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Abstract 

A novel method is presented for compiling 

two-level rules which have multiple context 

parts. The same method can also be applied 

to the resolution of so-called right-arrow rule 

conflicts. The method makes use of the fact 

that one can efficiently compose sets of two-
level rules with a lexicon transducer. By in-

troducing variant characters and using simple 

pre-processing of multi-context rules, all 

rules can be reduced into single-context rules. 

After the modified rules have been combined 

with the lexicon transducer, the variant char-

acters may be reverted back to the original 

surface characters. The proposed method ap-

pears to be efficient but only partial evidence 

is presented yet.   

1 Introduction 

Two-level rules can be compiled into length-

preserving transducers whose intersection effec-

tively reflects the constraints and the correspon-

dences imposed by the two-level grammar. Two-
level rules relate input strings (lexical representa-

tions) with output strings (surface representa-

tions). The pairs of strings are treated as charac-

ter pairs x:z consisting of lexical (input) char-

acters x and surface (output) characters z, and 

regular expressions based on such pairs.  Two-

level rule transducers are made length-preserving 

(epsilon-free) by using a place holder zero (0) 

within the rules and in the representations.  The 
zero is then removed after the rules have been 

combined by (virtual) intersection, before the 

result is composed with the lexicon.  There are 
four kinds of two-level rules:  

1. right-arrow rules or restriction rules, 

(x:z => LC _ RC) saying that the 

correspondence pair is allowed only if 

immediately preceded by left context LC 

and followed by right context RC, 

2. left-arrow rules or surface coercion 

rules,  (x:z <= LC _ RC) which say 

that in this context, the lexical character 

x may  only  correspond  to  the  surface  

character z, 

3. double-arrow rules (<=>), a shorthand 

combining these two requirements, and 

4. exclusion rules (x:z /<= LC _ RC) 

which forbid the pair x:z  to occur in 

this context. 

All types of rules may have more than one 
context part. In particular, the right-arrow rule  

x:z => LC1 _ RC1; LC2 _ RC2 would 

say that the pair x:z (which we call the centre 

of the rule) may occur in either one of these two 

contexts.  For various formulations of two-level 

rules, see e.g. (Koskenniemi, 1983), (Grimley-
Evans et al., 1996), (Black et.al., 1987), (Ruess-

ink, 1989), (Ritchie, 1992), (Kiraz, 2001) and a 

comprehensive survey on their formal interpreta-
tions, see (Vaillette, 2004). 

Compiling two-level rules into transducers is 

easy in all other cases except for right-arrow 

rules with multiple context-parts; see e.g. 
Koskenniemi (1983). Compiling right-arrow 

rules with multiple context parts is more difficult 

because the compilation of the whole rule is not 
in a simple relation to the component expressions 

in the rule; see e.g. Karttunen et al. (1987).   

The method proposed here reduces multi-
context rules into a set of separate simple rules, 

one for each context, by introducing some auxil-

iary variant characters.  These auxiliary charac-

ters are then normalized back into the original 
surface characters after the intersecting composi-

tion of the lexicon and the modified rules. The 

method is presented in section 3. The compila-
tion of multiple contexts using the proposed 

scheme appears to be very simple and fast.  Pre-

liminary results and discussion about the compu-
tational complexity are presented in section 4. 
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1.1 The compilation task with an example 

We make use of a simplified linguistic example 

where a stop k is realized as v between identical 

rounded close vowels (u, y). The example re-

sembles one detail of Finnish consonant grada-

tion but it is grossly simplified. According to the 
rule in the example, the lexical representation 

pukun would be realized as the surface repre-

sentation puvun.  This correspondence is tradi-

tionally represented as: 

p u k u n 
p u v u n 

where the upper tier represents the lexical or 

morphophonemic representation which we inter-

pret as the input, and the lower one corresponds 
to the surface representation which we consider 

as the output. 1   This two-tier representation is 

usually represented on a single line as a sequence 
of input and output character pairs where pairs of 

identical characters, such as p:p are abbreviated 

as a single p.  E.g.  the above pair  of  strings  be-

comes a string of pairs:  

p u k:v u n 

In our example we require that the correspon-

dence k:v may occur only between two identi-

cal rounded close vowels, i.e. either between two 

letters u or between two letters y. Multiple con-

texts are needed in the right-arrow rule which 

expresses this constraint. As a two-level gram-

mar, this would be: 

Alphabet a b … k … u v w … 
 k:v; 
Rules 
k:v => u _ u; 
       y _ y;  

This grammar would permit sequences such as:  

p u k:v u n 
k y k:v y n 
p u k:v u k:v u n 
l u k:v u n k y k:v y n 
t u k k u 

but it would exclude sequences: 

p u k:v y n 
t u k:v a n 

                                                
1 In Xerox terminology, the input or lexical characters 

are called the upper characters, and the output or sur-

face characters are called the lower characters. Other 

orientations are used by some authors. 

Whereas one can always express  multi-

context left-arrow rules (<=) and exclusion rules 

(/<=)  equivalently  as  separate  rules,  this  does  

not  hold  for  right-arrow rules.  The  two  separate  

rules 

k:v => u _ u; 
k:v => y _ y;  

would be in conflict with each other permitting 

no occurrences of k:v at all, (unless we apply 

so-called conflict resolution which would effec-

tively combine the two rules back to a single rule 

with two context parts). 

2 Previous compilation methods 

The first compiler of two-level rules was imple-

mented by the first author in 1985 and it handled 
also multi-context rules (Koskenniemi, 1985). 

The compiler used a finite-state package written 

by Ronald Kaplan and Martin Kay at Xerox 
PARC, and a variant of a formula they used for 

compiling cascaded rewrite rules. Their own 

work was not published until 1994. Kosken-

niemi’s compiler was re-implemented in LISP by 
a student in her master’s thesis (Kinnunen, 

1987).  

Compilation of two-level rules in general re-
quires  some  care  because  the  centres  may  occur  

several times in pair strings, the contexts may 

overlap and the centres may act as part of a con-
text for another occurrence of the same centre.  

For other rules than right-arrow rules, each con-

text is yet another condition for excluding un-

grammatical  strings  of  pairs,  which  is  how  the  
rules are related to each other.  The context parts 

of a right-arrow rule are, however, permissions, 

one of which has to be satisfied.  Expressing un-
ions of context parts was initially a problem 

which required complicated algorithms. 

Some of the earlier compilation methods are 
mentioned below. They all produce a single 

transducer out of each multi-context right-arrow 

rule. 

2.1 Method based on Kaplan and Kay 

Kaplan and Kay (1994) developed a method 
around 1980 for compiling rewriting rules into 

finite-state transducers 2 . The method was 

adapted by Koskenniemi to the compilation of 
two-level rules by modifying the formula 

                                                
2 Douglas Johnson (1972) presented a similar tech-

nique earlier but his work was not well known in 

early 1980s. 
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slightly. In this method, auxiliary left and right 

bracket characters (<1, >1, <2, >2, ...) 

were freely added in order to facilitate the check-
ing of the context conditions.  A unique left and 

right bracket was dedicated for each context part 

of  the  rule.   For  each  context  part  of  a  rule,  se-
quences with freely added brackets were then 

filtered with the context expressions so that only 

such sequences remained where occurrences of 

the brackets were delimited with the particular 
left or right context (allowing free occurrence of 

brackets for other context parts). Thereafter, it 

was easy to check that all occurrences of the cen-
tre  (i.e.  the  left  hand  part  of  the  rule  before  the  

rule operator) were delimited by some matching 

pair of brackets. As all component transducers in 

this expression were length-preserving (epsilon-
free), the constraints could be intersected with 

each other resulting in a single rule transducer 

for the multi-context rule (and finally the brack-
ets could be removed). 

2.2 Method of Grimley-Evans, Kiraz and 

Pulman 

Grimley-Evans, Kiraz and Pulman presented a 
simpler compilation formula for two-level rules 

(1996).  The method is prepared to handle more 

than two levels of representation, and it does not 

need the freely added brackets in the intermedi-
ate  stages.   Instead,  it  uses  a  marker  for  the rule  

centre and can with it express disjunctions of 

contexts.  Subtracting such a disjunction from all 
strings where the centre occurs expresses all pair 

strings which violate the multi-context rule.  

Thus, the negation of such a transducer is the 

desired result. 

2.3 Yli-Jyrä’s method 

Yli-Jyrä (Yli-Jyrä et al., 2006) introduced a 

concept of Generalized Restriction (GR) where 

expressions with auxiliary boundary characters � 
made it possible to express context parts of rules 

in a natural way, e.g. as: 

Pi* LC � Pi � RC Pi*   

Here Pi is the set of feasible pairs of characters 

and LC and RC are the left and right contexts. 

The two context parts of our example would cor-

respond to the following two expressions: 

Pi* u � Pi � u Pi* 
Pi* y � Pi � y Pi*     

Using such expressions, it is easy to express dis-

junctions of contexts as unions of the above ex-
pressions. This makes it logically simple to com-

pile multi-context right-arrow rules. The rule 

centre x:z can be expressed simply as: 

Pi* � x:z � Pi* 

The right-arrow rule  can be expressed as  an im-

plication where the expression for the centre im-
plies the union of the context parts.  Thereafter, 

one may just remove the auxiliary boundary 

characters, and the result is the rule-transducer. 
(It is easy to see that only one auxiliary character 

is needed when the length of the centres is one.) 

The compilation of rules with centres whose 

length is one using the GR seems very similar to 
that  of  Grimley-Evans  et  al.   The  nice  thing  

about GR is that one can easily express various 

rule types, including but not limited to the four 
types listed above. 

2.4 Intersecting compose 

It was observed somewhere around 1990 at 

Xerox that the rule sets may be composed with 
the lexicon transducers in an efficient way and 

that the resulting transducer was roughly similar 

in size as the lexicon transducer itself (Karttunen 

et al., 1992). This observation gives room to the 
new approach presented below. 

At that time, it was not practical to intersect 

complete two-level grammars if they contained 
many elaborate rules (and this is still a fairly 

heavy operation).  Another useful observation 

was that the intersection of the rules could be 

done in a joint single operation with the compo-
sition (Karttunen, 1994).  Avoiding the separate 

intersection made the combining of the lexicon 

and rules feasible and faster.  In addition to 
Xerox LEXC program, e.g. the HFST finite-state 

software contains this operation and it is rou-

tinely used when lexicons and two-level gram-
mars are combined into lexicon transducers 

(Lindén et al., 2009). 

Måns Huldén has noted (2009) that the com-

posing of the lexicon and the rules is sometimes 
a heavy operation, but can be optimized if one 

first composes the output side of the lexicon 

transducer with the rules, and thereafter the 
original lexicon with this intermediate result. 

3 Proposed method for compilation 

The  idea  is  to  modify  the  two-level  grammar  so  
that the rules become simpler. The modified 

grammar will contain only simple rules with sin-

gle context parts. This is done at the cost that the 
grammar will transform lexical representations 

into slightly modified surface representations.  
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The surface representations are, however, fixed 

after the rules have been combined with the lexi-

con so that the resulting lexicon transducer is 

equivalent to the result produced using earlier 
methods. 

3.1 The method through the example 

Let us return to the example in the introduction. 

The modified surface representation differs from 
the ultimate representation by having a slightly 

extended alphabet where some surface characters 

are expressed as their variants, i.e. there might be 

v1 or v2 in addition to v.  In particular, the first 

variant v1 will  be  used  exactly  where  the  first  

context of the original multi-context rule for k:v 

is satisfied, and v2 where the second context is 

satisfied. After extending the alphabet and split-
ting  the  rule,  our  example  grammar  will  be  as  

follows: 

Alphabet a b … k … u v w x y … 
  k:v1 k:v2; 
Rules 
k:v1 => u _ u; 
k:v2 => y _ y;  

These rules would permit sequences such as:  

p u k:v1 u n 
k y k:v2 y n 
p u k:v1 u k:v1 u n  

but exclude a sequence  

p u k:v2 u n    

The output of the modified grammar is now as 

required, except that it includes these variants v1 

and v2 instead of v.   If  we first  perform the in-

tersecting composition of the rules and the lexi-
con, we then can compose the result with a trivial 

transducer which simply transforms both v1 and 

v2 into v. 

It  should  be  noted  that  here  the  context  ex-

pressions of these example rules do not contain v 

on the output side, and therefore the introduction 

of the variants v1 and v2 causes no further 

complications.   In  the  general  case,  the  variants  

should be added as alternatives of v in  the  con-

text expressions, see the explanation below. 

3.2 More general cases 

The strategy is to pre-process the two-level 
grammar in steps by splitting more complex con-

structions into simpler ones until we have units 

whose components are trivial to compile.  The 

intersection of the components will have the de-
sired effect when composed with a lexicon and a 

trivial correction module.   Assume, for the time 

being, that all centres (i.e. the left-hand parts) of 

the rules are of length one. 

(1) Split double-arrow (<=>) rules into one 

right-arrow (=>)  rule  and  one  left-arrow  (<=) 

rule with centres and context parts identical to 
those of the original double-arrow rule. 

(2) Unfold the iterative where clauses in left-

arrow rules by establishing a separate left-arrow 
rule for each value of the iterator variable, e.g. 

V:Vb <= [a | o | u] ?* _; 
 where V in (A O U) 
       Vb in (a o u) matched; 

becomes 

A:a <= [a | o | u] ?* _; 
O:o <= [a | o | u] ?* _; 
U:u <= [a | o | u] ?* _; 

Unfold the where clauses in right-arrow rules 

in  either  of  the  two  ways:  (a)  If  the  where 

clauses create disjoint centres (as above), then 

establish a separate right-arrow rule for each 
value  of  the  variable,  and  (b)  if  the  clause  does  

not affect the centre, then create a single multi-

context right-arrow rule whose contexts consist 

of the context parts of the original rule by replac-

ing the where clause variable by its values, one 

value at a time, e.g. 

k:v => Vu _ Vu; where Vu in (u y); 

becomes 

k:v => u _ u; 
       y _ y; 

If  there  are  set  symbols  or  disjunctions  in  the  

centres  of  a  right-arrow  rule,  then  split  the  rule  
into separate rules where each rule has just a sin-

gle pair as its centre, and the context part is iden-

tical to the context part (after the unfolding of the 

where clauses). 

Note that these two first steps would probably 

be common to any method of compiling multi-
context rules.  After these two steps, we have 

right-arrow, left-arrow and exclusion rules.  The 

right-arrow  rules  have  single  pairs  as  their  cen-
tres. 

(3) Identify the right-arrow rules which, after 

the unfolding, have multiple contexts, and record 

each  pair  which  is  the  centre  of  such  a  rule.   
Suppose that the output character (i.e. the surface 

character) of such a rule is z and there are n con-

text parts in the rule, then create n new auxiliary 
characters z1, z2, ..., zn  and denote the set consist-

ing of them by S(z).  
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Split the rule into n distinct single-context 

right-arrow rules by replacing the z of the centre 

by each zi in turn. 

Our simple example rule becomes now. 

k:v1 => u _ u; 
k:v2 => y _ y; 

(4) When all rules have been split according to 
the above steps, we need a post-processing phase 

for the whole grammar. We have to extend the 

alphabet by adding the new auxiliary characters 
in it. If original surface characters (which now 

have variants) were referred to in the rules, each 

such reference must be replaced with the union 

of the original character and its variants. This 
replacement has to be done throughout the  

grammar. For any existing pairs x:z listed in the 

alphabet, we add there also the pairs x:z1, ..., x:zn.  
The same is done for all declarations of sets 

where z occurs  (as  an output  character).  Insert  a  

declaration for a new character set corresponding 
to S(z).  In  all  define  clauses  and  in  all  rule-

context expressions where z occurs as an output 

character,  it  is  replaced  by  the  set  S(z).   In  all  

centres of left-arrow rules where z occurs  as  the 
output character, it is replaced by S(z).  

The  purpose  of  this  step  is  just  to  make  the  

modified two-level grammar consistent in terms 
of its alphabet, and to make the modified rules 

treat  the occurrence of  any of  the output  charac-

ters z1,  z2,  …, zn in the same way as the original 

rule treated z wherever it occurred in its contexts. 
 

After this pre-processing we only have right-

arrow, left-arrow and exclusion rules with a sin-
gle context part.  All rules are independent of 

each  other  in  such  a  way  that  their  intersection  

would have the effect we wish the grammar to 
have.  Thus, we may compile the rule set as such 

and  each  of  these  simple  rules  separately.   Any  

of the existing compilation formulas will do. 

After compiling the individual rules, they have 
to be intersected and composed with the lexicon 

transducer which transforms base forms and in-

flectional feature symbols into the morphopho-
nemic representation of the word-forms. The 

composing and intersecting is efficiently done as 

a single operation because it then avoids the pos-
sible explosion which can occur if intermediate 

result of the intersection is computed in full.   

The rules are mostly independent of each 

other, capable of recurring freely. Therefore 
something near the worst case complexity is 

likely  to  occur,  i.e.  the  size  of  the  intersection  

would have many states, roughly proportional to 

the  product  of  the  numbers  of  the  states  in  the  

individual rule transducers. 

The composition of the lexicon and the logical 

intersection of the modified rules is almost iden-
tical  to  the  composition  of  the  lexicon  and  the  

logical intersection of the original rules. The only 

difference is that the output (i.e. the surface) rep-
resentation contains some auxiliary characters zi 

instead of the original surface characters z. A 

simple transducer will correct this. (The trans-
ducer has just one (final) state and identity transi-

tions for all original surface characters and a re-

duction zi:z for  each of  the auxiliary characters.)   

This composition with the correcting transducer 
can be made only after the rules have been com-

bined with the lexicon.   

3.3 Right-arrow conflicts 

Right-arrow rules are often considered as per-
missions.   A  rule  could  be  interpreted  as  “this  

correspondence pair may occur if the following 

context condition is met”.  Further permissions 

might  be  stated  in  other  rules.  As  a  whole,  any  
occurrence must get at least one permission in 

order to be allowed.  

The right-arrow conflict resolution scheme 
presented by Karttunen implemented this 

through an extensive pre-processing where the 

conflicts were first detected and then resolved 
(Karttunen et al., 1987). The resolution was done 

by copying context parts among the rules in con-

flict.  Thus, what was compiled was a grammar 

with rules extended with copies of context parts 
from other rules.  

The scenario outlined above could be slightly 

modified in order to implement the simple right-
arrow rule  conflict  resolution  in  a  way  which  is  

equivalent to the solution presented by Kart-

tunen.   All  that  is  needed is  that  one would first  
split the right-arrow rules with multiple context 

parts into separate rules.  Only after that, one 

would consider all right-arrow rules and record 

rules  with identical  centres.   For  groups of  rules  
with identical centres, one would introduce the 

further variants of the surface characters, a sepa-

rate  variant  for  each  rule.   In  this  scheme,  the  
conflict resolution of right-arrow rules is imple-

mented fairly naturally in a way analogous to the 

handling of multi-context rules. 

3.4 Note on longer centres in rules 

In the above discussion, the left-hand parts of 
rules,  i.e.  their  centres,  were  always  of  length  

one.  In fact, one may define rules with longer 

centres by a scheme which reduces them into 
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rules with length one centres.  It appears that the 

basic rule types (the left and right-arrow rules) 

with longer centres can be expressed in terms of 

length one centres, if we apply conflict resolution 
for the right-arrow rules. 

We replace a right-arrow rule, e.g. 

x1:z1 x2:z2 ... xk:zk => LC _ RC; 

with k separate rules 

x1:z1 => LC _ x2:z2 ... xk:zk RC; 
x2:z2 => LC x1:z1 _ ... xk:zk RC; 

... 
xk:zk => LC x1:z1 x2:z2 ... _ RC; 

Effectively, each input character may be realized 

according  to  the  original  rule  only  if  the  rest  of  

the  centre  will  also  be  realized  according  to  the  
original rule.  

Respectively, we replace a left-arrow rule, e.g. 

x1:z1 x2:z2 ... xk:zk <= LC _ RC; 

with k separate rules 

x1:z1 <= LC _ x2: ... xk: RC; 
x2:z2 <= LC x1: _ ... xk: RC; 

... 
xk:zk <= LC x1: x2: ... _ RC; 

Here the realization of the surface string is forced 
for each of its character of the centre separately, 

without reference to what happens to other char-

acters  in  the  centre.   (Otherwise  the  contexts  of  
the separate rules would be too restrictive, and 

allow the default realization as well.) 

 

4 Complexity and implementation 

In order to implement the proposed method, one 

could write a pre-processor which just transforms 
the  grammar  into  the  simplified  form,  and  then  

use an existing two-level compiler. Alternatively, 

one could modify an existing compiler, or write a 

new compiler which would be somewhat simpler 
than the existing ones. We have not implemented 

the proposed method yet, but rather simulated the 

effects using existing two-level rule compilers. 
Because the pre-processing would be very fast 

anyway, we decided to estimate the efficiency of 

the proposed method through compiling hand-
modified rules with the existing HFST-TWOLC 

(Lindén et al., 2009) and Xerox TWOLC3 two-

                                                
3 We used an old version 3.4.10 (2.17.7) which we 

thought would make use of the Kaplan and Kay for-

mula.  We suspected that the most recent versions 

might have gone over to the GR formula. 

level rule compilers. The HFST tools are built on 

top of existing open source finite-state packages 

OpenFST (Allauzen et al., 2007) and Helmut 

Schmid’s SFST (2005).  
It appears that all normal morphographemic 

two-level grammars can be compiled with the 

methods of Kaplan and Kay, Grimley-Evans and 
Yli-Jyrä. 

Initial tests of the proposed scheme are prom-

ising.  The  compilation  speed  was  tested  with  a  
grammar of consisting of 12 rules including one 

multi-context rule for Finnish consonant grada-

tion with some 8 contexts and a full Finnish lexi-

con. When the multi-context rule was split into 
separate rules, the compilation was somewhat 

faster (12.4 sec) to than when the rule was com-

piled a multi-context rule using the GR formula 
(13.9 sec).  The gain in the speed by splitting was 

lost at the additional work needed in the inter-

secting compose of the rules and the full lexicon 
and the final fixing of the variants. On the whole, 

the proposed method had no advantage over the 

GR method. 

In  order  to  see  how  the  number  of  context  
parts affects the compilation speed, we made 

tests with an extreme grammar simulating Dutch 

hyphenation rules. The hyphenation logic was 
taken out of TeX hyphenation patterns which had 

been converted into two-level rules. The first 

grammar consisted of a single two-level rule 

which had some 3700 context parts. This gram-
mar could not be compiled using Xerox TWOLC 

which applies the Kaplan and Kay method be-

cause more than 5 days on a dedicated Linux 
machine with 64 GB core memory was not 

enough for completing the computation.  When 

using  of  GR  method  of  HFST-TWOLC,  the  
compilation time was not a problem (34 min-

utes).  The method of Grimley-Evans et al. 

would probably have been equally feasible.  

Compiling the grammar after splitting it into 
separate rules as proposed above was also feasi-

ble: about one hour with Xerox TWOLC and 

about 20 hours with HFST-TWOLC. The differ-
ence between these two implementations de-

pends most likely on the way they handle alpha-

bets.  The Xerox tool makes use of a so-called 
'other' symbol which stands for characters not 

mentioned in the rule. It also optimizes the com-

putation by using equivalence classes of charac-

ter pairs.  These make the compilation less sensi-
tive to the 3700 new symbols added to the alpha-

bet than what happens in the HFST routines.    

Another test was made using a 50 pattern sub-
set of the above hyphenation grammar.  Using 
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the  Xerox  TWOLC,  the  subset  compiled  as  a  

multi-context rule in 28.4 seconds, and when 

split according to the method proposed here, it 

compiled in 0.04 seconds. Using the HFST-
TWOLC, the timings were 3.1 seconds and 5.4 

seconds, respectively.   These results corroborate 

the intuition that the Kaplan and Kay formula is 
sensitive  to  the  number  of  context  parts  in  rules  

whereas  the  GR  formula  is  less  sensitive  to  the  

number of context parts in rules. 
There are factors which affect the speed of 

HFST-TWOLC, including the implementation 

detail including the way of treating characters or 

character pairs which are not specifically men-
tioned in a particular transducer. We anticipate 

that there is much room for improvement in 

treating larger alphabets in HFST internal rou-
tines and there is no inherent reason why it 

should be slower than the Xerox tool. The next 

release of HFST will use Huldén’s FOMA finite-
state package. FOMA implements the ‘other’ 

symbol and is expected to improve the process-

ing of larger alphabets. 

Our intuition and observation is that the pro-
posed compilation phase requires linear time 

with  respect  to  the  number  of  context  parts  in  a  

rule. Whether the proposed compilation method 
has an advantage over the compilation using the 

GR  or  Grimley-Evans  formula  remains  to  be  

seen. 
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