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Abstract

The amount of cognitive effort required to
process a word has been argued to depend
on the word’s effect on the uncertainty
about the incoming sentence, as quanti-
fied by the entropy over sentence probabil-
ities. The current paper tests this hypoth-
esis more thoroughly than has been done
before by using recurrent neural networks
for entropy-reduction estimation. A com-
parison between these estimates and word-
reading times shows that entropy reduc-
tion is positively related to processing ef-
fort, confirming the entropy-reduction hy-
pothesis. This effect is independent from
the effect of surprisal.

1 Introduction

In the field of computational psycholinguistics, a
currently popular approach is to account for read-
ing times on a sentence’s words by estimates of the
amount of information conveyed by these words.
Processing a word that conveys more information
is assumed to involve more cognitive effort, which
is reflected in the time required to read the word.

In this context, the most common formaliza-
tion of a word’s information content is its sur-
prisal (Hale, 2001; Levy, 2008). If word string
wt

1 (short for w1, w2, . . . wt) is the sentence so
far andP (wt+1|w

t
1) the occurrence probability of

the next wordwt+1, then that word’s surprisal is
defined as− log P (wt+1|w

t
1). It is well estab-

lished by now that word-reading times indeed cor-
relate positively with surprisal values as estimated
by any sufficiently accurate generative language
model (Boston et al., 2008; Demberg and Keller,
2008; Frank, 2009; Roark et al., 2009; Smith and
Levy, 2008).

A lesser known alternative operationalization of
a word’s information content is based on the un-
certainty about the rest of the sentence, quantified

by Hale (2003, 2006) as the entropy of the prob-
ability distribution over possible sentence struc-
tures. The reduction in entropy that results from
processing a word is taken to be the amount of
information conveyed by that word, and was ar-
gued by Hale to be predictive of word-reading
time. However, this entropy-reduction hypothesis
has not yet been comprehensively tested, possibly
because of the difficulty of computing the required
entropies. Although Hale (2006) shows how sen-
tence entropy can be computed given a PCFG, this
computation is not feasible when the grammar is
of realistic size.

Here, we empirically investigate the entropy-
reduction hypothesis more thoroughly than has
been done before, by using recurrent neural net-
works as language models. Since these networks
do not derive any structure, they provide estimates
of sentence entropy rather than sentence-structure
entropy. In practice, these two entropies will gen-
erally be similar: If the rest of the sentence is
highly uncertain, so is its structure. Sentence en-
tropy can therefore be viewed as a simplification
of structure entropy; one that is less theory depen-
dent since it does not rely on any particular gram-
mar. The distinction between entropy over sen-
tences and entropy over structures will simply be
ignored in the remainder of this paper.

Results show that, indeed, a significant fraction
of variance in reading-time data is accounted for
by entropy reduction, over and above surprisal.

2 Entropy and sentence processing

2.1 Sentence entropy

Let W be the set of words in the language andW i

the set of all word strings of lengthi. The set of
complete sentences, denotedS, contains all word
strings of any length (i.e.,

⋃

∞

i=0
W i), except that a

special end-of-sentence marker</s> is attached
to the end of each string.
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A generative language model defines a proba-
bility distribution overS. The entropy of this dis-
tribution is

H = −
∑

w
j
1
∈S

P (wj
1
) log P (wj

1
).

As words are processed one by one, the sen-
tence probabilities change. When the firstt words
(i.e., the stringwt

1 ∈ W t) of a sentence have been
processed, the entropy of the probability distribu-
tion over sentences is

H(t) = −
∑

w
j
1
∈S

P (wj
1
|wt

1) log P (wj
1
|wt

1). (1)

In order to simplify later equations, we define
the functionh(y|x) = −P (y|x) log P (y|x), such
that Eq. 1 becomes

H(t) =
∑

w
j
1
∈S

h(wj
1
|wt

1).

If the first t words ofwj
1

do not equalwt
1 (or w

j
1

has fewer thant + 1 words),1 thenP (wj
1
|wt

1) = 0

soh(wj
1
|wt

1) = 0. This means that, for computing
H(t), only the words fromt + 1 onwards need to
be taken into account:

H(t) =
∑

w
j
t+1
∈S

h(wj
t+1
|wt

1).

The reduction in entropy due to processing the
next word,wt+1, is

∆H(t + 1) = H(t)−H(t + 1). (2)

Note that positive ∆H corresponds to a
decrease in entropy. According to Hale
(2006), the nonnegative reduction in entropy (i.e.,
max{0, ∆H}) reflects the cognitive effort in-
volved in processingwt+1 and should therefore be
predictive of reading time on that word.

2.2 Suffix entropy

ComputingH(t) is computationally feasible only
when there are very few sentences inS, or when
the language can be described by a small grammar.
To estimate entropy in more realistic situations, an

1Sincew
j

1 ends with< /s > and w
t
1 does not, the two

strings must be different. Consequently, ifw
j

1 is t words long,
thenP (wj

1|w
t
1) = 0.

obvious solution is to look only at the next few
words instead of all complete continuations ofwt

1.
Let Sm be the subset ofS containing all (and

only) sentences of lengthm or less, counting also
the </s> at the end of each sentence. Note that
this set includes the ‘empty sentence’ consisting
of only </s>. The set of length-m word strings
that do not end in</s> is Wm. Together, these
sets formWm = Wm ∪ Sm, which contains all
the relevant strings for defining the entropy over
strings up to lengthm.2 After processingwt

1, the
entropy over strings up to lengtht + n is:

Hn(t) =
∑

w
j
1
∈Wt+n

h(wj
1
|wt

1) =
∑

w
j
t+1
∈Wn

h(wj
t+1
|wt

1).

It now seems straightforward to define suffix-
entropy reduction by analogy with sentence-
entropy reduction as expressed in Eq. 2: Simply
replaceH by Hn to obtain

∆Hsuf
n (t + 1) = Hn(t)−Hn(t + 1). (3)

As indicated by its superscript label,∆Hsuf
n

quantifies the reduction in uncertainty about the
upcomingn-word suffix. However, this is concep-
tually different from the original∆H of Eq. 2,
which is the reduction in uncertainty about the
identity of the current sentence. The difference
becomes clear when we view the sentence proces-
sor’s task as that of selecting the correct element
from S. If this set of complete sentences is ap-
proximated byWt+n, and the task is to select one
element from that set, an alternative definition of
suffix-entropy reduction arises:

∆Hsent
n (t + 1)

=
∑

w
j
1
∈Wt+n

h(wj
1
|wt

1) −
∑

w
j
1
∈Wt+n

h(wj
1
|wt+1

1
)

=
∑

w
j
t+1
∈Wn

h(wj
t+1
|wt

1) −
∑

w
j
t+2
∈Wn−1

h(wj
t+2
|wt+1

1
)

= Hn(t)−Hn−1(t + 1). (4)

The label ‘sent’ indicates that∆Hsent
n quantifies

the reduction in uncertainty about which sentence
forms the current input. This uncertainty is ap-
proximated by marginalizing over all word strings
longer thant + n.

It is easy to see that

lim
n→∞

∆Hsuf
n = lim

n→∞
∆Hsent

n = ∆H,

2The probability of a stringwm
1 ∈ W

m is the summed
probability of all sentences with prefixwm

1 .
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so both approximations of entropy reduction ap-
propriately converge to∆H in the limit. Nev-
ertheless, they formalize different quantities and
may well correspond to different cognitive factors.
If it is true that cognitive effort is predicted by
the reduction in uncertainty about the identity of
the incoming sentence, we should find that word-
reading times are predicted more accurately by
∆Hsent

n than by∆Hsuf
n .

2.3 Relation to next-word entropy

In the extreme case ofn = 1, Eq. 4 reduces to

∆Hsent
1 (t + 1) = H1(t)−H0(t + 1) = H1(t),

so the reduction of entropy over the single next
word wt+1 equals the next-word entropy just be-
fore processing that word. Note that∆Hsent

1 (t+1)
is independent of the word att + 1, making it a
severely impoverished measure of the uncertainty
reduction caused by that word. We would there-
fore expect reading times to be predicted more ac-
curately by∆Hsent

n with n > 1, and possibly even
by ∆Hsuf

1 .
Roark et al. (2009) investigated the relation be-

tweenH1(t + 1) and reading time onwt+1, and
found a significant positive effect: Larger next-
word entropy directlyafter processingwt+1 cor-
responded to longer reading timeon that word.
This is of particular interest becauseH1(t + 1)
necessarily correlatesnegatively with entropy re-
duction ∆Hsent

n (t + 1): If entropy is large after
wt+1, chances are that it did not reduce much
through processing ofwt+1. Indeed, in our data
set, H1(t + 1) and ∆Hsent

n (t + 1) correlate be-
tweenr = −.29 and r = −.26 (for n = 2 to
n = 4) which is highly significantly (p ≈ 0) dif-
ferent from 0. Roark et al.’s finding of a positive
relation betweenH1(t + 1) and reading time on
wt+1 therefore seems to disconfirm the entropy-
reduction hypothesis.

3 Method

A set of language models was trained on a corpus
of POS tags of sentences. The advantage of using
POS tags rather than words is that their probabil-
ities can be estimated much more accurately and,
consequently, more accurate prediction of word-
reading time is possible (Demberg and Keller,
2008; Roark et al., 2009). Subsequent to training,
the models were made to generate estimates of sur-
prisal and entropy reductions∆Hsuf

n and∆Hsent
n

over a test corpus. These estimates were then com-
pared to reading times measured over the words
of the same test corpus. This section presents the
data sets that were used, language-model details,
and the evaluation metric.

3.1 Data

The models were trained on the POS tag se-
quences of the full WSJ corpus (Marcus et al.,
1993). They were evaluated on the POS-tagged
Dundee corpus (Kennedy and Pynte, 2005), which
has been used in several studies that investigate the
relation between word surprisal and reading time
(Demberg and Keller, 2008; Frank, 2009; Smith
and Levy, 2008). This 2 368-sentence (51 501
words) collection of British newspaper editorials
comes with eye-tracking data of 10 participants.
POS tags for the Dundee corpus were taken from
Frank (2009).

For each word and each participant, reading
time was defined as the total fixation time on that
word before any fixation on a later word of the
same sentence. Following Demberg and Keller
(2008), data points (i.e., word/participant pairs)
were removed if the word was not fixated, was
presented as the first or last on a line, contained
more than one capital letter or a non-letter (e.g.,
the apostrophe in a clitic), or was attached to punc-
tuation. Mainly due to the large number (over
46%) of nonfixations, 62.8% of data points were
removed, leaving 191 380 data points (between
16 469 and 21 770 per participant).

3.2 Language model

Entropy is more time consuming to compute than
surprisal, even forn = 1, because it requires es-
timates of the occurrence probabilities att + 1 of
all word types, rather than just of the actual next
word. Moreover, the number of suffixes rises ex-
ponentially as suffix lengthn grows, and, conse-
quently, so does computation time.

Roark et al. (2009) used an incremental PCFG
parser to obtainH1 but this method rapidly be-
comes infeasible asn grows. Low-order Markov
models (e.g., a bigram model) are more efficient
and can be used for largern but they do not form
particularly accurate language models. Moreover,
Markov models lack cognitive plausibility.

Here, Simple Recurrent Networks (SRNs) (El-
man, 1990) are used as language models. When
trained to predict the upcoming input in a word se-
quence, these networks can generate estimates of
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P (wt+1|w
t
1) efficiently and relatively accurately.

They thereby allow to approximate sentence en-
tropy more closely than the incremental parsers
used in previous studies. Unlike Markov models,
SRNs have been claimed to form cognitively re-
alistic sentence-processing models (Christiansen
and MacDonald, 2009). Moreover, it has been
shown that SRN-based surprisal estimates can cor-
relate more strongly to reading times than surprisal
values estimated by a phrase-structure grammar
(Frank, 2009).

3.2.1 Network architecture and processing

The SRNs comprised three layers of units: the in-
put layer, the recurrent (hidden) layer, and the out-
put layer. Each input unit corresponds to one POS
tag, making 45 input units since there are 45 dif-
ferent POS tags in the WSJ corpus. The network’s
output units represent predictions of subsequent
inputs. The output layer also has one unit for each
POS tag, plus an extra unit that represents</s>,
that is, the absence of any further input. Hence,
there were 46 output units. The number of recur-
rent units was fairly arbitrarily set to 100.

As is common in these networks, the input layer
was fully connected to the recurrent layer, which
in turn was fully connected to the output layer.
Also, there were time-delayed connections from
the recurrent layer to itself. In addition, each re-
current and output unit received a bias input.

The vectors of recurrent- and output-layer ac-
tivations after processingwt

1 are denotedarec(t)
andaout(t), respectively. At the beginning of each
sentence,arec(0) = 0.5.

The input vectorai
in, representing POS tagi,

consists of zeros except for a single element (cor-
responding toi) that equals one. When inputi is
processed, the recurrent layer’s state is updated ac-
cording to:

arec(t) = frec(Wrecarec(t− 1) + Wina
i
in + brec),

where matricesWin and Wrec contain the net-
work’s input and recurrent connection weights, re-
spectively;brec is the vector of recurrent-layer bi-
ases; and activation functionfrec(x) is the logistic
functionf(x) = (1+e−x)−1 applied elementwise
to x. The new output vector is now given by

aout(t) = fout(Woutarec(t) + bout),

whereWout is the matrix of output connection
weights;bout the vector of output-layer biases; and
fout(x) the softmax function

fi,out(x1, . . . , x46) =
exi

∑

j exj
.

This function makes sure thataout sums to one
and can therefore be viewed as a probability dis-
tribution: Thei-th element ofaout(t) is the SRN’s
estimate of the probability that thei-th POS tag
will be the input att + 1, or, in casei corresponds
to < /s >, the probability that the sentence ends
aftert POS tags.

3.2.2 Network training

Ten SRNs, differing only in their random initial
connection weights and biases, were trained us-
ing the standard backpropagation algorithm. Each
string of WSJ POS tags was presented once, with
the sentences in random order. After each POS in-
put, connection weights were updated to minimize
the cross-entropy between the network outputs and
a 46-element vector that encoded the next input (or
marked the end of the sentence) by the correspond-
ing element having a value of one and all others
being zero.

3.3 Evaluation

3.3.1 Obtaining surprisal and entropy

Sinceaout(t) is basically the probability distribu-
tion P (wt+1|w

t
1), surprisal andH1 can be read off

directly. To obtainH2, H3, andH4, we use the
fact that

P (wt+n
t+1

|wt
1) =

n
∏

i=1

P (wt+i|w
t+i−1
1

). (5)

Surprisal and entropy estimates were averaged
over the ten SRNs. So, for each POS tag of the
Dundee corpus, there was one estimate of surprisal
and four of entropy (forn = 1 to n = 4).

SinceHn(t) approximatesH(t) more closely
asn grows, it would be natural to expect a better
fit to reading times for largern. On the other hand,
it goes without saying thatHn is only a very rough
measure of a reader’s actual uncertainty about the
upcomingn inputs, no matter how accurate the
language model that was used to compute these
entropies. Crucially, the correspondence between
Hn and the uncertainty experienced by a reader
will grow even weaker with largern. This is ap-
parent from the fact that, as proven in the Ap-
pendix,Hn can be expressed in terms ofH1 and
Hn−1:

Hn(t) = H1(t) + E(Hn−1(t + 1)),
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Figure 1: Coefficient of correlation between es-
timates of surprisal and entropy reduction, as a
function of suffix lengthn.

whereE(x) is the expected value ofx. Obviously,
the expected value ofHn−1 is less appropriate as
an uncertainty measure than isHn−1 itself. Hence,
Hn can be less accurate thanHn−1 as a quantifi-
cation of the actual cognitive uncertainty. For this
reason, we may expect largern to result inworse
fit to reading-time data.3

3.3.2 Negative entropy reduction

Hale (2006) argued for nonnegative entropy re-
ductionmax{0, ∆H}, rather than∆H itself, as
a measure of processing effort. For∆Hsent, the
difference between the two is negligible because
only about 0.03% of entropy reductions are neg-
ative. As for∆Hsuf, approximately 42% of val-
ues are negative so whether these are left out
makes quite a difference. Since preliminary ex-
periments showed that word-reading times are pre-
dicted much more accurately by∆Hsuf than by
max{0, ∆Hsuf}, only ∆Hsuf and ∆Hsent were
used here, that is, negative values were included.

3.3.3 Relation between information measures

Both surprisal and entropy reduction can be taken
as measures for the amount of information con-
veyed by a word, so it is to be expected that they
are positively correlated. However, as shown in
Figure 1, this correlation is in fact quite weak,
ranging from .14 for∆Hsuf

4 to .38 for ∆Hsent
1 .

In contrast, ∆Hsuf
n and ∆Hsent

n correlate very
strongly to each other: The coefficients of correla-
tion range from.73 whenn = 1 to .97 for n = 4.

3Not to mention the realistic possibility that the cognitive
sentence-processing system does not abide by the normative
chain rule expressed in Eq. 5.
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Figure 2: Cumulativeχ2 distribution with 1 de-
gree of freedom, plotting statistical significance
(p-value) as a function of effect size.

3.3.4 Fit to reading times

A generalized linear regression model for gamma-
distributed data was fitted to the reading times.4

This model contained several well-known predic-
tors of word-reading time: the number of letters
in the word, the word’s position in the sentence,
whether the next word was fixated, whether the
previous word was fixated, log of the word’s rel-
ative frequency, log of the word’s forward and
backward transitional probabilities,5 and surprisal
of the part-of-speech. Next, one set of entropy-
reduction estimates was added to the regression.
The effect size is the resulting decrease in the re-
gression model’s deviance, which is indicative of
the amount of variance in reading time accounted
for by those estimates of entropy reduction. Fig-
ure 2 shows how effect size is related to statis-
tical significance: A factor forms a significant
(p < .05) predictor of reading time if its effect
size is greater than 3.84.

4 Results and Discussion

4.1 Effect of entropy reduction

Figure 3 shows the effect sizes for both measures
of entropy reduction, and their relation to suffix
lengthn. All effects are in the correct direction,
that is, larger entropy reduction corresponds to
longer reading time. These results clearly support
the entropy-reduction hypothesis: A significant

4The reading times, which are approximately gamma dis-
tributed, were first normalized to make the scale parameters
of the gamma distributions the same across participants.

5These are, respectively, the relative frequency of the
word given the previous word, and its relative frequency
given the next word.
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Figure 3: Size of the effect of∆Hsuf
n and∆Hsent

n

as a function of suffix lengthn.

fraction of variance in reading time is accounted
for by the entropy-reduction estimates∆Hsent

n ,
over and above what is explained by the other fac-
tors in the regression analysis, including surprisal.
Moreover, the effect of∆Hsent

n is larger than that
of ∆Hsuf

n , indicating that it is indeed uncertainty
about the identity of the current sentence, rather
than uncertainty about the upcoming input(s), that
matters for cognitive processing effort. Only at
n = 1 was the effect size of∆Hsent

n smaller than
that of ∆Hsuf

n , but it should be kept in mind that
∆Hsent

1 is independent of the incoming word and
is therefore quite impoverished as a measure of the
effort involved in processing the word. Moreover,
the difference between∆Hsent

1 and∆Hsuf
1 is not

significant (p > .4), as determined by the boot-
strap method (Efron and Tibshirani, 1986). In con-
trast, the differences are significant whenn > 1
(all p < .01), in spite of the high correlation be-
tween∆Hsent

n and∆Hsuf
n .

Another indication that cognitive processing ef-
fort is modeled more accurately by∆Hsent

n than by
∆Hsuf

n is that the effect size of∆Hsent
n seems less

affected byn. Even though∆H, the reduction in
entropy over complete sentences, is approximated
more closely as suffix length grows, increasingn

is strongly detrimental to the effect of∆Hsuf
n : It

is no longer significant forn > 2. Presumably,
this can be (partly) attributed to the impoverished
relation between formal entropy and psychologi-
cal uncertainty, as explained in Section 3.3.1. In
any case, the effect of∆Hsent

n is more stable. Al-
though∆Hsuf

n and∆Hsent
n necessarily converge as

n →∞, the two effect sizes seem to diverge up to
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Figure 4: Effect size of entropy reduction
(∆Hsent

n ), next-word entropy (H1), or surprisal,
over and above the other two predictors.

n = 3: The difference between the effect sizes
of ∆Hsent

n and∆Hsuf
n is marginally significantly

(p < .07) larger forn = 3 than forn = 2.

4.2 Effects of other factors

It is also of interest that surprisal has a significant
effect over and above entropy reduction, in the cor-
rect (i.e., positive) direction. When surprisal esti-
mates are added to a regression model that already
contains∆Hsent

n , the effect size ranges from 8.7
for n = 1 to 13.9 forn = 4. This show that there
exist independent effects of surprisal and entropy
reduction on processing effort.

Be reminded from Section 2.3 that Roark et al.
(2009) found a positive relation between reading
time onwt+1 andH1(t + 1), the next-word en-
tropy after processingwt+1. When that value is
added as a predictor in the regression model that
already contains surprisal and entropy reduction
∆Hsent

n , model fit greatly improves. In fact, as can
be seen from comparing Figures 3 and 4, the ef-
fect of ∆Hsent

n is strengthened by including next-
word entropy in the regression model. Moreover,
each of the factors surprisal, entropy reduction,
and next-word entropy has a significant effect over
and above the other two. In all cases, these ef-
fects were in the positive direction. This confirms
Roark et al.’s finding and shows that it is in fact
compatible with the entropy-reduction hypothesis,
in contrast to what was suggested in Section 2.3.
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5 Discussion and conclusion

The current results contribute to a growing body of
evidence that the amount of information conveyed
by a word in sentence context is indicative of the
amount of cognitive effort required for processing,
as can be observed from reading time on the word.
Several previous studies have shown that surprisal
can serve as a cognitively relevant measure for a
word’s information content. In contrast, the rele-
vance of entropy reduction as a cognitive measure
has not been investigated this thoroughly before.
Hale (2003; 2006) presents entropy-reduction ac-
counts of particular psycholinguistic phenomena,
but does not show that entropy reduction gener-
ally correlates with word-reading times. Roark et
al. (2009) presented data that could be taken as ev-
idence against the entropy-reduction hypothesis,
but the current paper showed that the next-word
entropy effect, found by Roark et al., is indepen-
dent of the entropy-reduction effect.

It is tempting to take the independent effects
of surprisal and entropy reduction as evidence
for two distinct cognitive representations or pro-
cesses, one related to surprisal, the other to en-
tropy reduction. However, it is very well possible
that these two information measures are merely
complementary formalizations of a single, cogni-
tively relevant notion of word information. Since
the quantitative results presented here provide no
evidence for either view, a more detailed qualita-
tive analysis is needed.

In addition, the relation between reading time
and the two measures of word information may
be further clarified by the development of mech-
anistic sentence-processing models. Both the sur-
prisal and entropy-reduction theories provide only
functional-level descriptions (Marr, 1982) of the
relation between information content and process-
ing effort, so the question remains which under-
lying mechanism is responsible for longer read-
ing times on words that convey more information.
That is, we are still without a model that pro-
poses, at Marr’s computational level, some spe-
cific sentence-processing mechanism that takes
longer to process a word that has higher surprisal
or leads to greater reduction in sentence entropy.
For surprisal, Levy (2008) makes a first step in
that direction by presenting a mechanistic account
of why surprisal would predict word-reading time:
If the state of the sentence-processing system is
viewed as a probability distribution over all possi-

ble interpretations of complete sentences, and pro-
cessing a word comes down to updating this distri-
bution to incorporate the new information, then the
word’s surprisal equals the Kullback-Leibler di-
vergence from the old distribution to the new. This
divergence is presumed to quantify the amount of
work (and, therefore, time) needed to update the
distribution. Likewise, Smith and Levy (2008) ex-
plain the surprisal effect in terms of a reader’s opti-
mal preparation to incoming input. When it comes
to entropy reduction, however, no reading-time
predicting mechanism has been proposed. Ideally,
of course, there should be a single computational-
level model that predicts the effects of both sur-
prisal and entropy reduction.

One recent model (Frank, 2010) shows that the
reading-time effects of both surprisal and entropy
reduction can indeed result from a single pro-
cessing mechanism. The model simulates sen-
tence comprehension as the incremental and dy-
namical update of a non-linguistic representation
of the state-of-affairs described by the sentence.
In this framework, surprisal and entropy reduc-
tion are defined with respect to a probabilistic
model of theworld, rather than a model of the
language: The amount of information conveyed
by a word depends on what is asserted by the
sentence-so-far, and not on how the sentence’s
form matches the statistical patterns of the lan-
guage. As it turns out, word-processing times in
the sentence-comprehension model correlate pos-
itively with both surprisal and entropy reduction.
The model thereby forms a computational-level
account of the relation between reading time and
both measures of word information. According
to this account, the two information measures do
not correspond to two distinct cognitive processes.
Rather, there is one comprehension mechanism
that is responsible for the incremental revision of
a mental representation. Surprisal and entropy re-
duction form two complementary quantifications
of the extent of this revision.
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Appendix

It is of some interest thatHn can be expressed in
terms ofH1 and the expected value ofHn−1. First,
note that
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For entropyHn(t), this makes
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