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Abstract led to the rich theory of tree transducerse(Seg
and Steinby, 1984, 1997). Roughly speaking, a
tree transducer is a finite term rewriting system. If
each rewrite rule carries a probablity or, in gen-
eral, a weight from some semiring, then they are
weighted tree transducers (Maletti, 2006, 2006a;
Fuldp and Vogler, 2009). Such weighted tree
transducers have also been used for the specifi-
cation of MT of natural languages (Yamada and
Knight, 2001; Knight and Graehl, 2005; Graehl et
1 Introduction al., 2008; Knight and May 2009).

Martin and Vere (1970) and Schreiber (1975)
- k established the first connections between the two
f;giﬂ;e;tr?:]' izt7s5<))flrr]1acft[1dr:Ir It;nbﬁggggr‘gicfter'traditions; also Shieber (2004, 2006) and Maletti
TAG's impor?ant featuresis the abgi’lity to introduce (2008, 2010) investigated their relationship.

) e ) The problem addressed in this paper is the

two related syntactic units in a single rule, thenyeqqing of source-language strings into target-
push those two units arbitrarily far apart in SUb'Ianguage trees where the transformation is de-

sequent derivation steps. For machine tranSIatiOchibed by a pSTIG. Currently, this decoding re-
(MT) between two natural languages, each being,ias two steps: first, every source string is

generated by a TAG, the derivations of the WOy njated into a derivation tree of the underly-

TAG may be synchronized (Abeille et al., 1990; ing pSTIG (DeNeefe, 2009; DeNeefe and Knight
Shieber and Shabes, 1990) in the spirit of syntax, 59y - ang second, the derivation tree is trans-
directed transductions (Lewis and Stearns, 1968k, < into the target tree using an embedded tree
this results irsynchronous TAGSTAG). Recently, .- <4 cer (Shieber, 2006). We propose a trans-
in (Nesson et al., 2005, 2006) probabilistic syn-j cer model, called &ottom-up tree adjoining

chronous tree insertion grammars (pSTIG) WeT&ransducerwhich performs this decoding in a sin-

discussed as model of MT; a tree insertion gramye sten and, simultaneously, computes the prob-
mar is a particular TAG in which the parsing prob- ;i of its derivations. As a basis of our ap-
lem is solvable in cubic-time (Schabes and Wa

) Jaroach, we present a formal definition of pSTIG.
ters, 1994). In (DeNeefe, 2009; DeNeefe an
Knight 2009) a decoder for pSTIG has been pro2 Preliminaries
posed which transforms source-language strings
into (modifications of) derivation trees of the For two setsS and 4, we I_etUE_(A) be the set of
pSTIG. Nowadays, large-scale linguistic STAG all (unranked) trees ovér in which al_so elements
rule bases are available. of A may label leaves. We abbreviatg:(()) by

In an independent tradition, the automata-UZ' We denote the set giositions leaves and

theoretic investigation of the translation of treesON-1€ave®t & € Us by pos(§) € N*, Iv(), and
nlv(¢), resp., wheres denotes the root of and

w.i denotes théth child of positionw; nlv(§) =

Synchronous tree insertion grammars
(STIG) are formal models for syntax-
based machine translation. We formal-
ize a decoder for probabilistic STIG; the
decoder transforms every source-language
string into a target-language tree and cal-
culates the probability of this transforma-
tion.

Tree adjoining grammars (TAG) were invented in

* financially supported by NSF STAGES project, grant

#11S-0908532. .
tfinancially supported by DFG VO 1011/5-1. pos(§) \ Iv(€). For a positions € pos(¢), thela-
see (Joshi and Shabes, 1997) for a survey bel of ¢ at w (resp.,subtree oft at w) is denoted
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by £(w) (resp..£|,). If additionally ¢ € Us(A), S S
o : VAN ZIN Py =1
then¢|(],, denotes the tree which is obtained from o Al A, & BUBL B g
¢ by replacing its subtree ab by ¢. For every I L o
A C X U A, the seposy (§) is the set of all those '
positionsw € po_s({) such that(w) € A. Si_mi- Ape b/B\ P(ry) = .4
larly, we can definéva (£) andnlva (§). Theyield /\ £ B B, Pg)=2
of ¢ is the sequencgield(¢) € (X U A)* of sym- A (\5 Pjle) =6
bols that label the leaves from left to right.
If we associate witly € ¥ a rankk € N, then /A< B P(rs) = 6
. . d,e 73 .
we require that in every treg € Ux(A) everyo- A, A, & /\ Pdi(d) = .3
labeled position has exacthychildren. | woBe Pl =8
3 Probabilistic STAG and STIG A B
| N | P(ra) =1
First we will define probabilistic STAG, and sec- “
ond, as a special case, probabilistic STIG. A B O
Let N andT be two disjoint sets of, resp., non- ‘j’ J; (rs) =

terminals and terminals. Aubstitution ruler is a

tuple (s, G, V, W, P;) where Figure 1: The running example pSTAG.
e (,(; € Un(T) (sourceandtarget treg and

IV ()l = v (Gl
o V Clvn(¢s)x1lvn(¢) (substitution sites V/
is a one-to-one relation, ant | = |lvy((s)],
o W C nlvy((s) xnlvy(¢) (potential adjoin-
ing sites) and
e Py + W — [0, 1] (adjoining probability.
An auxiliary ruler is a tuple(¢s, ¢, V, W, , Pry;
where(s, G;, W, andF,,; are defined as above an
e VV is defined as above except thdf| =
v (¢s)| — 1 and r1 = (Ss(a, A, A(a)), Se(B(B), B, B), {1}, {a}, Pg))
o x = (xg,%) € lvy((s) xlvy({:) and neither
g n(()r*t o)ccurs il’(l aaly elerr(1er)1t df; more- where| = (2,2) anda = (3,1), and
over,(s(e) = (s(xs) andGy(e) = G(x), and r2 = (A(A,7), B(B(9), B), 0, {b,c}, x, P,3;)
xs £ € # x4 the nodex, (andx;) is called whereb = (¢, ), ¢ = (=, 1), ands = (1,2).

thefoot-node of; (resp. ;). A . L
t.s ( -SP 1) I In the derivation relation of7 we will distin-
An (elementary) rules either a substitution rule .

guish four types of steps:

or an auxiliary rule. Theoot-categoryof a ruler 1. substitution of a rule at a substitution site
is the tuple((s (e), , denoted byc(r). ' ftuti
is the tuple(Cs(¢), G;(¢)), denoted byc(r) (substitution),

A  probabilistic  synchronous tree ad- 5> deciding tot tential adioini ite int
joining grammar (pSTAG) is a tuple - deciding fo 1 a potential adjoining site Info
an activated adjoining site (activation),

G = (N,T,(Ss,5),S,A,P) such that N 3. deciding to d tential adioini i
andT are two disjoint sets (resp., of nonterminals ™ | eciding fo drop a potential adjoining site,
i.e., not to adjoin, (non-adjoining) and

and terminals)(Ss, S;) € N x N (start nontermi- 4 adioini ¢ e at iivated adioini
nal), S and.A are finite sets of, resp., substitution ™ adjoining ot a rule at an activated adjoining
site (adjoining).

rules and auxiliary rules, angt : SU A — [0, 1] : , :
such that for every4, B) € N x N, In 'Fhe .sententlal forms' (Qeflngd below) we will
maintain for every adjoining siter a two-valued
Z P(r) =1 and Z P(r)=1 flag g(w) indicating whetherw is a potential
res red (9(w) = p) or an activated sitgy(w) = a).
re(r)=(4,5) re(r)=(4,B) Theset of sentential forms 6t is the seBF(G)

assuming that in each case the number of sunpf all tuplesk = (&,&:, V, W, g) with

mands is not ;ero. In the following, |€t always 2Their placement (as left or right index) does not play a

denote an arbitrary pSTAG. role yet, but will later when we introduce pSTIG.

In Fig. 1 we show the rules of our running ex-
ample pSTAG, where the capital Roman letters are
the nonterminals and the small Greek letters are
the terminals. The substitution site (in rulg) is
indicated by|, and the potential adjoining sites are
) denoted by a, b, ¢, d, ande. For instance, in for-

d mal notation the rules; andry are written as fol-

lows:
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o (&t € UN(T)’

o V Clvy(&) x vy (&) is a one-to-one rela-

tion, |V| = [lvw(&)] = [vn(€)],

e W Cnlvy(&) x nlvy (&), and

«g:W —{pa.

The derivation relation (ofG) is the binary
relation == C  SF(G) x SF(G) such that
for every ki = (€1,€,V1,W1,91) and ky =
(62,62, Vo, Wa, g2) we haver; = ko iff one of
the following is true:

1. (substitution) there are = (ws,w;) € V4

andr = ((s, G, V, W, Pyy;) € S such that

— (&5 (ws), & (wr)) = re(r),

- fg = {% [CS]ws and‘stQ = §t1 [Ct]wz’

- Vo= W\ {w})UwV2

- Wy =W, Uw.W, and

— go is the union ofg; and the set of pairs
(w.u, p) for everyu € W,

this step is denoted by, == ko;

. (activation) there is @ € W; with g1 (w) =
p and (6%7&17‘/17 Wl) = (53761&27 Vv27 WQ)!
andg- is the same ag; except thays(w) =
a; this step is denoted by, == x;

. (non-adjoining) there isw € W; with
gi(w) = pand(&, &, Vi) = (62,62, Va),
Ws Wi\ {w}, andg, is ¢; restricted to
Who; this step is denoted by, = ko;

4. (adjoining) there are € W; with g;(w) =
a, andr = ((s, ¢, V, W,*,P;’dj) € A such

that, forw = (ws, wy),

— (&5 (ws), & (wr)) = re(r),

= & = &[Cw, where¢; = G[€]w, )1,
€t2 = ftl [Cl{]wt Where(,é = Ct[ftl’wt]*t!

— V5 is the smallest set such that (i) for
every(us,u;) € V4 we have(ul,u}) € Vs
where

[
.= {

andu; is obtained in the same way from,
wg, andx, and (i) Vo containsw.V;

Ug if ws is not a prefix ofu,
Ws. x5 .u if ug = ws.u for someu;

— Ws is the smallest set such that (i) for every

(us,ut) € Wi\ {w} we have(ul,u;) €
Wy where ), and u; are obtained in the
same way as fofz, and go(u},u})
g1(us, ug) and (i) Wy containsw.W and
g2(w.u) = p for everyu € W;

this step is denoted by, == k.

3w.V = {(ws.vs, we.v) | (vs,v4) €V}
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In Fig. 2 we show a derivation of our running
example pSTAG where activated adjoining sites
are indicated by surrounding circles, the other ad-
joining sites are potential.

Sl = Sel
substitution of
r1 at (g,¢) ﬂ P(r) =1
Sy Sy
AR VAN
o Al A, = al‘? Bl B8
(‘x Jo]
substitution of
ry at (2,2) ﬂ P(rq) =1
Ss St
VRN AN
[0} A Aa — aB B '3
.
(‘1 (‘1 BB
activation ﬂ Pi(a) =9
at a = (3,1) adj
Ss St
VRN VAN
o A Ay T @‘B ? ¢
(‘l (‘1 6 0
adjoining of i
ro at a = (3,1) ﬂ P(ra) =4
i AN
[\
a/A Ape vB B B
/N = /N
a A v C? ]-‘3 B
; 50
non-adjoining o _
at c= (3,1.1) | 1= P =4
v AN
[\
a/A Ay vB B g
/N = /N
a A 7 ? ]‘3 B
! 5o
non-adjoining o _
wbe(z1) | 1 PE® =8
S, St
SN /N
o A A B B
/N = /N
a A 7 ? ? B
\

Figure 2: An example derivation with total proba-
bility 1 x .1 x .9 x 4 x .4 x .8 =.01152.

The only initial sentential form isx;,
(Ss, St, {(g,¢)},0,0). A sentential formx is final
if it has the form(&s, &,0,0,0). Letx € SF(G).
A derivation (ofx) is a sequencd of the form
KQULKT - - - Upkn WIth kg = ki andn > 0,
ki1 = k; foreveryl < i < n (andk, = k). We



denotex,, also bylast(d), and the set of all deriva- atw, or w has|next(d)| children, each one repre-
tions of x (resp., derivations) by)(x) (resp.,D).  sents exactly one possible decision about how to
We calld € D successfuf last(d) is final. extendd by a single derivation step (where their
The tree transformation computed bg is  order does not matter). Then, for every generative
the relation ¢ C Un(T) x Un(T) with  storyt, we have that
(&s,&) € 1¢ iff there is a successful derivation
of (&,&,0,0,0). > P(tw) =1
Our definition of the probability of a deriva- welv(t)
tion is based on the following observatibnLet
d € D(k) for somer = (&, &, V,W,g). Then,
for everyw € W, the rule which created and
the corresponding local position in that rule can
be retrieved fromd. Let us denote this rule by
r(d, k,w) and the local position by(d, s, w).
Now let d be the derivationkquixg ... upkn.
Then theprobability ofd is defined by

We note that(D, next, u) can be considered as
a discrete Markov chain (cf., e.g. (Baier et al.,
2009)) where the initial probability distribution
w: D — [0,1] mapsd = ki, to 1, and all the
other derivations to.

A probabilistic synchronous tree insertion
grammar (pSTIG) G is a pSTAG except that
for every ruler = (QS,Q,V,W,P;dj) orr =
P(d) = H Pa(ki1 Uy ki) (CsaC_uV’W*aP;dj) we have that

o if r € A, then|lv((s)| > 2 and|lv(¢)| > 2,

1<i<n
o for x = (x4, %) we have thatk, is either the
where rightmost leaf of(; or its leftmost one; then

1. (substitution)Py(k;_1 == k;) = P(r) we callr, resp. L-auxiliary in the sourceand

2. (activation) R-auxiliary in the sourcesimilarly, we re-
Py(ki-1 = ki) = Ply(w') wherer’ = strict *;; the source-spine of (target-spine
r(d, ki—1,w) andw’ = I(d, ki—1,w) of r) is the set of prefixes of, (resp., of«;)

3. (non-adjoining) o W Cunlvy(¢s)x{L,R}xnlvy (&) x{L,R}
Py(kio1 = ki) = 1 — P;"(;j (w") wherer’ where the new components are thiection-
andw’ are defined as in the activation case typeof the potential adjoining site, and

4. (adjoining) o for every(ws, 05, wy, 0;) € W, if wy lies on
Py(ki—1 == ki) = P(r). the source-spine ofandr is L-auxiliary (R-

In order to describe the generative model of auxiliary) in the source, thety, = L (resp.,

G, we impose a deterministic strategyl on the 0s = R), and corresponding restrictions hold
derivation relation in order to obtain, for every for the target component.

sentential form, a probability distribution among According to the four possibilities for the foot-
the follow-up sentential forms. Aleterministic nodex we callr LL-, LR-, RL-, or RR-auxiliary.
derivation strategyis a mappingsel : SF(G) —  The restriction for the probability distributiaf of
(N* x N*) U {L} such that for everyx = G is modified such that for eveiyd, B) € N x N
(&s,&,V,W,g) € SF(G), we have thatel(k) €  andz,y € {L,R}:

VUWif VUW # 0, andsel(k) = L otherwise.

In other wordssel chooses the next site to operate Z P(ry=1.

on. Then we definey>, in the same way as- but r€A, re(r)=(A,B)

in each of the cases we require that= sel(;). ISy —auxdiary

Moreover, for every derivatiod € D, we denote In the derivation relation of the pSTIG we
by next(d) the set of all derivations of the form il have to make sure that the direction-type of
dur wherelast(d) = . the chosen adjoining site matches with the type

The generative model ofr comprises all the of guxiliarity of the auxiliary rule. Again we as-
generative stories of/. A generative storys a sume that the data structuf&(G) is enriched
treet € Up; the root oft is labeled byxi,. Let  sych that for every potential adjoining site of
w € pos(t) andi(w) = d. Then eitherw is a ;¢ SF(G) we know its direction-typelir(w).
leaf, because we have stopped the generative story\we define the derivation relation of the pSTIG

“We note that a different definition occurs in (Nesson et(7 to be the binary relatior>; _g _SF(G) xSF(G)
al., 2005, 2006). such that we have, = s iff (i) k1 = 2 and
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(ii) if adjoining takes place ab, then the used aux- wherep € [0, 1] (probability of (1)), & > 0,

iliary rule must bedir(w)-auxiliary. Since=; is V0, V1s- -5V € T q,q1, -, € Q,

a subset o=, the concepts of derivation, success- 21,...,2, € X UF, and( € RHS(k)

ful derivation, and tree transformation are defined =~ where RHS(k) is the set of all trees over

also for a pSTIG. AU{z1,..., 2t} U{*} in which the nullary
In fact, our running example pSTAG in Fig. 1is * OCCUrs at most once.

a pSTIG, wherery andr; are RL-auxiliary and The set ofintermediate results of\/ is the set
every potential adjoining site has direction-typelR(M) = {v | ¢« € Ua({*}),[pospy(¢)] < 1}
RL; the derivation shown in Fig. 2 is a pSTIG- and the set ofkentential forms of\/ is the set

derivation. SF(M) = Tu{q() | ¢ € Q,¢ € IR(M)})*.
The derivation relation induced by/ is the bi-
4 Bottom-up tree adjoining transducer nary relation= C SF(M) x SF(M) such that

for every&y, & € SF(M) we define$; = & iff

Here we introduce the concept of a bottom-up treg ore arg, ¢ € SF(M), there is a rule of the form

adjoining transducer (BUTAT) which will be used (1) in R, z:md there aré., ..., ¢y € IR(M) such

to formalize a decoder for a pSTIG. Y
A BUTAT is a finite-state machine which trans-

lates strings into trees. The left-hand side of each

rule is a string over terminal symbols and state- exactly once,

variable combinations. A variable is either a sub- £ =Ev0q () ... au(G) €, and

stitution variable or an adjoining variable; a substi- | £ = €q(0(0)) ¢

tution variable (resp., adjoining variable) can hav

. here 6 is a function that replaces variables
an output tree (resp., output tree with foot node) as

lue. Intuitivel h variabl lue is a t | a right-hand side with their values (subtrees)
value. Intuitively, each variable value IS a ransla~p, , e |eft-hand side of the rule. Formally,

tion of the string that has been reduced to the cory . RHS(k) — IR(M) is defined as follows:

responding state. The right-hand side of a rule has(i) for everyé = 8(¢1, ..., 6,) € RHS(k), 6 €

the formgq(¢{) wheregq is a state and is an output A, we haved(€) = 5(0(&)), . ... 0(En)),

tree (with or without foot-node); may containthe .. . ‘
variables from the left-hand side of the rule. Each (i) (substitution) for everyz € X, we have

that:
o foreveryl < i < k:if z; € X, then(; does
not containx; if z; € F, then(; containsx

- 9(2’1) = <i’
rule has a probability € [0, 1]. (i) (adjoining) for everyz € F and¢ e
In fact, BUTAT can be viewed as the string- _
to-tree version of bottom-up tree transducers (En RHS(k), we haved(z(¢)) = GloE)),
) k A h is th iquely determined iti
gelfriet, 1975; Gecseg and Steinby, 1984,1997) in \(l)\:‘firr?zvlsancf uniquely determined position

which, in addition to substitution, adjoining is al- (V) O(x) = *
lowed. '

Clearly, the probablity of a rule carries over to
Formally, we letX = {z;,22,...} andF' = y P y

Do ! derivation steps that employ this rule. Since, as
{1, f2,...} be the sets ofubstitution variables usual, a derivationl is a sequence of derivation

a}nd adjpining variable; resp. Each substitu- steps, we let therobability ofd be the product of
tion variable (resp., adjoining variable) has rankthe probabilities of its steps

0 (resp.,1). Thus when used in a tree, substitu-

. . . . . The string-to-tree transformation computed by
tion variables are leaves, while adjoining vanablesM is the setryy of all tuples(y. £) € I x U such
have a single child. M e A

that there is a derivation of the formn=-* for
A bottom-up tree adjoining transducdBU- m=" (&)

TAT) is atupleM = (Q.T, A, Qy, R) where someq € Qy.

e () is afinite set (oktates, 5 Decoder for pSTIG
e I'is an alphabet (ahput symbols assuming

thatQ N T = 0, Now we construct the decodésc(G) for a pSTIG
e A is an alphabet (obutput symbols G that transforms source strings directly into tar-
e Q5 C Q (set offinal statey, and get trees and simultaneously computes the proba-
e Ris a finite set of rules of the form bility of the corresponding derivation @f. This

decoder is formalized as a BUTAT.
Yoz - @(ze)m = qC) () Sincedec(G) is a string-to-tree transducer, we
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have to transform the source trég of a ruler  derivation of this decoder which correponds to the
into a left-hand side of a dec(G)-rule. This is derivation in Fig. 2.
done similarly to (DeNeefe and Knight, 2009) by Theorem 1. Let G be a pSTIG overN and T.

tr_aversing(s via recursive descent using a MaP-Then there is a BUTAKlec(G) such that for ev-
ping ¢ (see an example after Theorem 1); thlsery (&,&) € Un(T) x Un(T) andp € [0,1] the

creates appropriate state-variable combinations f%llowing two statements are equivalent:

all substitution sites and potential adjoining sites

of r. In particular, the source component of the 1. there i

direction-type of a potential adjoining site deter-
mines the position of the corresponding combina-

s a successful derivation of
(&5, &,0,0,0) by G with probability p,

tion in p. If there are several potential adjoining 2. there is a derivation fromyield(¢;) to

sites with the same source component, then we
create & for every permutation of these sites. The
right-hand side of alec(G)-rule is obtained by

[Ss, St] (&) by dec(G) with probability p.

PROOF Let G = (N,T,[Ss,S:],S, A, P) be a

traversing the target treg via recursive descent PSTIG. We will construct the BUTAKlec(G) =

using a mapping, and, whenever a nonterminal (

Q, T, NUT {[Ss, St]}, R) as follows (where the

with a potential adjoining sites is met, a new po- MaPpPingsy andy, will be defined below):

sition labeled byf,, is insertec® If there is more
than one potential adjoining site, then the set of
all those sites is ordered as in the left-hand gide
from top to bottom.

Apart from these main rules we will employ
rules which implement the decision of whether or
not to turn a potential adjoining site into an ac-
tivated adjoining site. Rules for the first purpose
just pass the already computed output tree through
from left to right, whereas rules for the second pur-
pose create for an empty left-hand side the output
treex.

We will use the state behavior déc(G) in or-
der to check that (i) the nonterminals of a substi-
tution or potential adjoining site match the root-
category of the used rule, (ii) the direction-type
of an adjoining site matches the auxiliarity of the
chosen auxiliary rule, and (iii) the decisions of
whether or not to adjoin for each ruleof G are
kept separate.

Whereas each paits, &) in the translation of
G is computed in a top-down way, starting at the
initial sentential form and substituting and adjoin-
ing to the present sentential formiec(G) builds
& in a bottom-up way. This change of direction is
legitimate, because adjoining is associative (Vijay-
Shanker and Weir, 1994), i.e., it leads to the same
result whether we first adjoin, to r1, and then
align r3 to the resulting tree, or first adjoiry to
r9, and then adjoin the resulting treertp

In Fig. 3 we show some rules of the decoder

e Q=[NxN]UI[Nx{L,R} x N x{L,R}]

U{[r,w] | r € A, wis an adjoining site of },

e R is the smallest setkR’ of rules such

that for everyr € S U A of the form
(CS:CIH‘/:WP;‘(U) or (CS7<t7V7 W7*7P;dj):
— for everyp € ¢(e), if r € S, then the

main rule

1Y Pﬁ;) [Cs (5)7 Gt (5)] (¢P(€))

isin R, and ifr € A andr is §,0;-
auxiliary, then the main rule

1Y PLT;) [(s(s)’ s Ct(e)v 575] (Qpp(&))

isin R', and
— for everyw = (ws, ds, wy, 8;) € W the
rules
Pl (w)
Gw(fo) = [ryw](fu(*))

with qu = [C(ws)a 5sa Ct(wt)a 5t] for ac-
tivation atw, and the rule

1—P,:dj(w)
[S—

[, w] ()

for non-adjoining atv are inR’.

We define the mapping

¢ : pos(Gs) = P(TURX U F))Y)

of our running example pSTIG and in Fig. 4 theWith Q(X U F) = {q(2) | ¢ € Q.2 € X U F}}

SWe will allow variables to have structured indices that
are not elements df. However, by applying a bijective r
naming, we can always obtain rules of the foff.
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inductively on its argument as follows. Let €
o. Dos((s) and letw haven children.

(8) Let¢,(w) € T. Thenp(w) = {¢y(w)}.



(b) (substitution site) Lets(w) € N and let
w' € pos(¢;) such thafw,w') € V. Then

(p(w) = {[Cs(w); Ct(w/)] (x(w,w’)) }

(c) (adjoining site) Let;(w) € N and let there
be an adjoining site idV with w as first
component. Then, we defingw) to be the

(e) Letw = *. Theny,(w) = *.
With dec(G) constructed as shown, for each
derivation of G there is a corresponding deriva-
tion of dec(G), with the same probability, and vice
versa. The derivations proceed in opposite direc-
tions. Each sentential form in one has an equiv-
alent sentential form in the other, and each step

smallest set such that for every permutatiorof the derivations correspond. There is no space

(uy,...,u;) (resp.(vy,...,vy))ofallthe L-
adjoining (resp., R-adjoining) sites W with
w as first component, the Set

Jop(wl)o...op(wn)o K

is a subset ofp(w), whereJ = {u]...u}}
andK = {v],...v{} and
u; = [r,wi)(fu,) andvj = [r,v5](fo,)

forl <i<landl <j<m.
(d) Let(s(w) € N, w # *, and letw be neither
the first component of a substitution sitelin

to present the full proof, but let us give a slightly
more precise idea about the formal relationship be-
tween the derivations af anddec(G).

In the usual way we can associate a deriva-
tion treed’ with every successful derivatiosh of
G. Assume thatast(d) = (&,&,0,0,0), and
let £, and E; be the embedded tree transducers
(Shieber, 2006) associated with, respectively, the
source component and the target component of
G. Then it was shown in (Shieber, 2006) that
1. (d") = & and7g,(db) = & whereTg de-
notes the tree-to-tree transduction computed by an

nor the first component of an adjoining site in €Mbedded tree transduckr Roughly speaking,

W. Then

o(w) =p(w.l)o...op(w.n) .

(e) Letw = *. Then we define(w) = {¢}.
For everyp € (), we define the mapping

¥p 1 pos(¢e) — Unurux (T U {*})
inductively on its argument as follows.
w € pos(¢;) and letw haven children.

(@) Let((w) € T. Theny,(w) = ((w).

(b) (substitution site) Let;(w) € N and let
w' € pos((s) such thafw’,w) € V. Then
¢p(’w) = T(w' w)-

(c) (adjoining site) Let;(w) € N and let there
be an adjoining site il with w as third
component. Then lefu;,...,w} C W be
the set of all potential adjoining sites with
as third component, and we define

¢p(w) = fm( .. ful(g) .. )
where ( = ((w)(Yp(w.1),...,0,(w.n))

and theu;'s occur invy,(w) (from the root

E, and E; reproduce the derivations of, respec-
tively, the source component and the target com-
ponent ofG that are prescribed by’. Thus, for
k= (£,&,V,W,q),If kin, =, xkandk is a prefix
of d, then there is exactly one subtréé(w, w’)]
of d* associated with everyw,w’) € V U W,
which prescribes how to continue @b, w’) with

Let the reproduction of.. Having this in mind, we ob-

tain the sentential form of théec(G)-derivation
which corresponds te by applying a modifica-
tion of ¢ to x where the modification amounts to
replacmgx(w,w’) andf(w,w’) by TE; (dt[(w’ w/)])’
note thatrg, (d![(w, w’)]) might containx. n

As illustration of the construction in Theorem 1
let us apply the mappings and+), to ruler, of
Fig. 1, i.e., tory = ((s, G 0, {0, ¢}, *, P;gj)
with ¢ = A(Aa7)1 G = B(B(5),B),

b = (e,R,e,L),c=(g,R,1,L), andx = (1, 2).

Let us calculatex(¢) on (,. Due to (c),

p(e) =Jop(l)op(2) o K.

towards the leaves) in exactly the same Ordeéince there are no L-adjoinings gtwe have that

as they occur iy (from left to right).
(d) Let(;(w) € N, w # %, and letw be neither

the second component of a substitution sit
in V nor the third component of an adjoining

site inWW. Then
¢p(w) = Ge(w)( wp(w'l)a e va(w'n))-

®using the usual concatenatiorof formal languages
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J = {e}. Since there are the R-adjoiningandc
ate, we have the two permutatio(s c) and(c, b).

o1, v2) = (b,): K = {[ra, cJ(fo)r2,0](f)}

(v1,v2) = (¢, b): K = {[r2,b](fo)[r2, c](fe)}
Due to (e) and (a), we have thatl) = {<} and
©(2) = {7}, resp. Thusp(e) is the set:

{v[r2, c|(fe) [r2, b](fo), v [r2, bI(fs) [r2, ] (fe)}-




Sy
[A, B] [r1,a] ‘
a \) a | — fu,/ I(bﬁ e ! a vy
£ fa g (rq, —b) ﬂ prob. .8
) r2,b]
« « a v |
(rlva) *
(AR, B,L] ra.al (r2.=¢) || prob. .4
J‘fa o J‘ca [TQ’b] [TQ’C]
i « « a v | |
* *
4, R"B’L] (r2,be) ﬂ prob. .4
]‘c ’ [A,R, B,1]
[ra,b] [r2,d] B |
v AN B
Jb fe feo * o o a /\
‘ B *
1‘3 |
(r2, ) 5 (2o o
8 [r27b] 4 [7’2,6} (7”170) ﬂ prob. 9
i >L [Tll, a)
B
(4, B] « « « / \
. B
a — B |
/‘8 5
Ty ﬂ prob. .1
Figure 3: Some rules of the running example de- [r1,a
coder. (4, B] |
| B
« B « / \
Now letp = v [re, b](fp) [r2, c](fc). Letus cal- | B
culatey, () on¢;. B (|$
bole) 2 RBWL(1). 4,(2))) r | prob. 1
D (BB, (1.1)),1(2))) 5551
% So(B(o(B(5)), 4,(2)) )
2 f(B(£.(B(6)), ya
fo(B(fe(B(6)), )) 5 B\ﬂ
Hence we obtain the rule / \ |
B B p
V[, ) [ra- () — L)

[A,R, B, LI(fo(B(fe(B(9)), %))

Figure 4: Derivation of the decoder correspondin
which is also shown in Fig. 3. g P g

to the derivation in Fig. 2.
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