0.597 0.580 0.575 0.565 0.528 0.048 0.65 3
Sent 0.557 0.567 0.580 0.584 0.574 0.564 0.561 0.545 0.523 0.496 0.048 0.80 5
SyntB 0.654 0.664 0.662 0.652 0.651 0.647 0.649 0.634 0.627 0.592 0.056 0.40 3

Table 2: Accuracy at different combination weights of kernel αKLSA + βKLPP (specific baseline is
0.043)

b-1 b-2 b-3 b-4 b-5 b-6 b-7 b-8 b-9 b-10 α/β
W5orig 0,563 0,685 0,733 0,770 0,801 0,835 0,841 0,854 0,868 0,879 -
W10orig 0,510 0,634 0,707 0,776 0,810 0,830 0,841 0,857 0,865 0,875 -
Sentorig 0,479 0,618 0,680 0,734 0,764 0,793 0,813 0,837 0,845 0,852 -
SyntBorig 0,585 0,741 0,803 0,840 0,866 0,874 0,886 0,903 0,907 0,913 -
W5LSA+LPP 0.673 0.781 0.831 0.865 0.881 0.891 0.906 0.912 0.926 0.938 0.7/0.3
W10LSA+LPP 0.619 0.739 0.786 0.818 0.849 0.865 0.878 0.888 0.901 0.909 0.9/0.1
SentLSA+LPP 0.584 0.705 0.766 0.798 0.825 0.835 0.848 0.864 0.876 0.889 0.7/0.3
SyntBLSA+LPP 0.664 0.791 0.840 0.864 0.878 0.893 0.901 0.903 0.907 0.911 0.9/0.1

Table 3: Accuracy of original word-space models (orig) and semantic space models (LSA+LPP) on
best-k proposed frames

ality reduction transformations. Representations
of both semantic spaces are linearly combined as
αKLSA + βKLPP , where kernel weights α and
β are estimated over the tuning set. Both ker-
nels are used even without a combination: a ra-
tio α = 1.0/β = 0.0 denotes the LSA kernel
alone, while α = 0.0/β = 1.0 the LPP kernel. Ta-
ble 2 shows best results, obtained through a RBF
kernel. The Window5 model achieves the high-
est accuracy, i.e. 67% of correct classification,
where a baseline of 4.3% is estimated assigning
LUs to the most likely frame in the training set (i.e.
the one containing the highest number of LUs).
Wider windows achieve lower classification accu-
racy confirming that most of lexical information
tied to a frame is near the LU. The Syntactic-based
word space does not outperform the accuracy of a
word-based space. The combination of both ker-
nels has always provided the best outcome and the
LSA space seems to be more accurate and expres-
sive respect to the LPP one, as shown in Figure
1. In particular LPP alone is extremely unstable,
suggesting that constraints imposed by the prior
knowledge are orthogonal with respect to the cor-
pus statistics.

Further experiments are carried out using the
original co-occurrence space models, to assess im-
provements due to LSA and LPP kernel. In the
latter investigation linear kernel achieved best re-
sults as confirmed in (Bengio et al., 2005), where
the sensitivity to the curse of dimensionality of
a large class of modern learning algorithms (e.g.
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Figure 1: Accuracy at different combination
weights of kernel αKLSA + βKLPP

SVM) based on local kernels (e.g. RBF) is ar-
gued. As shown in Table 3, the performance drop
of original (orig) models against the best kernel
combination of LSA and LPP are significant,
i.e. ∼ 10%, showing how the latent semantic
spaces better capture properties of frames, avoid-
ing data-sparseness, dimensionality problem and
low-regularities of data-distribution.

Moreover, Table 3 shows how the accuracy level
largely increases when more than one frame is
considered: at a level b = 3, i.e. the novel
LU is correctly classified if one of the original
frames is comprised in the list (of three frames)
proposed by the system, accuracy is 0.84 (i.e the
SyntaxBased model), while at b = 10 accuracy is
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LU (# WNsyns) frame 1 frame 2 frame 3 Correct frames
boil.v (5) FOOD FLUIDIC MOTION CONTAINERS CAUSE HARM

clap.v (7) SOUNDS MAKE NOISE COMMUNICATION NOISE BODY MOVEMENT

crown.n (12) LEADERSHIP ACCOUTREMENTS PLACING ACCOUTREMENTS
OBSERVABLE BODYPARTS

school.n (7) EDUCATION TEACHING BUILDINGS LOCALE BY USE
EDUCATION TEACHING
LOCALE BY USE
AGGREGATE

threat.n (4) HOSTILE ENCOUNTER IMPACT COMMITMENT COMMITMENT

tragedy.n (2) TEXT KILLING EMOTION DIRECTED TEXT

Table 4: Proposed 3 frames for each LU (ordered by SVM scores) and correct frames provided by the
FrameNet dictionary. In parenthesis the number of different WordNet lexical senses for each LU.

nearly 0.94 (i.e Window5). It is high enough to
support tasks such as the semi-automatic creation
of new FrameNets. An error analysis indicates that
many misclassifications are induced by a lack in
the frame annotations, especially those concern-
ing polysemic LUs5. Table 4 reports the analysis
of a LU subset where the first 3 frames proposed
for each evoking word are shown, ranked by the
margin of the SMVs. The last column contains the
frames evoked by LUs, according to the FrameNet
dictionary, and the frame names in bold suggest
their correct classification. Some LUs, like threat
(characterized by 4 lexical senses) seem to be mis-
classified: in this case the FrameNet annotation
regards a specific sense that evokes the COMMIT-
MENT frame (e.g. “There was a real threat that
she might have to resign”) without taking in ac-
count other senses like WordNet’s “menace, threat
(something that is a source of danger)” that could
evoke the HOSTILE ENCOUNTER frame. In other
cases proposed frames seem to enrich the LUs dic-
tionary, like BUILDINGS, here evoked by school.

5 Conclusions

The core purpose of this was to present an em-
pirical investigation of the impact of different dis-
tributional models on the lexical unit induction
task. The employed word-spaces, based on dif-
ferent co-occurrence models (either context and
syntax-driven), are used as vector models of the
LU semantics. On these spaces, two dimensional-
ity reduction techniques have been applied. Latent
Semantic Analysis (LSA) exploits global proper-
ties of data distributions and results in a global
model for lexical semantics. On the other hand,
the Locality Preserving Projection (LPP) method,
that exploits regularities in the neighborhood of

5According to WordNet, in our dataset an average of 3.6
lexical senses for each LU is estimated.

each lexical predicate, is also employed in a semi-
supervised manner: local constraints expressing
prior knowledge on frames are defined in the ad-
jacency graph. The resulting embedding is there-
fore expected to determine a new space where re-
gions for LU of a given frame can be more eas-
ily discovered. Experiments have been run using
the resulting spaces for task dependent kernels in
a SVM learning setting. The application of the
FrameNet KB on the 100 best represented frames
showed that a combined use of the global and lo-
cal models made available by LSA and LPP, re-
spectively, achieves the best results, as the 67.3%
of LUs recovers the same frames of the annotated
dictionary. This is a significant improvement with
respect to previous results achieved by the pure
distributional model reported in (Pennacchiotti et
al., 2008).

Future work is required to increase the level
of constraints made available from the semi-
supervised setting of LPP: syntactic informa-
tion, as well as role-related evidence, can be
both accommodated by the adjacency constraints
imposed for LPP. This constitutes a significant
area of research towards a comprehensive semi-
supervised model of frame semantics, entirely
based on manifold learning methods, of which this
study on LSA and LPP is just a starting point.
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Abstract

In this paper, we argue in favor of re-
considering models for word meaning, us-
ing as a basis results from cognitive sci-
ence on human concept representation.
More specifically, we argue for a more
flexible representation of word meaning
than the assignment of a single best-fitting
dictionary sense to each occurrence: Ei-
ther use dictionary senses, but view them
as having fuzzy boundaries, and assume
that an occurrence can activate multiple
senses to different degrees. Or move away
from dictionary senses completely, and
only model similarities between individ-
ual word usages. We argue that distri-
butional models provide a flexible frame-
work for experimenting with alternative
models of word meanings, and discuss ex-
ample models.

1 Introduction

Word sense disambiguation (WSD) is one of
the oldest problems in computational linguis-
tics (Weaver, 1949) and still remains challeng-
ing today. State-of-the-art performance on WSD
for WordNet senses is at only around 70-80%
accuracy (Edmonds and Cotton, 2001; Mihalcea
et al., 2004). The use of coarse-grained sense
groups (Palmer et al., 2007) has led to consider-
able advances in WSD performance, with accura-
cies of around 90% (Pradhan et al., 2007). But
this figure averages over lemmas, and the problem
remains that while WSD works well for some lem-
mas, others continue to be tough.

In WSD, polysemy is typically modeled
through a list of dictionary senses thought to be
mutually disjoint, such that each occurrence of
a word is characterized through one best-fitting
dictionary sense. Accordingly, WSD is typically

framed as a classification task. Interestingly, the
task of assigning a single best word sense is very
hard for human annotators, not just machines (Kil-
garriff and Rosenzweig, 2000).

In this paper we advocate the exploration of
alternative computational models of word mean-
ing. After all, one possible reason for the con-
tinuing difficulty of (manual as well as automatic)
word sense assignment is that the prevailing model
might be suboptimal. We explore three main hy-
potheses. The first builds on research on the hu-
man concept representation that has shown that
concepts in the human mind do not work like
sets with clear-cut boundaries; they show graded
membership, and there are typical members as
well as borderline cases (Rosch, 1975; Hamp-
ton, 2007). Accordingly, (A) we will suggest
that word meaning may be better modeled us-
ing a graded notion of sense membership than
through concepts with hard boundaries. Second,
even if senses have soft boundaries, the question
remains of whether they are disjoint. (B) We
will argue in favor of a framework where multi-
ple senses may apply to a single occurrence, to
different degrees. This can be viewed as a dy-
namical grouping of senses for each occurrence,
in contrast to static sense groups as in Palmer et
al. (2007). The first two hypotheses still rely on
an existing sense list. However, there is no univer-
sal agreement across dictionaries and across tasks
on the number of senses that words have (Hanks,
2000). Kilgarriff (1997) even argues that general,
task-independent word senses do not exist. (C) By
focusing on individual occurrences (usages) of
a lemma and their degree of similarity, we can
model word meaning without recourse to dic-
tionary senses.

In this paper, we are going to argue in favor of
the use of vector space as a basis for alternative
models of word meaning. Vector space models
have been used widely to model word sense (Lund
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and Burgess, 1996; Deerwester et al., 1990; Lan-
dauer and Dumais, 1997; Sahlgren and Karlgren,
2005; Padó and Lapata, 2007), their central prop-
erty being that proximity in space can be used to
predict semantic similarity. By viewing word oc-
currences as points in vector space, we can model
word meaning without recourse to senses. An ad-
ditional advantage of vector space models is that
they are also widely used in human concept rep-
resentation models, yielding many modeling ideas
that can be exploited for computational models.

In Section 2 we review the evidence that word
sense is a tough phenomenon to model, and we lay
out findings that support hypotheses (A)-(C). Sec-
tion 4 considers distributional models that repre-
sent word meaning without recourse to dictionary
senses, following (C). In Section 5 we discuss pos-
sibilities for embedding dictionary senses in vec-
tor space in a way that respects points (A) and (B).

2 Computational and cognitive models of
word meaning

In this section, we review the problems of (manual
and automatic) sense assignment, and we discuss
discusses cognitive models of concept representa-
tion and polysemy, following the three hypotheses
laid out in the introduction.

Word sense assignment. In computational lin-
guistics, the problem of polysemy is typically
phrased as one of choosing one best-fitting sense
for the given occurrence out of a dictionary-
defined sense list. However, this is a hard task
both for humans and for machines. With Word-
Net (Fellbaum, 1998), the electronic lexicon re-
source that is currently most widely used in com-
putational linguistics, inter-annotator agreement
(ITA) lies in the range of 67% to 78% (Landes
et al., 1998; Snyder and Palmer, 2004; Mihal-
cea et al., 2004), and state-of-the-art WSD sys-
tems achieve accuracy scores of 73% to 77% (Ed-
monds and Cotton, 2001; Mihalcea et al., 2004).
This problem is not specific to WordNet: Anal-
yses with the HECTOR dictionary led to simi-
lar numbers (Kilgarriff and Rosenzweig, 2000).
Sense granularity has been suggested as a reason
for the difficulty of the task (Palmer et al., 2007).
And in fact, the use of more coarse-grained senses
leads to greatly ITA as well as WSD accuracy,
with about a 10% improvement for either mea-
sure (Palmer et al., 2007; Pradhan et al., 2007). In
OntoNotes (Hovy et al., 2006), an ITA of 90% is

used as the criterion for the construction of coarse-
grained sense distinctions. However, intriguingly,
for some high-frequency lemmas such as leave
this ITA threshold is not reached even after mul-
tiple re-partitionings of the semantic space (Chen
and Palmer, 2009) – indicating that the meaning of
these words may not be separable into senses dis-
tinct enough for consistent annotation. A recent
analysis of factors influencing ITA differences be-
tween lemmas (Passonneau et al., 2010) found
three main factors: sense concreteness, specificity
of the context in which a target word occurs, and
similarity between senses. It is interesting to note
that only one of those factors, the third, can be ad-
dressed through a change of dictionary.

More radical solutions than sense grouping that
have been proposed are to restrict the task to deter-
mining predominant sense in a given domain (Mc-
Carthy et al., 2004), or to work directly with para-
phrases (McCarthy and Navigli, 2009).

(A) Graded sense membership. Research on
the human concept representation (Murphy, 2002;
Hampton, 2007) shows that categories in the
human mind are not simply sets with clear-cut
boundaries. Some items are perceived as more
typical than others (Rosch, 1975; Rosch and
Mervis, 1975). Also, some items are clear mem-
bers, others are rated as borderline (Hampton,
1979). On borderline items, people are more likely
to change their mind about category member-
ship (McCloskey and Glucksberg, 1978). How-
ever, these results concern mental concepts, which
raises the question of the relation between mental
concepts and word senses. This relation is dis-
cussed in most depth by Murphy (1991; 2002),
who argues that while not every human concept
is associated with a word, word meanings show
many of the same phenomena as concepts in gen-
eral; word meaning is “made up of pieces of con-
ceptual structure”. In cognitive linguistics there
has been much work on word meaning based on
models with graded membership and typically ef-
fects (Coleman and Kay, 1981; Lakoff, 1987;
Cruse, 1986; Taylor, 1989).

(B) Multiple senses per occurrence. While
most manual word sense annotation efforts al-
low annotators to assign more than one dictionary
sense to an occurrence, this is typically phrased
as an exception rather than the default. In the re-
cent WSsim annotation study (Erk et al., 2009),
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Senses
Sentence 1 2 3 4 5 6 7 Annotator
This question provoked arguments in America about the
Norton Anthology of Literature by Women, some of the
contents of which were said to have had little value as
literature.

1 4 4 2 1 1 3 Ann. 1
4 5 4 2 1 1 4 Ann. 2
1 4 5 1 1 1 1 Ann. 3

Table 1: From (Erk et al., 2009): A sample annotation from the WSsim dataset. The senses are: 1:state-
ment, 2:controversy, 3:debate, 4:literary argument, 5:parameter, 6:variable, 7:line of reasoning

we asked three human annotators to judge the ap-
plicability of WordNet senses on a graded scale of
1 (completely different) to 5 (identical) and giv-
ing a rating for each sense rather than picking one.
Table 1 shows an example sentence with annota-
tor ratings for the senses of the target argument.
For this sentence, the annotators agree that senses
2 and 3 are highly applicable, but there also indi-
vidual differences in the perceived meaning: Only
annotator 2 views sense 1 as applying to a high
degree. In an annotation setting with graded judg-
ments, it does not make sense to measure exact
agreement on judgments. We instead evaluated
ITA using Spearman’s rho, a nonparametric corre-
lation test, finding highly significant correlations
(p � 0.001) between each pair of annotators, as
well as highly significant correlations with the re-
sults of a previous, traditional word sense annota-
tion of the same dataset. The annotators made use
of the complete scale (1-5), often opting for inter-
mediate values of sense applicability. In addition,
we tested whether there were groups of senses
that always got the same ratings on any given sen-
tence (which would mean that the annotators im-
plicitly used more coarse-grained senses). What
we found instead is that the annotators seemed to
have mixed and matched senses for the individual
occurrences in a dynamic fashion.

(C) Describing word meaning without dictio-
nary senses. In lexicography, Kilgarriff (1997)
and Hanks (2000) cast doubt on the existence
of task-independent, distinct senses. In cogni-
tive science, Kintsch (2007) calls word meaning
“fluid and flexible”. And some researchers in lex-
ical semantics have suggested that word mean-
ings lie on a continuum between clear cut cases
of ambiguity on the one hand, and on the other
hand vagueness where clear cut boundaries do not
hold (Tuggy, 1993). There are some psycholog-
ical studies on whether different senses of a pol-
ysemous word are represented separately in the
mind or whether there is some joint representa-
tion. However, so far the evidence is inconclusive

1) We study the methods and concepts that each writer uses to
defend the cogency of legal, deliberative, or more generally
political prudence against explicit or implicit charges that
practical thinking is merely a knack or form of cleverness.

2) Eleven CIRA members have been convicted of criminal

charges and others are awaiting trial.

Figure 1: From (Erk et al., 2009): A sense pair
from the USim dataset, for the target charge.n.
Annotator judgments: 2,3,4

and varies strongly with the experimental setting.
Some studies found evidence for a separate rep-
resentation (Klein and Murphy, 2001; Pylkkanen
et al., 2006). Brown (2008) finds a linear change
in semantic similarity effects with sense distance,
which could possibly point to a continuous rep-
resentation of word meaning without clear sense
boundaries. But while there is no definitive answer
yet on the question of the mental representation
of polysemy, a computational model that does not
rely on distinct senses has the advantage of making
fewer assumptions. It also avoids the tough lexi-
cographic problem mentioned above, of deciding
on a best set of senses for a given domain.

In the recent USim annotation study (Erk et al.,
2009), we tested whether human annotators could
reliably and consistently provide word meaning
judgments without the use of dictionary senses.
Three annotators rated the similarity of pairs of oc-
currences (usages) of a common target word, again
on a scale of 1-5. Figure 1 shows an example,
with the corresponding annotator judgments. The
results on this task were encouraging: Again us-
ing correlation to measure ITA, we found a highly
significant correlation (p � 0.001) between the
judgments of each pair of annotators. Further-
more, there was a strong correlation on judgments
given with and without the use of dictionary senses
(USim versus WSsim) for the same data.
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3 Vector space models of word meaning
in isolation

This section gives a brief overview of the use of
vector spaces to model concepts and word mean-
ing in cognition and computational linguistics.

In two of the current main theories of concept
representation, feature vectors play a prominent
role. Prototype theory (Hampton, 1979; Smith and
Medin, 1981) models degree of category member-
ship through similarity to a single prototype. Ex-
emplar models (Medin and Schaffer, 1978; Nosof-
sky, 1992; Nosofsky and Palmeri, 1997) represent
a concept as a collection of all previously seen ex-
emplars and compute degree of category member-
ship as similarity to stored exemplars. Both pro-
totypes and exemplars are typically represented as
feature vectors. Many models represent a concept
as a region rather than a point in space, often char-
acterized by a feature vector plus a separate di-
mension weight vector (Smith et al., 1988; Hamp-
ton, 1991; Gärdenfors, 2004). The features are
individually meaningful and interpretable and in-
clude sensory and motor features as well as func-
tion and taxonomic features. There are several
datasets with features elicited from human sub-
jects (McRae et al., 2005; Vigliocco et al., 2004).

In computational linguistics, distributional
models represent the meaning of a word as a vec-
tor in a high-dimensional space whose dimensions
characterize the contexts in which the word typi-
cally occurs (Lund and Burgess, 1996; Landauer
and Dumais, 1997; Sahlgren and Karlgren, 2005;
Padó and Lapata, 2007). In the simplest case,
the dimensions are context words, and the values
are co-occurrence counts. In contrast to spaces
used in cognitive science, the dimensions in dis-
tributional models are typically not interpretable
(though see Almuhareb and Poesio (2005), Baroni
et al. (2010)). A central property of distributional
models is that proximity in vector space is a pre-
dictor of semantic similarity. These models have
been used successfully in NLP (Deerwester et al.,
1990; Manning et al., 2008), as well as in psy-
chology (Landauer and Dumais, 1997; Lowe and
McDonald, 2000; McDonald and Ramscar, 2001).

4 Vector space models of word meaning
in context

If we want to represent word meaning through
individual usages and their similarity only, with-
out the use of dictionary senses (along hypothesis

(C)), distributional models are an obvious choice,
if we can just represent each individual usage as
a point in space. However, vector space models
have mostly been used to represent the meaning of
a word in isolation: The vector for a word is com-
puted by summing over all its corpus occurrences,
thereby summing over all its meanings. There are
a few vector space models of meaning in context,
though they differ in what it is that they model.
One group of models computes a single vector for
a whole sentence, encoding both the words and the
syntactic structure (Smolensky, 1990; B. Coecke
and Clark, 2010). In this case, the dimensionality
of the vectors varies with the syntactic complexity
of the sentence in question. A second group also
computes a single vector for a whole expression,
but the vector for a larger expression is a combi-
nation of the word vectors for the words occurring
in the expression (Landauer and Dumais, 1997;
Mitchell and Lapata, 2008). Syntactic structure
is not encoded. The resulting vector, of the same
dimensionality as the word vectors, is then a com-
bination of the contexts in which the words of the
sentence occur. A third group of approaches de-
rives a separate vector for each word in a given
sentence (Erk and Padó, 2008; Thater et al., 2009;
Erk and Padó, 2010). While an approach of the
second type would derive a single, joint vector for,
say, the expression catch a ball, an approach from
the third group would derive two vectors, one for
the word catch in the context of ball, and one for
the word ball in the context of catch. In this third
group, the dimensionality of a vector for a word in
context is the same as for a word in isolation.

In this paper, we focus on the third type of ap-
proaches. Our aim is to study alternatives to dic-
tionary senses for characterizing word meaning.
So we need a meaning characterization for each
individual word in a given sentence context, rather
than a single vector for a larger expression.

We can also classify distributional approaches
to word meaning in context into prototype- and
exemplar-based approaches. Prototype-based ap-
proaches first compute a (prototype) vector for
each word in isolation, then modify this vec-
tor according to the context in a given occur-
rence (Landauer and Dumais, 1997; Mitchell
and Lapata, 2008; Erk and Padó, 2008; Thater
et al., 2009). Typical methods for combining
prototype vectors are addition, component-wise
multiplication (introduced by Mitchell and Lap-
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Figure 2: From (Erk and Padó, 2008): Left: Vector representations for verb catch and noun ball. Lexical
information plus selectional preferences. Right: Computing context-specific meaning by combining
predicate and argument via selectional preference vectors

ata (2008)), and component-wise minimum. Then
there are multiple prototype approaches that stat-
ically cluster synonyms or occurrences to induce
word senses(Schütze, 1998; Pantel and Lin, 2002;
Reisinger and Mooney, 2010). Exemplar-based
approaches represent a word in isolation as a col-
lection of its occurrences or paraphrases, then se-
lect only the contextually appropriate exemplars
for a given occurrence context (Kintsch, 2001; Erk
and Padó, 2010). In this paper we focus on the first
and third group of approaches, as they do not rely
on knowledge of how many word senses (clusters)
there should be.

A structured vector space model for word
meaning in context. In Erk and Padó (2008), we
proposed the structured vector space model (SVS),
which relies solely on syntactic context for com-
puting a context-specific vector. It is a prototype-
based model, , and called structured because it ex-
plicitly represents argument structure, using multi-
ple vectors to represent each word. Figure 2 (left)
illustrates the representation. A word, for exam-
ple catch, has one vector describing the meaning
of the word itself, the lexical vector ~catch. It is
a vector for the word in isolation, as is usual for
prototype-based models. In addition, the represen-
tation for catch contains further vectors describing
the selectional preferences for each argument po-
sition. The obj preference vector of catch is com-
puted from the lexical vectors of all words that
have been observed as direct objects of catch in
some syntactically parsed corpus. In the example
in Figure 2, we have observed the direct objects
cold, baseball, and drift. In the simplest case,
the obj preference vector of catch is then com-
puted as the (weighted) sum of the three vectors
~cold, ~baseball and ~drift. Likewise, ball is repre-

sented by one vector for ball itself, one for ball ’s

preferences for its modifiers (mod), one vector for
the verbs of which it is a subject (subj−1), and one
for the verbs of which is an object (obj−1).

The vector for catch in a given context, say in
the context catch ball, is then computed as illus-
trated on the right side of Figure 2: The lexical
vector ~catch is combined with the obj−1 vector of
ball, modifying the vector ~catch in the direction of
verbs that typically take ball as an object. For the
vector combination, any of the usual operations
can be used: addition, component-wise multipli-
cation, or minimum. Likewise, the lexical vector
~ball is combined with the obj preference vector of

catch to compute the meaning of ball in the con-
text catch ball.

The standard evaluation for vector models of
meaning in context is to predict paraphrase appro-
priateness. Paraphrases always apply to a word
meaning, not a word. For example, contract is
an appropriate paraphrase for catch in the context
John caught the flu, but it is not an appropriate
paraphrase in the context John caught a butterfly.
A vector space model can predict paraphrase ap-
propriateness as the similarity (measured, for ex-
ample, using Cosine) of the context-specific vec-
tor of catch with the lexical vector of contract:
The more similar the vectors, the higher the pre-
dicted appropriateness of the paraphrase. We eval-
uated SVS on two datasets. The first is a tightly
controlled psycholinguistic dataset of subject/verb
pairs with paraphrases for the verbs only (Mitchell
and Lapata, 2008). The other is the Lexical Sub-
stitution dataset, which has annotator-generated
paraphrases for target words in a larger senten-
tial context and which is thus closer to typical
NLP application scenarios (McCarthy and Nav-
igli, 2009). SVS showed comparable performance
to the model by Mitchell and Lapata (2008) on the
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former dataset, and outperformed the Mitchell and
Lapata model on the latter.

One obvious extension is to use all available
syntactic context, instead of focusing on a sin-
gle syntactic neighbor. We found no improve-
ment on SVS in a straightforward extension to
additional syntactic context items (Erk and Padó,
2009). However, Thater et al. (2009) did achieve
better performance with a different model that
used all syntactic context.

Taking larger context into account in an
exemplar-based model. But even if we take the
complete local syntactic context into account, we
are missing some evidence, in particular non-local
information. The word ball is interpreted differ-
ently in sentences (1a) and (1b) 1 even though its
predicate ran has more or less the same meaning in
both sentences. What is different is the subject of
ran, player versus debutante, which is not a direct
syntactic neighbor of the ambiguous word ball.

(1)
(a) the player ran to the ball
(b) the debutante ran to the ball

Even though we are not using dictionary senses,
the types of evidence that should be useful for
computing occurrence-specific vectors should be
the same as for traditional WSD; and one of the
main type of features used there is bag-of-words
context. In (Erk and Padó, 2010), we proposed an
exemplar-based model of word meaning in con-
text that relied on bag-of-words context informa-
tion from the whole sentence, but did not use syn-
tactic information. The model assumes that each
target lemma is represented by a set of exemplars,
where an exemplar is a sentence in which the tar-
get lemma occurs. Polysemy is then modeled by
activating (selecting) relevant exemplars of a tar-
get lemma in a given occurrence s.2 Both the ex-
emplars and the occurrence s are modeled as vec-
tors. We simply use first-order vectors that re-
flect the number of times each word occurs in a
given sentence. The activated exemplars are then
simply the ones whose vectors are most similar
to the vector of s. The results that we achieved
with the exemplar-based model on the Lexical
Substitution dataset were considerably better than

1These two examples are due to Ray Mooney.
2Instead of the binary selection of each exemplar that this

model uses, it would also be possible to assign each exemplar
a weight, making it partially selected.

those achieved with any of the syntax-based ap-
proaches (Erk and Padó, 2008; Erk and Padó,
2009; Thater et al., 2009).

While prototype models compute a vector by
first summing over all observed occurrences and
then having to suppress dimensions that are not
contextually appropriate, exemplar models only
take contextually appropriate exemplars into ac-
count in the first place, which is conceptually
simpler and thus more attractive. But there are
still many open questions, in particular the best
combination of bag-of-words context and syntac-
tic context as evidence for computing occurrence-
specific vector representations.

5 The role of dictionary senses

Word meaning models that rely only on individual
word usages and their similarities are more flex-
ible than dictionary-based models and make less
assumptions. On the other hand, dictionaries offer
not just sense lists but also a wealth of information
that can be used for inferences. WordNet (Fell-
baum, 1998) has relations between words and be-
tween synsets, most importantly synonymy and
hyponymy. VerbNet (Kipper et al., 2000) specifies
semantic properties of a predicate’s arguments, as
well as relations between the arguments.

In this section we discuss approaches for em-
bedding dictionary senses in a distributional model
in a way that supports hypotheses (A) and (B)
(graded sense membership, and description of an
occurrence through multiple senses) and that sup-
ports testing the applicability of dictionary-based
inference rules.

Mapping dictionary senses to points in vec-
tor space. Dictionary senses can be mapped to
points in vector space very straightforwardly if we
have sense-annotated corpus data. In that case,
we can compute a (prototype) vector for a sense
from all corpus occurrences annotated with that
sense. We used this simple model (Erk and Mc-
Carthy, 2009) to predict the graded sense appli-
cability judgments from the WSsim dataset. (See
Section 2 for more information on this dataset.)
The predictions of the vector space model sig-
nificantly correlate with annotator judgments. In
comparison with an approach that uses the con-
fidence levels of a standard WSD model as pre-
dictions, the vector space model shows higher re-
call but lower precision – for definitions of preci-
sion and recall that are adapted to the graded case.

22



Another way of putting the findings is to say that
the WSD confidence levels tend to under-estimate
sense applicability, while the vector space model
tends to over-estimate it.

Attachment sites for inference rules. As dis-
cussed above, vector space models for word mean-
ing in context are typically evaluated on para-
phrase applicability tasks (Mitchell and Lapata,
2008; Erk and Padó, 2008; Erk and Padó, 2009;
Thater et al., 2009). They predict the applicabil-
ity of a paraphrase like (2) based on the similarity
between a context-specific vector for the lemma
(here, catch) and a context-independent vector for
the paraphrase. (in this case, contract).

X catch Y → X contract Y (2)

Another way of looking at this is to consider the
inference rule (2) to be attached to a point in
space, namely the vector for contract, and to trig-
ger the inference rule for an occurrence of catch if
it is close enough to the attachment site. If we
know the WordNet sense of contract for which
rule (2) holds – it happens to be sense 4 –, we can
attach the rule to a vector for sense 4 of contract,
rather than a vector computed from all occurrences
of the lemma. Note that when we use dictionar-
ies as a source for inference rules, for example
by creating an inference rule like (2) for each two
words that share a synset and for each direct hy-
ponym/hypernym pair, we do know the WordNet
sense to which each inference rule attaches.

Mapping dictionary senses to regions in vector
space. In Erk (2009) we expand on the idea of
tying inference rules to attachment sites by repre-
senting a word sense not as a point but as a region
in vector space. The extent of the regions is esti-
mated through the use of both positive exemplars
(occurrences of the word sense in question), and
negative exemplars (occurrences of other words).
The computational models we use are inspired by
cognitive models of concept representation that
represent concepts as regions (Smith et al., 1988;
Hampton, 1991), in particular adopting Shepard’s
law (Shepard, 1987), which states that perceived
similarity to an exemplar decreases exponentially
with distance from its vector.

In the longer term, the goal for the association
of inference rules with attachment sites is to obtain
a principled framework for reasoning with par-
tially applicable inference rules in vector space.

6 Conclusion and outlook

In this paper, we have argued that it may be time
to consider alternative computational models of
word meaning, given that word sense disambigua-
tion, after all this time, is still a tough problem for
humans as well as machines. We have followed
three hypotheses. The first two involve dictionary
senses, suggesting that (A) senses may best be
viewed as applying to a certain degree, rather than
in a binary fashion, and (B) that it may make sense
to describe an occurrence through multiple senses
as a default rather than an exception. The third
hypothesis then departs from dictionary senses,
suggesting (C) focusing on individual word us-
ages and their similarities instead. We have argued
that distributional models are a good match for
word meaning models following hypotheses (A)-
(C): They can represent individual word usages as
points in vector space, and they can also represent
dictionary senses in a way that allows for graded
membership and overlapping senses, and we have
discussed some existing models, both prototype-
based and exemplar-based.

One big question is, of course, about the us-
ability of these alternative models of word mean-
ing in NLP applications. Will they do better than
dictionary-based models? The current evaluations,
testing paraphrase applicability in context, are a
step in the right direction, but more task-oriented
evaluation schemes have to follow.

We have argued that it makes sense to look to
cognitive models of mental concept representa-
tion. They are often based on feature vectors, and
there are many interesting ideas in these models
that have not yet been used (much) in computa-
tional models of word meaning. One of the most
exciting ones, perhaps, is that cognitive models of-
ten have interpretable dimensions. While dimen-
sions of distributional models are usually not in-
dividually interpretable, there are some first mod-
els (Almuhareb and Poesio, 2005; Baroni et al.,
2010) that use patterns to extract meaningful di-
mensions from corpus data. This offers many new
perspectives: For which tasks can we improve per-
formance by selecting dimensions that are mean-
ingful specifically for that task (as in Mitchell et
al. (2008))? Can interpretable dimensions be used
for inferences? And, when we are computing vec-
tor space representations for word meaning in con-
text, is it possible to select meaningful dimensions
that are appropriate for a given context?
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Abstract

In this paper we investigate methods
for computing similarity of two phrases
based on their relatedness scores across
all ranks k in a SVD approximation of
a phrase/term co-occurrence matrix. We
confirm the major observations made in
previous work and our preliminary experi-
ments indicate that these methods can lead
to reliable similarity scores which in turn
can be used for the task of paraphrasing.

1 Introduction

Distributional methods for word similarity use
large amounts of text to acquire similarity judg-
ments based solely on co-occurrence statistics.
Typically each word is assigned a representation
as a point in a high dimensional space, where the
dimensions represent contextual features; follow-
ing this, vector similarity measures are used to
judge the meaning relatedness of words. One way
to make these computations more reliable is to use
Singular Value Decomposition (SVD) in order to
obtain a lower rank approximation of an original
co-occurrence matrix.

SVD is a matrix factorization method which
has applications in a large number of fields such
as signal processing or statistics. In natural lan-
guage processing methods such as Latent Seman-
tic Analysis (LSA) (Deerwester et al., 1990)
use SVD to obtain a factorization of a (typically)
word/document co-occurrence matrix. The under-
lying idea in these models is that the dimension-
ality reduction will produce meaningful dimen-
sions which represent concepts rather than just
terms, rendering similarity measures on these vec-
tors more accurate. Over the years, it has been
shown that these methods can closely match hu-
man similarity judgments and that they can be
used in various applications such as information

retrieval, document classification, essay grading
etc. However it has been noted that the success
of these methods is drastically determined by the
choice of dimension k to which the original space
is reduced.

(Bast and Majumdar, 2005) investigates exactly
this aspect and proves that no fixed choice of di-
mension is appropriate. The authors show that two
terms can be reliably compared only by investigat-
ing the curve of their relatedness scores over all
dimensions k. The authors use a term/document
matrix and analyze relatedness curves for inducing
a hard related/not-related decision and show that
their algorithms significantly improve over previ-
ous methods for information retrieval.

In this paper we investigate: 1) how the findings
of (Bast and Majumdar, 2005) carry over to ac-
quiring paraphrases using SVD on a phrase/term
co-occurrence matrix and 2) if reliable similarity
scores can be obtained from the analysis of relat-
edness curves.

2 Background

2.1 Singular Value Decomposition
Models such as LSA use Singular Value Decom-
position, in order to obtain term representations
over a space of concepts.

Given a co-occurrence matrix X of size (t, d),
we can compute the singular value decomposition:
UΣV T of rank r. Matrices U and V T of sizes
(t, r) and (r, d) are the left and right singular vec-
tors; Σ is the (r, r) diagonal matrix of singular
values (ordered in descending order)1. Similarity
between terms i and j is computed as the scalar
product between the two vectors associated to the
words in the U matrix:

sim(ui, uj) = Σk
l=1uilujl

1Any approximation of rank k < r can simply be ob-
tained from an approximation or rank r by deleting rows and
columns.
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2.2 Relatedness curves

Finding the optimal dimensionality k has proven
to be an extremely important and not trivial step.
(Bast and Majumdar, 2005) show that no single cut
dimension is appropriate to compute the similarity
of two terms but this should be deduced from the
curve of similarity scores over all dimensions k.
The curve of relatedness for two terms ui and uj is
given by their scalar product across all dimensions
k, k smaller than a rank r:

k → Σk
l=1uilujl, for k = 1, ..., r

They show that a smooth curve indicates closely
related terms, while a curve exhibiting many direc-
tion changes indicates unrelated terms; the actual
values of the similarity scores are often mislead-
ing, which explains why a good cut dimension k
is so difficult to find.

2.3 Vector space representation of phrases

We choose to apply this to acquiring paraphrases
(or inference rules, i.e. entailments which hold in
just one direction) in the sense of DIRT (Lin and
Pantel, 2001).

In the DIRT algorithm a phrase is a noun-
ending path in a dependency graph and the goal
is to acquire inference rules such as (X solve Y,
X find solution to Y). We will call dependency
paths patterns. The input data consists of large
amounts of parsed text, from which patterns to-
gether with X-filler and Y-filler frequency counts
are extracted.

In this setting, a pattern receives two vector rep-
resentation, one in a X-filler space and one in the
Y-filler space. In order to compute the similarity
between two patterns, these are compared in the
X space and in the Y space, and the two result-
ing scores are multiplied. (The DIRT algorithm
uses Lin measure for computing similarity, which
is given in Section 4). Obtaining these vectors
from the frequency counts is straightforward and
it is exemplified in Table 1 which shows a frag-
ment of a Y-filler DIRT-like vector space.

.. case problem ..
(X solve Y, Y) .. 6.1 4.4 ..
(X settle Y, Y) .. 5.2 5.9 ..

Table 1: DIRT-like vector representation in the Y-filler
space. The values represent mutual information.

3 Relatedness curves for acquiring
paraphrases

3.1 Setup
We parsed the XIE fragment of GigaWord (ap-
prox. 100 mil. tokens) with Stanford dependency
parser. From this we built a pattern/word matrix of
size (85000, 3000) containing co-occurrence data
of the most frequent patterns with the most fre-
quent words2. We perform SVD factorization on
this matrix of rank k = 800. For each pair of pat-
terns, we can associate two relatedness curves: a
X curve and Y curve given by the scalar products
of their vectors in the U matrix, across dimensions
k : 1, ..., 800.

3.2 Evaluating smoothness of the relatedness
curves

In Figure 1 we plotted the X and Y curves of com-
paring the pattern X

subj←−−− win
dobj−−−→ Y with itself.

Figure 1: X-filler and Y-filler relatedness curves
for the identity pair (X

subj←−−− win
dobj−−−→ Y, X

subj←−−−
win

dobj−−−→ Y )

Figure 2: X-filler and Y-filler relatedness curves
for (X

subj←−−− leader
prp−−→ of

pobj−−−→ Y, X
pobj←−−− by

prp←−−
lead

subj−−−→ Y )

Normally, the X and Y curves for the identical
pair are monotonically increasing. However what
can be noticed is that the actual values of these
functions differ by one order of magnitude in the
X and in the Y curves of identical patterns, show-
ing that in themselves they are not a good indica-

2Even if conceptually we have two semantic spaces (given
by X-fillers and Y-fillers), in reality we can work with a sin-
gle matrix, containing for each pattern also its reverse, both
represented solely in a X-filler space
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Figure 3: X-filler and Y-filler relatedness curves
for (X

subj←−−− win
dobj−−−→ Y, X

subj←−−− murder
dobj−−−→ Y )

tor of similarity. In Figure 2 we investigate a pair
of closely related patterns: (X

subj←−−− leader
prp−−→

of
pobj−−−→ Y, X

pobj←−−− by
prp←−− lead

subj−−−→ Y ). It can be
noticed that while still not comparable to those of
the identical pair, these curves are much smoother
than the ones associated to the pair of unrelated
patterns in Figure 33.

However, unlike in the information retrieval
scenario in (Bast and Majumdar, 2005), for which
a hard related/not-related assignment works best,
for acquiring paraphrases we need to quantify the
smoothness of the curves. We describe two func-
tions for evaluating curve smoothness which we
will use to compute scores in X-filler and Y-filler
semantic spaces.

Smooth function 1 This function simply com-
putes the number of changes in the direction of the
curve, as the percentage of times the scalar prod-
uct increases or remains equal from step l to step
l + 1:

CurveS1(ui, uj) =
Σuilujl≥01

k
, l = 1, ..., k

An increasing curve will be assigned the maximal
value 1, while for a curve that is monotonically
decreasing the score will be 0.

Smooth function 2 (Bast and Majumdar, 2005)
The second smooth function is given by:

CurveS2(ui, uj) =
max−min

Σk
l=1abs(uilujl)

where max and min are the largest and smallest
values in the curves. A curve which is always in-
creasing or always decreasing will get a score of 1.
Unlike the previous method this function is sensi-
tive to the absolute values in the drops of a curve.

3The drop out dimension discussed in (Bast and Majum-
dar, 2005) Section 3, does not seem to exist for our data. This
is to be expected since this result stems from a definition of
perfectly related terms which is adapted to the particularities
of term/document matrices, and not of term/term matrices.

A curve with large drops, irrelevant of their cardi-
nality, will be penalized by being assigned a low
score.

4 Experimental results

In order to compute the similarity score between
two phrases, we follow (Lin and Pantel, 2001)
and compute two similarity scores, corresponding
to the X-fillers and Y-fillers, and multiply them.
Given a similarity function, any pattern encoun-
tered in the corpus can be paraphrased by return-
ing its most similar patterns.

We implement five similarity functions on the
data we have described in the previous section.
The first one is the DIRT algorithm and it is the
only method using the original co-occurrence ma-
trix in which raw counts are replaced by point-
wise mutual information scores.

DIRT method The similarity function for two
vectors pi and pj is:

simLin(pi, pj) =

∑
l∈I(pi)∩I(pj)

(pil + pjl)∑
l∈I(pi)

pil +
∑

l∈I(pj)
pjl

where values in pi and pj are point-wise mu-
tual information, and I(·) gives the indices of non-
negative values in a vector.

Methods on SVD factorization All these meth-
ods perform computations the (85000, 800) U ma-
trix in the SVD factorization. On this we imple-
ment two methods which do an arbitrary dimen-
sion cut of k = 600: 1) SP-600 (scalar product)
and 2) COS-600 (cosine similarity). The other
two algorithms: CurveS1 and CurveS2 use the
two curve smoothness functions in Section 3.2; the
curves plot the scalar product corresponding to the
two patterns, from dimension 1 to 800.

Data In these preliminary experiments we limit
ourselves to paraphrasing a set of patterns ex-
tracted from a subset of the TREC02-TREC06
question answering tracks. From these questions
we extracted and paraphrased the most frequently
occurring 20 patterns. Since judging the cor-
rectness of these paraphrases ”out-of-context” is
rather difficult we limit ourselves to giving exam-
ples and analyzing errors made on this data; im-
portant observations can be clearly made this way,
however in future work we plan to build a proper
evaluation setting (e.g. task-based or instance-
based in the sense of (Szpektor et al., 2007)) for
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a more detailed analysis of the performance on the
methods discussed.

4.1 Results

We list the paraphrases obtained with the different
methods for the pattern X

subj←−−− show
dobj−−−→ Y . This

pattern has been chosen out of the total set due
to its medium difficulty in terms of paraphrasing;
some of the patterns in our list are relatively ac-
curately paraphrased by all methods, such as win,
while others such as marry are almost impossible
to paraphrase, for all methods. In Table 2 we list
the top 10 expansions returned by the four meth-
ods using the SVD factorization. In bold we mark
correct patterns, which we consider to be patterns
for which there is a context in which the entail-
ment holds in at least one direction.

As it is clearly reflected in this example the SP-
600 is much worse than any of the curve analy-
sis methods; however using cosine as similarity
measure at the same arbitrarily chosen dimension
(COS-600) brings major improvements.

The two curve smoothness methods exhibit a
systematic difference between them. In this ex-
ample, and also across all 20 instances we have
considered, CurveS1 ranks as most similar, a large
variety of patterns with the same lexical root (in
which, of course, syntax is often incorrect). Only
following this we can find patterns expressing lex-
ical variations; these again will be present in many
syntactic variations. This sets CurveS1 apart from
both CurveS2 and from COS-600 methods. These
latter two methods, although conceptually differ-
ent seem to exhibit surprisingly similar behavior.
The behavior of CurveS1 smoothing method is
difficult to judge without a proper evaluation; it
can be the case that the errors (mostly in syntac-
tic relations) are indeed errors of the algorithm or
that the parser introduces them already in our input
data.

Table 3 shows the top 10 paraphrases returned
by the DIRT algorithm. The DIRT paraphrases are
rather accurate, however it is interesting to observe
that DIRT and SVD methods can extract differ-
ent paraphrases. Table 4 gives examples of correct
paraphrases which are identified by DIRT but not
CurveS2 and the other way around. This seems to
indicate that these algorithms do capture different
aspects of the data and can be combined for bet-
ter results. An important aspect here is the fact
that obtaining highly accurate paraphrases at the

DIRT
subj←−−− reflect

dobj−−−→
subj←−−− indicate

dobj−−−→
subj←−−− demonstrate

dobj−−−→
pobj←−−− in

prp←−− show
dobj−−−→

pobj←−−− to
prp←−− show

dobj−−−→
subj←−−− represent

dobj−−−→
subj←−−− show

prp−−→ in
pobj−−−→

subj←−−− display
dobj−−−→

subj←−−− bring
dobj−−−→

pobj←−−− with
prp←−− show

dobj−−−→

Table 3: Top 10 paraphrases for X
subj←−−− show

dobj−−−→
Y

cost of losing coverage is not particularly difficult4

however not very useful. Previous work such as
(Dinu and Wang, 2009) has shown that for these
resources, the coverage is a rather important as-
pect, since they have to capture the great variety
of ways in which a meaning can be expressed in
different contexts.

CurveS2 DIRT
subj←−−− show

dobj−−−→
pobj←−−− in

prp←−− indicate
dobj−−−→ subj←−−− display

dobj−−−→
pobj←−−− in

prp←−− reflect
dobj−−−→ subj←−−− confirm

dobj−−−→
dobj←−−− interpret

prp−−→ as
pobj−−−→ subj←−−− point

prp−−→ to
pobj−−−→

subj←−−− win
dobj−−−→

subj←−−− vie
prp−−→ for

pobj−−−→ pos←−− victory
prp−−→ in

pobj−−−→
subj←−−− compete

prp−−→ for
pobj−−−→ subj←−−− win

dobj−−−→ title
nn−−→

subj←−−− secure
dobj−−−→ appos−−−−→ winner

nn−−→
subj←−−− enter

dobj−−−→
subj←−−− march

prp−−→ into
pobj−−−→ subj←−−− start

prp−−→ in
pobj−−−→

subj←−−− advance
prp−−→ into

pobj−−−→ subj←−−− play
prp−−→ in

pobj−−−→
pos←−− entry

prp−−→ to
pobj−−−→ subj←−−− join

prp−−→ in
pobj−−−→

Table 4: Example of paraphrases (i.e. ranked in
the top 30) identified by one method and not the
other

4.2 Discussion
In this section we attempt to get more insight into
the way the relatedness curves relate to the intu-
itive notion of similarity, by examining curves of
incorrect paraphrases extracted by our methods.

The first error we consider, is the pattern X
pos←−−

confidence
pobj←−−− of

prp←−− Y which is judged as be-
ing very similar to show by SP-600, COS-600 as
well as CurveS2. Figure 4 shows the relatedness
curves. As it can be noticed, both the X and Y
similarities grow dramatically around dimension

4High precision can be very easily achieved simply by in-
tersecting the sets of paraphrases returned by two or more of
the methods implemented
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SP-600 COS-600 CurveS1 CurveS2
pos←−− confidence

pobj←−−− of
prp←−− subj←−−− indicate

dobj−−−→ subj←−−− show
prp−−→ in

pobj−−−→ subj←−−− indicate
dobj−−−→

subj←−−− boost
dobj−−−→ rate

nn−−→ subj←−−− show
prp−−→ of

pobj−−−→ subj←−−− indicate
dobj−−−→ subj←−−− reflect

dobj−−−→
subj←−−− show

prp−−→ of
pobj−−−→ subj←−−− represent

dobj−−−→ subj←−−− show
prp−−→ with

pobj−−−→ subj←−−− represent
dobj−−−→

prp−−→ to
pobj−−−→ percent

nn−−→ pobj←−−− by
prp←−− show

partmod←−−−−−− pobj←−−− with
prp←−− show

dobj−−−→ subj←−−− bring
dobj−−−→ rate

nn−−→
subj←−−− total

dobj−−−→ yuan
appos−−−−→ pobj←−−− in

prp←−− reflect
dobj−−−→ subj←−−− show

tmod−−−−→ subj←−−− show
prp−−→ of

pobj−−−→
subj←−−− hit

dobj−−−→ dollar
appos−−−−→ pos←−− confidence

pobj←−−− of
prp←−− subj←−−− show

prp−−→ despite
pobj−−−→ dobj←−−− interpret

prp−−→ as
pobj−−−→

subj←−−− reach
dobj−−−→ dollar

appos−−−−→ pobj←−−− by
prp←−− reflect

dobj−−−→ pobj←−−− during
prp←−− show

dobj−−−→ pos←−− confidence
pobj←−−− of

prp←−−
subj←−−− slash

dobj−−−→ rate
nn−−→ pobj←−−− in

prp←−− indicate
dobj−−−→ pobj←−−− in

prp←−− show
dobj−−−→ subj←−−− show

dobj−−−→ rate
nn−−→

nn←−− confidence
pobj←−−− of

prp←−− subj←−−− reflect
dobj−−−→ pobj←−−− by

prp←−− show
partmod←−−−−−− subj←−−− put

dobj−−−→ rate
nn−−→

subj←−−− raise
dobj−−−→ rate

nn−−→ subj←−−− interpret
prp−−→ as

pobj−−−→ pobj←−−− on
prp←−− show

dobj−−−→ pobj←−−− by
prp←−− show

partmod←−−−−−−

Table 2: Top 10 paraphrases for X
subj←−−− show

dobj−−−→ Y

500. Therefore the scalar product will be very high
at cut point 600, leading to methods’ SP-600 and
COS-600 error. However the two curve methods
are sensitive to the shape of the relatedness curves.
Since CurveS2 is sensitive to actual drop values in
these curves, this pair will still be ranked very sim-
ilar. The curves do decrease by small amounts in
many points which is why method CurveS1 does
score these two patterns as very similar.

An interesting point to be made here is that, this
pair is ranked similar by three methods out of four
because of the dramatic increase in relatedness at
around dimension 500. However, intuitively, such
an increase should be more relevant at earlier di-
mensions, which correspond to the larger eigen-
values, and therefore to the most relevant con-
cepts. Indeed, in the data we have analyzed, highly
similar patterns exhibit large increases at earlier
(first 100-200) dimensions, similarly to the exam-
ples given in Figure 1 and Figure 2. This leads
us to a particular aspect that we would like to in-
vestigate in future work, which is to analyze the
behavior of a relatedness curve in relation to rel-
evance weights obtained from the eigenvalues of
the matrix factorization.

In Figure 5 we plot a second error, the relat-
edness curves of show with X

subj←−−− boost
dobj−−−→

rate
nn−−→ Y which is as error made only by the SP-

600 method. The similarity reflected in curve Y
is relatively high (given by the large overlap of Y-
filler interest), however we obtain a very high X
similarity only due to the peak of the scalar prod-
uct exactly around the cut dimension 600.

5 Conclusion

In this paper we have investigated the relevance of
judging similarity of two phrases across all ranks
k in a SVD approximation of a phrase/term co-

Figure 4: X-filler and Y-filler relatedness curves
for (X

subj←−−− show
dobj−−−→ Y, X

pos←−− confidence
pobj←−−−

of
prp←−− Y )

Figure 5: X-filler and Y-filler relatedness curves
for (X

subj←−−− show
dobj−−−→ Y, X

subj←−−− boost
dobj−−−→

rate
nn−−→ Y )

occurrence matrix. We confirm the major observa-
tions made in previous work and our preliminary
experiments indicate that reliable similarity scores
for paraphrasing can be obtained from the analysis
of relatedness scores across all dimensions.

In the future we plan to 1) use the observations
we have made in Section 4.2 to focus on iden-
tifying good curve-smoothness functions and 2)
build an appropriate evaluation setting in order to
be able to accurately judge the performance of the
methods we propose.

Finally, in this paper we have investigated these
aspects for the task of paraphrasing in a particular
setting, however our findings can be applied to any
vector space method for semantic similarity.
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Abstract

In this paper we explore the computational
modelling of compositionality in distri-
butional models of semantics. In par-
ticular, we model the semantic composi-
tion of pairs of adjacent English Adjec-
tives and Nouns from the British National
Corpus. We build a vector-based seman-
tic space from a lemmatised version of
the BNC, where the most frequent A-N
lemma pairs are treated as single tokens.
We then extrapolate three different mod-
els of compositionality: a simple additive
model, a pointwise-multiplicative model
and a Partial Least Squares Regression
(PLSR) model. We propose two evalu-
ation methods for the implemented mod-
els. Our study leads to the conclusion that
regression-based models of composition-
ality generally out-perform additive and
multiplicative approaches, and also show a
number of advantages that make them very
promising for future research.

1 Introduction

Word-space vector models or distributional mod-
els of semantics (henceforth DSMs), are com-
putational models that build contextual seman-
tic representations for lexical items from corpus
data. DSMs have been successfully used in the
recent years for a number of different computa-
tional tasks involving semantic relations between
words (e.g. synonym identification, computation
of semantic similarity, modelling selectional pref-
erences, etc., for a thorough discussion of the field,
cf. Sahlgren, 2006). The theoretical foundation of
DSMs is to be found in the “distributional hypoth-
esis of meaning”, attributed to Z. Harris, which
maintains that meaning is susceptible to distribu-
tional analysis and, in particular, that differences

in meaning between words or morphemes in a
language correlate with differences in their distri-
bution (Harris 1970, pp. 784–787).

While the vector-based representation of word
meaning has been used for a long time in com-
putational linguistics, the techniques that are cur-
rently used have not seen much development with
regards to one of the main aspects of semantics in
natural language: compositionality.

To be fair, the study of semantic composition-
ality in DSMs has seen a slight revival in the re-
cent times, cf. Widdows (2008), Mitchell & La-
pata (2008), Giesbrecht (2009), Baroni & Lenci
(2009), who propose various DSM approaches
to represent argument structure, subject-verb and
verb-object co-selection. Current approaches to
compositionality in DSMs are based on the appli-
cation of a simple geometric operation on the basis
of individual vectors (vector addition, pointwise-
multiplication of corresponding dimensions, ten-
sor product) which should in principle approxi-
mate the composition of any two given vectors.

On the contrary, since the the very nature of
compositionality depends on the semantic rela-
tion being instantiated in a syntactic structure, we
propose that the composition of vector representa-
tions must be modelled as a relation-specific phe-
nomenon. In particular, we propose that the usual
procedures from machine learning tasks must be
implemented also in the search for semantic com-
positionality in DSM.

In this paper we present work in progress on
the computational modelling of compositionality
in a data-set of English Adjective-Noun pairs ex-
tracted from the BNC. We extrapolate three differ-
ent models of compositionality: a simple additive
model, a pointwise-multiplicative model and, fi-
nally, a multinomial multiple regression model by
Partial Least Squares Regression (PLSR).
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2 Compositionality of meaning in DSMs

Previous work in the field has produced a small
number of operations to represent the composi-
tion of vectorial representations of word meaning.
In particular, given two independent vectors v1
and v2, the semantically compositional result v3
is modelled by:

• vector addition, the compositional meaning
of v3 consists of the sum of the independent
vectors for the constituent words:
v1i + v2i = v3i

• pointwise-multiplication (Mitchell and La-
pata 2008), each corresponding pair of com-
ponents of v1 and v2 are multiplied to obtain
the corresponding component of v3:
v1i × v2i = v3i

• tensor product, v1 ⊗ v2 = v3, where v3 is
a matrix whose ij-th entry is equal to v1iv2j

(cf. Widdows 2008, who also proposes the
related method of convolution product, both
imported from the field of quantum mechan-
ics)

In the DSM literature, the additive model has be-
come a de facto standard approach to approximate
the composed meaning of a group of words (or a
document) as the sum of their vectors (which re-
sults in the centroid of the starting vectors). This
has been successfully applied to document-based
applications such as the computation of document
similarity in information retrieval.

Mitchell & Lapata (2008) indicate that the var-
ious variations of the pointwise-multiplication
model perform better than simple additive mod-
els in term similarity tasks (variations included
combination with simple addition and adding
weights to individual vector components). Wid-
dows (2008) Obtain results indicating that both the
tensor product and the convolution product per-
form better than the simple additive model.

For the sake of simplifying the implementa-
tion of evaluation methods, in this paper we will
compare the first two approaches, vector addition
and vector pointwise-multiplication, with regres-
sion modelling by partial least squares.

3 Partial least squares regression of
compositionality

We assume that the composition of meaning in
DSMs is a function mapping two or more inde-
pendent vectors in a multidimensional space to a

newly composed vector the same space and, fur-
ther, we assume that semantic composition is de-
pendent on the syntactic structure being instanti-
ated in natural language.1

Assuming that each dimension in the starting
vectors v1 and v2 is a candidate predictor, and that
each dimension in the composed vector v3 is a de-
pendent variable, vector-based semantic composi-
tionality can be formulated as a problem of multi-
variate multiple regression. This is, in principle,
a tractable problem that can be solved by stan-
dard machine learning techniques such as multi-
layer perceptrons or support vector machines.

However, given that sequences of words tend to
be of very low frequency (and thus difficult to rep-
resent in a DSM), suitable data sets will inevitably
suffer the curse of dimensionality: we will often
have many more variables (dimensions) than ob-
servations.

Partial Least Squares Regression (PLSR) is a
multivariate regression technique that has been de-
signed specifically to tackle such situations with
high dimensionality and limited data. PLSR is
widely used in in unrelated fields such as spec-
troscopy, medical chemistry, brain-imaging and
marketing (Mevik & Wehrens, 2007).

4 Materials and tools

We use a general-purpose vector space extracted
from the British National Corpus. We used the
Infomap software to collect co-occurrence statis-
tics for lemmas within a rectangular 5L–5R win-
dow. The corpus was pre-processed to represent
frequent Adjective-Noun lemma pairs as a sin-
gle token (e.g. while in the original corpus the
A-N phrase nice house consists in two separate
lemmas (nice and house), in the processed cor-
pus it appears as a single entry nice_house). The
corpus was also processed by stop-word removal.
We extracted a list of A-N candidate pairs with
simple regex-based queries targeting adjacent se-
quences composed of [Det/Art–A–N] (e.g. that lit-
tle house). We filtered the candidate list by fre-
quency (> 400) obtaining 1,380 different A-N
pairs.

The vector space was built with the 40,000 most
frequent tokens in the corpus (a cut-off point that
included all the extracted A-N pairs). The origi-
nal dimensions were the 3,000 most frequent con-

1Mitchell & Lapata (2008) make very similar assumptions
to the ones adopted here.
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tent words in the BNC. The vector space was
reduced to the first 500 “latent” dimensions by
SVD as implemented by the Infomap software.
Thus, the resulting space consists in a matrix with
40, 000× 500 dimensions.

We then extracted the vector representation for
each A-N candidate as well as for each indepen-
dent constituent, e.g. vectors for nice_house (v3),
as well as for nice (v1) and house (v2) were saved.
The resulting vector subspace was imported into
the R statistical computing environment for the
subsequent model building and evaluation. In
particular, we produced our regression analysis
with the pls package (Mevik & Wehrens, 2007),
which implements PLSR and a number of very
useful functions for cross-validation, prediction,
error analysis, etc.

By simply combining the vector representations
of the independent Adjectives and Nouns in our
data-set (v1 and v2) we built an additive predic-
tion model (v1 + v2) and a simplified pointwise
multiplicative prediction model (v1× v2) for each
candidate pair.

We also fitted a PLSR model using v1 and v2
as predictors and the corresponding observed pair
v3 as dependent variable. The data were divided
into a training set (1,000 A-N pairs) and a testing
set (the remaining 380 A-N pairs). The model’s
parameters were estimated by performing 10-fold
cross-validation during the training phase.

In what follows we briefly evaluate the three re-
sulting models of compositionality.

5 Evaluation

In order to evaluate the three models of composi-
tionality that were built, we devised two different
procedures based on the Euclidean measure of ge-
ometric distance.

The first method draws a direct comparison of
the different predicted vectors for each candidate
A-N pair by computing the Euclidean distance be-
tween the observed vector and the modelled pre-
dictions. We also inspect a general distance matrix
for the whole compositionality subspace, i.e. all
the observed vectors and all the predicted vectors.
We extract the 10 nearest neighbours for the 380
Adjective-Noun pairs in the test set and look for
the intended predicted vectors in each case. The
idea here is that the best models should produce
predictions that are as close as possible to the orig-
inally observed A-N vector.

Our second evaluation method uses the 10 near-
est neighbours of each of the observed A-N pairs
in the test set as gold-standard (excluding any
modelled predictions), and compares them with
the 10 nearest neighbours of each of the corre-
sponding predictions as generated by the models.
The aim is to assess if the predictions made by
each model share any top-10 neighbours with their
corresponding gold-standard. We award 1 point
for every shared neighbour.

5.1 The distance of predictions

We calculated the Euclidean distance between
each observed A-N pair and the corresponding
prediction made by each model. On general in-
spection, it is clear that the approximation of A-N
compositional vectors made by PLSR is consid-
erably closer than those produced by the additive
and multiplicative models, cf. Table 1.

Min. 1st Q. Median Mean 3rd Q. Max.
ADD 0.877 1.402 1.483 1.485 1.570 1.814
MUL 0.973 0.998 1.002 1.002 1.005 1.019
PLSR 0.624 0.805 0.856 0.866 0.919 1.135

Table 1: Summary of distance values between the 380
observed A-N pairs and the predictions from each model
(ADD=additive, MUL=multiplicative, PLSR=Partial Least
Squares Regression).

We also computed in detail which of the three pre-
dicted composed vectors was closest to the corre-
sponding observation. To this effect we extracted
the 10 nearest neighbours for each A-N pair in the
test set using the whole compositionality subspace
(all the predicted and the original vectors). In 94
cases out of 380, the PLSR intended prediction
was the nearest neighbour. Cumulatively, PLSR’s
predictions were in the top-10 nearest neighbour
list in 219 out of 380 cases (57.6%). The other
models’ performance in this test was negligible,
cf. Table 2. Overall, 223 items in the test set had
at least one predicted vector in the top-10 list; of
these, 219 (98%) were generated by PLSR and the
remaining 4 (1%) by the multiplicative model.

1 2 3 4 5 6 7 8 9 10 Tot.
ADD 0 0 0 0 0 0 0 0 0 0 0
MUL 0 1 0 2 1 0 0 0 0 0 4
PLSR 94 51 24 18 10 7 7 5 2 1 219

Table 2: Nearest predicted neighbours and their positions in
the top-10 list.
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5.2 Comparing prediction neighbours to the
gold standard

Since the main use of DSMs is to extract similar
vectors from a multidimensional space (represent-
ing related documents, distributional synonyms,
etc.), we would like to test if the modelling of se-
mantic compositionality is able to produce predic-
tions that are as similar as possible to the originally
observed data. A very desirable result would be
if any predicted compositional A-N vector could
be reliably used instead of the extracted bigram.
This could only be achieved if a model’s predic-
tions show a similar distributional behaviour with
respect to the observed vector.

To test this idea using our data, we took the
10 nearest neighbours of each of the observed A-
N pairs in the test set as gold standard. These
gold neighbours were extracted from the obser-
vation testing subspace, thus excluding any mod-
elled predictions. This is a very restrictive set-
ting: it means that the gold standard for each of
the 380 test items is composed of the 10 nearest
neighbours from the same 380 items (which may
turn out to be not very close at all). We then ex-
tracted the 10 nearest neighbours for each of the
three modelled predictions, but this time the sub-
space included all predictions, as well as all the
original observations (380× 4 = 1520 items). Fi-
nally, we tested if the predictions made by each
model shared any top-10 neighbours with their
corresponding gold-standard. We awarded 1 point
for every shared neighbour.

The results obtained with these evaluation set-
tings were very poor. Only the additive model
scored points (48), although the performance was
rather disappointing (maximum potential score for
the test was 3,800 points). Both the pointwise mul-
tiplicative model and the PLSR model failed to re-
trieve any of the gold standard neighbours. This
poor results can be attributed to the very restric-
tive nature of our gold standard and, also, to the
asymmetrical composition of the compared data
(gold standard: 3,800 neighbours from a pool of
just 380 different items; prediction space: 11,400
neighbours from a pool of 1,520 items).

However, given the that DSMs are known
for their ability to extract similar items from
the same space, we decided to relax our test
settings by awarding points not only to shared
neighbours, but also to the same model’s predic-
tions of those neighbours. Thus, given a tar-

get neighbour such as good_deal, in our sec-
ond setting we awarded points not only to the
gold standard good_deal, but also to the pre-
dictions good_deal_ADD, good_deal_MUL and
good_deal_PLSR when evaluating each corre-
sponding model. With these settings the compared
spaces become less asymmetrical (gold standard:
7,600 neighbours from a pool of just 380 different
items plus predictions; prediction space: 11,400
neighbours from a pool of 1,520 items). The ob-
tained results show a great improvement (max. po-
tential score 7,600 points):

Shared Neigh. Predicted Neigh. Total
ADD 48 577 625
MUL 0 37 37
PLSR 0 263 263
Not shared: 6,675

Table 3: Shared neighbours with respect to the gold standard
and shared predicted neighbours.

Once again, the additive model showed the best
performance, followed by PLSR. The multiplica-
tive model’s performance was negligible.

While carrying out these experiments, an unex-
pected fact became evident. Each of the models in
turn produces predictions that are relatively close
to each other, regardless of the independent words
that were used to calculate the compositional vec-
tors. This has the consequence that the nearest
neighbour lists for each model’s predictions are,
by and large, populated by items generated in the
same model, as shown in Table 4.

ADD MUL PLSR OBS
ADD 2,144 (56%) – – –
MUL 59 (1%) 3,800 (100%) 998 (26%) 1,555 (40%)
PLSR 1,472 (38%) – 2,802 (73%) 2,190 (57%)
OBS 125 (3%) – – 55 (1%)

Table 4: Origins of neighbours in each models’ top-10 list
of neighbours extracted from the full space composed of
observations and predictions (380 × 4 = 1, 440 items)
(ADD=additive, MUL=multiplicative, PLSR=Partial Least
Squares Regression, OBS=observed vectors) .

Neighbours of predictions from the multiplicative
model are all multiplicative. The additive model
has the most varied set of neighbours, but the
majority of them are additive-neighbours. PLSR
shows a mixed behaviour. However, PLSR pro-
duced neighbours that find their way into the
neighbour sets of both the additive model and the
observations.

These remarks point in the same direction: ev-
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ery model is a simplified and specialised version
of the original space, somewhat more orderly than
the observed data, and may give different results
depending on the task at stake. PLSR (and to a
lesser extent also the multiplicative model) is par-
ticularly efficient as generator of neighbours for
real vectors, a characteristic that could be applied
to guess distributional synonyms of unseen A-N
pairs. On the other hand, the additive model (and
to a lesser extent PLSR) is especially successful
in attracting gold standard neighbours. Overall,
even at this experimental stage, PLSR is clearly
the model that produces the most consistent re-
sults.

6 Concluding remarks

This paper proposed a novel method to model
the compositionality of meaning in distributional
models of semantics. The method, Partial Least
Squares Regression, is well known in other data-
intensive fields of research, but to our knowledge
had never been put to work in computational dis-
tributional semantics. Its main advantage is the
fact that it is designed to approximate functions
in problems of multivariate multiple regression
where the number of observations is relatively
small if compared to the number of variables (di-
mensions).

We built a DSM targeting a type of semantic
composition that has not been treated extensively
in the literature before, adjacent A-N pairs.

The model built by PLSR performed better than
both a simple additive model and a multiplicative
model in the first proposed evaluation method.

Our second evaluation test (using comparison
to a gold standard) gave mixed results: the best
performance was obtained by the simple additive
model, with PLSR coming in second place.

This is work in progress, but the results look
very promising. Future developments will cer-
tainly focus on the creation of better evaluation
methods, as well as on extending the experi-
ments to other techniques (e.g. convolution prod-
uct as discussed by Widdows, 2008 and Gies-
brecht, 2009). Another important issue that we
still have not touched is the role played by lex-
ical association (collocations) in the prediction
models. We would like to make sure that we
are not modelling the compositionality of non-
compositional examples.

A last word on the view of semantic composi-

tionality suggested by our approach. Modelling
compositionality as a machine learning task im-
plies that a great number of different “types” of
composition (functions combining vectors) may
be learned from natural language samples. In prin-
ciple, any semantic relation instantiated by any
syntactic structure could be learned if sufficient
data is provided. This approach must be con-
fronted with other linguistic phenomena, also of
greater complexity than just a set of bigrams. Fi-
nally, we might wonder if there is an upper limit to
the number of compositionality functions that we
need to learn in natural language, or if there are
types of functions that are more difficult, or even
impossible, to learn.
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Abstract

We describe an algebraic approach for
computing with vector based semantics.
The tensor product has been proposed as
a method of composition, but has the un-
desirable property that strings of different
length are incomparable. We consider how
a quotient algebra of the tensor algebra can
allow such comparisons to be made, offer-
ing the possibility of data-driven models of
semantic composition.

1 Introduction

Vector based techniques have been exploited in a
wide array of natural language processing appli-
cations (Schütze, 1998; McCarthy et al., 2004;
Grefenstette, 1994; Lin, 1998; Bellegarda, 2000;
Choi et al., 2001). Techniques such as latent se-
mantic analysis and distributional similarity anal-
yse contexts in which terms occur, building up a
vector of features which incorporate aspects of the
meaning of the term. This idea has its origins in
the distributional hypothesis of Harris (1968), that
words with similar meanings will occur in similar
contexts, and vice-versa.

However, there has been limited attention paid
to extending this idea beyond individual words,
so that the distributional meaning of phrases and
whole sentences can be represented as vectors.
While these techniques work well at the word
level, for longer strings, data becomes extremely
sparse. This has led to various proposals explor-
ing methods for composing vectors, rather than de-
riving them directly from the data (Landauer and
Dumais, 1997; Foltz et al., 1998; Kintsch, 2001;
Widdows, 2008; Clark et al., 2008; Mitchell and
Lapata, 2008; Erk and Pado, 2009; Preller and
Sadrzadeh, 2009). Many of these approaches use
a pre-defined composition operation such as ad-
dition (Landauer and Dumais, 1997; Foltz et al.,

1998) or the tensor product (Smolensky, 1990;
Clark and Pulman, 2007; Widdows, 2008) which
contrasts with the data-driven definition of com-
position developed here.

2 Tensor Algebras

Following the context-theoretic semantics of
Clarke (2007), we take the meaning of strings as
being described by a multiplication on a vector
space that is bilinear with respect to the addition
of the vector space, i.e.

x(y + z) = xy + xz (x+ y)z = xz + yz

It is assumed that the multiplication is associative,
but not commutative. The resulting structure is an
associative algebra over a field — or simply an
algebra when there is no ambiguity.

One commonly used bilinear multiplication op-
erator on vector spaces is the tensor product (de-
noted ⊗), whose use as a method of combining
meaning was first proposed by Smolensky (1990),
and has been considered more recently by Clark
and Pulman (2007) and Widdows (2008), who also
looked at the direct sum (which Widdows calls
the direct product, denoted ⊕).

We give a very brief account of the tensor prod-
uct and direct sum in the finite-dimensional case;
see (Halmos, 1974) for formal and complete defi-
nitions. Roughly speaking, if u1, u2, . . . un form
an orthonormal basis for a vector space U and
v1, v2, . . . vm form an orthonormal basis for vector
space V , then the space U ⊗V has dimensionality
nm with an orthonormal basis formed by the set
of all ordered pairs (ui, vj), denoted by ui ⊗ vj ,
of the individual basis elements. For arbitrary el-
ements u =

∑n
i=1 αiui and v =

∑m
j=1 βjvj the

tensor product of u and v is then given by

u⊗ v =
n∑
i

m∑
j

αiβj ui ⊗ vj
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For two finite dimensional vector spaces U and
V (over a field F ) of dimensionality n and m re-
spectively, the direct sum U ⊕ V is defined as the
cartesian product U × V together with the oper-
ations (u1, v1) + (u2, v2) = (u1 + u2, v1 + v2),
and a(u1, v1) = (au1, av1), for u1, u2 ∈ U ,
v1, v2 ∈ V and a ∈ F . In this case the vectors
u1, u2, . . . un, v1, v2, . . . vm form an orthonormal
set of basis vectors in U ⊕ V , which is thus of
dimensionality n + m. In this case one normally
identifies U with the set of vectors in U ⊕V of the
form (u, 0), and V with the set of vectors of the
form (0, v). This construction makes U ⊕ V iso-
morphic to V ⊕U , and thus the direct sum is often
treated as commutative, as we do in this paper.

The motivation behind using the tensor product
to combine meanings is that it is very fine-grained.
So, if, for example, red is represented by a vector
u consisting of a feature for each noun that is mod-
ified by red, and apple is represented by a vector
v consisting of a feature for each verb that occurs
with apple as a direct object, then red apple will
be represented by u ⊗ v with a non-zero compo-
nent for every pair of non-zero features (one from
u and one from v). So, there is a non-zero ele-
ment for each composite feature, something that
has been described as red, and something that has
been done with an apple, for example, sky and eat.

Both ⊕ and ⊗ are intuitively appealing as se-
mantic composition operators, since u and v are
reconstructible from each of u⊗ v and u⊕ v, and
thus no information is lost in composing u and v.
Conversely, this is not possible with ordinary vec-
tor addition, which also suffers from the fact that it
is strictly commutative (not simply up to isomor-
phism like⊕), whereas natural language composi-
tion is in general manifestly non-commutative.

We make use of a construction called the tensor
algebra on a vector space V (where V is a space
of context features), defined as:

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

Any element of T (V ) can be described as a sum of
components with each in a different tensor power
of V . Multiplication is defined as the tensor prod-
uct on these components, and extended linearly to
the whole of T (V ). We define the degree of a vec-
tor u in T (V ) to be the tensor power of its high-
est dimensional non-zero component, and denote
it deg(u); so for example, both v⊗v and u⊕(v⊗v)
have degree two, for 0 6= u, v ∈ V . We restrict
T (V ) to only contain vectors of finite degree.

A standard way to compare elements of a vector
space is to make use of an inner product, which
provides a measure of semantic distance on that
space. Assuming we have an inner product 〈·, ·〉 on
V , T (V ) can be given an inner product by defining
〈α, β〉 = αβ for α, β ∈ R, and

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉〈y1, y2〉

for x1, y1, x2, y2 ∈ V , and then extending this in-
ductively (and by linearity) to the whole of T (V ).

We assume that words are associated with vec-
tors in V , and that the higher tensor powers repre-
sent strings of words. The problem with the tensor
product as a method of composition, given the in-
ner product as we have defined it, is that strings
of different lengths will have orthogonal vectors,
clearly a serious problem, since strings of different
lengths can have similar meanings. In our previous
example, the vector corresponding to the concept
red apple lives in the vector space U ⊗ V , and so
we have no way to compare it to the space V of
nouns, even though red apple should clearly be re-
lated to apple.

Previous work has not made full use of the ten-
sor product space; only tensor products are used,
not sums of tensor products, giving us the equiva-
lent of the product states of quantum mechanics.
Our approach imposes relations on the vectors of
the tensor product space that causes some product
states to become equivalent to entangled states,
containing sums of tensor products of different de-
grees. This allows strings of different lengths to
share components. We achieve this by construct-
ing a quotient algebra.

3 Quotient Algebras

An ideal I of an algebra A is a sub-vector space
of A such that xa ∈ I and ax ∈ I for all a ∈ A
and all x ∈ I . An ideal introduces a congruence
≡ on A defined by x ≡ y if and only if x− y ∈ I .
For any set of elements Λ ⊆ A there is a unique
minimal ideal IΛ containing all elements of Λ; this
is called the ideal generated by Λ. The quotient
algebra A/I is the set of all equivalence classes
defined by this congruence. Multiplication is de-
fined on A/I by the multiplication on A, since ≡
is a congruence.

By adding an element x − y to the generating
set Λ of an ideal, we are saying that we want to
set x − y to zero in the quotient algebra, which
has the effect of setting x equal to y. Thus, if we
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have a set of pairs of vectors that we wish to make
equal in the quotient algebra, we put their differ-
ences in the generating set of the ideal. Note that
putting a single vector v in the generating set can
have knock-on effects, since all products of v with
elements of A will also end up in the ideal.

Although we have an inner product defined on
T (V ), we are not aware of any satisfactory method
for defining an inner product on T (V )/I , a con-
sequence of the fact that both T (V ) and I are
not complete. Instead, we define an inner prod-
uct on a space which contains the quotient algebra,
T (V )/I . Rather than considering all elements of
the ideal when computing the quotient, we con-
sider a sub-vector space of the ideal, limiting our-
selves to the space Gk generated from Λ by only
allowing multiplication by elements up to a certain
degree, k.

Let us denote the vector subspace generated by
linearity alone (no multiplications) from a sub-
set Λ of T (V ) by G(Λ). Also suppose B =
{e1, . . . , eN} is a basis for V . We then define
the spaces Gk as follows. Define sets Λk (k =
0, 1, 2, . . .) inductively as follows:

Λ0 = Λ

Λk = Λk−1 ∪ {(ei ⊗ Λk−1)|ei ∈ B}
∪ {(Λk−1 ⊗ ei)|ei ∈ B}

Define
Gk = G(Λk)

We note that

G0 ⊆ G1 ⊆ . . . Gk ⊆ . . . ⊆ I ⊆ T (V )

form an increasing sequence of linear vector sub-
spaces of T (V ), and that

I =

∞⋃
k=0

Gk

This means that for any x ∈ I there exists a small-
est k such that for all k′ ≥ k we have that x ∈ Gk′ .

Lemma. Let x ∈ I, x 6= 0 and let deg(x) = d.
Then for all k ≥ d − mindeg(Λ) we have that
x ∈ Gk, where mindeg(Λ) is defined to be the
minimum degree of the non-zero components oc-
curring in the elements of Λ.

Proof. We first note that for x ∈ I it must
be the case that deg(x) ≥ mindeg(Λ) since I
is generated from Λ. Therefore we know d −

mindeg(Λ) ≥ 0. We only need to show that
x ∈ Gd−mindeg(Λ). Let k′ be the smallest in-
teger such that x ∈ Gk′ . Since x 6∈ Gk′−1 it
must be the case that the highest degree term of
x comes from V ⊗ Gk′−1 ∪ Gk′−1 ⊗ V . There-
fore k′ + mindeg(Λ) ≤ d ≤ k′ + maxdeg(Λ).
From this it follows that the smallest k′ for which
x ∈ Gk′ satisfies k′ ≤ d − mindeg(Λ), and we
know x ∈ Gk for all k ≥ k′. In particular x ∈ Gk
for k ≥ d−mindeg(Λ).

We show that T (V )/Gk (for an appropriate
choice of k) captures the essential features of
T (V )/I in terms of equivalence:

Proposition. Let deg(a − b) = d and let k ≥
d − mindeg(Λ). Then a ≡ b in T (V )/Gk if and
only if a ≡ b in T (V )/I .

Proof. Since Gk ⊆ I , the equivalence class of an
element a in T (V )/I is a superset of the equiva-
lence class of a in T (V )/Gk, which gives the for-
ward implication. The reverse follows from the
lemma above.

In order to define an inner product on
T (V )/Gk, we make use of the result of Berbe-
rian (1961) that if M is a finite-dimensional
linear subspace of a pre-Hilbert space P , then
P = M ⊕ M⊥, where M⊥ is the orthogonal
complement of M in P . In our case this implies
T (V ) = Gk ⊕ G⊥k and that every element
x ∈ T (V ) has a unique decomposition as
x = y + x′k where y ∈ Gk and x′k ∈ G⊥k . This
implies that T (V )/Gk is isomorphic to G⊥k , and
that for each equivalence class [x]k in T (V )/Gk
there is a unique corresponding element x′k ∈ G⊥k
such that x′k ∈ [x]k. This element x′k can be
thought of as the canonical representation of all
elements of [x]k in T (V )/Gk, and can be found
by projecting any element in an equivalence class
onto G⊥k . This enables us to define an inner
product on T (V )/Gk by 〈[x]k, [y]k〉k = 〈x′k, y′k〉.

The idea behind working in the quotient algebra
T (V )/I rather than in T (V ) is that the elements
of the ideal capture differences that we wish to ig-
nore, or alternatively, equivalences that we wish to
impose. The equivalence classes in T (V )/I repre-
sent this imposition, and the canonical representa-
tives in I⊥ are elements which ignore the distinc-
tions between elements of the equivalence classes.
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However, by using Gk, for some k, instead of
the full ideal I , we do not capture some of the
equivalences implied by I . We would, therefore,
like to choose k so that no equivalences of impor-
tance to the sentences we are considering are ig-
nored. While we have not precisely established a
minimal value for k that achieves this, in the dis-
cussion that follows, we set k heuristically as

k = l −mindeg(Λ)

where l is the maximum length of the sentences
currently under consideration, and Λ is the gen-
erating set for the ideal I . The intuition behind
this is that we wish all vectors occurring in Λ to
have some component in common with the vec-
tor representation of our sentences. Since com-
ponents in the ideal are generated by multipli-
cation (and linearity), in order to allow the ele-
ments of Λ containing the lowest degree compo-
nents to potentially interact with our sentences,
we will have to allow multiplication of those el-
ements (and all others) by components of degree
up to l −mindeg(Λ).

Given a finite set Λ ⊆ T (V ) of elements gen-
erating the ideal I , to compute canonical repre-
sentations, we first compute a generating set Λk
for Gk following the inductive definition given
earlier, and removing any elements that are not
linearly independent using a standard algorithm.
Using the Gram-Schmidt process (Trefethen and
Bau, 1997), we then calculate an orthonormal ba-
sis Λ′ for Gk, and, by a simple extension of Gram-
Schmidt, compute the projection of a vector u onto
G⊥k using the basis Λ′.

We now show how Λ, the set of vectors gener-
ating the ideal, can be constructed on the basis of
a tree-bank, ensuring that the vectors for any two
strings of the same grammatical type are compa-
rable.

4 Data-driven Composition

Suppose we have a tree-bank, its associated tree-
bank grammar G, and a way of associating a con-
text vector with every occurrence of a subtree in
the tree-bank (where the vectors indicate the pres-
ence of features occurring in that particular con-
text). The context vector associated with a spe-
cific occurrence of a subtree in the tree-bank is an
individual context vector.

We assume that for every rule, there is a distin-
guished non-terminal on the right hand side which

we call the head. We also assume that for every
production π there is a linear function φπ from the
space generated by the individual context vectors
of the head to the space generated by the individ-
ual context vectors of the left hand side. When
there is no ambiguity, we simply denote this func-
tion φ.

Let X̂ be the sum over all individual vectors of
subtrees rooted withX in the tree-bank. Similarly,
for each Xj in the right-hand-side of the rule πi :
X → X1 . . . Xr(πi), where r(π) is the rank of π,
let π̂i,j be the sum over the individual vectors of
those subtrees rooted with Xj where the subtree
occurs as the jth daughter of a local tree involving
the production πi in the tree-bank.

For each rule π : X → X1 . . . Xr with headXh

we add vectors

λπ,i = φ(ei)−X̂1⊗. . .⊗X̂h−1⊗ei⊗X̂h+1⊗. . .⊗X̂r

for each basis element ei of VXh
to the generating

set. The reasoning behind this is to ensure that the
meaning corresponding to a vector associated with
the head of a rule is maintained as it is mapped to
the vector space associated with the left hand side
of the rule.

It is often natural to assume that the individual
context vector of a non-terminal is the same as the
individual context vector of its head. In this case,
we can take φ to be the identity map. In particular,
for a rule of the form π : X → X1, then λπ,i is
zero.

It is important to note at this point that we have
presented only one of many ways in which a gram-
mar could be used to generate an ideal. In partic-
ular, it is possible to add more vectors to the ideal,
allowing more fine-grained distinctions, for exam-
ple through the use of a lexicalised grammar.

For each sentence w, we compute the tensor
product ŵ = â1 ⊗ â2 ⊗ · · · ⊗ ân where the string
of words a1 . . . an form w, and each âi is a vector
in V . For a sentence w we find an element ŵO of
the orthogonal complement of Gk in T (V ) such
that ŵO ∈ [ŵ], where [ŵ] denotes the equivalence
class of ŵ given the subspace Gk.

5 Example

We show how our formalism applies in a simple
example. Assume we have a corpus which
consists of the following sentences:
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apple 1.0 0.26 0.24 0.52 0.13 0.12 0.33 0.086 0.080

big apple 1.0 0.33 0.13 0.52 0.17 0.086 0.33 0.11

red apple 1.0 0.12 0.17 0.52 0.080 0.11 0.33

city 1.0 0.26 0.24 0.0 0.0 0.0

big city 1.0 0.33 0.0 0.0 0.0

red city 1.0 0.0 0.0 0.0

book 1.0 0.26 0.24

big book 1.0 0.33

red book 1.0

Figure 1: Similarities between phrases

see red apple see big city
buy apple visit big apple
read big book modernise city
throw old small red book see modern city
buy large new book

together with the following productions.

1. N′ → Adj N′

2. N′ → N

where N and Adj are terminals representing nouns
and adjectives, along with rules for the terminals.
We consider the space of adjective/noun phrases,
generated by N′, and define the individual context
of a noun to be the verb it occurs with, and the in-
dividual context of an adjective to be the noun it
modifies. For each rule, we take φ to be the iden-
tity map, so the vector spaces associated with N
and N′, and the vector space generated by indi-
vidual contexts of the nouns are all the same. In
this case, the only non-zero vectors which we add
to the ideal are those for the second rule (ignoring
the first rule, since we do not consider verbs in this
example except as contexts), which has the set of
vectors

λi = ei − Âdj⊗ ei

where i ranges over the basis vectors for contexts
of nouns: see, buy , visit , read ,modernise , and

Âdj = 2eapple + 2ebook + ecity

In order to compute canonical representations
of vectors, we take k = 1.

5.1 Discussion

Figure 1 shows the similarity between the noun
phrases in our sample corpus. Note that the vec-
tors we have put in the generating set describe only
compositionality of meaning — thus for example
the similarity of the non-compositional phrase big
apple to city is purely due to the distributional
similarity between apple and city and composition
with the adjective big.

Our preliminary investigations indicate that the
cosine similarity values are very sensitive to the
particular corpus and features chosen; we are cur-
rently investigating other ways of measuring and
computing similarity.

One interesting feature in the results is how ad-
jectives alter the similarity between nouns. For ex-
ample, red apple and red city have the same sim-
ilarity as apple and city, which is what we would
expect from a pure tensor product. This also ex-
plains why all phrases containing book are disjoint
to those containing city, since the original vector
for book is disjoint to city.

The contribution that the quotient algebra gives
is in comparing the vectors for nouns with those
for noun-adjective phrases. For example, red ap-
ple has components in common with apple, as we
would expect, which would not be the case with
just the tensor product.

6 Conclusion and Further Work

We have presented the outline of a novel approach
to semantic composition that uses quotient alge-
bras to compare vector representations of strings
of different lengths.
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The dimensionality of the construction we use
increases exponentially in the length of the sen-
tence; this is a result of our use of the tensor prod-
uct. This causes a problem for computation us-
ing longer phrases; we hope to address this in fu-
ture work by looking at the representations we use.
For example, product states can be represented in
much lower dimensions by representing them as
products of lower dimensional vectors.

The example we have given would seem to in-
dicate that we intend putting abstract (syntactic)
information about meaning into the set of generat-
ing elements of the ideal. However, there is no rea-
son that more fine-grained aspects of meaning can-
not be incorporated, even to the extent of putting
in vectors for every pair of words. This would
automatically incorporate information about non-
compositionality of meaning. For example, by in-
cluding the vector ̂big apple − b̂ig ⊗ âpple , we
would expect to capture the fact that the term big
apple is non-compositional, and more similar to
city than we would otherwise expect.

Future work will also include establishing the
implications of varying the constant k and explor-
ing different methods for choosing the set Λ that
generates the ideal. We are currently preparing
an experimental evaluation of our approach, using
vectors obtained from large corpora.
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 Abstract
 
We  introduce  a  new  family  of  geometric 
models  of  meaning,  inspired  by  principles 
from  semiotics  and  information  theory, 
based on what we call Expectation Vectors. 
We present theoretical arguments in support 
of  these  representations  over  traditional 
context-feature  vectors:  primarily that  they 
provide  a  more  intuitive  representation  of 
meaning,  and  detach  vector  representation 
from  the  specific  context  features  thereby 
allowing  arbitrarily  sophisticated  language 
models  to  be  leveraged.  We  present  a 
preliminary  evaluation  of  an  expectation 
vector  based  word  sense  disambiguation 
system  using  the  SemEval-2007  task  2 
dataset,  with  very  encouraging  results, 
particularly with respect to ambiguous verbs.
 

1 Introduction
 
It  is  a  cornerstone  assumption  of  distributional 
lexical semantics that the distribution of words in a 
corpus  reflects their  meaning.  Common 
interpretations  of  this  include  the  Distributional 
Hypothesis  (Harris,  1954)  and  the  Contextual 
Hypotheses (Miller & Charles, 1991), which state 
that  there  is  a  relationship  between  a  word's 
meaning, and the context(s) in which it appears. In 
recent  years  this  insight  has  been  borne  out  by 
correlations  between  human  judgements  and 
distributional  models  of  word  similarity  (Rapp, 
2002), and steady advances in tasks such as word 
sense  disambiguation  (Schütze,  1998)  and 
information  retrieval.  The  workhorse  of  these 
approaches  are  wordspace  models:  vectors  built 
from context  features  which  serve  as  geometric 
analogues  of  meaning.  Despite  many  advances, 
substantial  problems  exist  with  this  approach  to 
modelling  meaning.  Amongst  these  are  the 
problems of data sparseness and of how to model 
compositional meaning.

In this short paper, we introduce a new family 
of  wordspace models,  based on insights  gleaned 
from  semiotics  and  information  theory,  called 
Expectation Vectors.  These retain the  convenient 
vector-based  paradigm  whilst  encouraging  the 

exploitation  of  advances  in  language  modelling 
from other areas of NLP. We finish by outlining 
some  present  efforts  to  evaluate  expectation 
vectors in the area of word sense disambiguation.

2 Modelling meaning from context
 
Perhaps  one  of  the  most  prominent  application 
areas to exploit  context-based wordspace models 
is that of word sense induction and disambiguation 
(WSI/WSD).  The  prevailing  approach  to  this 
problem is based on a fairly literal interpretation of 
the Distributional Hypothesis: that is to cluster or 
classify instances of  ambiguous words according 
to  certain  features  of  the  context  in  which  they 
appear – invariably other words. It is not difficult 
to see why this approach is limiting: as Pedersen 
(2008) observes,  “the unifying thread that  binds  
together  many  short  context  applications  and 
methods is the fact that similarity decisions must  
be made between contexts that share few (if any)  
words  in  common.”  This  is  a  manifestation  of 
what  is  commonly  referred  to  at  the  data 
sparseness problem, and it pervades all of corpus-
based  NLP.  This  problem  is  exacerbated  as 
available examples of  a word sense decrease,  or 
finer sense granularities are sought. For supervised 
tasks  this  implies  that  a  large  training  set  is 
required,  which  is  often  expensive.  For 
unsupervised tasks,  such as WSI,  it  has negative 
implications for cluster quality and rule learning. 
Consequently,  Leacock  et  al (1996)  observe that 
WSD systems which operate directly upon context 
are: “plagued  with  the  same  problem,  excellent  
precision but low recall”.

“Backing off” to more general feature classes 
through  say  lemmatization  or  part-of-speech 
tagging affords one way of alleviating sparseness 
(Joshi  &  Penstein-Rosé,  2009),  assuming  these 
features are pertinent to the task. Similar strategies 
include  the  use  of  dual-context  models  where 
immediate lexical features are backed up by more 
general  topical  ones  garnered  from  the  wider 
context  of  the  ambiguous  word  (Leacock  et  al, 
1996; Yarowsky, 1993).

Others have tackled the problem of sparseness 
without  recourse  to  generalized  feature  classes, 
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through  the  exploitation  of  higher-order 
distributional  information.  Schütze  (1998) 
popularised  this  approach  within  the  WSD/WSI 
task. Rather than comparing contexts directly, it is 
the  distributional  similarity of  those features  (in 
the  corpus)  which  are  compared.  Specifically, 
Schütze  composed  context  vectors  by  summing 
the  vectors  for  every word  in  a  context,  where 
those  vectors  were  themselves  formed  from the 
total  of  word co-occurrence counts pertaining to 
every  instance  of  that  word  in  the  corpus.  The 
resultant  context  vectors  are  therefore 
comparatively  dense,  and  carry  second-order 
information  which  makes  otherwise  unlike 
contexts  more  amenable  to  comparison.  One 
contention  of  this  model  is  that  it  conflates  co-
occurrence information from all occurrences of a 
word in the corpus, regardless of their sense. The 
defence is  that  because the  actual  senses  of  the 
term instances which appear in the context of the 
ambiguous word will tend to be pertinent to that 
word’s  own  specific  sense,  it  is  that  common 
aspect of their respective conflated-sense vectors - 
when summed - which will dominant the resultant 
context  vector.  Purandare  &  Pedersen  (2001) 
performed a comparative study of disambiguation 
approaches  based  on  first-order  context,  and  on 
second order context as per Schütze (1998). They 
found  that  while  Schütze's  approach  provided 
gains  when data  was  limited,  when  the  training 
corpus was large enough that sufficient examples 
existed,  clustering  on  first  order  context  was 
actually  a  better  approach.  This  suggests  that 
while alleviating the data-sparseness problem, the 
practice of expanding context vectors in this way 
introduces a certain amount of noise, presumably 
by inappropriately over-smoothing the data.

Another  approach  to  the  sparse  data  problem 
which  was  also  part  of  Schütze's  framework  is 
dimensionality  reduction  by  Singular  Value 
Decomposition (SVD). In SVD the set of context 
features are analytically combined and reduced in 
a  manner  that  exploits  their  latent  similarities, 
whereafter  traditional  vector  measures  can  be 
used. Very similar techniques to both of those used 
by Schütze have been used for query expansion 
and  document  representation  in  information 
retrieval (Qiu & Frei, 1993; Xu et al, 2007).

Several variations upon Schütze’s approach to 
WSD have been explored. Dagan et al (1995) and 
Karov & Edelman (1996)  both apply what  they 
call  “similarity-based”  methods  which,  while 
markedly  different  on  the  surface  to  that  of 
Schütze, are similar in spirit and intent. Karov & 
Edelman,  for  example,  use  machine-readable 
dictionary glosses  as  opposed  to  corpus-derived 
co-occurrences,  and  apply  an  iterative 

bootstrapping approach to augment the available 
data, rather than strict second-order information.

Typically,  context  vectors  comprise  a 
component  (dimension)  for  each  designated 
feature  in  a word’s  context.  In a simple bag-of-
words  model  this  might  equate  to  one  vector 
component for each potential word that can appear 
in the context. For more sophisticated n-gram or 
dependency-based models, which attempt to better 
capture the structure inherent in the language, this 
number of vector components must be increased. 
The  more  sophisticated  the  language  model 
becomes therefore, the more acute the sparse data 
problem.  Techniques  like  SVD  can  reduce  this 
sparseness, but other issues remain. How does one 
weight  heterogeneous  features  when  forming  a 
vector?  How does  one interpret  vectors  reduced 
by SVD? Looking at the variety of approaches to 
tackling  the  problem,  we  might  be  forgiven  for 
questioning  whether  representing  meaning  as  a 
vector  of  context  features  is  in  fact  an  ideal 
starting point for semantic tasks such as WSD.

In the following section we describe a means of 
entirely detaching context  feature selection from 
vector  representation,  such  that  an  arbitrarily 
sophisticated  language  model  can  be  used  to 
generate  dense,  comparable vectors.  Necessarily, 
we  also  present  a  prototype  distributional 
language model that will serve as the basis of our 
investigations into this approach.

3 System & approach
 
3.1 Lexical Expectation Vectors

 
Theoretical  motivation.  The  motivation  behind 
the method presented herein comes both from the 
fields of semiotics and information theory. It is the 
notion that the “meaning” of an utterance is not in 
the utterance itself, nor in its individual or typical 
context;  it  is  in  the  disparity between  our 
expectations  based  on  that  context,  and  the 
utterance (Noth, 1990; Chandler, 2002). Meaning 
in this sense can be seen as related to information 
(Attneave,  1959;  Shannon,  1948):  an  utterance 
which is entirely expected under a regime where 
speaker  and  interpreter  have  identical  frames  of 
reference  communicates  nothing;  conversely  an 
extremely  creative  utterance  is  laden  with 
information, and may have multiple non-obvious 
interpretations  (poetry  being  a  case  in  point  - 
Riffaterre,  1978).  This  idea  is  also  lent  some 
weight  by  psycholinguistic  experiments  which 
have  revealed  correlations  between  a  word's 
disparity  from  its  preceding  context,  and 
processing  times  in  human  subjects.  Similar 
insights have been employed in some very recent 

46



attempts  to  model  compositional  word  meaning 
Erk & Padó (2008) and Thater et al (2009). These 
models augment word and context representations 
with  additional  vectors  encoding  the  selectional 
preferences  (expectations)  pertaining  to  the 
specific  syntactic/semantic  roles  of  the 
participating words. So far these systems rely upon 
parsed  corpora  and  have  been  tested  only  with 
very limited contexts (e.g. pairs of words having 
specific dependency relations).

Lexical  expectation  vectors  are  based  on  a 
similar  and  very  simple  premise:  rather  than 
building a vector for  a context by conflating the 
features which comprise the various context words 
(as per Schutze, 1998), we instead conflate all the 
words which might be expected to appear  within 
the  context (i.e.  in  the  headword  position). 
Consider  the  following short  context  taken from 
the SemEval-2007 task 2 dataset:

 
Mr. Meador takes responsibility 

for <?> and property management .
 

The  strongest  twenty  elements  of  its 
expectation  vector  (as  generated  by  the  system 
described below) are shown in table 1. The figures 
represent some measure of confidence that a given 
word will be found in the headword position <?>. 

0.42 education 0.31 chancellor
0.38 forms 0.31 routine
0.36 housing 0.31 health
0.35 counselling 0.31 research
0.35 these 0.31 assessment
0.35 herself 0.3 detailed
0.34 database 0.3 management
0.33 injuries 0.3 many
0.32 advice 0.3 training
0.31 this 0.3 what

 

Table 1: An example of an expectation vector.

We  make  the  supposition  that  when  the  vectors 
implied by the respective likelihoods of  all words 
implied by two contexts are identical, the contexts 
can be considered semantically equivalent.1 Note 
that the actual headword appearing in the context 
is not taken into consideration for the purposes of 
calculating expectation. In this example it occur at 
rank 62 out of  ~650,000, implying that its use in 
this context is not atypical.

Formal approach. For the purpose of our present 
research,  we  adopt  the  following  formal 
framework  for  generating  an  expectation  vector. 

1 Equivalent with respect to the head of the context. 
This is not the same as saying the passages have the same 
meaning, which requires recourse to compositionality.

Given  a  context  c,  each  component  of  the 
expectation vector  e arising from that  context  is 
estimated thusly:
  

 

Where j is a given word type in the lexicon, Oj 

is  the  set  of  all  observed contexts  of  that  word 
type in some corpus, oj

k is the kth observed context 
of that word type, and sim(o,c) is some similarity 
measure between two contexts.

The process of generating an expectation vector 
can  be  thought  of  as  a  kind  of  transform from 
syntagmatic space, into  paradigmatic space. This 
mapping need not be trivial: items which are close 
in the syntagmatic space need not be close in the 
paradigmatic  space  and  vice-versa  (although  in 
practice we expect some considerable correlation 
by virtue  of  the  distributional  hypothesis). Note 
that although our work herein assumes a popular 
vector representation of context, the nature of the 
contexts and the similarity measure which operates 
upon them are not constrained in any way by the 
framework  given  above.  For  example  they  may 
equally well be dependency trees.

In the following section we outline a distance-
based language model comprising a context model 
and  a  similarity  metric  which  operates  upon  it. 
This  choice  of  model  allows  us  to  maintain  a 
purely  distributional  approach  without  suffering 
the  data-sparseness  associated  with  n-gram 
models.

3.2 Language model
 

Theoretical motivation. The precise relationship 
between  syntagmatic  and  paradigmatic  spaces 
implied  by  the  expectation  transform  depends 
upon  the  language  model  employed.  In  a  naive 
language  model  which  assumes  independence 
between  features,  this  mapping  can  be  fully 
represented by a square matrix over word types. 
Although such models are the mainstay of many 
systems  in  NLP,  adopting  the  toolset  of  an 
expection transform in such a case gains us little. 
Therefore  the  relevance  of  the  approach  to  the 
present  task  depends  wholly  upon  having  a 
suitably sophisticated language model.

Building on the work of Washtell  (2009) and 
Terra & Clarke (2004), a distance-based language 
model  is  used  in  the  present  work.  This  is  in 
contrast to the bag-of-words, n-gram, or syntactic 
dependency models more commonly described in 
the  NLP literature.  There  are  two  hypothesised 
advantages to this approach. Firstly, this avoids the 
issue  of  immediate  context  versus  wider  topical 
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context.  While  immediate  context  is  generally 
accepted to  play a  dominant  role  in  WSD, both 
near and far context have been shown to be useful 
- the specific balance being somewhat dependent 
on  the  ambiguous  word  in  question  (Yarowsky, 
1993; Gale et al, 1992; Leacock  et al,  1996). As 
Ide & Veronis (1998) astutely observe, “although 
a distinction is made between micro-context and  
topical  context  in  current  WSD  work,  it  is  not  
clear that this distinction is meaningful. It may be  
more  useful  to  regard  the  two as  lying  along a  
continuum,  and  to  consider  the  role  and  
importance of contextual information as a function 
of distance from the target.” This is precisely the 
assumption adopted herein.  Secondly,  the  use  of 
distance-based  information  alleviates  data 
sparseness. This is simply by virtue of the fact that 
all  words  types  in  a  document  form  part  of  a 
token's context (barring document boundaries, no 
cut-off  distance  is  imposed).  Moreover,  as  it  is 
specific  distance  information  which  is  being 
recorded,  rather  than  (usually  low)  frequency 
counts,  context  vector  components  and  the 
similarity  measurements  which  arise  from  them 
exhibit  good  precision.  Washtell  (2009)  showed 
that these properties of distance-based metrics lead 
to measurable gains in information extracted from 
a  corpus.  In  the  context  of  modelling  human 
notions  of  association  this  also  led  to  improved 
predictive power (Washtell & Markert, 2009).
 
Formal  approach. We  do  not  pre-compute  any 
statistical  representation  of  the  data  upon which 
our  language  model  draws.  With  available 
approaches  this  would  either  require  throwing 
away  a  large  number  of  potentially  relevant 
higher-order dependencies, or would otherwise be 
intractable.  Our  intuition  is  that  the  truest 
representation  of  the  language  encoded  in  the 
corpus  is  the  corpus  itself.  We  therefore  use  an 
indexed corpus directly for all queries.

We use the following as a prototype measure of 
structural  similarity  (see  section  3.1),  although 
note that others are by all means possible.
 

  

Where  o and  c are  context  vectors  whose  j 
components each specify the position in the text of 
the nearest occurrence (to the head of the context) 
of  a  given  word  type.  O and  C are  the  set  of 
indices of all non-zero (i.e. observed) components 
in o and c respectively. The head of the context is 
represented by an additional component in vectors 

o and  c, and is always treated as observed.  f is a 
further function of the positions of words p and q 
in both contexts. It returns a similarity score in the 
unit  range  designating  how similar  the  distance 
op↔oq is to that of cp↔cq.

The  more  consistent  the  relative  positions  of 
the various symbols comprising two contexts, the 
stronger their similarity. Note that the measure is 
additive:  symbols  which  occur  at  all  in  both 
contexts result in positive score contributions. We 
assume that  a context  is  usually incomplete  (i.e. 
that that which lies outside it is unknown, rather 
than non-existent).  The minimum operator in the 
denominator  (the  normalization  factor)  therefore 
ensures  that  words  present  only in  the  larger  of 
two contexts do not constitute negative evidence.

This  formulation  allows  for  considerable 
leeway in how word distances are represented and 
compared.  In  this  work  we  choose  to  treat 
distances  proportionately,  so  small  variations  in 
word  position  between  distant  (presumably 
topically related words)  are  tolerated better  than 
similar  distance variations  between neighbouring 
(more syntactico-semantically related) words.

4 Word Sense Disambiguation
 
A WSD system based on expectation vectors was 
ineligible in the SemEval-2010 WSI/WSD task by 
virtue  of  restrictions  disallowing  the  use  of  a 
corpus-based  language  model.  Instead,  this  task 
implicitly  encouraged  participants  to  focus  on 
context  feature  selection  and  clustering 
approaches.  It  seems  unlikely  to  us  that  these 
stages are where the major bottlenecks for WSD 
(or WSI) lie;  performing WSD on short contexts 
without  any  extra-contextual  information  (i.e. 
general  linguistic  or  domain  experience)  is 
arguably not a task which even humans could be 
expected to perform well. For this reason we have 
chosen  to  focus  initially  on  the  well  explored 
SemEval-2007 task 2 dataset.

4.1 Preliminary Evaluation
 
An  expectation  vector  was  produced  for  each 
training and test instance in the SemEval dataset 
by matching the headword’s context against that of 
each word position in the British National Corpus 
using  an  implementation  of  the  distance  based 
similarity  measure  outlined  in  section  3.2.  For 
matters of convenience, independent forwards and 
backwards  expectation  vectors  were  produced 
from the context preceding the headword and that 
following it,  and  their  elements  were  multiplied 
together  to  produce  the  final  vector.  No 
lemmatization  or  part-of-speech  tagging  was 
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employed.  Neither  was  any  dimensionality 
reduction, each vector therefore having  ~650,000 
elements: one for each word type in the corpus.

Each test sample's vector was compared against 
all  corresponding  training  sample  vectors  using 
both cosine similarity and Euclidean distance2. In 
the MAX setups (see Table 2), each test case was 
assigned the  sense  of  the  single  nearest  training 
example according to the metric being used. In the 
CosOR  setup,  sense  scores  were  generated  by 
applying  a  probabilistic  OR  operation  over  the 
squared Cosine similarities of all relevant training 
examples3.  The  BaseMFS  setup  is  a  popular 
baseline in which the most frequent sense in the 
training  set  for  a  given  ambiguous  word  is 
attributed to every test case.

Nouns Verbs All
CosMAX 83.6 ▲6.1 

▼22.8 70.5 ▲7.6 
▼14.4 79.5 ▲6.7 

▼19.5
EucMAX 78.9 67.0 75.1
CosOR 83.5 66.1 78.0

BaseMFS 78.8 65.5 74.5
 
Table  2:  Recall  on  SemEval  WSD  task,  including 
relative performance gain (▲)  and error reduction (▼) 
over baseline for best setup (preliminary based on first 
25% of test cases).
 

Nouns Verbs All
BEST 86.8 ▲7.3 

▼30.9 76.2 ▲0.0 
▼0.0 81.6 ▲3.7 

▼13.6
BaseMFS 80.9 76.2 78.7

 
Table 3: Recall of best official SemEval WSD systems 
(Agirre & Soroa, 2007), showing relative performance 
gain and error reduction over baseline.

Table 2 shows the results for each test case in 
terms of recall,  for  all  words and for nouns and 
verbs separately. Also shown in table 3 are the best 
and baseline  figures for  the  official  entries from 
the Semeval workshop. Note that figures are not 
directly  comparable  between  tables  because  our 
preliminary results represent only the first 25% of 
the  SemEval  dataset  (hence  the  different 
baselines).  To  aid  some  comparison,  figures  are 
included  in  both  tables  indicating  the  relative 
increases in recall over the baseline, and relative 

2 Cosine Similarity captures the similarity between the 
relative  proportions  of  features  present  in  each  of  two 
vectors.  By  contrast,  Euclidean  Distance  compares  the 
actual values of corresponding features.
 

3 Although encountered rarely in the literature, squared 
Cosine Similarity is a pertinent quantity for tasks that go 
beyond simple ranking. As with Pearson's R2, it represents 
the degree  or  proportion  of  similarity  (consider  that  the 
square of an angle's cosine and that of its sine total 1).

reduction in error.  Note that the system employed 
here is not a word sense induction system as were 
most of those participating in the official SemEval 
task.  The setup of  the  tasks  however  allows for 
systems which perform poorly under the induction 
evaluation  to  perform  competitively  as 
disambiguation systems, so we are not precluded 
from making meaningful comparisons here.

5 Discussion and Future Direction
 

We have  presented  a  new type  of  wordspace 
model  based  on  vectors  derived  from  the 
predictions  of  a  language  model  applied  to  a 
context, rather than directly from the features of a 
context  itself.  We  have  conducted  a  preliminary 
investigation of the semantic modelling power of 
such vectors in the setting of a popular WSD task. 
The results  are  very encouraging.  Although it  is 
too  early  to  draw  hard  conclusions,  preliminary 
results suggest a performance at least comparable 
the present  state of  the art  on this  task.  What  is 
particularly noteworthy is that the approach taken 
here  seems  to  perform  equally  well  at 
discriminating  verbs  and  nouns.  Verbs  have 
traditionally proven very problematic: none of the 
six SemEval systems were able to improve upon 
the  verb  baseline.  More  recent  studies  have 
focused on discriminating nouns (Brody & Lapata, 
2009; Klapaftis & Manandhar, 2007).

Further gains might be expected by employing 
a  corpus  which  is  more  closely  matched  to  the 
material  being  disambiguated,  such  as  the  Wall 
Street Journal in the present case.

It is also worth noting that the system presented 
here  was  aided  only  by  an  untagged  un-
lemmatised  corpus,  without  the  use  of  any 
structured  knowledge  sources. While  we  expect 
that judicious use of lemmatization could improve 
these results, we believe the key to the quality of 
expectation  vectors  is  in  the  specific  predictive 
language  model  employed.  We  have  scarcely 
experimented  with  this,  opting  for  a  relatively 
untested  distance-based  model  throughout,  and 
choosing  instead  to  experiment  with  the 
application of different vector similarity measures. 
While  the  nature  of  the  language  model  used 
enables  it  to  capture  complex  interdependencies, 
and long-range dependencies, it is based on direct 
querying of a corpus and therefore does not scale 
at  all  well.  This  makes  its  use  in the  context  of 
most applications or with larger corpora untenable. 
Exploring  alternative  language  models  (drawing 
upon the copious research in this field) is therefore 
a focus for future research; the ability to do this 
highlights  one  of  the  major  advantages  of  this 
approach to modelling meaning.
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Abstract

In this paper, we propose a memory, space,
and time efficient framework to scale dis-
tributional similarity to the web. We
exploit sketch techniques, especially the
Count-Min sketch, which approximates
the frequency of an item in the corpus
without explicitly storing the item itself.
These methods use hashing to deal with
massive amounts of the streaming text. We
store all item counts computed from90
GB of web data in just2 billion coun-
ters (8 GB main memory) of CM sketch.
Our method returns semantic similarity
between word pairs in O(K) time and
can compute similarity between any word
pairs that are stored in the sketch. In our
experiments, we show that our framework
is as effective as using the exact counts.

1 Introduction

In many NLP problems, researchers (Brants et al.,
2007; Turney, 2008) have shown that having large
amounts of data is beneficial. It has also been
shown that (Agirre et al., 2009; Pantel et al., 2009;
Ravichandran et al., 2005) having large amounts
of data helps capturing the semantic similarity be-
tween pairs of words. However, computing distri-
butional similarity (Sec. 2.1) between word pairs
from large text collections is a computationally ex-
pensive task. In this work, we consider scaling dis-
tributional similarity methods for computing se-
mantic similarity between words to Web-scale.

The major difficulty in computing pairwise sim-
ilarities stems from the rapid increase in the num-
ber of unique word-context pairs with the size of
text corpus (number of tokens). Fig. 1 shows that
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Figure 1:Token Type Curve

the number of unique word-context pairs increase
rapidly compared to the number words when plot-
ted against the number of tokens1. For example,
a57 million word corpus2 generates224 thousand
unique words and15 million unique word-context
pairs. As a result, it is computationally hard to
compute counts of all word-context pairs with a gi-
ant corpora using conventional machines (say with
main memory of8 GB). To overcome this, Agirre
et al. (2009) used MapReduce infrastructure (with
2, 000 cores) to compute pairwise similarities of
words on a corpus of roughly1.6 Terawords.

In a different direction, our earlier work (Goyal
et al., 2010) developed techniques to make the
computations feasible on a conventional machines
by willing to accept some error in the counts. Sim-
ilar to that work, this work exploits the idea of
Count-Min (CM) sketch (Cormode and Muthukr-
ishnan, 2004) to approximate the frequency of
word pairs in the corpus without explicitly stor-
ing the word pairs themselves. In their, we stored

1Note that the plot is in log-log scale.
2‘Subset’ column of Table 1 in Section 5.1
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counts of all words/word pairs in fixed amount of
main memory. We used conservative update with
CM sketch (referred as CU sketch) and showed
that it reduces the average relative error of its ap-
proximate counts by a factor of two. The approx-
imate counts returned by CU Sketch were used
to compute approximate PMI between word pairs.
We found their that the approximate PMI values
are as useful as the exact PMI values for com-
puting semantic orientation (Turney and Littman,
2002) of words. In addition, our intrinsic evalua-
tions in their showed that the quality of approxi-
mate counts and approximate PMI is good.

In this work, we use CU-sketch to store counts
of items (words, contexts, and word-context pairs)
using fixed amount of memory of8 GB by using
only 2B counters. These approximate counts re-
turned by CU Sketch are converted into approx-
imate PMI between word-context pairs. The top
K contexts (based on PMI score) for each word
are used to construct distributional profile (DP) for
each word. The similarity between a pair of words
is computed based on the cosine similarity of their
respective DPs.

The above framework of using CU sketch to
compute semantic similarity between words has
five good properties. First, this framework can re-
turn semantic similarity between any word pairs
that are stored in the CU sketch. Second, it can
return the similarity between word pairs in time
O(K). Third, because we do not store items ex-
plicitly, the overall space required is significantly
smaller. Fourth, the additive property of CU
sketch (Sec. 3.2) enables us to parallelize most
of the steps in the algorithm. Thus it can be easily
extended to very large amounts of text data. Fifth,
this easily generalizes to any kind of association
measure and semantic similarity measure.

2 Background

2.1 Distributional Similarity

Distributional Similarity is based on the distribu-
tional hypothesis (Firth, 1968; Harris, 1985) that
words occur in similar contexts tend to be sim-
ilar. The context of a word is represented by
the distributional profile (DP), which contains the
strength of association between the word and each
of the lexical, syntactic, semantic, and/or depen-
dency units that co-occur with it3. The association

3In this work, we only consider lexical units as context.

is commonly measured using conditional proba-
bility, pointwise mutual information (PMI) or log
likelihood ratios. Then the semantic similarity be-
tween two words, given their DPs, is calculated
using similarity measures such as Cosine,α-skew
divergence, and Jensen-Shannon divergence. In
our work, we use PMI as association measure and
cosine similarity to compute pairwise similarities.

2.2 Large Scale NLP problems

Pantel et al. (2009) computed similarity between
500 million word pairs using the MapReduce
framework from a200 billion word corpus using
200 quad-core nodes. The inaccessibility of clus-
ters for every one has attracted NLP community to
use streaming, and randomized algorithms to han-
dle large amounts of data.

Ravichandran et al. (2005) used locality sensi-
tive hash functions for computing word-pair simi-
larities from large text collections. Their approach
stores a enormous matrix of all unique words and
their contexts in main memory which makes it
hard for larger data sets. In our work, we store
all unique word-context pairs in CU sketch with a
pre-defined size4.

Recently, the streaming algorithm paradigm has
been used to provide memory and time-efficient
platform to deal with terabytes of data. For
example, we (Goyal et al., 2009); Levenberg
and Osborne (2009) build approximate language
models and show their effectiveness in SMT. In
(Van Durme and Lall, 2009b), a TOMB Counter
(Van Durme and Lall, 2009a) was used to find the
top-K verbs “y” with the highest PMI for a given
verb “x”. The idea of TOMB is similar to CU
Sketch. However, we use CU Sketch because of
its simplicity and attractive properties (see Sec. 3).
In this work, we go one step further, and compute
semantic similarity between word-pairs using ap-
proximate PMI scores from CU sketch.

2.3 Sketch Techniques

Sketch techniques use a sketch vector as a data
structure to store the streaming data compactly in
a small-memory footprint. These techniques use
hashing to map items in the streaming data onto a
small sketch vector that can be easily updated and
queried. These techniques generally process the
input stream in one direction, say from left to right,

4We use only2 billion counters which takes up to8 GB
of main memory.
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without re-processing previous input. The main
advantage of using these techniques is that they
require a storage which is significantly smaller
than the input stream length. A survey by (Rusu
and Dobra, 2007; Cormode and Hadjieleftheriou,
2008) comprehensively reviews the literature.

3 Count-Min Sketch

The Count-Min Sketch (Cormode and Muthukr-
ishnan, 2004) is a compact summary data struc-
ture used to store the frequencies of all items in
the input stream.

Given an input stream of items of lengthN
and user chosen parametersδ andǫ, the algorithm
stores the frequencies of all the items with the fol-
lowing guarantees:

• All reported frequencies are withinǫN of
true frequencies with probability of atleastδ.

• Space used by the algorithm isO(1

ǫ
log 1

δ
).

• Constant time of O(log(1

δ
)) per each update

and query operation.

3.1 CM Data Structure

A Count-Min Sketch with parameters (ǫ,δ) is rep-
resented by a two-dimensional array with widthw

and depthd :







sketch[1, 1] · · · sketch[1, w]
...

.. .
...

sketch[d, 1] · · · sketch[d, w]







Among the user chosen parameters,ǫ controls the
amount of tolerable error in the returned count and
δ controls the probability with which the returned
count is not within this acceptable error. These
values ofǫ andδ determine the width and depth
of the two-dimensional array respectively. To
achieve the guarantees mentioned in the previous
section, we setw=2

ǫ
andd=log(1

δ
). The depthd

denotes the number of pairwise-independent hash
functions employed by the algorithm and there
exists an one-to-one correspondence between the
rows and the set of hash functions. Each of these
hash functionshk:{x1 . . . xN} → {1 . . . w}, 1 ≤
k ≤ d takes an item from the input stream and
maps it into a counter indexed by the correspond-
ing hash function. For example,h2(x) = 10 indi-
cates that the item “x” is mapped to the10th posi-
tion in the second row of the sketch array. These

d hash functions are chosen uniformly at random
from a pairwise-independent family.

Initialize the entire sketch array with zeros.
Update Procedure:When a new item “x” with

countc arrives5, one counter in each row, as de-
cided by its corresponding hash function, is up-
dated byc. Formally,∀1 ≤ k ≤ d

sketch[k,hk(x)] ← sketch[k,hk(x)] + c

Query Procedure: Since multiple items can be
hashed to the same counter, the frequency stored
by each counter is an overestimate of the true
count. Thus, to answer the point query, we con-
sider all the positions indexed by the hash func-
tions for the given item and return the minimum
of all these values. The answer to Query(x) is:
ĉ = mink sketch[k, hk(x)].

Both update and query procedures involve eval-
uatingd hash functions. Hence, both these proce-
dures are linear in the number of hash functions. In
our experiments (see Section5), we used=3 simi-
lar to our earlier work (Goyal et al., 2010). Hence,
the update and query operations take only constant
time.

3.2 Properties

Apart from the advantages of being space efficient
and having constant update and querying time, the
CM sketch has other advantages that makes it at-
tractive for scaling distributional similarity to the
web:

1. Linearity: given two sketchess1 ands2 com-
puted (using the same parametersw andd)
over different input streams, the sketch of the
combined data stream can be easily obtained
by adding the individual sketches.

2. The linearity allows the individual sketches
to be computed independent of each other.
This means that it is easy to implement it in
distributed setting, where each machine com-
putes the sketch over a subset of the corpus.

3.3 Conservative Update

Estan and Varghese introduce the idea of conserva-
tive update (Estan and Varghese, 2002) in the con-
text of networking. This can easily be used with
CM Sketch (CU Sketch) to further improve the es-
timate of a point query. To update an item, w with
frequency c, we first compute the frequencyĉ of

5In our setting,c is always1.
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this item from the existing data structure and the
counts are updated according to:∀1 ≤ k ≤ d

sketch[k,hk(x)] ← max{sketch[k,hk(x)], ĉ + c}

The intuition is that, since the point query returns
the minimum of all thed values, we will update a
counter only if it is necessary as indicated by the
above equation. This heuristic avoids the unneces-
sary updating of counter values and thus reduces
the error.

4 Efficient Distributional Similarity

To compute distributional similarity efficiently, we
store counts in CU sketch. Our algorithm has three
main steps:

1. Store approximate counts of all words, con-
texts, and word-context pairs in CU-sketch
using fixed amount of counters.

2. Convert these counts into approximate PMI
scores between word-context pairs. Use these
PMI scores to store topK contexts for a word
on the disk. Store these top K context vectors
for every word stored in the sketch.

3. Use cosine similarity to compute the similar-
ity between word pairs using these approxi-
mate top K context vectors constructed using
CU sketch.

5 Word pair Ranking Evaluations

As discussed earlier, the DPs of words are used to
compute similarity between a pair of words. We
used the following four test sets and their corre-
sponding human judgements to evaluate the word
pair rankings.

1. WS-353: WordSimilarity-3536 (Finkelstein
et al., 2002) is a set of353 word pairs.

2. WS-203: A subset of WS-353 containing 203
word pairs marked according to similarity7

(Agirre et al., 2009).

3. RG-65: (Rubenstein and Goodenough, 1965)
is set of65 word pairs.

4. MC-30: A smaller subset of the RG-65
dataset containing30 word pairs (Miller and
Charles, 1991).

6http://www.cs.technion.ac.il/ gabr/resources/data/word-
sim353/wordsim353.html

7http://alfonseca.org/pubs/ws353simrel.tar.gz

Each of these data sets come with human ranking
of the word pairs. We rank the word pairs based
on the similarity computed using DPs and evalu-
ate this ranking against the human ranking. We
report the spearman’s rank correlation coefficient
(ρ) between these two rankings.

5.1 Corpus Statistics

The Gigaword corpus (Graff, 2003) and a copy of
the web crawled by (Ravichandran et al., 2005)
are used to compute counts of all items (Table. 1).
For both the corpora, we split the text into sen-
tences, tokenize, convert into lower-case, remove
punctuations, and collapse each digit to a sym-
bol “0” (e.g. “1996” gets collapsed to “0000”).
We store the counts of all words (excluding num-
bers, and stop words), their contexts, and counts
of word-context pairs in the CU sketch. We de-
fine the context for a given word “x” as the sur-
rounding words appearing in a window of2 words
to the left and2 words to the right. The context
words are concatenated along with their positions
-2, -1, +1, and+2. We evaluate ranking of word
pairs on three different sized corpora: Gigaword
(GW), GigaWord +50% of web data (GW-WB1),
and GigaWord +100% of web data (GW-WB2).

Corpus Sub GW GW- GW-
set WB1 WB2

Size .32 9.8 49 90
(GB)

# of sentences 2.00 56.78 462.60 866.02
(Million)

Stream Size .25 7.65 37.93 69.41
(Billion)

Table 1: Corpus Description

5.2 Results

We compare our system with two baselines: Ex-
act and Exact1000 which use exact counts. Since
computing the exact counts of all word-context
pairs on these corpora is not possible using main
memory of only8 GB , we generate context vec-
tors for only those words which appear in the test
set. The former baseline uses all possible contexts
which appear with a test word, while the latter
baseline uses only the top1000 contexts (based on
PMI value) for each word. In each case, we use
a cutoff (of 10, 60 and120) on the frequency of
word-context pairs. These cut-offs were selected
based on the intuition that, with more data, you
get more noise, and not considering word-context
pairs with frequency less than120 might be a bet-
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Data GW GW-WB1 GW-WB2

Model Frequency cutoff Frequency cutoff Frequency cutoff
10 60 120 10 60 120 10 60 120

ρ ρ ρ

WS-353
Exact .25 .25 .22 .29 .28 .28 .30 .28 .28

Exact1000 .36 .28 .22 .46 .43 .37 .47 .44 .41
Our Model .39 .28 .22 -0.09 .48 .40 -0.03 .04 .47

WS-203
Exact .35 .36 .33 .38 .38 .37 .40 .38 .38

Exact1000 .49 .40 .35 .57 .55 .47 .56 .56 .52
Our Model .49 .39 .35 -0.08 .58 .47 -0.06 .03 .55

RG-65
Exact .21 .12 .08 .42 .28 .22 .39 .31 .23

Exact1000 .14 .09 .08 .45 .16 .13 .47 .26 .12
Our Model .13 .10 .09 -0.06 .32 .18 -0.05 .08 .31

MC-30
Exact .26 .23 .21 .45 .33 .31 .46 .39 .29

Exact1000 .27 .18 .21 .63 .42 .32 .59 .47 .36
Our Model .36 .20 .21 -0.08 .52 .39 -0.27 -0.29 .52

Table 2:Evaluating word pairs ranking with Exact and CU counts. Scores are evaluated usingρ metric.

ter choice than a cutoff of10. The results are
shown in Table 2

From the above baseline results, first we learn
that using more data helps in better capturing
the semantic similarity between words. Second,
it shows that using top (K) 1000 contexts for
each target word captures better semantic similar-
ity than using all possible contexts for that word.
Third, using a cutoff of10 is optimal for all differ-
ent sized corpora on all test-sets.

We use approximate counts from CU sketch
with depth=3 and2 billion (2B) counters (‘Our
Model’)8. Based on previous observation, we re-
strict the number of contexts for a target word to
1000. Table 2 shows that using CU counts makes
the algorithm sensitive to frequency cutoff. How-
ever, with appropriate frequency cutoff for each
corpus, approximate counts are nearly as effective
as exact counts. For GW, GW-WB1, and GW-
WB2, the frequency cutoffs of10, 60, and120 re-
spectively performed the best. The reason for de-
pendence on frequency cutoffs is due to the over-
estimation of low-frequent items. This is more
pronounced with bigger corpus (GW-WB2) as the
size of CU sketch is fixed to2B counters and
stream size is much bigger (69.41 billion) com-
pared to GW where the stream size is7.65 billion.

The advantages of using our model is that the
sketch contains counts for all words, contexts, and
word-context pairs stored in fixed memory of8
GB by using only2B counters. Note that it is not

8Our goal is not to build the best distributional similarity
method. It is to show that our framework scales easily to large
corpus and it is as effective as exact method.

feasible to keep track of exact counts of all word-
context pairs since their number increases rapidly
with increase in data (see Fig. 1). We can use our
model to create context vectors of sizeK for all
possible words stored in the Sketch and computes
semantic similarity between two words in O(K)
time. In addition, the linearity of sketch allows
us to include new incoming data into the sketch
without building the sketch from scratch. Also,
it allows for parallelization using the MapReduce
framework. We can generalize our framework to
any kind of association and similarity measure.

6 Conclusion

We proposed a framework which uses CU Sketch
to scale distributional similarity to the web. It can
compute similarity between any word pairs that
are stored in the sketch and returns similarity be-
tween them in O(K) time. In our experiments, we
show that our framework is as effective as using
the exact counts, however it is sensitive to the fre-
quency cutoffs. In future, we will explore ways to
make this framework robust to the frequency cut-
offs. In addition, we are interested in exploring
this framework for entity set expansion problem.
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Abstract

Recent work applied Dirichlet Process
Mixture Models to the task of verb cluster-
ing, incorporating supervision in the form
of must-links and cannot-links constraints
between instances. In this work, we intro-
duce an active learning approach for con-
straint selection employing uncertainty-
based sampling. We achieve substantial
improvements over random selection on
two datasets.

1 Introduction

Bayesian non-parametric mixture models have the
attractive property that the number of components
used to model the data is not fixed in advance but
is determined by the model and the data. This
property is particularly interesting for NLP where
many tasks are aimed at discovering novel in-
formation. Recent work has applied such mod-
els to various tasks with promising results, e.g.
Teh (2006) and Cohn et al. (2009).

Vlachos et al. (2009) applied the basic model
of this class, the Dirichlet Process Mixture Model
(DPMM), to lexical-semantic verb clustering with
encouraging results. The task involves discov-
ering classes of verbs similar in terms of their
syntactic-semantic properties (e.g. MOTION class
for travel, walk, run, etc.). Such classes can pro-
vide important support for other tasks, such as
word sense disambiguation, parsing and seman-
tic role labeling. (Dang, 2004; Swier and Steven-
son, 2004) Although some fixed classifications are
available these are not comprehensive and are in-
adequate for specific domains.

Furthermore, Vlachos et al. (2009) used a con-
strained version of the DPMM in order to guide
clustering towards some prior intuition or consid-
erations relevant to the specific task at hand. This
supervision was modelled as pairwise constraints

between instances and it informs the model of re-
lations between them that cannot be recovered by
the model on the basis of the feature representa-
tion used. Like other forms of supervision, these
constraints require manual annotation and it is im-
portant to maximize the benefits obtained from it.
Therefore it is natural to consider active learning
(Settles, 2009) in order to focus the supervision on
clusterings on which the model is uncertain.

In this work, we propose a simple yet effec-
tive active learning method employing uncertainty
based sampling. The effectiveness of the AL
method is demonstrated on two datasets, one of
which has multiple gold standards.

2 Constrained DPMMs for clustering

In DPMMs, the parameters of each component are
generated by a Dirichlet Process (DP) which can
be seen as a distribution over distributions. Each
instance, represented by its features, is generated
by the component it is assigned to. The compo-
nents discovered correspond to the clusters. The
prior probability of assigning an instance to a par-
ticular component is proportionate to the number
of instances already assigned to it, in other words,
the DPMM exhibits the “rich get richer” prop-
erty. A popular metaphor to describe the DPMM
which exhibits an equivalent clustering property
is the Chinese Restaurant Process (CRP). Cus-
tomers (instances) arrive at a Chinese restaurant
which has an infinite number of tables (compo-
nents). Each customer sits at one of the tables that
is either occupied or vacant with popular tables at-
tracting more customers.

Following Navarro et al. (2006), parameter es-
timation is performed using Gibbs sampling by
sampling the assignment zi of each instance xi

given all the others z−i and the data X:

P (zi = z|z−i, X) ∝
p(zi = z|z−i)P (xi|zi = z, X−i) (1)
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In Eq. 1 p(zi = z|z−i) is the CRP prior and
P (xi|zi = z, X−i) is the distribution that gener-
ates instance xi given it has been assigned to com-
ponent z. This sampling scheme is possible be-
cause the assignments in the model are exchange-
able, i.e. their order is not relevant.

The constrained version of the DPMM uses
pairwise constraints over instances in order to
adapt the clustering discovered. Following
Wagstaff & Cardie (2000), a pair of instances is
either linked together (must-link) or not (cannot-
link). For example, charge and run should form a
must-link if the aim is to cluster MOTION verbs
together, but they should form a cannot-link if we
are interested in BILL verbs. All links are as-
sumed to be consistent with each other. In order
to incorporate the constraints in the DPMM, the
Gibbs sampling scheme is modified so that must-
linked instances are generated by the same compo-
nent and cannot-linked instances always by differ-
ent ones. Following Vlachos et al. (2009), for each
instance that does not belong to a linked-group, the
sampler is restricted to choose components that do
not contain instances cannot-linked with it. For
instances in a linked-group, their assignment is
sampled jointly, again taking into account their
cannot-links. This is performed by adding each
instance of the linked-group successively to the
same component. In terms of the CRP metaphor,
customers connected with must-links arrive at the
restaurant and choose a table jointly, respecting
their cannot-links with other customers.

3 Active Constraint Selection

In active learning, the model selects the supervi-
sion to be provided by a human expert. In the con-
text of the DPMMs, the model chooses a pair of
instances for which a must-link or a cannot-link
must be provided. To select the pair, we employ
the simple but effective idea of uncertainty based
sampling. We consider the most informative link
as that on which the model is most uncertain, more
formally the link between instances l∗ij that maxi-
mizes the following entropy:

l∗ij = arg max
i,j

H(zi = zj) (2)

If we consider clustering as binary classification of
links into must-links and cannot-links, it is equiv-
alent to selecting the pair with the highest label
entropy. During the sampling process used for
parameter inference, component assignments vary

between samples and the components themselves
are not identifiable, i.e. one cannot match the com-
ponents of one sample with those of another. Fur-
thermore, the conditional assignments estimated
during Gibbs sampling (Eq. 1) they do not capture
the uncertainty of the assignments z−i on which
they condition. Therefore, we resort to generating
a set of samples from the (possibly constrained)
DPMM and pick the link on which these sam-
ples maximally disagree, i.e. we approximate the
distribution in Eq. 2 with the probability that in-
stances i, j are in the same cluster or not. Thus,
in a given set of samples the most uncertain link
would be the one between two instances which are
in the same cluster in exactly half of these sam-
ples. Using multiple samples allows us to take into
account the uncertainty in the assignments of the
other instances, as well as the varying number of
components.

Compared to standard pool-based AL, when
clustering with constraints the possible links be-
tween two instances (ignoring transitivity) are
C(N, 2) = N(N − 1)/2 (N is the size of the
dataset) and there is an equal number of candi-
date queries to be considered, as opposed to N
queries in a supervised classification task. Another
interesting difference is that the the AL process
can be initiated without any supervision, since the
DPMM is unsupervised. On the other hand, in
the standard AL scenario a (usually small) labelled
seed set is used. Therefore, we rely exclusively on
the model and the features to guide the constraint
selection process. If the model combined with the
features is not appropriate for the task then the
constraints chosen are unlikely to be useful.

4 Datasets and Evaluation

In our experiments we used two verb clustering
datasets, one from general English (Sun et al.,
2008) and one from the biomedical domain (Ko-
rhonen et al., 2006). In both datasets the fea-
tures for each verb are its subcategorization frames
(SCFs) which capture the syntactic context in
which it occurs. They were acquired automati-
cally using a domain-independent statistical pars-
ing toolkit, RASP (Briscoe and Carroll, 2002), and
a classifier which identifies verbal SCFs. As a
consequence, they include some noise due to stan-
dard text processing and parsing errors and due to
the subtlety of the argument-adjunct distinction.
The general English dataset contains 204 verbs
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belonging to 17 fine-grained classes in Levin’s
(Levin, 1993) taxonomy so that each class con-
tains 12 verbs. The biomedical dataset consists of
193 medium to high frequency verbs from a cor-
pus of 2230 full-text articles from 3 biomedical
journals. A team of linguists and biologists cre-
ated a three-level gold standard with 16, 34 and
50 classes. Both datasets were pre-processed us-
ing non-negative matrix factorization (Lin, 2007)
which decomposes a large sparse matrix into two
dense matrices (of lower dimensionality) with
non-negative values. In all experiments 35 dimen-
sions were kept. Preliminary experiments with
different number of dimensions kept did not affect
the performance substantially.

We evaluate our results using three informa-
tion theoretic measures: Variation of Informa-
tion (Meilă, 2007), V-measure (Rosenberg and
Hirschberg, 2007) and V-beta (Vlachos et al.,
2009). All three assess the two desirable proper-
ties that a clustering should have with respect to
a gold standard, homogeneity and completeness.
Homogeneity reflects the degree to which each
cluster contains instances from a single class and
is defined as the conditional entropy of the class
distribution of the gold standard given the clus-
tering. Completeness reflects the degree to which
each class is contained in a single cluster and is de-
fined as the conditional entropy of clustering given
the class distribution in the gold standard. V-beta
balances these properties explicitly by taking into
account the ratio of the number of cluster discov-
ered over the number of classes in the gold stan-
dard. While an ideal clustering should have both
properties, naively improving one of them can be
harmful for the other. Compared to the more com-
monly used F-measure (Fung et al., 2003), these
measures have the advantage that they do not as-
sume a mapping between clusters and classes.

5 Experiments

We performed experiments in order to assess the
effectiveness of the AL algorithm for the con-
strained DPMM comparing it to random selection.
In each AL round, we run the Gibbs sampler for
the (constrained) DPMM five times, using 100 it-
erations for burn-in, draw 20 samples from each
run with 5 iterations lag between samples and se-
lect the most uncertain link to be labeled. Fol-
lowing Navarro et al. (2006), the concentration
parameter is inferred from the data using Gibbs

sampling. The performances were averaged across
the collected samples. Random selection was re-
peated three times. The three levels of the biomed-
ical gold standard were used independently and to-
gether with the general English dataset result in
four experimental setups.

The comparison between AL and random se-
lection for each dataset is shown in graphs 1(a)-
1(d) using V-beta, noting that the observations
made hold with all evaluation metrics used. Con-
straints selected via AL improve the performance
rapidly. Indicatively, the performance reached us-
ing 1000 randomly chosen constraints is obtained
using only 110 actively selected ones in the bio-50
dataset. AL performance levels out in later stages
with performance superior to the one achieved us-
ing random selection with the same number of
constraints. The poor performance of random se-
lection is expected, since the unsupervised DPMM
predicts more than 90% of the binary links cor-
rectly. Another interesting observation is that, dur-
ing AL, homogeneity increased faster than com-
pleteness (graphs 1(g) and 1(h)). This suggests
that the features used lead the model towards finer-
grained clusters, which is further confirmed by
the fact that the highest scores on the biomedical
dataset are achieved when comparing against the
finest-grained version of the gold standard. While
it is possible to choose constraints to the model
that would increase completeness with respect to
the gold standard, we argue that this would not al-
low us to obtain obtain insights on the model and
the features used.

We also noticed that the choice of batch size
has a significant effect on the learning rate of the
model. This phenomenon occurs in varying de-
grees in many applications of AL. Manual inspec-
tion of the links chosen at each round revealed that
batches often contained links involving the same
instances. This is expected due to transitivity: if
the link between instances A and B is uncertain
but the link between instances B and C is certain,
then the link between A and C will be uncertain
too. While reducing the batch size leads to bet-
ter learning rates, it requires estimating the model
more often. In order to ameliorate this issue, af-
ter obtaining the label of the most uncertain link,
we remove the samples that disagreed with it and
re-calculate the uncertainty of the remaining links
given the remaining samples. This is repeated un-
til the intended batch size is reached. Thus, we
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Figure 1: (a)-(d): Constrained DPMM learning curves comparing random selection and AL. (e),(f):
Batch selection comparison. (g),(h): Homogeneity and completeness curves during AL.

avoid selecting links involving the same instance,
unless their uncertainty was not reduced by the
constraints added. A consideration that arises is
that by reducing the number of samples used for
uncertainty estimation, progressively we are left
with fewer samples to rank the remaining links.
Each labeled link reduces the number of samples
approximately by half since the most uncertain
link is likely to be a must-link in half the sam-
ples and a cannot-lnk in the remaining half. As
a result, for a batch with size |B| the uncertainty
of the last link will be estimated using |S|/2|B|−1

samples. A crude solution would be to generate
enough samples for the desired batch size. How-
ever, obtaining a very large number of samples can
be computationally expensive. Therefore, we set a
threshold for the minimum number of samples to
be used to estimate the link uncertainty and when
it is reached, more samples are generated using the
constraints selected. In graphs 1(e) and 1(f) we
demonstrate the effectiveness of the batch selec-
tion method proposed (labeled “batch”) compared
to naive batch selection (labeled “active10”).

6 Discussion and Future Work

We presented an AL method for constrained DP-
MMs employing uncertainty based sampling. We
applied it to two different verb clustering datasets
with 4 gold standards in total and obtained very
good results compared to random selection. The
idea, while explored in the context of verb cluster-

ing with the constrained DPMM, is likely to be ap-
plicable to other models that can incorporate must-
links and cannot-links in MCMC sampling.

Most literature on AL for NLP considers super-
vised methods for classification or sequential tag-
ging. However, AL for clustering is a relatively
under-explored area. Klein et al. (2002) incorpo-
rated actively selected constraints in hierarchical
agglomerative clustering. Basu et al. (2006) have
applied AL to obtain must-links and cannot-links
however, the clustering framework used requires
the number of clusters to be known in advance
which restricts counter-intuitively the clustering
solutions that are discovered. Moreover, semi-
supervised clustering is a form of semi-supervised
learning and in this light, our approach is related
to the work of Zhu et al. (2003).

With respect to the practical application of the
AL method suggested, it is worth noting that in all
our experiments the constraints were obtained for
the respective gold standard of the dataset at ques-
tion and consequently they are all consistent with
each other. However, this assumption might not
hold in case human experts are employed for the
same purpose. In order to use such feedback in the
framework suggested, it is necessary to filter the
constraints provided in order to obtain a consistent
subset. To this end, it would be interesting to in-
vestigate the potential of using “soft” constraints,
i.e. constraints that are provided with relative con-
fidence.

60



References
Sugato Basu, Mikhail Bilenko, Arindam Banerjee,

and Raymond J. Mooney. 2006. Probabilis-
tic semi-supervised clustering with constraints. In
O. Chapelle, B. Schoelkopf, and A. Zien, edi-
tors, Semi-Supervised Learning, pages 73–102. MIT
Press.

Ted Briscoe and John Carroll. 2002. Robust accurate
statistical annotation of general text. In Proceedings
of the 3rd International Conference on Language
Resources and Evaluation, pages 1499–1504.

Trevor Cohn, Sharon Goldwater, and Phil Blun-
som. 2009. Inducing compact but accurate tree-
substitution grammars. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 548–556.

Hoa Trang Dang. 2004. Investigations into the role
of lexical semantics in word sense disambiguation.
Ph.D. thesis, University of Pennsylvania, Philadel-
phia, PA, USA.

Benjamin C. M. Fung, Ke Wang, and Martin Ester.
2003. Hierarchical document clustering using fre-
quent itemsets. In Proceedings of SIAM Interna-
tional Conference on Data Mining, pages 59–70.

Dan Klein, Sepandar D. Kamvar, and Christopher D.
Manning. 2002. From instance-level constraints to
space-level constraints: Making the most of prior
knowledge in data clustering. In Proceedings of the
Nineteenth International Conference on Machine
Learning, pages 307–314.

Anna Korhonen, Yuval Krymolowski, and Nigel Col-
lier. 2006. Automatic classification of verbs in
biomedical texts. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics, pages 345–352.

Beth Levin. 1993. English Verb Classes and Alter-
nations: a preliminary investigation. University of
Chicago Press, Chicago.

Chih-Jen Lin. 2007. Projected gradient methods for
nonnegative matrix factorization. Neural Compua-
tion, 19(10):2756–2779.
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