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Abstract

Most supervised language processing sys-
tems show a significant drop-off in per-
formance when they are tested on text
that comes from a domain significantly
different from the domain of the training
data. Sequence labeling systems like part-
of-speech taggers are typically trained on
newswire text, and in tests their error
rate on, for example, biomedical data can
triple, or worse. We investigate techniques
for building open-domain sequence label-
ing systems that approach the ideal of a
system whose accuracy is high and con-
stant across domains. In particular, we in-
vestigate unsupervised techniques for rep-
resentation learning that provide new fea-
tures which are stable across domains, in
that they are predictive in both the train-
ing and out-of-domain test data. In exper-
iments, our novel techniques reduce error
by as much as 29% relative to the previous
state of the art on out-of-domain text.

1 Introduction

Supervised natural language processing (NLP)
systems exhibit a significant drop-off in perfor-
mance when tested on domains that differ from
their training domains. Past research in a vari-
ety of NLP tasks, like parsing (Gildea, 2001) and
chunking (Huang and Yates, 2009), has shown that
systems suffer from a drop-off in performance on
out-of-domain tests. Two separate experiments
with part-of-speech (POS) taggers trained on Wall
Street Journal (WSJ) text show that they can reach
accuracies of 97-98% on WSJ test sets, but achieve
accuracies of at most 90% on biomedical text
(R.Codena et al., 2005; Blitzer et al., 2006).

The major cause for poor performance on out-
of-domain texts is the traditional representation

used by supervised NLP systems. Most systems
depend to varying degrees on lexical features,
which tie predictions to the words observed in
each example. While such features have been used
in a variety of tasks for better in-domain perfor-
mance, they are pitfalls for out-of-domain tests for
two reasons: first, the vocabulary can differ greatly
between domains, so that important words in the
test data may never be seen in the training data.
And second, the connection between words and
labels may also change across domains. For in-
stance, “signaling” appears only as a present par-
ticiple (VBG) in WSJ text (as in, “signaling that
...”), but predominantly as a noun (as in “signaling
pathway”) in biomedical text.

Representation learning is a promising new ap-
proach to discovering useful features that are sta-
ble across domains. Blitzeret al. (2006) and our
previous work (2009) demonstrate novel, unsu-
pervised representation learning techniques that
produce new features for domain adaptation of a
POS tagger. This framework is attractive for sev-
eral reasons: experimentally, learned features can
yield significant improvements over standard su-
pervised models on out-of-domain tests. Since
the representation learning techniques are unsu-
pervised, they can be applied to arbitrary new do-
mains to yield the best set of features for learning
on WSJ text and predicting on the new domain.
There is no need to supply additional labeled ex-
amples for each new domain. This reduces the ef-
fort for domain adaptation, and makes it possible
to apply systems to open-domain text collections
like the Web, where it is prohibitively expensive
to collect a labeled sample that is truly representa-
tive of all domains.

Here we explore two novel directions in the
representation-learning framework for domain
adaptation. Specifically, we investigate empiri-
cally the effects of representation learning tech-
niques on POS tagging to answer the following:
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1. Can we produce multi-dimensional represen-
tations for domain adaptation?Our previous ef-
forts have provided only a single new feature in
the learned representations. We now show how
we can perform a multi-dimensional clustering
of words such that each dimension of the clus-
tering forms a new feature in our representation;
such multi-dimensional representations dramati-
cally reduce the out-of-domain error rate of our
POS tagger from 9.5% to 6.7%.
2. Can maximum-entropy models be used to pro-
duce representations for domain adaptation?Re-
cent work on contrastive estimation (Smith and
Eisner, 2005) has shown that maximum-entropy-
based latent variable models can yield more accu-
rate clusterings for POS tagging than more tradi-
tional generative models trained with Expectation-
Maximization. Our preliminary results show that
such models can be used effectively as represen-
tations for domain adaptation as well, matching
state-of-the-art results while using far less data.

The next section provides background informa-
tion on learning representations for NLP tasks us-
ing latent-variable language models. Section 3 de-
scribes our experimental setup. In Sections 4 and
5, we empirically investigate our two questions
with a series of representation-learning methods.
Section 6 analyzes our best learned representation
to help explain its effectiveness. Section 7 presents
previous work, and Section 8 concludes and out-
lines directions for future work.

2 Open-Domain Sequence Labeling by
Learning Representations

Let X be an instance set for a learning problem;
for POS tagging, for instance, this could be the set
of all English sentences. LetY be the space of
possible labels for an instance, and letf : X → Z
be the target function to be learned. Arepresen-
tation is a functionR: X → Y, for some suitable
feature spaceY (such asRd). A domainis defined
as a distributionD over the instance setX . An
open-domain system observes a set of training ex-
amples(R(x), f(x)), where instancesx ∈ X are
drawn from asourcedomain, to learn a hypothe-
sis for classifying examples drawn from a separate
targetdomain.

Previous work by Ben-Davidet al. (2007) uses
Vapnik-Chervonenkis (VC) theory to show that
the choice of representation is crucial to open-
domain learning. As is customary in VC the-

ory, a good choice of representation must allow
a learning machine to achieve low error rates dur-
ing training. Just as important, however, is that
the representation must simultaneously make the
source and target domains look as similar to one
another as possible.

For open-domain sequence-labeling, then, the
traditional representations are problematic. Typ-
ical representations in NLP use functions of the
local context to produce features. Although many
previous studies have shown that such lexical
features allow learning systems to achieve im-
pressively low error rates during training, they
also make texts from different domains look very
dissimilar. For instance, a sentence containing
“bank” is almost certainly from the WSJ rather
than biomedical text; a sentence containing “path-
way” is almost certainly from a biomedical text
rather than from the WSJ.

Our recent work (2009) shows how to build
systems that learn new representations for open-
domain NLP using latent-variable language mod-
els like Hidden Markov Models (HMMs). In POS-
tagging and chunking experiments, these learned
representations have proven to meet both of Ben-
David et al.’s criteria for representations. They
help discriminate among classes of words, since
HMMs learn distributional similarity classes of
words that often correlate with the labels that need
to be predicted. Moreover, it would be difficult to
tell apart two domains based on the set of HMM
states that generated the texts, since a given HMM
state may generate words from any number of do-
mains.

In the rest of this paper, we investigate ways to
improve the predictive power of the learned rep-
resentations, without losing the essential property
that the features remain stable across domains. We
stay within the framework of using graphical mod-
els to learn representations, and demonstrate sig-
nificant improvements on our original technique.

3 Experimental Setup

We use the same experimental setup as Blitzer
et al. (2006): the Penn Treebank (Marcus et al.,
1993) Wall Street Journal portion for our labeled
training data; 561 MEDLINE sentences (9576
words) from the Penn BioIE project (PennBioIE,
2005) for our labeled test set; and all of the un-
labeled text from the Penn Treebank WSJ portion
plus Blitzeret al.’s MEDLINE corpus of 71,306
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unlabeled sentences to train our latent variable
models. The two texts come from two very dif-
ferent domains, making this data a tough test for
domain adaptation. 23% of the word types in the
test text are Out-Of-Vocabulary (OOV), meaning
that they are never observed in the training data.

We use a number of unsupervised representa-
tion learning techniques to discover features from
our unlabeled data, and a supervised classifier to
train on the training set annotated with learned fea-
tures. We use an open source Conditional Random
Field (CRF) (Lafferty et al., 2001) software pack-
age1 designed by Sunita Sajarwal and William W.
Cohen to implement our supervised models. We
refer to the baseline system with feature set fol-
lowing our previous work (2009) as PLAIN -CRF.
Our learned features will supplement this set.

For comparison, we also report on the perfor-
mance of Blitzeret al.’s Structural Correspon-
dence Learning (SCL) (2006), our HMM-based
model (2009)(HY09), and two other baselines:

• TEST-CRF: Our baseline model, trained and
tested on the test data. This is our upper
bound.

• SELF-CRF: Following the self-training
paradigm (e.g., (McClosky et al., 2006b;
McClosky et al., 2006a)), we train our
baseline first on the training set, then apply it
to the test set, then retrain it on the training
set plus the automatically labeled test set.
We perform only one iteration of retraining,
although in general multiple iterations are
possible, usually with diminishing marginal
returns.

4 Multi-dimensional Representations

From a linguistic perspective, words are multi-
dimensional objects. For instance, the word “we”
in “We like doing domain adaptation research” is a
pronoun, a subject, first person, and plural, among
other things. Each of these properties is a sepa-
rate feature of this word, which can be changed
without changing the other features. For exam-
ple, if “we” is changed to “they” in the previ-
ous example, it is exactly the same as “we” in
all aspects, except that it is third person; if “we”
is changed to “us”, then it changes from subject
case to object case. In morphologically rich lan-
guages, many syntactic distinctions are marked in

1Available from http://sourceforge.net/projects/crf/

the surface forms of words; in more analytic or
isolating languages like English, the distinctions
are still there, but must often be inferred from con-
text rather than word form. Beyond syntactic di-
mensions, numerous semantic properties can also
distinguish words, such as nouns that refer to cog-
nitive agents versus nouns that refer to materials
and tools.

We seek to learn multidimensional representa-
tions of words. Our HMM-based model is able to
categorize words in one dimension, by assigning
a single HMM latent state to each word. Since
the HMM is trained on unlabeled data, this di-
mension may partially reflect POS categories, but
more likely represents a mixture of many different
word dimensions. By adding in multiple hidden
layers to our sequence model, we aim to learn a
multi-dimensional representation that may help us
to capture word features from multiple perspec-
tives. The supervised CRF system can then sort
out which dimensions are relevant to the sequence-
labeling task at hand.

A Factorial HMM (FHMM) can be used to
model multiple hidden dimensions of a word.
However, the memory requirements of an FHMM
increase exponentially with the number of lay-
ers in the graphical model, making it hard to use
(see Table 1). Although other parameterizations
may require much less memory, like using a log-
linear output distribution conditioned on the fac-
tors, exact inference is still computationally in-
tractable; exploring FHMMs with approximate in-
ference and learning is an interesting area for fu-
ture work. Here, we choose to create several
single-layer HMMs separately. Figure 1 shows
our Independent-HMM model (I-HMM). I-HMM
has several copies of the observation sequence and
each copy is associated with its own hidden label
sequence. To encourage each layer of the I-HMM
model to find a different local maximum in pa-
rameter space during training (and thus a different
model of the observation sequence), we initialize
the parameters randomly.

Suppose there areL independent layers in an I-
HMM model for corpusx = (x1, . . . , xN ), and
each layer is (yl

1,yl
2,...yl

N ), wherel = 1...L and
eachy can haveK states. The distribution of the
corpus and one hidden layerl is

P (x,yl) =
∏

i

P (xi|y
l
i)P (yl

i|y
l
i−1)

For each layerl, for each positioni, each HMM
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Figure 1: Graphical models of an Independent Hidden

Markov Model. The dash line rectangle indicates that they

are copies of the observation sequence

Model
Number of

Memory
layers words states

HMM 1 W K O(WK + K2)
FHMM L W K O(WKL + LK2)
I-HMM L W K O(WKL + LK2)

Table 1:The memory requirement for HMM, FHMM, and

I-HMM models.

statey and each POS tagz, we add a new boolean
feature to our CRF system that indicates whether
Y l

i = y andZi=z.
We experiment with two versions of I-HMM:

first, we fix the number of states in each layer at
80 states, and increase the number of HMM lay-
ers from 1 to 8 (I-HMM(80)). Second, to provide
greater encouragement for each layer to represent
separate information, we vary the number of states
in each layer (I-HMM(vary)). The detailed config-
uration for this model is shown in Table 2.

The results for our two models are shown in Fig-
ure 2. We can see that the accuracy of I-HMM(80)
model keeps increasing from 90.5% to 93.3% until
7 layers of HMM features (we call this 7-layer rep-
resentation I-HMM*). This is a dramatic 29% de-
crease in the best reported error rate for this dataset
when no labeled data from the biomedical domain
is used. Unlike with an FHMM, there is no guar-
antee that the different layers of an I-HMM will
model different aspects of the observation signal,
but our results indicate that for at least several lay-
ers, the induced models are complementary. After
7 layers, results begin to decrease, most likely be-
cause the added layer is no longer complementary
to the existing latent-variable models and is caus-
ing the supervised CRF to overfit the training data.

For the I-HMM(vary) model with up to 5 lay-

Number Number of States
of Layers in each Layer

1 10
2 10 20
3 10 20 40
4 10 20 40 60
5 10 20 40 60 80

Table 2:The configuration of HMM layers and HMM states

for the I-HMM(vary) model
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Figure 2:Our best multi-dimensional smoothed-HMM tag-

ger with 7 layers reaches 93.3% accuracy, a drop of nearly 3%

in the error rate from the previous state of the art (HY09).

ers, the accuracy is not as good as I-HMM(80), al-
though the 5-layer model still outperforms HY09.
Individually, HMM models with fewer than 80
states perform worse than the 80-state model (a
model with 40 states achieved 89.4% accuracy,
and a model with 20 states achieved 88.9%). We
had hoped that by using layers with different
numbers of states, we could force the layers to
learn complementary models, but the results indi-
cate that any benefit from complementarity is out-
weighed by the lower performance of the individ-
ual layers.

5 Learning Representations with
Contrastive Estimation

In recent years, many NLP practitioners have be-
gun using discriminative models, and especially
maximum-entropy-based models like CRFs, be-
cause they allow the modeler to incorporate ar-
bitrary, interacting features of the observation se-
quence while still providing tractable inference.
To see if the same benefit can carry over to our rep-
resentation learning, we aim to build maximum-
entropy-based linear-chain models that, unlike
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most discriminative models, train on unannotated
data. We follow Smith and Eisner (2005) in
training our models using a technique calledcon-
trastive estimation, which we explain below. We
call the resulting model the Smith and Eisner
Model (SEM).

The key to SEM is that the contrastive estima-
tion training procedure forces the model to explain
why the given training data are better than per-
turbed versions of the data, called neighbor points.
For example, the sentence “We like doing domain
adaptation research” is a valid sentence, but if we
switched “like” and “doing”, the new sentence
“We doing like domain adaptation research” is not
valid. SEM learns a model of the original sen-
tence by contrasting it with the invalid neighbor
sentences.

Let ~x =< x1, x2, ..., xN > be the observed ex-
ample sentences, and letY be the space of possible
hidden structures forxi. Let N (xi) be a “neigh-
borhood” forxi, or a set of negative examples ob-
tained by perturbingxi, plusxi itself. Given a vec-
tor of feature functions~f(x, y), SEM tries to find
a set of weights~θ that maximize a log-likelihood
function:

LN (~θ) = log
∏

i

∑

y∈Y u(xi, y|~θ)
∑

(x,y)∈N (xi)×Y
u(x, y|~θ)

whereu(x, y|~θ) = exp(~θ · ~f(x, y)) is the “un-
normalized probability” of an (example, hidden
structure) pair (x,y). Following Smith and Eisner,
we use the best performing neighborhood, called
TRANS1, to conduct our experiments. TRANS1
is the set of sentences resulting from transposing
any pair of adjacent words for any given training
example.

The base feature space for SEM includes two
kinds of boolean features analogous to HMM
emission and transition probabilities. For an ob-
servation sequencex1, . . . , xT and a label se-
quencey1, . . . , yT , a boolean emission feature in-
dicates whetherxt = x andyt = y for all possible
t, x, andy. A boolean transition feature indicates
whetheryt−1 = y andyt = y′ for all possiblet, y,
andy′.

Because contrastive estimation is a computa-
tionally expensive training procedure, we take two
steps to reduce the computational cost: we reduce
the unlabeled data set, and we prune the feature
set of SEM. For our training data, we use only the
sentences with length less than or equal to 10. We

also get rid of punctuation and the corresponding
tags, change all words to lowercase and change all
numbers into a single symbol.

To reduce the feature space, we create a tag-
ging dictionary from Penn Treebank sections 02-
21: for every word in these sections, the dictionary
records the set of POS tags that were ever asso-
ciated with that word. We then prune the emis-
sion features for words that appear in this dic-
tionary to include only the features that associate
words with their corresponding POS tags in the
dictionary. For the words that don’t appear in the
Penn Treebank, they are associated with all pos-
sible POS tags. This procedure reduces the total
number of features in our SEM model from over
500,000 to just over 60,000.

After we train the model, we use a Viterbi-like
algorithm to decode it on the testing set. Unlike
the HMM model, the decoded states of SEM are
already meaningful POS tags, so we can use these
decoded states as POS tags (PLAIN -SEM), or use
them as features for a CRF model (SEM-CRF).
We show the result of both models, as well as
several comparison models, in Table 3. From the
result, we can see that the unsupervised PLAIN -
SEM outperforms the supervised PLAIN -CRF on
both all words and OOV words. This impres-
sive performance results from its ability to adapt
to the new domain through the unlabeled train-
ing examples and the contrastive estimation train-
ing procedure. In addition, the SEM-CRF model
significantly outperforms the SCL model (88.9%)
and the HMM-based CRF with 40 hidden states
(89.4%) while using only 36 hidden states, al-
though it does not quite reach the performance
of HY09. These results, which use a subset of
the available unlabeled training text, suggest that
maximum-entropy-style representation learning is
a promising area for further investigation.

6 Analysis

As we mention in Section 2, the choice of repre-
sentation is crucial to open-domain learning. In
Sections 4 and 5, we demonstrate empirically that
learned representations based on latent-variable
graphical models can significantly improve the ac-
curacy of a POS tagger on a new domain, com-
pared with using the traditional word-level repre-
sentations. We now examine our best representa-
tion, I-HMM*, in light of the theoretical predic-
tions made by VC theory.
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All OOV
Model words words

PLAIN -CRF 88.3 67.3
SELF-CRF 88.5 70.4

PLAIN -SEM 88.5 69.8
SCL 88.9 72.0

SEM-CRF 90.0 71.9
HY09 90.5 75.2

I-HMM* 93.3 76.3
TEST-CRF 98.9 NA

Table 3: SEM-CRF reduces error compared with
SCL by 1.1% on all words; I-HMM* closes 33%
of the gap between the state-of-the-art HY09 and
the upper-bound, TEST-CRF.

In particular, Ben-Davidet al.’s analysis shows
that the distance between two domains under a
representationR of the data is crucial to domain
adaptation. However, their analysis depends on
a particular notion of distance, theH-divergence,
that is computationally intractable to calculate.
For our analysis, we resort instead to a crude
but telling approximation of this measure, using a
more standard notion of distance: Jensen-Shannon
Divergence (DJS).

To calculate the distance between domains un-
der a representationR, we represent a domainD
as a multinomial probability distribution over the
set of features inR. We take maximum-likelihood
estimates of this distribution using our samples
from the WSJ and MEDLINE domains. We then
measure the Jensen-Shannon Divergence between
the two distributions, which for discrete distribu-
tions is calculated as

DJS(p||q) =
1

2

∑

i

[

pilog

(

pi

mi

)

+ qilog

(

qi

mi

)]

wherem = p+q
2 .

Figure 3 shows the divergence between these
two domains under purely lexical features, and un-
der only HMM-based features. OOV words make
up a substantial portion of the divergence between
the two domains under the lexical representation,
but even if we ignore them the HMM features are
substantially less variable across the two domains,
which helps to explain their ability to provide su-
pervised classifiers with stable features for domain
adaptation. Because there are so few HMM states
compared with the number of word types, there is
no such thing as an OOV HMM state, and the word
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Figure 3: The Jensen-Shannon Divergence be-
tween the newswire domain and the biomedical
domain, according to a word-based representation
of the domains and a HMM-based representation.
The portion of the distance that is due to words
which appear in the biomedical domain but not the
newswire domain is shown in gray.

states that appear in training data appear roughly
as often in test data. This means that any asso-
ciations that the CRF might learn between HMM
states and predicted outcomes is likely to remain
useful on the test data, but associations between
words and outcomes are less likely to be useful.

7 Previous Work

Previous work on artificial neural networks
(ANNs) (Fahlman and Lebiere, 1990) has shown
that it is possible to learn effectively by adding
more hidden units to the neural network that cor-
relate with the residual error of the existing hidden
units (Cascade-Correlation learning). Like our I-
HMM technique, this work aims to build a multi-
dimensional model, and it is capable of learning
the number of appropriate dimensions. Unlike
the ANN scenario, our multi-dimensional learn-
ing techniques must handle unlabeled data, and
they rely on the sequential structure of language
to learn effectively, whereas Cascade-Correlation
learning assumes samples are independent and
identically distributed. Our techniques do not (yet)
automatically determine the best number of layers
in the model.

Unlike our techniques for domain adaptation, in
most cases researchers have focused on the sce-
nario where labeled training data is available in
both the source and the target domain (e.g., (Bac-
chiani et al., 2006; Dauḿe III, 2007; Chelba and
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Acero, 2004; Dauḿe III and Marcu, 2006; Blitzer
et al., 2007)). Our techniques use only raw text
from the target domain. This reduces the cost
of domain adaptation and makes the techniques
more widely applicable to new domains like web
processing, where the domain and vocabulary is
highly variable, and it is extremely difficult to
obtain labeled data that is representative of the
test distribution. When labeled target-domain data
is available, instance weighting and similar tech-
niques can potentially be used in combination with
our techniques to improve our results further.

Several researchers have previously studied
methods for using unlabeled data for sequence la-
beling, either alone or as a supplement to labeled
data. Ando and Zhang develop a semi-supervised
chunker that outperforms purely supervised ap-
proaches on the CoNLL 2000 dataset (Ando and
Zhang, 2005). Recent projects in semi-supervised
(Toutanova and Johnson, 2007) and unsupervised
(Biemann et al., 2007; Smith and Eisner, 2005)
tagging also show significant progress. HMMs
have been used many times for POS tagging in
supervised, semi-supervised, and in unsupervised
settings (Banko and Moore, 2004; Goldwater and
Griffiths, 2007; Johnson, 2007). The REALM sys-
tem for sparse information extraction has also used
unsupervised HMMs to help determine whether
the arguments of a candidate relation are of the
appropriate type (Downey et al., 2007). Schütze
(1994) has presented an algorithm that categorizes
word tokens in context instead of word types for
tagging words. We take a novel perspective on the
use of unsupervised latent-variable models by us-
ing them to compute features of each token that
represent the distribution over that token’s con-
texts. These features prove to be highly useful
for supervised sequence labelers in out-of-domain
tests.

In the deep learning (Bengio, 2009) paradigm,
researchers have investigated multi-layer latent-
variable models for language modeling, among
other tasks. Whilen-gram models have tradition-
ally dominated in language modeling, two recent
efforts develop latent-variable probabilistic mod-
els that rival and even surpassn-gram models in
accuracy (Blitzer et al., 2005; Mnih and Hinton,
2007). Several authors investigate neural network
models that learn a vector of latent variables to
represent each word (Bengio et al., 2003; Emami
et al., 2003; Morin and Bengio, 2005). And facto-

rial Hidden Markov Models (Ghahramani and Jor-
dan, 1997) are a multi-layer variant of the HMM
that has been used in speech recognition, among
other things. We use simpler mixtures of single-
layer models for the sake of memory-efficiency,
and we use our models as representations in a su-
pervised task, rather than as language models.

8 Conclusion and Future Work

Our representation learning approach to domain
adaptation yields state-of-the-art results in POS
tagging experiments. Our best models use multi-
dimensional clustering to find several latent cate-
gories for each word; the latent categories serve
as useful and domain-independent features for
our supervised learner. Our exploration has
yielded significant progress already, but it has only
scratched the surface of possible models for this
task. The current representation learning tech-
niques we use are unsupervised, meaning that they
provide the same set of categories, regardless of
what task they are to be used for. Semi-supervised
learning approaches could be developed to guide
the representation learning process towards fea-
tures that are best-suited for a particular task, but
are still useful across domains. Our current ap-
proach also requires retraining of a CRF for every
new domain; incremental retraining techniques for
new domains would speed up the process and
make domain adaptation much more accessible.
Finally, there are cases where small amounts of la-
beled data are available for new domains; models
that combine our representation learning approach
with instance weighting and other forms of super-
vised domain adaptation may take better advan-
tage of these cases.
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