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Abstract

Natural language as well as other commu-
nication forms are constrained by cogni-
tive function and evolved through a social
process. Here, we examine whether hu-
man memory may be uniquely adapted to
the social structures prevalent in groups,
specifically small-world networks. The
emergence of domain languages is simu-
lated using an empirically evaluated ACT-
R-based cognitive model of agents in a
naming game played within communi-
ties. Several community structures are ex-
amined (grids, trees, random graphs and
small-world networks). We present pre-
liminary results from small-scale simula-
tions, showing relative robustness of cog-
nitive models to network structure.

1 Introduction

A language, even if shared among the members
of a community, is hardly static. It is constantly
evolving and adapting to the needs of its speak-
ers. Adaptivity in natural language has been found
at various linguistic levels. Models of dialogue
describe how interlocutors develop representation
systems in order to communicate; such systems
can, for instance, be observed using referring ex-
pressions such as the wall straight ahead that iden-
tify locations in a maze. Experiments have shown
that communities converge on a common standard
for such expressions (Garrod and Doherty, 1994).

Models of the horizontal transmission of cul-
tural information within generations show on a
much larger scale how beliefs or communicative
standards spread within a single generation of hu-
mans. Recently, language change has accelerated
through the use of communication technologies,
achieving changes that used to take generations
in years or even months or weeks. However, the

structure of electronic networks mimics that of
more traditional social networks, and even com-
munication via mass media follows a power-law-
driven network topology.

The individual agents that are effecting the lan-
guage change depend on their cognitive abilities
such as memory retrieval and language processing
to control and accept novel communication stan-
dards. Do the local, cognitive constraints at the
individual level interact with the structure of large-
scale networks? Both social structure and individ-
ual cognitive systems have evolved over a long pe-
riod of time, leading to the hypothesis that certain
network structures are more suitable than others to
convergence, given the specific human cognitive
apparatus. Some properties of human cognition
are well established, e.g., in cognitive frameworks
(Anderson et al., 2004). Was human cognition
shaped by social networks? Why are memory pa-
rameters the way they are? Social network struc-
tures may hold an answer to this question. If so,
we should find that naturally occurring networks
structures are uniquely suited to human learning,
while others will perform less well when human
learners are present.

The environment may have been influenced by
individual cognition as well. Why are social net-
works structured the way they are? Human mem-
ory and possibly human learning strategies are
the result of an evolutionary process. Social net-
work structures can be explained by models such
as Preferential Attachment (Barabasi and Albert,
1999), yet, even that is tied to evolved distribu-
tions of preferences in human agents. Dall’Asta
et al. (2006) argue that the dynamic of agreement
in small-world networks shows, at times, proper-
ties that ease the (cognitive) memory burden on
the individuals. It is possible that the human mem-
ory apparatus and social preferences governing
network structures have co-evolved. Such a the-
ory would, again, suggest the hypothesis underly-
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ing this study: that network structure and human
memory are co-dependent.

2 Modeling Language Change

Network structure, on a small scale, does influ-
ence the evolving patterns of communication. The
dichotomy between individual and community-
based learning motivated experiments by Garrod
et al. (2007) and Fay et al. (2010), where partic-
ipants played the Pictionary game. In each trial
of this naming game, each participant is paired up
with another participant. One of them is then to
make a drawing to convey a given concept out of
a small set of known concepts; the other one is to
select the concept from that list without engaging
in verbal communication. Over time, participants
develop common standards codifying those con-
cepts: they develop a system of meaning-symbol
pairs, or, signs. We take this system as the lex-
ical core of the shared language. The conver-
gence rate and the actual language developed dif-
fered as a function of the structure of the small
participant communities: Fay (2010) either asked
the same pairs of participants to engage in the
activity repeatedly, or matched up different pairs
of participants over time. Fay and Garrod’s Pic-
tionary experiments served as the empirical basis
for a cognitive process model developed by (Reit-
ter and Lebiere, 2009). Our model has agents pro-
pose signs by combining more elementary signs
from their divergent knowledge bases, and also
adopt other agent’s proposals of signs for later re-
use. The model, designed to match Fay’s com-
munities, was studied in a condition involving
groups of eight agents, with two network struc-
tures: maximally disjoint with the same pairs of
agents throughout the simulation, and maximally
connected, with interactions between all possible
pairs of agents.

Reitter and Lebiere’s (2009) cognitive model re-
flects the Pictionary game. The model explains
the convergence as a result of basic learning and
memory retrieval processes, which have been well
understood and made available for simulation in a
cognitive modeling framework, ACT-R Anderson
et al. (2004). Thus, properties of human memory
and of the agent’s learning strategies dictate how
quickly they adopt signs or establish new signs:
processes such as learning, forgetting and noise to-
gether with their fundamental parameters that are
within well-established ranges provide strong con-

straints on the behavior of each agent and in turn
the evolution of their communication within the
network. This approach acknowledges that cul-
tural evolution is constrained by individual learn-
ing; each agent learns according to their cognitive
faculty (cf., Christiansen and Chater, 2008). With
non-cognitive models, language change has been
simulated on a larger scale as well (e.g., Kirby and
Hurford, 2002; Brighton et al., 2005).

It is because adaptation according to experi-
ence is determined by human learning behav-
ior that simulation in validated learning frame-
works is crucial. Griffiths and Kalish (2007)
for instance model language evolution through
iteration among rational learners in a Bayesian
framework; the purpose of the present project is
to tie the simulation of language evolution to a
concrete experiment and a more process-oriented
cognitive architecture than the Bayesian frame-
work. ACT-R’s learning mechanisms extend the
Bayesian view with at least a notion of recency.
Work on language processing has pointed out its
relationship to memory retrieval from within the
ACT-R framework, both for language comprehen-
sion (Budiu and Anderson, 2002; Lewis and Va-
sishth, 2005; Crescentini and Stocco, 2005; Ball
et al., 2007) and for language production (Reitter,
2008). The individual language faculty as a result
of biological evolution and adaptation to cultural
language has been the focus of psycholinguis-
tic models proposing specialized mechanisms (the
Chomskian viewpoint); our model does not pro-
pose a specialized mechanism but rather declara-
tive memory as store for lexical information, and
procedural cognitive processes as regulators of
certain communicative functions. Our multi-agent
model sees part of the linguistic process as an in-
stantiation of general cognition: the composition
and retrieval of signs follows general cognitive
mechanisms and can be formulated within cogni-
tive frameworks such as ACT-R (Anderson et al.,
2004) or SOAR (Laird and Rosenbloom, 1987).

In this study, we adapted the 2009 model and
simulated language convergence in several larger-
scale networks. We investigate the relationship
between human memory function in the retrieval
of linguistic items and the structure of social net-
works on which humans depend to communicate.
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3 Network structures

Differences in naturally occurring social networks
are hardly as extreme as in Fay’s experiment.
Some agents will be connected to a large number
of other ones, while many agents will have just a
few connections each. Concretely, the number of
interaction partners of a randomly chosen commu-
nity member is not normally distributed and cen-
tered around a mean. It shows a (Zipfian) power
law distribution, with a number of hubs attracting
many network neighbors, and a long tail of sub-
jects interacting with just a few other ones each.
Social networks are small world networks: the av-
erage distance between any two nodes in the net-
works is low, since many of them are connected to
hubs. Non-organically connected communication
and command networks follow other normals–tree
graphs for instance. However, natural communica-
tion standards develop in networks that have very
specific properties that can be observed in most or-
ganically developed networks.

Realistic social networks commonly show very
specific properties. Social networks, in which
links symbolize communication pathways or some
form of social acquaintance, frequently exhibit the
small world property. The mean minimum dis-
tance between any two nodes is relatively low, and
the clustering coefficient is high (Watts and Stro-
gatz, 1998).

Other forms of networks include tree hierar-
chies with a constant or variable branching factor
(directed acyclic graphs). Such networks ressem-
ble communication and command hierarchies in
military or business organizations. N-dimensional
grid networks have nodes with constant degrees,
which are connected to each of their two neigh-
bors along each dimension in a lattice.

Much work on information or belief propaga-
tion, or decision-making in networks has used
large artificial networks modeled after social ones;
nodes in such networks are commonly simple
agents that make decisions based on input fed to
them by their neighbor nodes and pass on infor-
mation. These often state-less agents do not nec-
essarily employ learning or adaptivity, and when
they do, learning does not reflect known cognitive
properties of human memory. The mechanisms
governing learning and retrieval in human mem-
ory have been studied in detail, leading to formal
models of process that detail the units that may be
stored in and retrieved from memory, the retrieval

time and accuracy depending on the frequency and
recency of prior rehearsals, on contextual cues that
may facilitate retrieval, and on individual differ-
ences. Cognitive agents can serve as a more real-
istic basis for network simulations (Sun, 2001).

Frequency, recency, contextual cues and chunk-
ing of the stored information determine retrieval
probability, which is crucial when novel idioms
are required to express meaning in communica-
tion. The process leads to the choice of one of
several available synonyms. Our model sees this
decision-making process as a matter of memory
retrieval: given the desired meaning, which sign
(word or drawing, compound noun or drawings)
can be used to express it. This process is implicit
(not consciously controlled), and it follows re-
cent suggestions from cognitive psychology: Pick-
ering and Garrod’s (2004) Interactive Alignment
Model proposes that explicit negotiation and sepa-
rate models of the interlocutor’s mental state aren’t
necessary, as long as each speaker is coherent and
adapts to their interlocutors, as speakers are known
to do on even simple, linguistic levels (lexical,
syntactic). This shifts the weight of the task from
a sophisticated reasoning device to the simpler,
more constrained implicit learning mechanism of
the individual.

The social network controls the interactions that
the agents can experience. Each interaction is an
opportunity to develop new signs and adapt the ex-
isting communication systems. It can be shown
that even separate pairs of agents develop spe-
cialized communication systems, both empirically
(Garrod and Doherty, 1994; Reitter and Moore,
2007; Kirby and Hurford, 2002) and in the specific
model used here.When communication partners
change, convergence towards a common system
and the final transmission accuracy is slower (Fay
et al., 2008). At this point it is unclear how the
structure of the communication network and the
learning process interact. Given that some types
of networks show a wide distribution of degrees,
where some nodes communicate much more often
and with a wide variety of neighbors, while others
communicate less often, recency and frequency of
memory access will vary substantially. Other com-
munication networks may reflect command hier-
archies in organizations, which are constructed to
ensure, among other things, more predictable in-
formation propagation.

We hypothesize that the human memory ap-
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paratus and preferred social network structures
have co-evolved to be uniquely suited to create
a macro-organism that adapts its communication
structures and reasoning mechanisms to novel sit-
uations. There is limited opportunity to test such a
hypothesis under controlled conditions with a suf-
ficiently large human network; however, cognitive
models that have been developed to explain and
predict human performance in isolated cognitive
situations can be leveraged to study the develop-
ment of sign systems.

In a simulated network with cognitive mod-
els representing agents at the network nodes,
and communication between agents along network
links, we expect that the social network structures
lead to better, if not optimal, adaptivity during the
establishment of a communication system. We ex-
pect that scale-free small world networks do best,
outperforming tree hierarchies, random networks
and regular grids (lattices).

3.1 Architecture

ACT-R’s memory associates symbolic chunks of
information (sets of feature-value pairs) with sub-
symbolic, activation values. Learning occurs
through the creation of such a chunk, which is
then reinforced through repeated presentation, and
forgotten through decay over time. The symbolic
information stored in chunks is available for ex-
plicit reasoning, while the subsymbolic informa-
tion moderates retrieval, both in speed and in re-
trieval probability. The assumption of rationality
in ACT-R implies that retrievability is governed
by the expectation to make use of a piece of in-
formation at a later point. Important to our ap-
plication, retrieval is further aided by contextual
cues. When other chunks are in use (e.g., parlia-
ment), they support the retrieval of related chunks
(building).

The properties of memory retrieval in terms of
time and of retrieval success are governed by the
activation of a chunk that is to be retrieved. Three
components of activation are crucial in the context
of this model: base-level activation, spreading ac-
tivation and transient noise (ε). Base-level activa-
tion is predictive of retrieval probability indepen-
dent of the concurrent context. It is determined by
the frequency and recency of use of the particular
chunk, with tj indicating the time elapsed since
use k of the chunk. d indicates a base-level decay
parameter, usually 0.5):

HOSPITAL

PARAMEDIC

FIRE STATION

Figure 1: Example of a small ontology with ab-
stract concepts (spelled-out words) and concrete
ones (drawings).

Ai = log
pres∑
k=1

t−d
k +

cues∑
j

wjSji + ε

Retrieval is contextualized by cues available
through spreading activation. It is proportional
to the strengths of association (Sji) of all of the
cues with the target chunk. While the base-level
term (first term of the sum) can be seen as a prior,
spreading activation models the conditional proba-
bility of retrieval given the available cues. Finally,
ε is sampled from a logistic distribution shaped by
canonical parameters. Ai must surpass a minimum
retrieval threshold.

The model is implemented using the ACT-UP
toolbox, which makes the components of the ACT-
R theory are directly accessible. The cognitive
model does not specify other model components
(perceptual, manual, procedural), as they are nei-
ther subject to evaluation nor considered to make a
significant contribution to learning or convergence
effects.

3.2 Communication model
We assume that the communication system, or
language, is a system of signs. Concretely, it is
a set of tuples (signs), each associating a mean-
ing with a set of up to three symbols (a simpli-
fying assumption). If the communication system
uses natural language, symbols consist of spoken
or written words. The communication system es-
tablished by the participants of Garrod’s and Fay’s
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experiments uses drawings as symbols–the princi-
ple stays the same. Agents start out with a knowl-
edge base containing signs for concrete concepts
that are immediately representable as drawings or
nouns; the target concepts to be conveyed by the
participants, however, are more abstract and re-
quire the combination of such concrete concepts.
A concept such as hospital, for instance, could in-
volve the drawings for house, ambulance, and a
sad face. A participant could choose among many
ways to express hospital.

The goal of our cognitive models is to com-
municate meaning from one agent to another one.
Put in natural language-oriented terminology, the
director role is the speaker, a role that involves
selecting the right concrete concepts that can ex-
press a given target concepts; the matcher role (lis-
tener) involves decoding the concrete drawings (or
words) to retrieve the target.

A single ACT-R model implements the director
and matcher roles. As a director, the model es-
tablishes new combinations of drawings for given
target concepts. As a matcher, the model makes
guesses. In each role, the model revises its internal
mappings between drawings and target concepts.
The model is copied to instantiate a community of
agents, one for each node in the network.

The simplest form of representing a communi-
cation system in ACT-R memory chunks is as a set
of signs. Each sign pairs a concept with a set of
drawings. Competing signs can be used to assign
multiple drawings for one conceptTo reflect se-
mantic relationships, we need to introduce a sub-
symbolic notion of relatedness. We use ACT-R’s
spreading activation mechanism and weights be-
tween concepts to reflect relatedness. Spreading
activation facilitates retrieval of a chunk if the cur-
rent context offers cues related to the chunk. Re-
latedness is expressed as a value in log-odds space
(Sji values).

When the model is faced with the task to draw
a given concept such as Russell Crowe (one of the
concepts in the experiment) or Hospital (as in Fig-
ure 1) that has no canonical form as a drawing,
a related but concrete concept is retrieved from
declarative memory (such as Syringe in the exam-
ple). In drawing-based communication, this would
be a concept that can be drawn, while in natural-
language based communication, this is an existing
drawing expressing a similar, partial or otherwise
related concept. We request two other such con-

cepts, reflecting the desire of the communicator
to come up with a distinctive rather than just fit-
ting depiction of the target concept. The case of a
model recognizing a novel combination of draw-
ings is similar; we retrieve the concept using the
drawings as cues that spread activation, making
the target concept the one that is the most related
one to the drawings.

After drawings have been produced or recog-
nized and mapped to a target, the target or guessed
concept, along with the component drawings, is
stored symbolically in memory as a chunk for
later reuse (domain sign). These signs differ from
the pre-existing concepts in the network, although
they also allow for the retrieval of suitable draw-
ings given a concept, and for a concept given some
drawings. When drawing or recognizing at a later
stage, the memorized domain signs are strictly
preferred as a strategy over the retrieval of related
concepts. The system of domain signs encodes
what is agreed upon as a language system between
two communicators; they will be reused readily
during drawing when interacting with a new part-
ner, but they will be of only limited use when at-
tempting to recognize a drawing combination that
adheres to somebody else’s independently devel-
oped communication system.

Thus, the model has two avenues to express and
recognize an abstract concept: by associative re-
trieval and by idiomatic domain concept. A mes-
sage constructed by domain concept retrieval is
often decoded by the matcher by association, and
vice versa.

The identification accuracy of the model shows
characteristics observed in empirical work (Fay et
al. 2008). See Reitter and Lebiere (subm) for a de-
tailed description of the model and its evaluation.

3.3 Knowledge

Agents start out with shared world knowledge.
This is expressed as a network of concepts, con-
nected by weighted links (Sji). The distribution
of link strengths is important in this context, as it
determines how easily we can find drawing combi-
nations that reliably express target concepts. Thus,
the Sji were sampled randomly from an empir-
ical distribution: log-odds derived from the fre-
quencies of collocations found in text corpus data.
From the Wall Street Journal corpus we extracted
and counted pairs of nouns that co-occurred in the
same sentence (e.g., “market”, “plunge”). As ex-
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Figure 2: Identification accuracy for isolated
pairs and communities: (a) human data as pro-
vided by Fay (p.c.), (b) simulation. One-tailed
standard-error based 95% confidence intervals
(upper bounds for communities, lower bounds for
pairs) for human data; two-tailed 95% via boot-
strapping for simulations. As in the human data,
both community pairs and isolated pairs converge
most in the early rounds, but community pairs lose
much accuracy when switching partners.

pected, the frequencies of such collocations are
distributed according to a power law.

Such knowledge is, however, not fully shared
between agents. Each agent has their own knowl-
edge network resulting from life experience. This
difference is essential to the difficulty of the task:
if all agents came to the same conclusions about
the strongest representation of target concepts,
there would be little need to establish the domain
language. We control the noise applied to the
link strengths between concepts j and i for agent
M (SM

ji ) by combining the common ground Sji

(shared between all agents) with a random sample
NM

ji in a mixture model: SM
ji = (1 − n)Sji +

nNM
ji ; sign identification accuracy was found to

be stable for n up to about 0.4; we set it to 0.3 for
Simulation 1.

4 Simulation 1

Networks of individual cognitive agents were cre-
ated to differentiate performance between four dif-
ferent network structures. Random networks
contain N nodes with randomly assigned links

between them, on average d links for each node
(Erdős and Rényi, 1959). n-dimensional Grids
contain N nodes with a constant numer of links
d per node, with links between neighbors along
each dimension. The width w is kept the same
along each dimension, i.e. there are w nodes per
row. We use 6-dimensional lattices. Trees are di-
rected acyclic graphs with 1 link leading up, and
d − 1 links (branching factor) leading down the
hierarchy of a total of N nodes. Scale-free net-
works are constructed using the preferential at-
tachment method as follows (Barabasi and Albert,
1999). N nodes are created and each is connected
to one randomly selected other node. Then, two
links< a, b > and< a′, b′ > are chosen randomly
out of the existing set of links, and a new link
< a, b′ > is added, until the mean degree d (links
per node) is reached. Preferential attachment en-
sures that nodes with a high number of links ac-
quire further links more quickly than other nodes
(the rich get richer). This yields a power-law dis-
tribution of degrees. Our scale-free networks dis-
play small world properties.

For the first Simulation, we control N at 85 and
d at 5 1. 35 iterations were simulated in each trial;
20 trials were run. During each round, each agent
(network node) plays one game (16 concepts) with
one of its neighbors. The order of neighbors is
shuffled initially, but constant across the rounds.
A variable Round coded iterations from 1to35.

Results Figure 3 shows the learning curve for
agent pairs in the four networks. Agents in all net-
works converge. Confidence intervals obtained via
bootstrapping indicated no apparent differences at
any specific iteration. A linear model was fit-
ted estimating the effects of network type over-
all (as a baseline) for each of the four types. It
also fitted interactions of iteration (1–35) with the
network types, which indicate significant learn-
ing effects as follows. For each network type,
we found a significant learning effect (effect of
Round) (β 0.002, p < 0.001).

Planned comparisons of the learning rate in
Small World networks revealed no difference with
either of the other three network types (p > 0.3).

1We found that networks need to be sufficiently large to
display meaningful differences in community structure. The
sizes were chosen to be computationally feasible (4h/CPU
core per network).
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Figure 3: Identification accuracy between con-
nected agents for communities of different net-
work structures.

5 Simulation 2

The success of a community is not only deter-
mined by how successfully individuals communi-
cate in their local environment, that is, with their
network neighbors. Communities require commu-
nicative success outside of well-acquainted agents.
Agents’ languages would ideally converge on a
global scale. One way to test this is to have ran-
domly paired agents play the Pictionary game at
regular intervals throughout the game and thus
measure identification accuracy outside of the net-
work that defines the social structure.

This simulation was identical to Simulation 1,
except that we scaled up the simulation to examine
whether the lack of effect was possibly due to size
or density of the nodes (N = 512, d = 6, noise
level: 0.2, repetitions: 20). In this simulation, we
measured ID accuracy between pairs of randomly
chosen agents after each round. For three network
types, Grid, Small World and Random we found
significant interactions with round, i.e. significant
convergence, (all β > 0.016, z > 2.1, p < 0.05).
For the network type Tree we found no significant
interaction (β = 0.012, z = 1.55, p = 0.12).2

2All regressions in this simulation where (generalized)
mixed-effects models, with ID accuracy as response via logit
link, Round as predictor, and Condition as factor for four net-
work types. A random intercept was fitted, grouped by repeti-
tion (1−20), to account for repeated measures. The predictor
was centered; no substantial collinearity remained. The anal-
ysis of Simulation 1 was a simple linear model; ID accuracy
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Figure 4: (Aggregate) Identification accuracy be-
tween random agent pairs for communities of dif-
ferent network structures.

To test the initial hypothesis, we re-coded the
conditions with a SmallWorld factor, contrasting
the small world networks with all other conditions.
We found an effect of Round (β = 0.017, z =
3.66, p < 0.001), indicating convergence, but no
interaction with SmallWorld (β = −0.00027, z =
−0.03, p = 0.98).3

Results Figure 4 shows network-global conver-
gence. Again, a linear model was fitted to estimate
the learning rate in different network types (inter-
action of network type and iteration) (baseline in-
tercepts were fitted for each network type). We
found significant interactions with iteration for the
following network types: Grid (β = 0.004, p <
0.001), Small World (β = 0.003, p < 0.01), and
Random (β = 0.003, p < 0.005), but not for Tree
(p = 0.991).

Planned comparisons revealed an interaction of
network type and iteration for Tree compared to
Small World (β = −0.003, p < 0.05), but not
for Grid nor Random compared to Small World
(p > 0.35). This indicates slower across-network
convergence for trees than for small worlds. It also
suggests that convergence across the network does
not differ much between grids, random networks
and small worlds.

was, for all levels, not near either extreme (µ = 0.77).
3Further, unreported, experiments, showed a similar pic-

ture with a smaller network as in Simulation 1.
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6 Discussion

We find that convergence is relatively stable across
the four network types. Analyzing the differences
between the networks, we find that the average de-
gree, which was controlled for grids, random net-
works and small worlds, was substantially lower
for trees (d = 1.9) due to the large number of
leaves with degree 1. This (or the correlated al-
gebraic connectivity of the network) may prove to
be a deciding correlate with cross-network conver-
gence. Other metrics, such as the clustering coef-
ficient (Watts and Strogatz, 1998), which gives an
indication of the degree of neighborhood cohesion

We see these results still as preliminary. More
work needs to be done to investigate how well
learning scales with network growth, and how net-
work analytics such as clustering coefficients af-
fect the dispersion of information.

Further work will explore range of networks
and the possibly unique suitability of human learn-
ing mechanisms to succeed in such networks. We
will explore the (subsymbolic) parameters govern-
ing adaptation, and to what extend the quantitative
parameters we find universal to humans are sub-
stantially optimized to deal with the small-world
networks and pareto degree-distributions found in
human communities.

7 Conclusion

Cognition may appear to be adapted to the so-
cial structures prevalent in communities of flocks,
packs and human teams. There are many reasons
why such social structures themselves could have
evolved; if cognitive constraints play a role, we ex-
pect it to be only a small factor among many. The
present simulation results certainly do not support
this view: they are much more compatible with
a humans-as-generalists theory that proposes that
humans have evolved to handle a variety of net-
work structures well, or that their recency- and
frequency-based learning mechanism is not spe-
cialized.

Learning, if adapted to social structure in any
way, may go beyond the current, mechanistic
and implicit mechanisms implemented in ACT-R
and comparable theories: learning may rely on
more explicit strategies, analyzing one’s interac-
tion partners and their current knowledge, and it
needs to judge information according to its sources
(trust). Meta-cognition could also play a role in
determining when a set of signs is substantially

novel and better than the current system, and thus
worth enduring the cost of switching from a settled
set of language conventions.

We have evaluated only a small, initial part of a
co-evolution theory we proposed. Also, the prob-
lem we describe may be best operationalized at
a higher abstraction level: Consensus problems
and information spread have been intensively stud-
ied (e.g., Latora and Marchiori, 2001; Wu et al.,
2004). Comparing community convergence in a
number of differently-structured networks, so far
we see little evidence supporting our hypothesis,
namely that cognition (memory) has specialized to
accommodate social structures as defined by con-
temporary network science, and that those struc-
tures accommodate cognitive properties. Instead,
we find that the simulated cognitive agents con-
verge in their communication systems quite well
regardless of the network structures, at least as
long as those networks are relatively small and of
similar average degrees.
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