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Abstract

This paper investigates whether surprisal
theory can account for differential pro-
cessing difficulty in the NP-/S-coordina-
tion ambiguity in Dutch. Surprisal is es-
timated using a Probabilistic Context-Free
Grammar (PCFG), which is induced from
an automatically annotated corpus. We
find that our lexicalized surprisal model
can account for the reading time data from
a classic experiment on this ambiguity by
Frazier (1987). We argue that syntactic
and lexical probabilities, as specified in a
PCEFG, are sufficient to account for what is
commonly referred to as an NP-coordina-
tion preference.

1 Introduction

Language comprehension is incremental in that
meaning is continuously assigned to utterances
as they are encountered word-by-word (Altmann
and Kamide, 1999). Not all words, however, are
equally easy to process. A word’s processing dif-
ficulty is affected by, for instance, its frequency or
its effect on the syntactic and semantic interpreta-
tion of a sentence. A recent theory of sentence pro-
cessing, surprisal theory (Hale, 2001; Levy, 2008),
combines several of these aspects into one single
concept, namely the surprisal of a word. A word’s
surprisal is proportional to its expectancy, i.e., the
extent to which that word is expected (or pre-
dicted). The processing difficulty a word causes
during comprehension is argued to be related lin-
early to its surprisal; the higher the surprisal value
of a word, the more difficult it is to process.

In this paper we investigate whether surprisal
theory can account for the processing difficulty
involved in sentences containing the noun phrase
(NP) versus sentence (S) coordination ambiguity.
The sentences in (1), from a self-paced reading ex-
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periment by Frazier (1987), exemplify this ambi-
guity:

ey

Piet kuste Marie en /haar zusje / ook
Piet kissed Marie and / her sister / too
[1,222ms; NP-coordination]

Piet kuste Marie en /haar zusje / lachte
Piet kissed Marie and / her sister / laughed
[1,596ms; S-coordination]

Both sentences are temporarily ambiguous in the
boldface region. Sentence (1-a) is disambiguated
as an NP-coordination by the sentence-final ad-
verb ook. Sentence (1-b), on the other hand, is dis-
ambiguated as an S-coordination by the sentence-
final verb lachte. Frazier found that the verb lachte
in sentence (1-b) takes longer to process (1,596
ms) than the adverb ook (1,222 ms) in (1-a).

Frazier (1987) explained these findings by as-
suming that the human language processor ad-
heres to the so-called minimal attachment prin-
ciple. According to this principle, the sentence
processor projects the simplest syntactic struc-
ture which is compatible with the material read
at any point in time. NP-coordination is syntac-
tically simpler than S-coordination in that it re-
quires less phrasal nodes to be projected. Hence,
the processor is biased towards NP- over S-coor-
dination. Processing costs are incurred when this
initial preference has to be revised in the disam-
biguating region, as in sentence (1-b), resulting in
longer reading times. Hoeks et al. (2006) have
shown that the NP-coordination preference can be
reduced, but not entirely eliminated, when poor
thematic fit between the verb and a potential object
make an NP-coordination less likely (e.g., Jasper
sanded the board and the carpenter laughed). We
argue here that this residual preference for NP-
coordination can be explained in terms of syntac-
tic and lexical expectation within the framework
of surprisal theory. In contrast to the minimal at-
tachment principle, surprisal theory does not pos-

Proceedings of the 2010 Workshop on Cognitive Modeling and Computational Linguistics, ACL 2010, pages 72—-80,
Uppsala, Sweden, 15 July 2010. (©2010 Association for Computational Linguistics



tulate specific kinds of syntactic representations or
rely on a metric of syntactic complexity to predict
processing behavior.

This paper is organized as follows. In section
2 below, we briefly sketch basic surprisal theory.
Then we describe how we induced a grammar
from a large annotated Dutch corpus and how sur-
prisal was estimated from this grammar (section
3). In section 4, we describe Frazier’s experiment
on the NP-/S-coordination ambiguity in more de-
tail, and present our surprisal-based simulations of
this data. We conclude with a discussion of our re-
sults in section 5.

2 Surprisal Theory

As was mentioned in the introduction, language
processing is highly incremental, and proceeds on
a more or less word-by-word basis. This suggests
that a person’s difficulty with processing a sen-
tence can be modeled on a word level as proposed
by Attneave (1959). Furthermore, it has recently
been suggested that one of the characteristics of
the comprehension system that makes it so fast,
is its ability to anticipate what a speaker will say
next. In other words, the language comprehension
system works predictively (Otten et al., 2007; van
Berkum et al., 2005). Surprisal theory is a model
of differential processing difficulty which accom-
modates both these properties of the comprehen-
sion system, incremental processing and word pre-
diction (Hale, 2001; Levy, 2008). In this theory,
the processing difficulty of a sentence is a func-
tion of word processing difficulty. A word’s dif-
ficulty is inversely proportional to its expectancy,
i.e., the extent to which the word was expected or
predicted in the context in which it occurred. The
lower a word’s expectancy, the more difficult it is
to process. A word’s surprisal is linearly related to
its difficulty. Consequently, words with lower con-
ditional probabilities (expectancy) lead to higher
surprisal than words with higher conditional prob-
abilities.

Surprisal theory is, to some extent, indepen-
dent of the language model that generates condi-
tional word probabilities. Different models can
be used to estimate these probabilities. For all
such models, however, a clear distinction can be
made between lexicalized and unlexicalized sur-
prisal. In lexicalized surprisal, the input to the lan-
guage model is a sequence of words (i.e., a sen-
tence). In unlexicalized surprisal, the input is a
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sequence of word categories (i.e., part-of-speech
tags). While previous studies have used unlexical-
ized surprisal to predict reading times, evidence
for lexicalized surprisal is rather sparse. Smith
and Levy (2008) investigated the relation between
lexicalized surprisal and reading time data for nat-
uralistic texts. Using a trigram language model,
they showed that there was a linear relationship
between the two measures. Demberg and Keller
(2008) examined whether this relation extended
beyond transitional probabilities and found no sig-
nificant effects. This state of affairs is somewhat
unfortunate for surprisal theory since input to the
human language processor consists of sequences
of words, not part-of-speech tags. In our study we
therefore used lexicalized surprisal to investigate
whether it can account for reading time data from
the NP-/S-coordination ambiguity in Dutch. Lex-
icalized surprisal furthermore allows us to study
how syntactic expectations might be modulated or
even reversed by lexical expectations in temporar-
ily ambiguous sentences.

2.1 Probabilistic Context Free Grammars

Both Hale (2001) and Levy (2008) used a Prob-
abilistic Context Free Grammar (PCFG) as a lan-
guage model in their implementations of surprisal
theory. A PCFG consists of a set of rewrite rules

which are assigned some probability (Charniak,
1993):

S — NP VP 10
NP — Det,N 05
NP — NP, VP 05

—

In this toy grammar, for instance, a noun phrase
placeholder can be rewritten to a determiner fol-
lowed by a noun symbol with probability 0.5.
From such a PCFG, the probability of a sentence
can be estimated as the product of the probabili-
ties of all the rules used to derive the sentence. If
a sentence has multiple derivations, its probabil-
ity is the sum of the probabilities for each deriva-
tion. For our purpose, we also needed to obtain the
probability of partial sentences, called prefix prob-
abilities. The prefix probability P(w;...w;) of a
partial sentence w; ...w; is the sum of the probabil-
ities of all sentences generated by the PCFG which
share the initial segment w;...w;. Hale (2001)
pointed out that the ratio of the prefix probabilities
P(wy ... w;) and P(w; ... w;—1) equals precisely
the conditional probability of word w;. Given a



PCFG, the difficulty of word w; can therefore be
defined as:

Plw; ... w;
difficulty (w;) o —logs [(“”w)} .

P(w1 e wifl)

Surprisal theory requires a probabilistic lan-
guage model that generates some form of word
expectancy. The theory itself, however, is largely
neutral with respect to which model is employed.
Models other than PCFGs can be used to esti-
mate surprisal. Nederhof et al. (1998), for in-
stance, show that prefix probabilities, and there-
fore surprisal, can be estimated from Tree Adjoin-
ing Grammars. This approach was taken in Dem-
berg and Keller (2009). Other approaches have
used trigram models (Smith and Levy, 2008), Sim-
ple Recurrent Networks of the Elman type (Frank,
2009), Markov models and Echo-state Networks
(Frank and Bod, 2010). This illustrates that sur-
prisal theory is not committed to specific claims
about the structural representations that language
takes in the human mind. It rather functions as a
“causal bottleneck” between the representations of
a language model, and expectation-based compre-
hension difficulty (Levy, 2008). In other words,
comprehension difficulty does not critically de-
pend on the structural representations postulated
by the language model which is harnessed to gen-
erate word expectancy.

The use of PCFGs raises some important ques-
tions on parallelism in language processing. A
prefix probability can be interpreted as a prob-
ability distribution over all analyses compatible
with a partial sentence. Since partial sentences
can sometimes be completed in an indefinite num-
ber of ways, it seems both practically and psycho-
logically implausible to implement this distribu-
tion as an enumeration over complete structures.
Instead, prefix probabilities should be estimated
as a by-product of incremental processing, as in
Stolcke’s (1995) parser (see section 3.2). This
approach, however, still leaves open how many
analyses are considered in parallel; does the hu-
man sentence processor employ full or limited par-
allelism? Jurafsky (1996) showed that full par-
allelism becomes more and more unmanageable
when the amount of information used for disam-
biguation increases. Levy, on the other hand, ar-
gued that studies of probabilistic parsing reveal
that typically a small number of analyses are as-
signed the majority of probability mass (Roark,
2001). Thus, even when assuming full parallelism,
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only a small number of ‘relevant’ analyses would
be considered in parallel.

3 Grammar and Parser

3.1 Grammar Induction

In our simulations, we used a PCFG to model
the phrase structure of natural language. To in-
duce such a grammar, an annotated corpus was
required. We used Alpino (van Noord, 2006)—
a robust and wide-coverage dependency parser
for Dutch—to automatically generate such a cor-
pus, annotated with phrase structure, for 204.000
sentences, which were randomly extracted from
Dutch newspapers. These analyses were then
used to induce a PCFG consisting of 650 gram-
mar rules, 89 non-terminals, and 208.133 termi-
nals (lexical items).! Moreover, 29 of the 89 non-
terminals could result in epsilon productions.

The Alpino parser constructed the phrase struc-
ture analyses automatically. Despite Alpino’s high
accuracy, some analyses might not be entirely cor-
rect. Nonetheless, the overall quality of Alpino’s
analyses is sufficient for corpus studies, and since
surprisal theory relies largely on corpus features,
we believe the small number of (partially) incor-
rect analyses should not affect the surprisal esti-
mates computed from our PCFG.

3.2 Earley-Stolcke Parser

To compute prefix probabilities in our model we
implemented Stolcke’s (1995) probabilistic modi-
fication of Earley’s (1970) parsing algorithm. An
Earley-Stolcke parser is a breadth-first parser. At
each point in processing, the parser maintains a
collection of states that reflect all possible analy-
ses of a partial sentence thus far. A state is a record
that keeps track of:

(a) the position up to which a sentence has been
processed,

(b) the grammar rule that is applied,

(c) a “dot position” indicating which part of the
rule has been processed thus far, and

(d) the leftmost edge of the partial string gener-
ated by the rule.

'A PCFG can be induced by estimating the relative fre-
quency of each CFG rule A — a:
P(A—a)=

count(A—a)

Zﬁ count(A—p3) :



The collection of states is constantly expanded by
three operations. First upcoming structural and
lexical material is predicted. For all predictions,
new states are added with the “dot” placed on
the leftmost side of the rule. Then it is deter-
mined whether there is a state that predicts the next
word in the input sentence. If this is the case, a
new state is added with the “dot” placed right to
the predicted word. A third operation looks for
states with the “dot” rightmost to a grammar rule,
and then tries to find states which have the com-
pleted state as their leftmost edge. If such states
are found, the “dot” in these states is moved to
the right of this edge. This step is repeated until
no more new states are added. These three op-
erations are cyclically performed until the entire
sentence is processed. Our grammar contained
29 non-terminals that could result in epsilon pro-
ductions. Due to the way epsilon productions are
handled within the Earley-Stolcke parser (i.e., by
means of “spontaneous dot shifting”), having a
large number of epsilon productions leads to a
large number of predicted and completed edges.
As a consequence, pursuing all possible analyses
may become computationally infeasible. To over-
come this problem, we modified the Earley-Stol-
cke parser with a beam . In prediction and com-
pletion, only the A-number of states with the high-
est probabilities are added.”? This constrains the
number of states generated by the parser and en-
forces limited parallelism.

4 NP-/S-coordination ambiguities

4.1 Frazier’s experiment

Our aim was to determine to what extent lexi-
calized surprisal theory can account for reading
time data for the NP-/S-coordination ambiguity in
Dutch. This type of ambiguity was investigated
by Frazier (1987) using a self-paced reading ex-
periment. The sentences in (2) are part of Fra-
zier’s materials. Sentence (2-a) and (2-b) exem-
plify an NP-/S-coordination ambiguity. The sen-
tences are identical and temporarily ambiguous up
to the NP haar zusje (her sister). In (2-a) this
NP is followed by the adverb ook, and therefore
disambiguated to be part of an NP-coordination;
Marie and haar zusje are conjoined. In (2-b), on
other hand, the same NP is followed by the verb
lachte, and therefore disambiguated as the sub-

2A similar approach was used in Roark (2001) and
Frank (2009).
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ject of a conjoined sentence; Piet kuste Marie and
haar zusje lachte are conjoined.

2) a. Piet kuste Marie en haar zusje ook

Pete kissed Marie and her sister too
(Ambiguous; NP-coordination)

Piet kuste Marie en haar zusje lachte
Pete kissed Marie and her sister laughed
(Ambiguous; S-coordination)

Annie zag haar zusje ook
Annie saw her sister too
(Unambiguous; NP-control)

Annie zag dat haar zusje lachte
Annie saw that her sister laughed
(Unambiguous; S-control)

Sentence (2-c¢) and (2-d) functioned as unambigu-
ous controls. These sentences are identical up to
the verb zag. In (2-c), the verb is followed by
the single NP haar zusje, and subsequently the ad-
verb ook. The adverb eliminates the possibility of
an NP-coordination. In (2-d), on the other hand,
the same verb is followed by the complementizer
dat, indicating that the clause her sister laughed is
a subordinate clause (the complementizer is oblig-
atory in Dutch).

Frazier constructed twelve sets consisting of
four of such sentences each. The 48 sentences
were divided into three frames. The first frame
included all the material up to the critical NP
haar zusje in (2). The second frame contained only
the critical NP itself, and the third frame contained
all the material that followed this NP.

40 native Dutch speakers participated in the ex-
periment. Reading times for the final frames were
collected using a self-paced reading task. Figure 1
depicts the mean reading times for each of the four
conditions.

Frazier found a significant interaction between
Type of Coordination (NP- versus S-coordination)
and Ambiguity (ambiguous versus control) indi-
cating that the effect of disambiguation was larger
for S-coordinations (ambiguous: 1596 ms; con-
trol: 1141 ms) than for NP-coordinations (ambigu-
ous: 1222 ms; control: 1082 ms).

4.2 Simulations

We simulated Frazier’s experiment in our model.
Since one set of sentences contained a word that
was not covered by our lexicon (set 11; “Lor-
raine”), we used only eleven of the twelve sets
of test items from her study. The remaining 44
sentences were successfully analyzed. In our first
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Figure 1: Reading time data for the NP-/S-coordi-
nation ambiguity (Frazier, 1987).

simulation we fixed a beam of A = 16. Figure 2
depicts surprisal values in the sentence-final frame
as estimated by our model. When final frames
contained multiple words, we averaged the sur-
prisal values for these words. As Figure 2 shows,

O ambiguous
B unambiguous

mean surprisal

5000 5500 6000 6500 7000 7500

NP-coord/control S—coord/control

type of coordination

Figure 2: Mean surprisal values for the final frame
in the model (A = 16).

our model successfully replicated the effects re-
ported in Frazier (1987): In both types of coordi-
nations there was a difference in mean surprisal
between the ambiguous sentences and the con-
trols, but in the S-coordinations this effect was
larger than in the sentences with NP-coordination.
Statistical analyses confirmed our findings. An
ANOVA on surprisal values per item revealed an
interaction between Type of Coordination (NP- vs.
S-coordination) and Ambiguity (ambiguous vs.
control), which was marginally significant (p =
0.06), most probably due to the small number of
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NP-/S—control =
NP-/S—-coordination O
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Figure 3: Differences between NP versus S sur-
prisal for different beam sizes (\s).

items (i.e., 11) available for this statistical test (re-
call that the test in the original experiment was
based on 40 participants). Follow-up analyses re-
vealed that the difference between S-coordination
and S-control was significant (p < 0.05), whereas
the difference between NP-coordination and NP-
control was not (p = 0.527).

To test the robustness of these findings, we re-
peated the simulation with different beam sizes
(As) by iteratively halving the beam, starting with
A 32. Figure 3 shows the differences in
mean surprisal between NP-coordination and S-
coordination, and NP-control and S-control. With
the beam set to four (A = 4), we did not obtain full
analyses for all test items. Consequently, two sets
of items had to be disregarded (sets 8 and 9). For
the remaining items, however, we obtained an NP-
coordination preference for all beam sizes. The
largest difference occurred for A = 16. When
the beam was set to A < 8, the difference stabi-
lized. Taking everything into account, the model
with A = 16 led to the best overall match with
Frazier’s reading time data.

As for the interaction, Figure 4 depicts the dif-
ferences in mean surprisal between NP-coordina-
tion and NP-control, and S-coordination and S-
control. These results indicate that we robustly
replicated the interaction between coordination
type and ambiguity. For all beam sizes, S-co-
ordination benefited more from disambiguation
than NP-coordination, i.e., the difference in means
between S-coordination and S-control was larger
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Figure 4: Differences in coordination versus con-
trol surprisal for different beam sizes (As).

than the difference in means between NP-coordi-
nation and NP-control.

In our simulations, we found that surprisal the-
ory can account for reading time data from a clas-
sic experiment on the NP-/S-coordination ambigu-
ity in Dutch reported by Frazier (1987). This sug-
gests that the interplay between syntactic and lex-
ical expectancy might be sufficient to explain an
NP-coordination preference in human subjects. In
the remainder of this section, we analyze our re-
sults and explain how this preference arises in the
model.

4.3 Model Analysis

To determine what caused the NP-preference in
our model, we inspected surprisal differences
item-by-item. Whether the NP-coordination pref-
erence was syntactic or lexical in nature should
be reflected in the grammar. If it was syntactic,
NP-coordination would have a higher probability
than S-coordination according to our PCFG. If, on
the other hand, it was lexical, NP- and S-coor-
dination should be equally probable syntactically.
Another possibility, however, is that syntactic and
lexical probabilities interacted. If this was the
case, we should expect NP-coordinations to lead
to lower surprisal values on average only, but not
necessarily on every item. Figure 5 shows the es-
timated surprisal values per sentence-final frame
for the ambiguous condition and Figure 6 for the
unambiguous condition. Figure 5 indicates that
although NP-coordination led to lower surprisal
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Figure 5: Surprisal per sentence for final frames in
the ambiguous condition.
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Figure 6: Surprisal per sentence for final frames in
the unambiguous condition.

overall (see Figure 2), this was not the case for all
tested items. A similar pattern was found for the
NP-control versus S-control items in Figure 6. S-
controls led to lower surprisal overall, but not for
all items. Manual inspection of the grammar re-
vealed a bias towards NP-coordination. A total of
115 PCFG rules concerned coordination (= 18%
of the entire grammar). As these rules expanded
the same grammatical category, their probabilities
summed to 1. A rule-by-rule inspection showed
that approximately 48% of the probability mass
was assigned to rules that dealt with NP-coordi-
nations, 22% to rules that dealt with S-coordina-
tions, and the remaining 30% to rules that dealt
with coordination in other structures. In other



words, there was a clear preference for NP-coordi-
nation in the grammar. Despite this bias, for some
tested items the S-coordination received lower sur-
prisal than the NP-coordination (Figure 5). In-
dividual NP-coordination rules might have lower
probability than individual S-coordination rules,
so the overall preference for NP-coordination in
the grammar therefore does not have to be re-
flected in every test item. Secondly, syntactic
probabilities could be modified by lexical proba-
bilities. Suppose for a pair of test items that NP-
coordination was syntactically preferred over S-
coordination. If the sentence was disambiguated
as an NP-coordination by a highly improbable lex-
ical item, and disambiguated as an S-coordination
by a highly probable lexical item, surprisal for the
NP-coordination might turn out higher than sur-
prisal for the S-coordination. In this way, lexical
factors could override the NP-coordination bias in
the grammar, leading to a preference for S-coordi-
nation in some items.

To summarize, the PCFG displayed an over-
all NP-coordination preference when surprisal was
averaged over the test sentences and this result is
consistent with the findings of Frazier (1987). The
NP-coordination preference, however, was not in-
variably reflected on an item-by-item basis. Some
S-coordinations showed lower surprisal than the
corresponding NP-coordinations. This reversal of
processing difficulty can be explained in terms of
differences in individual rules, and in terms of in-
teractions between syntactic and lexical probabil-
ities. This suggests that specific lexical expecta-
tions might have a much stronger effect on disam-
biguation preferences than supposed by the min-
imal attachment principle. Unfortunately, Frazier
(1987) only reported mean reading times for the
two coordination types.? It would be interesting to
compare the predictions from our surprisal model
with human data item-by-item in order to validate
the magnitude of lexical effects we found in the
model.

5 Discussion

In this paper we have shown that a model of lex-
icalized surprisal, based on an automatically in-
duced PCFG, can account for the NP-/S-ambiguity
reading time data of Frazier (1987). We found

3Thus it was not possible to determine the strength of the
correlation between reading times in Frazier’s study and sur-
prisal in our model.
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these results to be robust for a critical model pa-
rameter (beam size), which suggests that syntac-
tic processing in human comprehension might be
based on limited parallelism only. Surprisal the-
ory models processing difficulty on a word level.
A word’s difficulty is related to the expectations
the language processor forms, given the structural
and lexical material that precedes it. The model
showed a clear preference for NP-coordination
which suggests that structural and lexical expec-
tations as estimated from a corpus might be suffi-
cient to explain the NP-coordination bias in human
sentence processing.

Our account of this bias differs considerably
from the original account proposed by Frazier
(minimal attachment principle) in a number of
ways. Frazier’s explanation is based on a met-
ric of syntactic complexity which in turn depends
on quite specific syntactic representations of a
language’s phrase structure. Surprisal theory, on
the other hand, is largely neutral with respect to
the form syntactic representations take in the hu-
man mind.* Moreover, differential processing in
surprisal-based models does not require the speci-
fication of a notion of syntactic complexity. Both
these aspects make surprisal theory a parsimo-
nious explanatory framework. The minimal at-
tachment principle postulates that the bias towards
NP-coordination is an initial processing primitive.
In contrast, the bias in our simulations is a func-
tion of the model’s input history and linguistic
experience from which the grammar is induced.
It is further modulated by the immediate context
from which upcoming words are predicted dur-
ing processing. Consequently, the model’s prefer-
ence for one structural type can vary across sen-
tence tokens and even be reversed on occasion.
We argued that our grammar showed an over-
all preference for NP-coordination but this pref-
erence was not necessarily reflected on each and
every rule that dealt with coordinations. Some S-
coordination rules could have higher probability
than NP-coordination rules. In addition, syntac-
tic expectations were modified by lexical expec-
tations. Thus, even when NP-coordination was
structurally favored over S-coordination, highly
unexpected lexical material could lead to more
processing difficulty for NP-coordination than for

“This is not to say, of course, that the choice of language
model to estimate surprisal is completely irrelevant; differ-
ent models will yield different degrees of fit, see Frank and
Bod (2010).



S-coordination. Surprisal theory allows us to build
a formally precise computational model of read-
ing time data which generates testable, quantita-
tive predictions about the differential processing
of individual test items. These predictions (Figure
5) indicate that mean reading times for a set of NP-
/S-coordination sentences may not be adequate to
tap the origin of differential processing difficulty.
Our results are consistent with the findings of
Hoeks et al. (2002), who also found evidence
for an NP-coordination preference in a self-paced
reading experiment as well as in an eye-tracking
experiment. They suggested that NP-coordination
might be easier to process because it has a sim-
pler topic structure than S-coordination. The for-
mer only has one topic, whereas the latter has two.
Hoeks et al. (2002) argue that having more than
one topic is unexpected. Sentences with more than
one topic will therefore cause more processing dif-
ficulty. This preference for simple topic-structure
that was evident in language comprehension may
also be present in language production, and hence
in language corpora. Thus, it may very well be
the case that the NP-coordination preference that
was present in our training corpus may have had
a pragmatic origin related to topic-structure. The
outcome of our surprisal model is also compati-
ble with the results of Hoeks et al. (2006) who
found that thematic information can strongly re-
duce but not completely eliminate the NP-coordi-
nation preference. Surprisal theory is explicitly
built on the assumption that multiple sources of
information can interact in parallel at any point in
time during sentence processing. Accordingly, we
suggest here that the residual preference for NP-
coordination found in the study of Hoeks et al.
(2006) might be explained in terms of syntactic
and lexical expectation. And finally, our approach
is consistent with a large body of evidence indi-
cating that language comprehension is incremen-
tal and makes use of expectation-driven word pre-
diction (Pickering and Garrod, 2007). It remains
to be tested whether our model can explain behav-
ioral data from the processing of ambiguities other
than the Dutch NP- versus S-coordination case.
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