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Abstract (vertices) that are connected with edges if they
are observed to occur in similar contexts. The
As an initial effort to identify universal networks are derived from the Europarl corpus

and language-specific factors that influ- (Koehn, 2005)—the annotated proceedings of the
ence the behavior of distributional models,  European parliament during 1996-2006. This is

we have formulated a distributionally de-  a parallel corpus that covers Danish, Dutch, En-
termined word similarity network model,  glish, Finnish, French, German, Greek, Italian,
implemented it for eleven different lan- Portuguese, Spanish and Swedish.

guages, and compared the resulting net-  The objective of this paper is not to provide a

works. In the model, vertices constitute  extensive comparison of how distributional net-
words and two words are linked if they oc-  \ork models perform in specific applications for
curin similar contexts. The modelisfound  gpecific languages, for instance in terms of bench-
to capture clear isomorphisms across lan-  mark performance, but rather to, firstly, demon-
guages in terms of syntactic and semantic  strate the expressive strength of distributionally
classes, as well as functional categories of  pased network models and, secondly, to highlight
abstract discourse markers. Language spe-  fyndamental similarities and differences between

cific morphology is found to be a dominat-  |anguages that these models are capable of captur-
ing factor for the accuracy of the model. ing (and fail in capturing).
1 Introduction 2 Methods

This work takes as its point of departure the faciye consider a base case where a context is defined
that most studies of the distributional character ofy5 the preceding and subsequent words of a focus
terms in language are language specific. A mod&lord, Word order matters and so a context forms

or technique—either geometric (Deerwester et al.g word pair. Consider for instance the following
1990; Finch and Chater, 1992; Lund and Burgesssentenck

1996; Letsche and Berry, 1997; Kanerva et al.,

2000) or graph based (i Cancho and&ad001; Ladies and gentlemen, once again, we

Widdows and Dorow, 2002; Biemann, 2006)— see it is essential for Members to bring

that works quite well for one language may not be their voting cards along on a Monday.

suitable for other languages. A general question

of interest is then: What strengths and weaknessddere the focus woressentialoccurs in the con-

of distributional models are universal and what ard€xt is * for, the wordbring in the contextto *

language specific? their etcetera (the asteriskdenotes an interme-
In this paper we approach this question by for-diate focus word). Since a context occurs with a

mulating a distributionally based network model,Word with a certain probability, each word; is

apply the model on eleven different languages, andssociated with a probability distribution of con-

then compare the resulting networks. We comI€Xts:

pare the networks both in terms of global statisti-

cal properties and local structures of word-to-word By = {Priwpwiws|wi]}w, woew, (1)

_relatlons of linguistic relevance. Mqre specif- *Quoting Nicole Fontaine, president of the European Par-
ically, the generated networks constitute wordsiament 1999-2001, from the first session of year 2000.
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where W denotes the set of all words andtwo measures are found to be approximately lin-
Prw,w;ws|w;] is the conditional probability that early related in this context. However, for the two
contextw, * w, occurrs, given that the focus word first reasons listed above, the variational distance
is w;. In practice, we estimaté; by counting is our divergence measure of choice in this study.
the occurring contexts ab; and then normalizing
the counts. Context counts, in turn, were derived?-2 Network representation
from trigram counts. No pre-processing, such a®\ set of words and their similarity relations are
stemming, was performed prior to collecting thenaturally interpreted as a weighted and undirected
trigrams. network. The vertices then constitute words and
two vertices are linked by an edge if their corre-
sponding wordsu; andw; have overlapping con-
If two words have similar context distributions, text sets. The strength of the links vary depend-
they are assumed to have a similar function inng on the respective degrees of word similarities.
the language. For instance, it is reasonable to agdere the edge between two words and w;’s
sume that the word “salt” to a higher degree occurss weighted withw;; = 2 — d;; (note again that
in similar contexts as “pepper” compared to, saymax;; d;; = 2) since a large word difference im-
“friendly”. One could imagine that a narrow 1+1 plies a weak link and vice versa.
neighborhood only captures fundamental syntactic In our experiment we consider the 3000 most
agreement between words, which has also been atommon words, excluding the 19 first ones, in
gued in the literature (Sahlgren, 2006). Howevergach language. To keep the data more manage-
as we will see below, the intermediate two-wordable during analysis we employ various thresh-
context also captures richer word relationships. olds. Firstly, we only consider context words that
We measure the degree of similarity by com-occur five times or more. As formed by the re-
paring the respective context distributions. Thismaining context words, we then only consider tri-
can be done in a number of ways. For examplegrams that occur three times or more. This allows
as the Euclidian distance (also known asdiver-  us to cut away a large chunk of the data. We have
gence), the Harmonic mean, Spearman’s rank cotested to vary these thresholds and the resulting
relation coefficient and the Jensen-Shannon diveiretworks are found to have very similar statisti-
gence (information radius). Here we quantify thecal properties, even though the networks differ by
difference between two words; andw;, denoted  a large number of very weak edges.
d;;, by the variational distance (or ldivergence)
between their corresponding context distributions3  Results
P; andP;:

2.1 Similarity measure

3.1 Degree distributions

di; = Z IB(X =c)— Pi(X =¢), (2) The degregy; of a vertexi is defined.as the sum
of weights of the edges of the vertey:= > " w;;.
The degree distribution of a network may provide
where X is a stochastic variable drawn frofh  valuable statistical information about the networks
which is the set of contexts that eithef or w;  structure. For the word networks, Figure 1, the de-
occur in. 0 < d;; < 2, whered;; = 0 if gree distributions are all found to be highly right-
the two distributions are identical anf; = 2  skewed and have longer tails than expected from
if the words do not share any contexts at all. ltrandom graphs (Efs and Rnyi, 1959). This
is not obvious that the variational distance is thecharacteristics is often observed in complex net-
best choice of measure. However, we chose tavorks, which typically also are scale-free (New-
employ it since it is a well-established and well-man, 2003). Interestingly, the word similarity net-
understood statistical measure; since it is straightworks are not scale-free as their degree distribu-
forward and fast to calculate; and since it appearsions do no obey power-lawsr(g) ~ g~ for
to be robust. To compare, we have also testedome exponent. Instead, the degree distributions
to employ the Jensen-Shannon divergence (a synof each word network appears to lay somewhere
metrized and smoothed version of Kullback infor-between a power-law distribution and an exponen-
mation) and acquire very similar results as thosdial distribution Pr(g) ~ e~9/%). However, due
presented here. In fact, this is expected since th® quite noisy statistics it is difficult to reliably

ceC
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measure and characterize the tails in the word netnodular networks (Newman and Girvan, 2004).
works. Note that there appears to be a bump if\s can be seen in Table 1, all networks are highly
the distributions for some languages at around demodular, although the degree of modularity varies
gree 60, but again, this may be due to noise anbetween languages. Greek in particular stands out.
more data is required before we can draw any conHowever, the reason for this remains an open ques-
clusions. Note also that the degree distribution otion that requires further investigations.

Finnish stands out: Finnish words typically have

less or weaker links than words in the other lan- Dutch 0.43| Swedish 0.58
guages. This is reasonably in view of the special German 0.43 French  0.63
morphological character of Finnish compared to Spanish 0.48 Finnish  0.68
Indo-European languages (see below). Portuguese 0.51 Italian ~ 0.68

English 0.53| Greek 0.78
3.2 Community structures Danish 0.55

The acquired networks display interesting global
structures that emerge from the local and pair- Table 1: Community modularity.
wise word to word relations. Each network form
a single strongly connected component. In other Communities become more apparent when
words, any vertex can be reached by any other vedges are pruned by a threshold as they crystal-
tex and so there is always a path of “associationsiz€ into isolated subgraphs. This is exemplified
between any two words. Furthermore, all wordfor English in Figure 2.
networks have significant community structures; . .

: ; : 4 Discussion
vertices are organized into groups, where there are
higher densities of edges within groups than bewe examine the resulting graphs and show in this
tween them. The strength of community structuresection through some example subgraphs how fea-
can be quantified as follows (Newman and Gir-tures of human language emerge as charactersitics
van, 2004): Let{v;}}* , be a partition of the set of the model.
of vertices inton groups,r; the fraction of edge
weights that are internal to; (i.e. the sum of in-
ternal weights over the sum of all weights in theMorphology is a determining and observable char-
network), ands; the fraction of edge weights of acteristic of several languages. For the purposes
the edges starting ity. The modularity strength is of distributional study of linguistic items, mor-

4.1 Morphology matters

then defined as phological variation is problematic, since it splits
n one lexical item into several surface realisations,

Q= Z(n — 7). (3)  requiring more data to perform reliable and ro-
i=1 bust statistical analysis. Of the languages stud-

@ constitutes the fraction of edge weights givenied in this experiment, Finnish stands out atypi-
by edges in the network that link vertices within cal through its morphological characteristics. In
the same communities, minus the expected valutheory, Finnish nouns can take more than 2 000
of the same quantity in a random network with thesurface forms, through more than 12 cases in sin-
same community assignments (i.e. the same vegular and plural as well as possessive suffixes
tex set partition). There are several algorithms thaand clitic particles (Linden and Pirinen, 2009),
aim to find the community structure of a network and while in practice something between six and
by maximizing@. Here we use an agglomerative twelve forms suffice to cover about 80 per cent
clustering method by Clauset (2005), which worksof the variation (Kettunen, 2007) this is still an
as follows: Initialize by assigning each vertex toorder of magnitude more variation than in typi-
its own cluster. Then successively merge clustersal Indo-European languages such as the others
such that the positive change @fis maximized. in this sample. This variation is evident in Fig-
The procedure is repeated as longamcreases. ure 1—Finnish behaves differently than the Indo-
Typically @ is close to 0 for random partitions European languages in the sample: as each word
and indicates strong community structure wheris split in several other surface forms, its links to
approaching its maximum 1. In practiGeis typi-  other forms will be weaker. Morphological anal-
cally within the range 0.3 to 0.7, also for highly ysis, transforming surface forms to base forms
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Figure 1: Degree histograms of word similarity networks.
. D e ceticton assume that morphological variation is offset for
- e o the language user in a greater freedom in choice of
' istoire, . . I'exécution H
e, rexanZ o word order. This would seem to cause a great deal
' adhésion 1 adoptiong, 2R ACATOTY T —égalit
e R A T “"—qae  of problems for an approach such as the present
va{b}ssemem ,.muLm one, since it relies on the sequential organisation

I'introduction

of symbols in the signal. However, it is observ-

able that languages with free word order have pre-
1% ferred unmarked arrangements for their sentence

structure, and thus we find stable relationships in
Figure 3: French definite nouns clustered.  the data even for Finnish, although weaker than for
the other languages examined.

would strengthen those links. 4.2 Syntactic classes

In practice, the data sparsity caused by morPrevious studies have shown that a narrow con-
phological variation causes semantically homogetext window of one neighour to the left and one
nous classes to be split. Even for languages suateighbour to the right such as the one used in
as English and French, with very little data varia-the present experiments retrieves syntactic rela-
tion we find examples where morphological varia-tionships (Sahlgren, 2006). We find several such
tion causes divergence as seen in Figure 3, wheexamples in the graphs. In Figure 2 we can see
French nouns in definite form are clustered. It issubgraphs with past participles, auxiliary verbs,
not surprising that certain nouns in definite formprogressive verbs, person names.
assume similar roles in text, but the neatness of
the graph is a striking exposition of this fact. 4.3 Semantic classes

These problems could have been avoided wittsome of the subgraphs we find are models of clear
better preprocessing—simple such processing isemantic family resemblance as shown in Fig-
the case of English and French, and considerablyre 4. This provides us with a good argument for
more complex but feasible in the case of Finnish—blurring the artificial distinction between syntax
but are retained in the present example as proxieand semantics. Word classes are defined by their
for the difficulties typical of processing unknown meaning and usage alike; tlhepriori distinction
languages. Our methodology is robust even irbetween classification by function such as auxil-
face of shoddy preprocessing and no knowledgé@ary verbs given above and classification by mean-
of the morphological basis of the target languageing such months and places given here is not fruit-
In general, as a typological fact, it is reasonable tdul. We expect to be able to provide much more in-
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Figure 2: English. Network involving edges with weights> 0.85. For sake of clarity, only subgraphs
with three or more words are shown. Note that the threshold 0.85 is used only for the visualization. The
full network consists of the 3000 most common words in English, excluding the 19 most common ones.
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Figure 5: Examples of discourse functional classes

formed classification schemes than the traditional? Swedish and Finnish. The terms in the two sub-

“parts of speech” if we define classes by their dis-g“"‘p_hS are di_scourse mgrkers a_nd correspond to
tributional qualities rather than by the “content” Er‘g“fh“ certainly Bossmly , “evidently”, “nat-

they “represent”, schemes which will cut acrossurally”, “absolutely”, “hence” and similar terms.
the function-topic distinction.

4.4 Abstract discourse markers are a

. two semantic networks automatically created in
functional category

two languages by providing a relatively limited set
Further, several subgraphs have clear collectionsf equivalence relations in a translation lexicon.
of discourse markers of various types where therhis study supports those findings.

terms are markers of inf_orm_ational organisation in The results presented here display the potential
the text, as exemplified in Figure 5. of distributionally derived network representations
of word similarities. Although geometric (vector
based) and probabilistic models have proven vi-
This preliminary experiment supports future stud-able in various applications, they are limited by
ies to build knowledge structures across lanthe fact that word or term relations are constrained
guages, using distributional isomorphism betweety the geometric (often Euclidian) space in which
linguistic material in translated or even compara-they live. Network representations are richer in
ble corpora, on several levels of abstraction, fronthe sense that they are not bound by the same con-
function words, to semantic classes, to discoursstraints. For instance, a polyseme word (“may” for
markers. The isomorphism across the languagesxample) can have strong links to two other words
is clear and incontrovertible; this will allow us to (“might” and "September” for example), where
continue experiments using collections of multi-the two other words are completely unrelated. In
lingual materials, even for languages with rela-an Euclidean space this relation is not possible due
tively little technological support. Previous stud-to the triangle inequality. It is possible to em-
ies show that knowledge structures of this typebed a network in a geometric space, but this re-
that are created in one language show consideguires a very high dimensionality which makes the
able isomorphism to knowledge structures createdepresentation both cumbersome and inefficient in
in another language if the corpora are comparableerms of computation and memory. This has been
(Holmlund et al., 2005). Holmlund et al show how addressed by coarse graining or dimension reduc-
translation equivalences can be established usingpn, for example by means of singular value de-

5 Conclusions
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composition (Deerwester et al., 1990; Letsche andon Holmlund, Magnus Sahligren, and Jussi Karlgren.
Berry, 1997; Kanerva et al., 2000), which results 2005. Creating bilingual lexica using reference

Lo ; ; f wordlists for alignment of monolingual semantic
in information loss. This can be problematic, in vector spaces. IRroceedings of 15th Nordic Con-

particular since distributional models often face  tgrence of Computational Linguistics
data sparsity due to the curse of dimensionality. _ .
In a network representation, such dimension reRamon Ferrer i Cancho and Ricard V. 8&02001. The

L . . small world of human languag@roceedings of the
duction is not necessary and so potentially impor- Royal Society of London. Series B, Biological Sci-

tant information about word or term relations is  ences268:2261-2266.

retained.
. Pentti Kanerva, Jan Kristoferson, and Anders Holst.
The experiments presented here also show the 2000. Random indexing of text samples for latent

potential of moving from a purely probabilistic  semantic analysis. IRroceedings of the 22nd An-
model of term occurrence, or a bare distributional nual Conference of the Cognitive Science Sogiety

model such as those typically presented using a Pages 103-6.

geometric metaphor, in that it affords the possibil-immo Kettunen. 2007. Management of keyword
ity of abstract categories inferred from the primary  variation with frequency based generation of word
distributional data. This will give the possibility ~ formsinir. InProceedings of SIGIR 2007

of fur.ther utlllsm.g the resylts n stud|e§, e..g. forPhilipp Koehn. 2005. Europarl: A parallel corpus for
|eal’nlng SyntaCtIC or funCtlonal Categones In more statistical machine translation. MT Summit

complex constructional models of linguistic form. .
Todd Letsche and Michael Berry. 1997. Large-scale

Automatically establishing lexically and function- '~ . ; ) = ;
s . information retrieval with latent semantic indexing.
ally coherent classes in this manner will have bear- |4tormation Scienced00(1-4):105-137.

ing on future project goals of automatically learn- _ o o
ing syntactic and semantic roles of words in |an-Krister Linden and Tommi Pirinen. 2009. Weighting

. . ) finite-state morphological analyzers using hfst tools.
guage. This target is today typically pursued rely- In Proceedingsrz)f thegFinite-Stgte Methogs and Nat-

ing on traditional lexical Categories which are not ural Language Processim@)retoria’ South Africa.
necessarily the most salient ones in view of actual )
distributional characteristics of words. Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
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