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Abstract by Hale (2003, 2006) as the entropy of the prob-
ability distribution over possible sentence struc-
tures. The reduction in entropy that results from
processing a word is taken to be the amount of
information conveyed by that word, and was ar-
gued by Hale to be predictive of word-reading
time. However, this entropy-reduction hypothesis
has not yet been comprehensively tested, possibly
because of the difficulty of computing the required
entropies. Although Hale (2006) shows how sen-
tence entropy can be computed given a PCFG, this
computation is not feasible when the grammar is
of realistic size.

Here, we empirically investigate the entropy-
reduction hypothesis more thoroughly than has
been done before, by using recurrent neural net-
. works as language models. Since these networks
1 Introduction do not derive any structure, they provide estimates

In the field of computational psycholinguistics, a0f sentence entropy rather than sentensteticture
currently popular approach is to account for read€ntropy. In practice, these two entropies will gen-
ing times on a sentence’s words by estimates of therally be similar: If the rest of the sentence is
amount of information conveyed by these Wordshlghly uncertain, so is its structure. Sentence en-
Processing a word that conveys more informatiorifopy can therefore be viewed as a simplification
is assumed to involve more cognitive effort, which Of structure entropy; one that is less theory depen-
is reflected in the time required to read the word. dent since it does not rely on any particular gram-
In this context, the most common formaliza- mar. The distinction between entropy over sen-
tion of a word’s information content is its sur- tences and entropy over structures will simply be
prisal (Hale, 2001; Levy, 2008). If word string ignored in the remainder of this paper.
wh (short for wi,ws, ... w;) is the sentence so Results show that, indeed, a significant fraction
far andP(wt_H’wD the occurrence probability of of variance in reading-time data is accounted for
the next wordw 1, then that word’s surprisal is by entropy reduction, over and above surprisal.
defined as—log P(w1|wt). It is well estab-
lished by now that word-reading times indeed cor2  Entropy and sentence processing
relate positively with surprisal values as estimated
by any sufficiently accurate generative Ianguagg'l Sentence entropy
model (Boston et al., 2008; Demberg and Keller,Let W be the set of words in the language amd
2008; Frank, 2009; Roark et al., 2009; Smith andhe set of all word strings of length The set of
Levy, 2008). complete sentences, denotgdcontains all word
A lesser known alternative operationalization ofstrings of any length (i.el,J:2, W*), except that a
a word’s information content is based on the un-special end-of-sentence markerfs> is attached
certainty about the rest of the sentence, quantifietb the end of each string.

The amount of cognitive effort required to
process a word has been argued to depend
on the word’s effect on the uncertainty
about the incoming sentence, as quanti-
fied by the entropy over sentence probabil-
ities. The current paper tests this hypoth-
esis more thoroughly than has been done
before by using recurrent neural networks
for entropy-reduction estimation. A com-
parison between these estimates and word-
reading times shows that entropy reduc-
tion is positively related to processing ef-
fort, confirming the entropy-reduction hy-
pothesis. This effect is independent from
the effect of surprisal.

81

Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010, pages 81-89,
Uppsala, Sweden, 15 July 2010. (©2010 Association for Computational Linguistics



A generative language model defines a probaebvious solution is to look only at the next few
bility distribution overS. The entropy of this dis- words instead of all complete continuationsudf

tribution is Let S™ be the subset of containing all (and
} } only) sentences of lengtl or less, counting also

H=- Y P(w])log P(w). the </s> at the end of each sentence. Note that

wleS this set includes the ‘empty sentence’ consisting

of only </s>. The set of lengthn word strings
As words are processed one by one, the sefipat o not end inc/s> is W™. Together, these
tence probabilities change. When the firstords sets formV™ — W™ U S™. which contains all

. . ;
(i.e., the stringu; € W) of a sentence have been y,q yejevant strings for defining the entropy over
processed, the entropy of the probability d'St”b“'strings up to lengtn.2 After processingu!, the

tion over sentences is entropy over strings up to lengtht n is:

. A H(t) = Y hwilwl) = D hwl,|w).
H(t) = - Z P<w‘:7[‘wi) IOgP(w{‘wi) (l) ’w‘{EWH'n w{+1€W”
w! €S
' It now seems straightforward to define suffix-
In order to simplify later equations, we define entropy reduction by analogy with sentence-
the functionh(y|z) = —P(y|z) log P(y|z), such entropy reduction as expressed in Eq. 2: Simply
that Eqg. 1 becomes replaceH by H,, to obtain

. suf _ _

wleS As indicated by its superscript labely FSUf
' ~quantifies the reduction in uncertainty about the
If the first¢ words ofw] do not equaty! (orw?!  upcomingn-word suffix. However, this is concep-
has fewer tham + 1 words)! thenP(w?|w!) = 0  tually different from the originalAH of Eq. 2,
soh(w{|w§) = 0. This means that, for computing which is the reduction in uncertainty about the
H(t), only the words fromt + 1 onwards need to identity of the current sentence. The difference

be taken into account: becomes clear when we view the sentence proces-
. sor’s task as that of selecting the correct element

H(t)= Y h(wl|w}). from S. If this set of complete sentences is ap-

wi, €8 proximated by, and the task is to select one

element from that set, an alternative definition of
The reduction in entropy due to processing thesuffix-entropy reduction arises:

next word,w;1, IS
" AHSt + 1)

AH(t+1)=H(t)— H(t+1). (2) _ Z h(w{|w§) _ Z h(w{‘wi—i_l)

Note that positve AH corresponds to a  “i€V™" wiEWHEn

decrease in entropy. Accqrding to Hal_e = Z h(w]q|wh) Z h(w!,o[wt )
(2006), the nonnegative reduction in entropy (i.e., i cyym wi - eyyn—1
. . t+1 t+2

max{0, AH}) reflects the cognitive effort in- CH () — H o (t 21 4
volved in processing;.; and should therefore be n(t) = Hna (¢ +1). ()
predictive of reading time on that word. The label ‘sent’ indicates that H*"quantifies
the reduction in uncertainty about which sentence
forms the current input. This uncertainty is ap-

ComputingH () is computationally feasible only proximated by marginalizing over all word strings
when there are very few sentencesSinor when  |onger thart + n.

the language can be described by a small grammar. |t js easy to see that
To estimate entropy in more realistic situations, an

2.2 Suffix entropy

lim AHY = lim AHS"= AH,

'Sincew] ends with< /s > andw{ does not, the two N =0
strings must be different. Consequentlyyif is ¢t words long, 2The probability of a stringo]* € W™ is the summed
then P(w] |w}) = 0. probability of all sentences with prefix]”.
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so both approximations of entropy reduction ap-over atest corpus. These estimates were then com-
propriately converge td\H in the limit. Nev- pared to reading times measured over the words
ertheless, they formalize different quantities andf the same test corpus. This section presents the
may well correspond to different cognitive factors.data sets that were used, language-model details,
If it is true that cognitive effort is predicted by and the evaluation metric.

the reduction in uncertainty about the identity of
the incoming sentence, we should find that word3-1
reading times are predicted more accurately byrhe models were trained on the POS tag se-

Data

AHS®"than byA HSV", guences of the full WSJ corpus (Marcus et al.,

_ 1993). They were evaluated on the POS-tagged
2.3 Relation to next-word entropy Dundee corpus (Kennedy and Pynte, 2005), which
In the extreme case of = 1, Eq. 4 reduces to has been used in several studies that investigate the

relation between word surprisal and reading time

AHP*t +1) = Hi(t) — Ho(t+1) = Hi(t),  (Demberg and Keller, 2008; Frank, 2009; Smith

_ _ and Levy, 2008). This 2368-sentence (51501

so the reduction of entropy over the single next,,ysy collection of British newspaper editorials
word w;+1 equals the next-word entropy just be- o, aq \ith eye-tracking data of 10 participants.

for_e processing that word. Note tijfen_t(H_l) POS tags for the Dundee corpus were taken from
is independent of the word at+ 1, making it a Frank (2009).

severely impoverished measure of the uncertainty For each word and each participant, reading
reduction caused by that word. We would therey; o \yas defined as the total fixation time on that
fore expect reading _t|mes to be predmtgd MOre aGyord before any fixation on a later word of the

curately byAHz="with n > 1, and possibly even ¢, 0 sentence. Following Demberg and Keller

f
by AH?™. _ _ _ (2008), data points (i.e., word/participant pairs)
Roark et al. (2009) investigated the relation bey a6 vemoved if the word was not fixated, was

tween H; (_t +_ 1) and regdmg t|me.0mjt+1, and presented as the first or last on a line, contained
found a significant positive effect: Larger next- o than one capital letter or a non-letter (e.g.,

word entropy directlyafter processingu;+1 COI-  yhe anostrophe in a clitic), or was attached to punc-
responded to longer reading tinoe that word. v a4ion. Mainly due to the large number (over

This is of particular interest becausé, (t + 1) 4604y of nonfixations, 62.8% of data points were

necessarily correlatasegatively with entropy re- removed, leaving 191380 data points (between

duction AHS®"{¢ + 1): If entropy is large after 16469 and 21 770 per participant).
w41, chances are that it did not reduce much

through processing af;;1. Indeed, in our data 3.2 Language model

set, Hy(t + 1) and AHZ"{t + 1) correlate be- Entropy is more time consuming to compute than
tweenr = —29 andr = —.26 (forn = 210 gymyisal, even fon = 1, because it requires es-
n = 4) which is highly significantly § ~ 0) dif-  imates of the occurrence probabilitiestat 1 of
ferent from 0. Roark et al.'s finding of a positive 5| word types, rather than just of the actual next
relation betweerf; (¢ + 1) and reading ime on \yorg. Moreover, the number of suffixes rises ex-
wy11 therefore seems to disconfirm the e”tmpy'ponentially as suffix length grows, and, conse-
reduction hypothesis. quently, so does computation time.

Roark et al. (2009) used an incremental PCFG
parser to obtain; but this method rapidly be-
A set of language models was trained on a corpusomes infeasible as grows. Low-order Markov
of POS tags of sentences. The advantage of usingodels (e.g., a bigram model) are more efficient
POS tags rather than words is that their probabiland can be used for largerbut they do not form
ities can be estimated much more accurately angharticularly accurate language models. Moreover,
consequently, more accurate prediction of wordMarkov models lack cognitive plausibility.
reading time is possible (Demberg and Keller, Here, Simple Recurrent Networks (SRNs) (El-
2008; Roark et al., 2009). Subsequent to trainingman, 1990) are used as language models. When
the models were made to generate estimates of surained to predict the upcoming input in a word se-
prisal and entropy reductior& F3' and AHS®™  quence, these networks can generate estimates of

3 Method
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P(w11|wt) efficiently and relatively accurately. ,
They thereby allow to approximate sentence en- fiout(®1, .., x46) = e -

tropy more closely than the incremental parsers ’ 205 €

used in previous studies. Unlike Markov models, This function makes sure that,: sums to one
SRNs have been claimed to form cognitively re-and can therefore be viewed as a probability dis-
alistic sentence-processing models (Christianseftibution: Thei-th element ofagy(t) is the SRN'’s
and MacDonald, 2009). Moreover, it has beenestimate of the probability that thieth POS tag
shown that SRN-based surprisal estimates can cowill be the input att + 1, or, in case corresponds
relate more strongly to reading times than surprisalo < /s >, the probability that the sentence ends
values estimated by a phrase-structure grammaiftert+ POS tags.

(Frank, 2009).

3.2.2 Network training

3.2.1 Network architecture and processing Ten SRNs, differing only in their random initial
The SRNs comprised three layers of units: the inconnection weights and biases, were trained us-
put layer, the recurrent (hidden) layer, and the outing the standard backpropagation algorithm. Each
put layer. Each input unit corresponds to one POString of WSJ POS tags was presented once, with
tag, making 45 input units since there are 45 difthe sentences in random order. After each POS in-
ferent POS tags in the WSJ corpus. The network’put, connection weights were updated to minimize
output units represent predictions of subsequerthe cross-entropy between the network outputs and
inputs. The output layer also has one unit for eacla 46-element vector that encoded the next input (or
POS tag, plus an extra unit that represents>,  marked the end of the sentence) by the correspond-
that is, the absence of any further input. Henceing element having a value of one and all others
there were 46 output units. The number of recurbeing zero.
rent units was fairly arbitrarily set to 100. .

As is common in these networks, the input layer3-3 Evaluation
was fully connected to the recurrent layer, which3.3.1 Obtaining surprisal and entropy
in turn was fully connected to the output layer. Sincea(t) is basically the probability distribu-
Also, there were time-delayed connections fromion P(wq41|wt), surprisal andd; can be read off
the recurrent layer to itself. In addition, each re-directly. To obtainH», Hs, and H,, we use the

current and output unit received a bias input. fact that

The vectors of recurrent- and output-layer ac- n
tivations after processing’ are denoteche(t) Pwltwh) = H P(wpsiwt™ Y. (5)
andagy(t), respectively. At the beginning of each i1

sepencearec(0) 0.5 Surprisal and entropy estimates were averaged
The input vectora!, representing POS tag urpri py est w verag

n?
consists of zeros except for a single element (corQVer the ten SRNs. So, for each POS tag of the

responding ta) that equals one. When inpiis Dundee corpus, there was one estimate of surprisal

processed, the recurrent layer’s state is updated ad" d_four of entropy (fqn = Lton=4).
cording to: Since H,,(t) approximatesH (t) more closely

asn grows, it would be natural to expect a better
arec(t) = frec Wrecrec(t — 1) + Winafn + brec), fittoreading times for larget. On the other hand,

it goes without saying thatl,, is only a very rough
measure of a reader’s actual uncertainty about the
upcomingn inputs, no matter how accurate the
language model that was used to compute these
entropies. Crucially, the correspondence between
H,, and the uncertainty experienced by a reader
will grow even weaker with largen. This is ap-
aout(t) = fout(Wourec(t) + bout), parent from the fact that, as proven in the Ap-
pendix, H,, can be expressed in terms Af, and

where matricesWj, and W. contain the net-
work’s input and recurrent connection weights, re-
spectively;brec is the vector of recurrent-layer bi-
ases; and activation functidic(x) is the logistic
function f(z) = (1+e-*)~! applied elementwise
to x. The new output vector is now given by

where Wy, is the matrix of output connection
weights;bey: the vector of output-layer biases; and
fout(x) the softmax function H,(t)=Hi(t)+ E(Hp—1(t+ 1)),

n—
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Figure 1: Coefficient of correlation between e Figure 2: Cumulativey® distribution with 1 de-

timates of surprisal and entropy reduction, as 9re€ of freedom, plotting statistical significance
function of suffix lengthn. (p-value) as a function of effect size.

whereE(z) is the expected value af Obviously, 3-3-4 Fittoreading times

the expected value dff,,_; is less appropriate as A generalized linear regression model for gamma-
an uncertainty measure tharfis,_; itself. Hence, distributed data was fitted to the reading times.

H, can be less accurate th#f),_; as a quantifi- This model contained several well-known predic-
cation of the actual cognitive uncertainty. For th tors of word-reading time: the number of letters
reason, we may expect largerto result inworse  in the word, the word’s position in the sentence,

fit to reading-time data. whether the next word was fixated, whether the
_ . previous word was fixated, log of the word’s rel-
3.3.2 Negative entropy reduction ative frequency, log of the word’s forward and

Hale (2006) argued for nonnegative entropy rebackward transitional probabiliti€sand surprisal
duction max{0, AH}, rather thanAH itself, as of the part-of-speech. Next, one set of entropy-
a measure of processing effort. FAF/®™ the reduction estimates was added to the regression.
difference between the two is negligible becaus& he effect size is the resulting decrease in the re-
only about 0.03% of entropy reductions are neggression model's deviance, which is indicative of
ative. As for AHSYf, approximately 42% of val- the amount of variance in reading time accounted
ues are negative so whether these are left odbr by those estimates of entropy reduction. Fig-
makes quite a difference. Since preliminary ex-ure 2 shows how effect size is related to statis-
periments showed that word-reading times are pretical significance: A factor forms a significant
dicted much more accurately b s than by (p < .05) predictor of reading time if its effect
max{0, AH"}, only AH" and AH*" were size is greater than 3.84.

used here, that is, negative values were included. _ )
4 Results and Discussion
3.3.3 Relation between information measures

Both surprisal and entropy reduction can be taken’ _
as measures for the amount of information ConF|gure 3 shows the effect sizes for both measures
veyed by a word, so it is to be expected that theypf entropy reduction, and their relation to suffix
are positively correlated. However, as shown inlength n. All effects are in the correct d|reCt|0n,
Figure 1, this correlation is in fact quite weak, that is, larger entropy reduction corresponds to
ranging from .14 forAH$Yf to .38 for AH$e™  longer reading time. These results clearly support
In contrast, AHTSZUf and AHTSZem correlate very the entropy-reduction hypotheSiS: A Significant
strongly to each other: The coefficients of correla- s+t reading times, which are approximately gamma dis-
tion range from73 whenn = 110 .97 for n = 4. tributed, were first normalized to make the scale parameters
of the gamma distributions the same across participants.

3Not to mention the realistic possibility that the cognitive ~ 5These are, respectively, the relative frequency of the
sentence-processing system does not abide by the normativerd given the previous word, and its relative frequency
chain rule expressed in Eq. 5. given the next word.

#.1 Effect of entropy reduction
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Figure 3: Size of the effect A HS' and AHS®™  Figure 4: Effect size of entropy reduction
as a function of suffix length. (AHS®), next-word entropy K1), or surprisal,
over and above the other two predictors.

fraction of variance in reading time is accoun
for by the entropy-reduction estimatesHSe"
over and above what is explained by the other
tors in the regression analysis, including surpr
Moreover, the effect oA H3*"is larger than the

of AHSY indicating that it is indeed uncertair
about the identity of the current sentence, ra
than uncertainty about the upcoming input(s),
matters for cognitive processing effort. Only at
n = 1 was the effect size oh H3*"'smaller than It is also of interest that surprisal has a significant
that ofAHfL“f, but it should be kept in mind that effect over and above entropy reduction, in the cor-
AH$®"is independent of the incoming word and rect (i.e., positive) direction. When surprisal esti-
is therefore quite impoverished as a measure of th@ates are added to a regression model that already
effort involved in processing the word. Moreover, containsA 3¢, the effect size ranges from 8.7
the difference betweeAHlsent and AHfo is not for n = 1to 13.9 forn = 4. This show that there
significant p > .4), as determined by the boot- €Xist independent effects of surprisal and entropy
strap method (Efron and Tibshirani, 1986). In con-reduction on processing effort.

n = 3. The difference between the effect sizes
of AHS®"and AHS is marginally significantly
(p < .07) larger forn = 3 than forn = 2.

4.2 Effects of other factors

trast, the differences are significant wher> 1 Be reminded from Section 2.3 that Roark et al.
@allp < ,()S1e)n,t in sp|tescu>:‘ the high correlation be- (2009) found a positive relation between reading
tweenAH*Mand A . time onw;y; and Hy (¢t + 1), the next-word en-

Another indication that cognitive processing ef-tropy after processing+1. When that value is
fortis modeled more accurately ByHS®"than by added as a predictor in the regression model that
AHS' is that the effect size ah H3*"'seems less already contains surprisal and entropy reduction
affected byn. Even thoughA H, the reduction in A HS®™ model fit greatly improves. In fact, as can
entropy over complete sentences, is approximatelde seen from comparing Figures 3 and 4, the ef-
more closely as suffix length grows, increasing fect of A H3*"is strengthened by including next-
is strongly detrimental to the effect (ZﬁHfl“f: It  word entropy in the regression model. Moreover,
is no longer significant forn > 2. Presumably, each of the factors surprisal, entropy reduction,
this can be (partly) attributed to the impoverishedand next-word entropy has a significant effect over
relation between formal entropy and psychologi-and above the other two. In all cases, these ef-
cal uncertainty, as explained in Section 3.3.1. Irfects were in the positive direction. This confirms
any case, the effect ak H3*"is more stable. Al- Roark et al.’s finding and shows that it is in fact
thoughA HSU and A H3®™necessarily converge as compatible with the entropy-reduction hypothesis,
n — oo, the two effect sizes seem to diverge up toin contrast to what was suggested in Section 2.3.

86



5 Discussion and conclusion ble interpretations of complete sentences, and pro-

_ ) cessing a word comes down to updating this distri-
The current results contribute to a growing body ofjytion to incorporate the new information, then the

evidence that the amount of information conveyedygrq's surprisal equals the Kullback-Leibler di-
by a word in sentence context is indicative of theyergence from the old distribution to the new. This
amount of cognitive effort required for processing, givergence is presumed to quantify the amount of
as can be observed from reading time on the word,qk (and, therefore, time) needed to update the
Several previous studies have shown that surprisgfistripution. Likewise, Smith and Levy (2008) ex-
can serve as a cognitively relevant measure for §|ain the surprisal effect in terms of a reader’s opti-
word’s information content. In contrast, the rele- 4 preparation to incoming input. When it comes
vance of entropy reduction as a cognitive measurg, entropy reduction, however, no reading-time
has not been investigated this thoroughly beforeégegicting mechanism has been proposed. Ideally,
Hale (2003; 2006) presents entropy-reduction acqf course, there should be a single computational-

counts of particular psycholinguistic phenomenajeye| model that predicts the effects of both sur-

but does not show that entropy reduction generpyyisa| and entropy reduction.
ally correlates with word-reading times. Roark et One recent model (Frank, 2010) shows that the
al. (2009) presented data that could be takenasey- ..~ . :

. . : . reading-time effects of both surprisal and entropy
idence against the entropy-reduction hypOtheS'Sreduction can indeed result from a sinale pro-
but the current paper showed that the next-word gee p

L cessing mechanism. The model simulates sen-
entropy effect, found by Roark et al., is indepen- . .
. tence comprehension as the incremental and dy-
dent of the entropy-reduction effect.

It . ke the ind q & namical update of a non-linguistic representation
tis tempting to take the independent eflectSy¢ o qiate of-affairs described by the sentence.

of surpri;al_ and ent.r_opy reduction as evidencqn this framework, surprisal and entropy reduc-
for two distinct cognitive representations or Pro-4ion are defined with respect to a probabilistic

cesses, one related to surprisal, the other to - odel of theworld. rather than a model of the
tropy reduction. However, it is very well possible language: The améunt of information conveyed

that these two information measures are merel)éy a word depends on what is asserted by the
complementary formalizations of a single, Cogni'sentence-so-far, and not on how the sentence’s

tively relevant notion of word information. Since "\ iches the statistical patterns of the lan-

the quantitative results presented here provide nauage. As it turns out, word-processing times in

evidence for either view, a more detailed qualitay, o sontence-comprehension model correlate pos-
tive analysis is needed.

> ] ) _itively with both surprisal and entropy reduction.
In addition, the relation between reading timépg model thereby forms a computational-level

and the two measures of word information may.count of the relation between reading time and
be further clarified by the development of mech-y,5th measures of word information. According

anistic sentence-processing models. Both the sug, this account, the two information measures do

prisa! and entropy-redugtion theories provide only;, ;¢ correspond to two distinct cognitive processes.
functional-level descriptions (Marr, 1982) of the Rather, there is one comprehension mechanism

relation between information content and processg, 4 js responsible for the incremental revision of

ing effort, so the question remains which under-, mena| representation. Surprisal and entropy re-

!ylng mechanism is responsible for Ipnger r(?ad'duction form two complementary quantifications
ing times on words that convey more information. ;¢ tha extent of this revision

That is, we are still without a model that pro-

poses, at Marr's computational level, some spe-

cific sentence-processing mechanism that take&Cknowledgments

longer to process a word that has higher surprisal

or leads to greater reduction in sentence entropylhe research presented here was supported by
For SurprisaL Levy (2008) makes a first step ingrant 277-70-006 of the Netherlands Organization
that direction by presenting a mechanistic accounfor Scientific Research (NWO). | would like to

of why surprisal would predict word-reading time: thank Rens Bod, Reut Tsarfaty, and two anony-
If the state of the sentence-processing system i&ous reviewers for their helpful comments.

viewed as a probability distribution over all possi-
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Appendix

It is of some interest thalf,, can be expressed in

terms ofH; and the expected value &f, 1. First,

note that

h(w§+1|w§) = _P(wiﬂ‘wllt) log P(wi+1‘wi)
=~ P(wps1]w]) Pwglwf™) og (Pluwps wh) Pw i)
= P(w]yo|wf™)h(wipaw)) + Plwig [w)h(w]y o |wi™),

For entropyH,(t), this makes

Hyt)= > hw],|wh)

warlGW"
j 1 1
= Z P(w§+2|w§+ Yh(wep1|w?) + Z P(wpyq|w?) (wm—2|wt+ )
wl  ewn w] ewn

= Z h(weg1|w?) Z P(wt-q-z’wtﬂ) + Z P(wgy|wh) Z h wt+2]wt+1)

w1 EW? w], ,€Wn=1 w41 €EW! w], ,eWn—1
t
= Y h(wia|wl) + Y Plwpa|w))Hya(t+1)
wt+1€W1 wt+1€W1

= Hi(t) + E(H,_1(t+1)).

&9



