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Abstract

We investigate the classification of utter-
ances into high-level dialog act categories
using word-based features, under condi-
tions where the train and test data dif-
fer by genre and/or language. We han-
dle the cross-language cases with ma-
chine translation of the test utterances.
We analyze and compare two feature-
based approaches to using unlabeled data
in adaptation: restriction to a shared fea-
ture set, and an implementation of Blitzer
et al.’s Structural Correspondence Learn-
ing. Both methods lead to increased detec-
tion of backchannels in the cross-language
cases by utilizing correlations between
backchannel words and utterance length.

1 Introduction

Dialog act (or speech act) tagging aims to label
abstract functions of utterances in conversations,
such as Request, Floorgrab, or Statement; poten-
tial applications include automatic conversation
analysis, punctuation transcription, and human-
computer dialog systems. Although some appli-
cations require domain-specific tag sets, it is often
useful to label utterances based on generic tags,
and several tag sets have been developed for this
purpose, e.g. DAMSL (Core and Allen, 1997).
Many approaches to automatic dialog act (DA)
tagging assume hand-labeled training data. How-
ever, when building a new system it may be diffi-
cult to find a labeled corpus that matches the tar-
get domain, or even the language. Even within the
same language, speech from different domains can
differ linguistically, and the same DA categories
might be characterized by different cues. The do-
main characteristics (face-to-face vs. telephone,
two-party vs. multi-party, informal vs. agenda-
driven, familiar vs. stranger) can influence both
the distribution of tags and word choice.
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This work attempts to use unlabeled target do-
main data in order to improve cross-domain train-
ing performance, an approach referred to as both
unsupervised and semi-supervised domain adapta-
tion in the literature. We refer to the labeled train-
ing domain as the source domain. We compare
two adaptation approaches: a simple one based
on forcing the classifier to learn only on “shared”
features that appear in both domains, and a more
complex one based on Structural Correspondence
Learning (SCL) from Blitzer et al. (2007). The
shared feature approach has been investigated for
adaptation in other tasks, e.g. Aue and Gamon
(2005) for sentiment classification and Dredze et
al. (2007) for parsing. SCL has been used suc-
cessfully for sentiment classification and part-of-
speech tagging (Blitzer et al., 2006); here we in-
vestigate its applicability to the DA classification
task, using a multi-view learning implementation
as suggested by Blitzer et al. (2009). In addition to
analyzing these two methods on a novel task, we
show an interesting comparison between them: in
this setting, both methods turn out to have a simi-
lar effect caused by correlating cues for a particu-
lar DA class (Backchannel) with length.

We classify pre-segmented utterances based on
their transcripts, and we consider only four high-
level classes: Statement, Question, Backchannel,
and Incomplete. Experiments are performed us-
ing all train/test pairs among three conversational
speech corpora : the Meeting Recorder Dialog Act
corpus (MRDA) (Shriberg et al., 2004), Switch-
board DAMSL (Swbd) (Jurafsky et al., 1997), and
the Spanish Callhome dialog act corpus (SpCH)
(Levin et al., 1998). The first is multi-party,
face-to-face meeting speech; the second is topic-
prompted telephone speech between strangers;
and the third is informal telephone speech between
friends and family members. The first two are in
English, while the third is in Spanish. When the
source and target domains differ in language, we
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apply machine translation to the target domain to
convert it to the language of the source domain.

2 Redated Work

Automatic DA tagging across domain has been
investigated by a handful of researchers. Webb
and Liu (2008) investigated cross-corpus train-
ing between Swbd and another corpus consist-
ing of task-oriented calls, although no adaptation
was attempted. Similarly, Rosset et al. (2008)
reported on recognition of task-oriented DA tags
across domain and language (French to English)
by using utterances that had been pre-processed
to extract entities. Tur (2005) applied supervised
model adaptation to intent classification across
customer dialog systems, and Guz et al. (2010)
applied supervised model adaptation methods for
DA segmentation and classification on MRDA us-
ing labeled data from both MRDA and Swbd.
Most similar to our work is that of Jeong et al.
(2009), who compared two methods for semi-
supervised adaptation, using Swbd/MRDA as the
source training set and email or forums corpora as
the target domains. Both methods were based on
incorporating unlabeled target domain examples
into training. Success has also been reported for
self-training approaches on same-domain semi-
supervised learning (Venkataraman et al., 2003;
Tur et al., 2005). We are not aware of prior work
on cross-lingual DA tagging via machine transla-
tion, although a translation approach has been em-
ployed for cross-lingual text classification and in-
formation retrieval, e.g. Bel et al. (2003).

In recent years there has been increasing in-
terest in domain adaptation methods based on
unlabeled target domain data. Several kinds of
approaches have been proposed, including self-
training (Roark and Bacchiani, 2003), instance
weighting (Huang et al., 2007), change of feature
representation (Pan et al., 2008), and clustering
methods (Xing et al., 2007). SCL (Blitzer et al.,
20006) is one feature representation approach that
has been effective on certain high-dimensional
NLP problems, including part-of-speech tagging
and sentiment classification. SCL uses unlabeled
data to learn feature projections that tie together
source and target features via their correlations
with features shared between domains. It first se-
lects “pivot features™ that are common in both do-
mains; next, linear predictors for those features are
learned on all the other features. Finally, singular

46

value decomposition (SVD) is performed on the
collection of learned linear predictors correspond-
ing to different pivot features. Features that tend
to get similar weights in predicting pivot features
will be tied together in the SVD. By learning on
the SVD dimensions, the source-trained classifier
can put weight on target-only features.

3 Methods

Our four-class DA problem is similar to problems
studied in other work, such as Tur et al. (2007)
who used five classes (ours plus Floorgrab/hold).
When defining a mapping from each corpus’ tag
set to the four high-level classes, our goal was to
try to make the classes similarly defined across
corpora. Note that the Incomplete category is de-
fined in Swbd-DAMSL to include only utterances
too short to determine their DA label (e.g., just a
filler word). Thus, for our work the MRDA In-
complete category excludes utterances also tagged
as Statement or Question; it includes those con-
sisting of just a floor-grab, hold or filler word.

For classification we used an SVM with linear
kernel, with L2 regularization and L1 loss, as im-
plemented in the Liblinear package (Fan et al.,
2008) which uses the one-vs.-rest configuration
for multiclass classification. SVMs have been suc-
cessful for supervised learning of DAs based on
words and other features (Surendran and Levow,
2006; Liu, 2006). Features are derived from the
hand transcripts, which are hand-segmented into
DA units. Punctuation and capitalization are re-
moved so that our setting corresponds to classifi-
cation based on (perfect) speech recognition out-
put. The features are counts of unigrams, bi-
grams, and trigrams that occur at least twice in
the train set, including beginning/end-of-utterance
tags ((s), (/s)), and a length feature (total num-
ber of words, z-normalized across the training
set). Note that some previous work on DA tag-
ging has used contextual features from surround-
ing utterances, or Markov models for the DA se-
quence. In addition, some work has used prosodic
or other acoustic features. The work of Stolcke
et al. (2000) found benefits to using Markov se-
quence models and prosodic features in addition
to word features, but those benefits were relatively
small, so for simplicity our experiments here use
only word features and classify utterances in iso-
lation.

We used Google Translate to derive English



translations of the Spanish SpCH utterances, and
to derive Spanish translations of the English Swbd
and MRDA utterances. Of course, translations are
far from perfect; DA classification performance
could likely be improved by using a translation
system trained on spoken dialog. For instance,
Google Translate often failed on certain words like
“1” that are usually capitalized in text. Even so,
when training and testing on translated utterances,
the results with the generic system are surprisingly
good.

The results reported below used the standard
train/test splits provided with the corpora: MRDA
had 51 train meetings/11 test; Swbd had 1115 train
conversations/19 test; SpCH had 80 train conver-
sations/20 test. The SpCH train set is the smallest
at 29k utterances. To avoid issues of differing train
set size when comparing performance of different
models, we reduced the Swbd and MRDA train
sets to the same size as SpCH using randomly se-
lected examples from the full train sets. For each
adaptation experiment, we used the target domain
training set as the unlabeled data, and report per-
formance on the target domain test set. The test
sets contain 4525, 15180, and 3715 utterances for
Swbd, MRDA, and SpCH respectively.

4 Results

Table 1 shows the class proportions in the training
sets for each domain. MRDA has fewer Backchan-
nels than the the others, which is expected since
the meetings are face-to-face. SpCH has fewer In-
completes and more Questions than the others; the
reasons for this are unclear. Backchannels have
the shortest mean length (less than 2 words) in all
domains. Incompletes are also short, while State-
ments have the longest mean length. The mean
lengths of Statements and Questions are similar
in the English corpora, but are shorter in SpCH.
(This may point to differences in how the utter-
ances were segmented; for instance Swbd utter-
ances can span multiple turns, although 90% are
only one turn long.)

Because of the high class skew, we consider two
different schemes for training the classifiers, and
report different performance measures for each.
To optimize overall accuracy, we use basic un-
weighted training. To optimize average per-class
recall (weighted equally across all classes), we use
weighted training, where each training example is
weighted inversely to its class proportion. We op-

47

timize the regularization parameter using a source
domain development set corresponding to each
training set. Since the optimum values are close
for all three domains, we choose a single value for
all the accuracy classifiers and a single value for
all the per-class recall classifiers. (Different values
are chosen for different feature types correspond-
ing to the different adaptation methods.)

Inc. Stat. | Quest. | Back.
Swbd 81% | 67.1% | 5.8% | 19.1%
MRDA | 10.7% | 67.9% | 7.5% | 14.0%
SpCH 57% | 60.6% | 12.1% | 21.7%
Table 1: Proportion of utterances in each

DA category (Incomplete, Statement, Question,
Backchannel) in each domain’s training set.

Table 2 gives baseline performance for all train-
test pairs, using translated versions of the test set
when the train set differs in language. It also lists
the in-domain results using translated (train and
test) data, and results using the adaptation methods
(which we discuss below). Figure 1 shows details
of the contribution of each class to the average per-
class recall; bar height corresponds to the second
column in Table 2.

4.1 Basdline performance and analysis

We observe first that translation does not have a
large effect on in-domain performance; degrada-
tion occurs primarily in Incompletes and Ques-
tions, which depend most on word order and there-
fore might be most sensitive to ordering differ-
ences in the translations. We conclude that it is
possible to perform well on the translated test sets
when the training data is well matched. However,
cross-domain performance degradation is much
worse between pairs that differ in language than
between the two English corpora.

We now describe three kinds of issues contribut-
ing to cross-domain domain degradation, which
we observed anecdotally. First, some highly im-
portant words in one domain are sometimes miss-
ing entirely from another domain. This issue ap-
pears to have a dramatic effect on Backchannel
detection across languages: when optimizing for
average per-class recall, the English-trained clas-
sifiers detect about 20% of the Spanish translated
Backchannels and the Spanish classifier detects
a little over half of the English ones, while they
each detect more than 80% in their own domain.



train set ‘ Acc (%) ‘ Avg. Rec. (%)
Test on Swhd
Swbd 89.2 84.9
Swhbd translated 86.7 80.4
MRDA baseline 86.4 78.0
MRDA shared only | 85.7* 77.7
MRDA SCL 81.8* 69.6
MRDA length only 78.3% 514
SpCH baseline 74.5 57.2
SpCH shared only 77.4% 64.2
SpCH SCL 76.8% 64.8
SpCH length only 77.7* 48.2
majority 67.7 25.0
Test on MRDA
MRDA 83.8 80.5
MRDA translated 80.5 74.7
Swbd baseline 81.0 71.6
Swbd shared only 80.1* 72.1
Swbd SCL 75.6% 68.1
Swhbd length only 68.6* 44.9
SpCH baseline 66.9 50.5
SpCH shared only 66.8 52.1
SpCH SCL 66.1% 58.4
SpCH length only 68.3* 44.6
majority 65.2 25.0
Test on SpCH
SpCH 83.1 72.8
SpCH translated 82.4 71.3
Swhbd baseline 63.8 41.1
Swbd shared only 66.2* 50.9
Swbd SCL 68.2°% 47.2
Swhbd length only 72.6* 43.6
MRDA baseline 65.1 42.9
MRDA shared only 65.5 51.2
MRDA SCL 67.6* 50.9
MRDA length only | 72.6* 44.7
majority 65.3 25.0

Table 2: Overall accuracy and average per-class
recall on each test set, using in-domain, in-domain
translated, and cross-domain training. Starred re-
sults under the accuracy column are significantly
different from the corresponding cross-domain
baseline under McNemar’s test (p < 0.05). (Sig-
nificance is not calculated for the average per-class
recall column.) “Majority” classifies everything as
Statement.

The reason for the cross-domain drop is that many
backchannel words in the English corpora (uhhuh,
right, yeah) do not overlap with those in the Span-
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Figure 1: Per-class recall of weighted classifiers
in column 2 of Table 2. Bar height represents
average per-class recall; colors indicate contribu-
tion of each class: I=incomplete, S=statement,
Q=question, B=backchannel. (Maximum possible
bar height is 100%, each color 25%).

ish corpora (mmm, si, ya) even after translation—
for example, “ya” becomes ‘“already”, “si”” be-
comes “yes”, “right” becomes “derecho”, and “uh-
huh”, “mmm” are unchanged.

A second issue has to do with different kinds
of utterances found in each domain, which some-
times lead to different relationships between fea-
tures and class label. This is sometimes caused
by the translation system; for example, utterances
starting with “es que . . .” are usually statements
in SpCH, but without capitalization the translator
often gives “is that . . .”. Since “(s)—is—that” is
a cue feature for Question in English, these utter-
ances are usually labeled as Question by the En-
glish domain classifiers. The existence of differ-
ent types of utterances can result in sets of features
that are more highly correlated in one domain than
the other. In both Swbd and translated SpCH, ut-
terances containing the trigram “(s)-but—(/s)” are
most likely to be in the Incomplete class. In Swbd,
the bigram “but—(/s)” rarely occurs outside of that
trigram, but in SpCH it sometimes occurs at the



end of long (syntactically-incomplete) Statements,
so it corresponds to much lower likelihood for the
Incomplete class.

The last issue concerns utterances whose true
label probabilities given the word sequence are
not the same across domains. We distinguish two
such kinds utterances. The first are due to class
definition differences across domains and anno-
tators, e.g., long statements or questions that are
also incomplete are more often labeled Incomplete
in SpCH and Swbd than in MRDA. The second
kind are utterances whose class labels are not com-
pletely determined by their word sequence. To
minimize error rate the classifier should label an
utterance with its most frequent class, but that may
differ across domains. For example, “yes” can be
either a Statement of Backchannel; in the English
corpora, it is most likely to be a Statement (“yeah”
is more commonly used for Backchannels). How-
ever, “si” is most likely to be a Backchannel in
SpCH. To measure the effect of differing label
probabilities across domains, we trained “domain-
general” classifiers using concatenated training
sets for each pair of domains. We found that they
performed about the same or only slightly worse
than domain-specific models, so we conclude that
this issue is likely only a minor effect.

4.2 Adaptation using shared features only

In the cross-language domain pairs, some dis-
criminative features in one domain are missing
in the other. By removing all features from the
source domain training utterances that are not ob-
served (twice) in the target domain training data,
we force the classifier to learn only on features
that are present in both domains. As seen in
Figure 1, this had the effect of improving re-
call of Backchannels in the four cross-language
cases. Backchannels are the second-most frequent
class after Statements, and are typically short in
all domains. Many typical Backchannel words
are domain-specific; by removing them from the
source data, we force the classifier to attempt to
detect Backchannels based on length alone. The
resulting classifier has a better chance of recog-
nizing target domain Backchannels that lack the
source-only Backchannel words. At the same
time, it mistakes many other short utterances for
Backchannels, and does particularly worse on In-
completes, for which length is also strong cue.
Although average per-class recall improved in all
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four cross-language cases, total accuracy only im-
proved significantly in two of those cases, and
for the Swbd/MRDA pair, accuracy got signifi-
cantly worse. The effect on the one-vs.-rest com-
ponent classifiers was mixed: for some (State-
ment and some Backchannel classifiers in the
cross-language cases), accuracy improved, while
in other cases it decreased.

As noted above, the shared feature approach
was investigated by Aue and Gamon (2005), who
argued that its success depends on the assump-
tion that class/feature relationships be the same
across domains. However, we argue here that the
success of this method requires stronger assump-
tions about both the relationship between domains
and the correlations between domain-specific and
shared features. Consider learning a linear model
on either the full source domain feature set or the
reduced shared feature set. In general, the co-
efficients for a given feature will be different in
each model—in the reduced case, the coefficients
incorporate correlation information and label pre-
dictive information for the removed (source-only)
features. This is potentially useful on the tar-
get domain, provided that there exist analogous,
target-only features that have similar correlations
with the shared features, and similar predictive co-
efficients.

For example, consider the discriminative source
and target features “uhhuh” and “mmm,” which
are both are correlated with a shared, noisier, fea-
ture (length). Forcing the model to learn only on
the shared, noisy feature incorporates correlation
information about “uhhuh”, which is similar to
that of “mmm”. Thus, the reduced model is poten-
tially more useful on the target domain, compared
to the full source domain model which might not
put weight on the noisy feature. On the other hand,
the approach is inappropriate in several other sce-
narios. For one, if the target domain utterances
actually represent samples from a subspace of the
source domain, the absence of features is informa-
tive: the fact that an utterance does not contain
“(s)—verdad—(/s)”, for instance, might mean that
it is less likely to be a Question, even if none of
the target domain utterances contain this feature.

4.3 Adaptation using SCL

The original formulation of SCL proposed predict-
ing pivot features using the entire feature set, ex-
cept for those features perfectly correlated with



the pivots (e.g., the pivots themselves). Our ex-
periments with this approach found it unsuitable
for our task, since even after removing the pivots
there are many features which remain highly cor-
related with the pivots due to overlapping n-grams
(i-love vs. love). The number of features that over-
lap with pivots is large, so removing these would
lead to few features being included in the projec-
tions. Therefore, we adopted the multi-view learn-
ing approach suggested by Blitzer et al. (2009).
We split the utterances into two parts; pivot fea-
tures in the first part were predicted with all the
features in the second, and vice versa. We experi-
mented with splitting the utterances in the middle,
but found that since the number of words in the
first part (nearly) predicts the number in the sec-
ond part, all of the features in the first part were
positively predictive of pivots in the second part
so the main dimension learned was length. In the
results presented here, the first part consists of the
first word only, and the second part is the rest of
the utterance. (All utterances in our experiments
have at least one word.) Pivot features are selected
in each part and predicted using a least-squares
linear regression on all features in the other part.

We used the SCL-MI method of Blitzer et al.
(2007) to select pivot features, which requires that
they be common in both domains and have high
mutual information (MI) with the class (according
to the source labels.) We selected features that oc-
curred at least 10 times in each domain and were
in the top 500 ranked MI features for any of the
four classes; this resulted in 78-99 first-part piv-
ots and 787-910 second-part pivots (depending on
the source-target pair). We performed SVD on
the learned prediction weights for each part sep-
arately, and the top (at most) 100 dimensions were
used to project utterances on each side.

In all train-test pairs, the first dimension of the
first part appeared to distinguish short utterance
words from long ones. Such short-utterance words
included backchannels from both domains, in ad-
dition to acknowledgments, exclamations, swear
words and greetings. An analogous dimension ex-
isted in the second part, which captured words cor-
related with short utterances greater than one word
(right, really, interesting). The other dimensions of
both domains were difficult to interpret.

We experimented with using the SCL fea-
tures together with the raw features (n-grams and
length), as suggested by (Blitzer et al., 2006). As
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in (Blitzer et al., 2006), we found it necessary to
scale up the SCL features to increase their utiliza-
tion in the presence of the raw features; however,
it was difficult to guess the optimal scaling factor
without having access to labeled target data. The
results here use SCL features only, which also al-
lows us to more clearly investigate the utility of
those features and to compare them with the other
feature sets.

The most notable effect was an improvement
in Backchannel recall, which occurred under both
weighted and unweighted training. In addition,
there was high confusability between Statements
and the other classes, and more false detections
of Backchannels. When optimizing for accuracy,
SCL led to an improvement in accuracy in three
of the four cross-language cases. When optimiz-
ing for average per-class recall, it led to improve-
ment in all cross-language cases; however, re-
call of Statements went down dramatically in all
cases. In addition, while there was no clear ben-
efit of the SCL vs. the shared-feature method on
the cross-language cases, the SCL approach did
much worse than the shared-feature approach on
the Swbd/MRDA pair, causing large degradation
from the baseline.

As we have noted, utterance length appears
to underlie the improvement seen in the cross-
language performance for both the SCL and
shared-feature approaches. Therefore, we include
results for a classifier based only on the length
feature. Optimizing for accuracy, this method
achieves the highest accuracy of all methods in
the cross-language pairs. (It does so by classifying
everything as Statement or Backchannel, although
with weighted training, as shown in Figure 1, it
gets some Incompletes.) However, under weighted
class training, the average per-class recall of this
method is much worse than the shared-feature and
SCL approaches.

Comparison with other SCL tasks Although
we basically take a text classification approach to
the problem of dialog act tagging, our problem dif-
fers in several ways from the sentiment classifi-
cation task in Blitzer et al. (2007). In particular,
utterances are much shorter than documents, and
we use position information via the start/end-of-
sentence tags. Some important DA cue features
(such as the value of the first word) are mutually
exclusive rather than correlated. In this way our
problem resembles the part-of-speech tagging task



(Blitzer et al., 2006), where the category of each
word is predicted using values of the left, right,
and current word token. In fact, that work used
a kind of multi-view learning for the SCL projec-
tion, with three views corresponding to the three
word categories. However, our problem essen-
tially uses a mix of bag-of-words and position-
based features, which poses a greater challenge
since there is no natural multi-view split. The ap-
proach described here suffers from the fact that it
cannot use all the features available to the base-
line classifier—bigrams and trigrams spanning the
first and second words are left out. It also suffers
from the fact that the first-word pivot feature set is
extremely small—a consequence of the small set
of first words that occur at least 10 times in the
29k-utterance corpora.

5 Conclusions

We have considered two approaches for domain
adaptation for DA tagging, and analyzed their
performance for source/target pairs drawn from
three different domains. For the English domains,
the baseline cross-domain performance was quite
good, and both adaptation methods generally led
to degradation over the baseline. For the cross-
language cases, both methods were effective at im-
proving average per-class recall, and particularly
Backchannel recall. SCL led to significant accu-
racy improvement in three cases, while the shared
feature approach did so in two cases. On the
other hand, SCL showed poor discrimination be-
tween Statements and other classes, and did worse
on the same-language pair that had little cross-
domain degradation. Both methods work by tak-
ing advantage of correlations between shared and
domain-specific class-discriminative features. Un-
fortunately in our task, membership in the rare
classes is often cued by features that are mutually
exclusive, e.g., the starting n-gram for Questions.
Both methods might therefore benefit from addi-
tional shared features that are correlated with these
n-grams, e.g., sentence-final intonation for Ques-
tions. (Indeed, other work on semi-supervised
DA tagging has used a richer feature set: Jeong
et al. (2009) included parse, part-of-speech, and
speaker sequence information, and Venkataraman
et al. (2003) used prosodic information, plus a
sequence-modeling framework.) From the task
perspective, an interesting result is that machine
translation appears to preserve most of the dialog-
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act information, in that in-domain performance is
similar on original and translated text.
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