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Abstract 

 

We present a representation of documents 

as directed, weighted graphs, modeling the 

range of influence of terms within the 

document as well as contextually deter-

mined semantic relatedness among terms. 

We then show the usefulness of this kind 

of representation in topic segmentation. 

Our boundary detection algorithm uses 

this graph to determine topical coherence 

and potential topic shifts, and does not re-

quire labeled data or training of parame-

ters. We show that this method yields im-

proved results on both concatenated pseu-

do-documents and on closed-captions for 

television programs. 

1 Introduction 

We present in this paper a graph-based represen-

tation of documents that models both the long-

range scope  "influence" of terms and the seman-

tic relatedness of terms in a local context. In 

these graphs, each term is represented by a series 

of nodes. Each node in the series corresponds to 

a sentence within the span of that term’s influ-

ence, and the weights of the edges are propor-

tional to the semantic relatedness among terms in 

the context. Semantic relatedness between terms 

is reinforced by the presence of nearby, closely 

related terms, reflected in increased connection 

strength between their nodes. 

We demonstrate the usefulness of our repre-

sentation by applying it to partitioning of docu-

ments into topically coherent segments. Our 

segmentation method finds locations in the graph 

of a document where one group of strongly con-

nected nodes ends and another begins, signaling 

a shift in topicality. We test this method both on 

concatenated news articles, and on a more realis-

tic segmentation task, closed-captions from 

commercial television programs, in which topic 

transitions are more subjective and less distinct. 

Our methods are unsupervised and require no 

training; thus they do not require any labeled in-

stances of segment boundaries. Our method at-

tains results significantly superior to that of Choi 

(2000), and approaches human performance on 

segmentation of television closed-captions, 

where inter-annotator disagreement is high. 

2 Graphs of lexical influence 

2.1 Summary of the approach 

Successful topic segmentation requires some re-

presentation of semantic and discourse cohesion, 

and the ability to detect where such cohesion is 

weakest. The underlying assumption of segmen-

tation algorithms based on lexical chains or other 

term similarity measures between portions of a 

document is that continuity in vocabulary reflects 

topic continuity. Two short examples illustrating 

topic shifts in television news programs, with 

accompanying shift in vocabulary, appear in 

Figure 1. 

We model this continuity by first modeling 

what the extent of a term's influence is. This dif-

fers from a lexical chain approach in that we do 

not model text cohesion through recurrence of 

terms. Rather, we determine, for each occurrence 

of a term in the document (excluding terms gen-

erally treated as stopwords), what interval of sen-

tences surrounding that occurrence is the best 

estimate of the extent of its relevance. This idea 

stems from work in Davis, et al. (2004), who 

describe the use of relevance intervals in multi-

media information retrieval. We summarize their 

procedure for constructing relevance intervals in 

60



section 2.2. Next, we calculate the relatedness of 

these terms to one another. We use pointwise 

mutual information (PMI) as a similarity meas-

ure between terms, but other measures, such as 

WordNet-based similarity or Wikipedia Miner 

similarity (Milne and Witten, 2009), could aug-

ment or replace it. 

 
 

S_44 Gatorade has discontinued a drink with his 

image but that was planned before the company has 

said and they have issued a statement in support of 

tiger woods. 

S_45 And at t says that while it supports tiger 

woods personally, it is evaluating their ongoing busi-

ness relationship. 

S_46 I'm sure, alex, in the near future we're going 

to see more of this as companies weigh the short term 

difficulties of staying with tiger woods versus the 

long term gains of supporting him fully. 

S_47 Okay. 

S_48 Mark potter, miami. 

S_49 Thanks for the wrapup of that. 

S_50 We'll go now to deep freeze that's blanketing 

the great lakes all the way to right here on the east 

coast. 

 
 

S_190 We've got to get this addressed and hold 

down health care costs. 

S_191 Senator ron wyden the optimist from oregon, 

we appreciate your time tonight. 

S_192 Thank you. 

S_193 Coming up, the final day of free health clinic 

in kansas city, missouri. 

 

 

The next step is to construct a graphical repre-

sentation of the influence of terms throughout a 

document. When constructing topically coherent 

segments, we wish to assess coherence from one 

sentence to the next. We model similarity be-

tween successive sentences as a graph, in which 

each node represents both a term and a sentence 

that lies within its influence (that is, a sentence 

belonging to a relevance interval for that term). 

For example, if the term ―drink‖ occurs in sen-

tence 44, and its relevance interval extends to 

sentence 47, four nodes will be created for 

―drink‖, each corresponding to one sentence in 

that interval. The edges in the graph connect 

nodes in successive sentences. The weight of an 

edge between two terms t and t' consists not only 

of their relatedness, but is reinforced by the pres-

ence of other nodes in each sentence associated 

with terms related to t and t'. 

The resulting graph thus consists of cohorts of 

nodes, one cohort associated with each sentence, 

and edges connecting nodes in one cohort to 

those in the next. Edges with a low weight are 

pruned from the graph. The algorithm for deter-

mining topic segment boundaries then seeks lo-

cations in which a relatively large number of re-

levance intervals for terms with relatively high 

relatedness end or begin. 

In sum, we introduce two innovations here in 

computing topical coherence.  One is that we use 

the extent of each term's relevance intervals to 

model the influence of that term, which thus ex-

tends beyond the sentences it occurs in.  Second, 

we amplify the semantic relatedness of a term t 

to a term t' when there are other nearby terms 

related to t and t'. Related terms thereby rein-

force one another in establishing coherence from 

one sentence to the next. 

2.2 Constructing relevance intervals 

As noted, the scope of a term's influence is cap-

tured through relevance intervals (RIs). We de-

scribe here how RIs are created. A corpus—in 

this case, seven years of New York Times text 

totaling approximately 325 million words—is 

run through a part-of-speech tagger.  The point-

wise mutual information between each pair of 

terms is computed using a 50-word window.
1
 

PMI values provide a mechanism to measure 

relatedness between a term and terms occurring 

in nearby sentences of a document. When 

processing a document for segmentation, we first 

calculate RIs for all the terms in that document. 

An RI for a term t is built sentence-by-sentence, 

beginning with a sentence where t occurs. A sen-

tence immediately succeeding or preceding the 

sentences already in the RI is added to that RI if 

it contains terms with sufficiently high PMI val-

ues with t. An adjacent sentence is also added to 

an RI if there is a pronominal believed to refer to 

t; the algorithm for determining pronominal ref-

erence is closely based on Kennedy and Bogu-

raev (1996). Expansion of an RI is terminated if 

there are no motivations for expanding it further. 

Additional termination conditions can be in-

cluded as well. For example, if large local voca-

                                                 
1
 PMI values are constructed for all words other than those 

in a list of stopwords.  They are also constructed for a li-

mited set of about 100,000 frequent multi-word expressions. 

In our segmentation system, we use only the RIs for nouns 

and for multiword expressions. 

Figure 1. Two short closed-caption excerpts from 

television news programs, each containing a top-

ic shift  
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bulary shifts or discourse cues signaling the start 

of end of a section are detected, RIs can be 

forced to end at those points. In one version of 

our system, we set these ―hard‖ boundaries using 

an algorithm based on Choi (2000). In this paper 

we report segmentation results with and without 

this limited use of Choi’s algorithm. Lastly, if 

two RIs for t are sufficiently close (i.e., the end 

of one lies within 150 words of the start of 

another), then the two RIs are merged. 

The aim of constructing RIs is to determine 

which portions of a document are relevant to a 

particular term. While this is related to the goal 

of finding topically coherent segments, it is of 

course distinct, as a topic typically is determined 

by the influence of multiple terms. However, RIs 

do provide a rough indication of how far a term's 

influence extends or, put another way, of "smear-

ing out" the occurrence of a term over an ex-

tended region. 

2.3 From relevance intervals to graphs 

Consider a sentence Si, and its immediate succes-

sor Si+1. Each of these sentences is contained in 

various relevance intervals; let Wi denote the set 

of terms with RIs containing Si, and Wi+1 denote 

the set containing Si+1. 
For each pair of terms a in Wi and b in Wi+1, 

we compute a connection strength c(a,b), a non-

negative real number that reflects how the two 

terms are related in the context of Si and Si+1. To 

include the context, we take into account that 

some terms in Si may be closely related, and 

should support one another in their connections 

to terms in Si+1, and vice versa, as suggested 

above. Here, we use PMI values between terms 

as the basis for connection strength, normalized 

to a similarity score that ranges between 0 and 1, 

as follows: 

 

 

The similarity between two terms is set to 0 if 

this quantity is negative. Also, we assign the 

maximum value of 1 for self-similarity. We then 

define connection strength in the following way: 

 

 

 

That is, the similarity of another term in Wi or 

Wi+1 to b or a respectively, will add to the con-

nection strength between a and b, weighted by 

the similarity of that term to a or b respectively. 

Note that this formula also includes in the sum-

mation the similarity s(a,b) between a and b 

themselves, when either x or y is set to either a or 

b.
2
 Figure 2 illustrates this procedure. We nor-

malize the connection strength by the total num-

ber of pairs in equation (2). 

We note in passing that many possible modifi-

cations of this formula are easily imagined. One 

obvious alternative to using the product of two 

similarity scores is to use the minimum of the 

two scores. This gives more weight to pair values 

that are both moderately high, with respect to 

pairs where one is high and the other low. Apart 

from this, we could incorporate terms from RIs 

in sentences beyond these two adjoining sen-

tences, we could weight individual terms in Wi or 

Wi+1 according to some independent measure of 

topical salience, and so on. 

 

 
Figure 2. Calculation of connection strength be-

tween two nodes 

 

What emerges from this procedure is a 

weighted graph of connections across slices of a 

document (sentences, in our experiments). Each 

node in the graph is labeled with a term and a 

sentence number, and represents a relevance in-

terval for that term that includes the indicated 

sentence.  The edges of the graph connect nodes 

associated with adjacent sentences, and are 

weighted by the connection strength. Because 

many weak connections are present in this graph, 

we remove edges that are unlikely to contribute 

to establishing topical coherence. There are vari-

ous options for pruning: removing edges with 

connection strengths below a threshold, retaining 

only the top n edges, cutting the graph between 

two sentences where the total connection 

strength of edges connecting the sentences is 

small, and using an edge betweenness algorithm 

(e.g., Girvan and Newman, 2002) to remove 

edges that have high betweenness (and hence are 

indicative of a "thin" connection).  

                                                 
2
 In fact, the similarity s(ai,bj) will be counted twice, once 

in each summation in the formula above; we retain this 

additional weighting of s(ai,bj). 
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Figure 3. A portion of the graph generated from the first excerpt in Figure 1. Each node is labeled 

S_i__term_pos, where i indicates the sentence index  

 

We have primarily investigated the first me-

thod, removing edges with a connection strength 

less than 0.5. Two samples of the graphs we pro-

duce, corresponding to the excerpts in figure 1, 

appear in figures 3 and 4. 

2.4 Finding segment boundaries in graphs 

Segment boundaries in these graphs are hypothe-

sized where there are relatively few, relatively 

weak connections from a cohort of nodes asso-

ciated with one sentence to the cohort of nodes 

associated with the following sentence. If a term 

has a node in one cohort and in the succeeding 

cohort (that is, its RI continues across the two 

corresponding sentences) it counts against a 

segment boundary at that location, whereas terms 

with nodes on only one side of the boundary 

count in favor of a segment. For example, in fig-

ure 3, a new set of RIs start in sentence 48, 

where we see nodes for ―Buffalo‖, ―Michigan‖, 

―Worth‖, Marquette‖, and ―Miami‖, and RIs in 

preceding sentences for ―Tiger Woods‖, ―Gato-

rade‖, etc. end.  Note that the corresponding ex-

cerpt in figure 1 shows a clear topic shift be-

tween a story on Tiger Woods ending at sentence 

46, and a story about Great Lakes weather be-

ginning at sentence 48. 

Similarly, in figure 4, RIs for ―Missouri‖, 

―city‖ and ―health clinic‖ include sentences 190. 

191, and 192; thus these are evidence against a 

segment boundary at this location. On the other 

hand, several other terms, such as ―Oregon‖, 

―Ron‖, ―Senator‖, and ―bill‖, have RIs that end 

at sentence 191, which argues in favor of a 

boundary there.  We present further details of our 

boundary heuristics in section 4.1. 

3 Related Work 

The literature on topic segmentation has mostly 

focused on detecting a set of segments, typically 

non-hierarchical and non-overlapping, exhaus-

tively composing a document. Evaluation is then 

relatively simple, employing pseudo-documents 

constructed by concatenating a set of documents. 

This is a suitable technique for detecting coarse-

grained topic shifts. As Ferret (2007) points out, 

approaches to the problem vary both in the kinds 

of knowledge they depend on, and on the kinds 

of features they employ. 

Research on topic segmentation has exploited 

information internal to the corpus of documents 

to be segmented and information derived from 

external resources. If a corpus of documents per-

tinent to a domain is available, statistical topic 

models such as those developed by Beeferman et 

al. (1999) or Blei and Moreno (2001) can be tai-

lored to documents of that type. Lexical cohesion 

techniques include similarity measures between 

adjacent blocks of text, as in TextTiling (Hearst, 

1994, 1997) and lexical chains based on recur-

rences of a term or related terms, as in Morris 

and Hirst (1991), Kozima (1993), and Galley, et 

al. (2003). In Kan, et al. (1998) recurrences of 

the same term within a certain number of sen-

tences are used for chains (the number varies 

with the type of term), and chains are based on 

entity reference as well as lexical identity. Our 

method is related to lexical chain techniques, in 

that the graphs we construct contain chains of 

nodes that extend the influence of a term beyond 

the site where it occurs.  But we differ in that we 

do not require a term (or a semantically related 

term) to recur, in order to build such chains. 
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Figure 4. A portion of the graph generated from the second excerpt in Figure 1. Each node is labeled 

S_i__term_pos, where i indicates the sentence index  

 

In this respect, our approach also resembles 

that of Matveeva and Levow (2007), who build 

semantic similarity among terms into their lexi-

cal cohesion model through latent semantic anal-

ysis. Our techniques differ in that we incorporate 

semantic relatedness between terms directly into 

a graph, rather than computing similarities be-

tween blocks of text. 

In our experiments, we compare our method to 

C99 (Choi, 2000), an algorithm widely treated as 

a baseline.  Choi’s algorithm is based on a meas-

ure of local coherence; vocabulary similarity be-

tween each pair of sentences in a document is 

computed and the similarity scores of nearby 

sentences are ranked, with boundaries hypothe-

sized where similarity across sentences is low. 

4 Experiments, results, and evaluation  

4.1 Systems compared 

As noted above, we tested our system against the 

C99 segmentation algorithm (Choi, 2000). The 

implementation of C99 we use comes from the 

MorphAdorner website (Burns, 2006). We also 

compared our system to two simpler baseline 

systems without RIs. One uses graphs that do not 

represent a term’s zone of influence, but contain 

just a single node for each occurrence of a term. 

The second represents a term’s zone of influence 

in an extremely simple fashion, as a fixed num-

ber of sentences starting from each occurrence of 

that term.  We tried several values ranging from 

5 to 20 sentences for this extension. In addition, 

we varied two parameters to find the best-

performing combination of settings: the thre-

shold for pruning low-weight edges, and the 

threshold for positing a segment boundary.  In 

both the single-node and fixed-extension sys-

tems, the connection strength between nodes is 

calculated in the same way as for our full system. 

These comparisons aim to demonstrate two 

things. First, segmentation is greatly improved 

when we extend the influence of terms beyond 

the sentences they occur in. Second, the RIs 

prove more effective than fixed-length exten-

sions in modeling that influence accurately. 

Lastly, to establish how much we can gain 

from using Choi’s algorithm to determine termi-

nation points for RIs, we also compared two ver-

sions of our system: one in which RIs are calcu-

lated without information from Choi’s algorithm 

and a second with these boundaries included. 

Table 1 lists the systems we compare in the 

experiments described below. 

 

 

C99 Implementation of Choi (2000) 

SS+C 

Our full Segmentation System, incor-

porating ―hard‖ boundaries determined 

by modified Choi algorithm 

SS 

Our system, using RIs without ―hard‖ 

boundaries determined by modified 

Choi algorithm 

FE 
Our system, using fixed extension of a 

term from its occurrence 

SN 
Our system, using a single node for 

each term occurrence (no extension) 

 

Table 1. Systems compared in our experiments 

 

4.2 Data and parameter settings 

We tested our method on two sets of data.  One 

set consists of concatenated news stories, follow-

ing the approach of Choi (2000) and others since; 

the other consists of closed captions for twelve 

U.S. commercial television programs. Because 

the notion of a topic is inherently subjective, we 

follow many researchers who have reported re-

sults on "pseudo-documents"–documents formed 

by concatenating several randomly selected doc-

uments–so that the boundaries of segments are 

known, sharp, and not dependent on annotator 

variability (Choi, 2000). However, we also are 
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interested in our system’s performance on more 

realistic segmentation tasks, as noted in the in-

troduction. 

In testing our algorithm, we first generated 

graphs from the documents in each dataset, as 

described in section 2. We pruned edges in the 

graphs with connection strength of less than 0.5. 

To find segment boundaries, we seek locations 

where the number of common terms associated 

with successive sentences is at a minimum.  This 

quantity needs to be normalized by some meas-

ure of how many nodes are present on either side 

of a potential boundary. We tested three normali-

zation factors: the total number of nodes on both 

sides of the potential segment boundary, the 

maximum of the numbers of nodes on each side 

of the boundary, and the minimum of the num-

bers of nodes on each side of the boundary. The 

results for all three of these were very similar, so 

we report only those for the maximum. This 

measure provides a ranking of all possible boun-

daries in a document (that is, between each pair 

of consecutive sentences), with a value of 0 be-

ing most indicative of a boundary. After experi-

menting with a few threshold values, we selected 

a threshold of 0.6, and posit a boundary at each 

point where the measure falls below this thre-

shold. 

4.3 Evaluation metrics 

We compute precision, recall, and F-measure 

based on exact boundary matches between the 

system and the reference segmentation.  As nu-

merous researchers have pointed out, this alone 

is not a perspicacious way to evaluate a segmen-

tation algorithm, as a system that misses a gold-

standard boundary by one sentence would be 

treated just like one that misses it by ten.  We 

therefore computed two additional, widely used 

measures, Pk (Beeferman, et al., 1997) and Win-

dowDiff (Pevzner and Hearst, 2002).  Pk assesses 

a penalty against a system for each position of a 

sliding window across a document in which the 

system and the gold standard differ on the pres-

ence or absence of (at least one) segment boun-

dary. WindowDiff is similar, but where the sys-

tem differs from the gold standard, the penalty is 

equal to the difference in the number of bounda-

ries between the two. This penalizes missed 

boundaries and ―near-misses‖ less than Pk (but 

see Lamprier, et al., (2007) for further analysis 

and some criticism of WindowDiff). For both Pk 

and WindowDiff, we used a window size of half 

the average reference segment length, as sug-

gested by Beeferman, et al. (1997). Pk and Win-

dowDiff values range between 0 and 1, with 

lower values indicating better performance in 

detecting segment boundaries. Note that both Pk 

and WindowDiff are asymmetrical measures; 

different values will result if the system’s and the 

gold-standard’s boundaries are switched. 

4.4 Concatenated New York Times articles 

The concatenated pseudo-documents consist of 

New York Times articles selected at random from 

the New York Times Annotated Corpus.
3
 Each 

pseudo-document contains twenty articles, with 

an average of 623.6 sentences.  Our test set con-

sists of 185 of these pseudo-documents.
4
 

 

N = 185 

 Prec. Rec. F Pk WD 

C99 
µ 0.404 0.569 0.467 0.338 0.360 

s.d 0.106 0.121 0.105 0.109 0.135 

SS 
µ 0.566 0.383 0.448 0.292 0.317 

s.d. 0.176 0.135 0.140 0.070 0.084 

SS 

+C 

µ 0.578 0.535 0.537 0.262 0.283 

s.d. 0.148 0.197 0.150 0.081 0.098 

FE 
µ 0.265 0.140 0.176 0.478 0.536 

s.d. 0.123 0.042 0.055 0.055 0.076 

SN 
µ 0.096 0.112 0.099 0.570 0.702 

s.d. 0.040 0.024 0.027 0.072 0.164 

 

Table 2. Performance of C99 and SS on segmen-

tation of concatenated New York Times articles, 

without specifying a number of boundaries 

 

Tables 2 and 3 provide summary results on the 

concatenated news articles. We ran the five sys-

tems listed in table 1 on the full dataset without 

any additional restrictions on the number of ar-

ticle boundaries to be detected. Means and stan-

dard deviations for each method on the five me-

trics are displayed in table 2. C99 typically finds 

many more boundaries than the 20 that are 

present (30.65 on average). Our SS system finds 

fewer than the true number of boundaries (14.52 

on average), while the combined system SS+C 

finds almost precisely the correct number (19.98 

on average). We used one-tailed paired t-tests of 

equal means to determine statistical significance 

at the 0.01 level. Although only SS+C’s perfor-

mance is significantly better in terms of F-

                                                 
3
www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=L

DC2008T19 
4
 Only article text is used, though occasionally some ob-

vious heading material, such as book title, author and pub-

lisher at the beginning of a book review, is present also. 
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measure, both versions of our system outperform 

C99 according to Pk and WindowDiff.  

Using the baseline single node system (SN) 

yields very poor performance. These results (ta-

ble 2, row SN) are obtained with the edge-

pruning threshold set to a connection strength of 

0.9, and the boundary threshold set to 0.2, at 

which the average number of boundaries found is 

26.86. Modeling the influence of terms beyond 

the sentences they occur in is obviously valuable. 

The baseline fixed-length extensions system 

(FE) does better than SN but significantly worse 

than RIs. We found that, among the parameter 

settings yielding between 10 and 30 boundaries 

per document on average, the best results occur 

with the extension set to 6 sentences, the edge-

pruning threshold set to a connection strength of 

0.5, and the boundary threshold set to 0.7. The 

results for this setting are reported in table 2, row 

FE (the average number of segments per docu-

ment is 12.5).  Varying these parameters has only 

minor effects on performance, although the 

number of boundaries found can of course be 

tuned. RIs clearly provide a benefit over this type 

of system, by modeling a term’s influence dy-

namically rather than as a fixed interval.  

From here on, we report results only for the 

two systems: C99 and our best-performing sys-

tem, SS+C. 

For 86 of the documents, in which both C99 

and SS+C found more than 20 boundaries, we 

also calculate the performance on the best-

scoring 20 boundaries found by each system. 

These results are displayed in table 3. Note that 

when the number of boundaries to be found by 

each system is fixed at the actual number of 

boundaries, the values of precision and recall are 

necessarily identical. Here too our system out-

performs C99, and the differences are statistical-

ly significant, according to a one-tailed paired t-

test of equal means at the 0.01 level. 

 

 

N = 86 

 Prec.=Rec.=F Pk WD 

C99 
µ 0.530 0.222 0.231 

s.d 0.105 0.070 0.074 

SS + C 
µ 0.643 0.192 0.201 

s.d. 0.130 0.076 0.085 

 

Table 3.  Performance of C99 and SS on segmen-

tation of concatenated New York Times articles, 

selecting the 20 best-scoring boundaries 

4.5 Human-annotated television program 

closed-captions 

We selected twelve television programs for 

which we have closed-captions; they are a mix of 

headline news (3 shows), news commentary (4 

shows), documentary/lifestyle (3 shows), one 

comedy/drama episode, and one talk show. Only 

the closed captions are used, no speaker intona-

tion, video analysis, or metadata is employed.  

The closed captions are of variable quality, with 

numerous spelling errors. 

Five annotators were instructed to indicate 

topic boundaries in the closed-caption text files.  

Their instructions were open-ended in the sense 

that they were not given any definition of what a 

topic or a topic shift should be, beyond two short 

examples, were not told to find a specific number 

of boundaries, but were allowed to indicate how 

important a topic was on a five-point scale, en-

couraging them to indicate minor segments or 

subtopics within major topics if they chose to do 

so. For some television programs, particularly 

the news shows, major boundaries between sto-

ries on disparate topics are likely be broadly 

agreed on, whereas in much of the remaining 

material the shifts may be more fine-grained and 

judgments varied. In addition, the scripted nature 

of television speech results in many carefully 

staged transitions and teasers for upcoming ma-

terial, making boundaries more diffuse or con-

founded than in some other genres. 

We combined the five annotators’ segmenta-

tions, to produce a single set of boundaries as a 

reference. We used a three-sentence sliding win-

dow, and if three or more of the five annotators 

place a boundary in that window, we assign a 

boundary where the majority of them place it (in 

case of a tie, we choose one location arbitrarily). 

Although the annotators are rather inconsistent in 

their use of this rating system, a given annotator 

tends to be consistent in the granularity of seg-

mentation employed across all documents. This 

observation is consistent with the remarks of Ma-

lioutov and Barzilay (2006) regarding varying 

topic granularity across human annotators on 

spoken material. We thus computed two versions 

of the combined boundaries, one in which all 

boundaries are used, and another in which we 

ignore minor boundaries—those the annotator 

assigned a score of 1 or 2.  We ran our experi-

ments with both versions of the combined boun-

daries as the reference segmentation. 

We use Pk to assess inter-annotator agreement 

among our five annotators. Table 4 presents two 
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Pk values for each pair of annotators; one set of 

values is for all boundaries, while the other is for 

―major‖ boundaries, assigned an importance of 3 

or greater on the five-point scale. The Pk value 

for each annotator with respect to the two refer-

ence segmentations is also provided. 

 

 A B C D E Ref 

A 
 0.36 

0.48 

0.30 

0.45 

0.27 

0.44 

0.42 

0.67 

0.20 

0.38 

B 
0.29 

0.40 

 0.29 

0.32 

0.27 

0.33 

0.33 

0.55 

0.20 

0.25 

C 
0.57 

0.48 

0.60 

0.44 

 0.41 

0.20 

0.67 

0.61 

0.40 

0.18 

D 
0.36 

0.46 

0.41 

0.46 

0.27 

0.20 

 0.53 

0.63 

0.22 

0.26 

E 
0.33 

0.35 

0.31 

0.34 

0.33 

0.30 

0.32 

0.31 

 0.25 

0.27 

Ref 
0.25 

0.39 

0.32 

0.35 

0.24 

0.17 

0.21 

0.22 

0.42 

0.58 

 

 

Table 4. Pk values for the segmentations pro-

duced by each pair of annotators (A-E) and for 

the combined annotation described in section 

4.5; upper values are for all boundaries and low-

er values are for boundaries of segments scored 3 

or higher 
 

These numbers are rather high, but compara-

ble to those obtained by Malioutov and Barzilay 

(2006) in a somewhat similar task of segmenting 

video recordings of physics lectures. The Pk val-

ues are lower for the reference boundary set, 

which we therefore feel some confidence in us-

ing as a reference segmentation. 

 

 Prec. Rec. F Pk WD 

All topic boundaries 

C99 
µ 0.197 0.186 0.184 0.476 0.507 

s.d 0.070 0.072 0.059 0.078 0.102 

SS 

+C 

µ 0.315 0.208 0.240 0.421 0.462 

s.d. 0.089 0.073 0.064 0.072 0.084 

Major topic boundaries only 

C99 
µ 0.170 0.296 0.201 0.637 0.812 

s.d. 0.063 0.134 0.060 0.180 0.405 

SS 

+C 

µ 0.271 0.316 0.271 0.463 0.621 

s.d. 0.102 0.138 0.077 0.162 0.445 

 

Table 5. Performance of C99 and SS+C on seg-

mentation of closed-captions for twelve televi-

sion programs, with the two reference segmenta-

tions using ―all topic boundaries‖ and ―major 

topic boundaries only‖ 

 

As the television closed-captions are noisy 

with respect to data quality and inter-annotator 

disagreement, the performance of both systems is 

worse than on the concatenated news articles, as 

expected. We present the summary performance 

of C99 and SS+C in table 5, again using two ver-

sions of the reference. Because of the small test 

set size, we cannot claim statistical significance 

for any of these results, but we note that on aver-

age SS+C outperforms C99 on all measures.  

5 Conclusions and future work 

We have presented an approach to text segmen-

tation that relies on a novel graph based repre-

sentation of document structure and semantics. It 

successfully models topical coherence using 

long-range influence of terms and a contextually 

determined measure of semantic relatedness. Re-

levance intervals, calculated using PMI and other 

criteria, furnish an effective model of a term’s 

extent of influence for this purpose. Our measure 

of semantic relatedness reinforces global co-

occurrence statistics with local contextual infor-

mation, leading to an improved representation of 

topical coherence. We have demonstrated signif-

icantly improved segmentation resulting from 

this combination, not only on artificially con-

structed pseudo-documents, but also on noisy 

data with more diffuse boundaries, where inter-

annotator agreement is fairly low.   

Although the system we have described here is 

not trained in any way, it provides an extensive 

set of parameters that could be tuned to improve 

its performance. These include various tech-

niques for calculating the similarity between 

terms and combining those similarities in con-

nection strengths, heuristics for scoring potential 

boundaries, and thresholds for selecting those 

boundaries. Moreover, the graph representation 

lends itself to techniques for finding community 

structure and centrality, which may also prove 

useful in modeling topics and topic shifts. 

We have also begun to explore segment labe-

ling, identifying the most ―central‖ terms in a 

graph according to their connection strengths. 

Those terms whose nodes are strongly connected 

to others within a segment appear to be good 

candidates for segment labels. 

Finally, although we have so far applied this 

method only to linear segmentation, we plan to 

explore its application to hierarchical or overlap-

ping topical structures. We surmise that strongly 

connected subgraphs may correspond to these 

more fine-grained aspects of discourse structure.  
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