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Abstract

We consider the task of automatically
extracting post-translational modification
events from biomedical scientific publica-
tions. Building on the success of event
extraction for phosphorylation events in
the BioNLP’09 shared task, we extend the
event annotation approach to four major
new post-transitional modification event
types. We present a new targeted corpus of
157 PubMed abstracts annotated for over
1000 proteins and 400 post-translational
modification events identifying the modi-
fied proteins and sites. Experiments with
a state-of-the-art event extraction system
show that the events can be extracted with
52% precision and 36% recall (42% F-
score), suggesting remaining challenges
in the extraction of the events. The an-
notated corpus is freely available in the
BioNLP’09 shared task format at the GE-
NIA project homepage.1

1 Introduction

Post-translational-modifications (PTM), amino
acid modifications of proteins after translation, are
one of the posterior processes of protein biosyn-
thesis for many proteins, and they are critical
for determining protein function such as its ac-
tivity state, localization, turnover and interac-
tions with other biomolecules (Mann and Jensen,
2003). Since PTM alter the properties of a pro-
tein by attaching one or more biochemical func-
tional groups to amino acids, understanding of
the mechanism and effects of PTM are a major
goal in the recent molecular biology, biomedicine
and pharmacology fields. In particular, epige-
netic (“outside conventional genetics”) regulation

1http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA

of gene expression has a crucial role in these fields
and PTM-like modifications of biomolecules are a
burning issue. For instance, tissue specific or con-
text dependent expression of many proteins is now
known to be controlled by specific PTM of his-
tone proteins, such as Methylation and Acetylation
(Jaenisch and Bird, 2003). This Methylation and
Acetylation of specific amino acid residues in his-
tone proteins are strongly implicated in unwinding
the nucleosomes and exposing genes to transcrip-
tion, replication and DNA repairing machinery.

The recent BioNLP’09 Shared Task on Event
Extraction (Kim et al., 2009a) (below, BioNLP
shared task) represented the first community-wide
step toward the extraction of fine-grained event
representations of information from biomolecular
domain publications (Ananiadou et al., 2010). The
nine event types targeted in the task included one
PTM type, Phosphorylation, whose extraction in-
volved identifying the modified protein and, when
stated, the specific phosphorylated site. The re-
sults of the shared task showed this PTM event to
be single most reliably extracted event type in the
data, with the best-performing system for the event
type achieving 91% precision and 76% recall
(83% F-score) in the extraction of phosphorylation
events (Buyko et al., 2009). The results suggest
both that the event representation is well applica-
ble to PTM and that current extraction methods are
capable of reliable PTM extraction. Most of the
proposed state-of-the-art methods for event extrac-
tion are further largely machine-learning based.
This suggest that the coverage of many existing
methods could be straightforwardly extended to
new event types and domains by extending the
scope of available PTM annotations and retrain-
ing the methods on newly annotated data. In this
study, we take such an annotation-based approach
to extend the extraction capabilities of state of the
art event extraction methods for PTM.

19



Term Count
Phosphorylation 172875 50.90%
Methylation 49780 14.66%
Glycosylation 36407 10.72%
Hydroxylation 20141 5.93%
Acetylation 18726 5.51%
Esterification 7836 2.31%
Ubiquitination 6747 1.99%
ADP-ribosylation 5259 1.55%
Biotinylation 4369 1.29%
Sulfation 3722 1.10%
. . .
TOTAL 339646 100%

Table 1: PTM mentions in PubMed. The number
of citations returned by the PubMed search engine
for each PTM term shown together with the frac-
tion of the total returned for all searches. Searches
were performed with the terms as shown, allow-
ing MeSH term expansion and other optimizations
provided by the Entrez search.

2 Corpus Annotation

We next discuss the selection of the annotated
PTM types and source texts and present the rep-
resentation and criteria used in annotation.

2.1 Event Types

A central challenge in the automatic extraction
of PTMs following the relatively data-intensive
BioNLP shared task model is the sheer number
of different modifications: the number of known
PTM types is as high as 300 and constantly grow-
ing (Witze et al., 2007). Clearly, the creation of
a manually annotated resource with even mod-
est coverage of statements of each of the types
would be a formidable undertaking. We next
present an analysis of PTM statement occurrences
in PubMed as the first step toward resolving this
challenge.

We estimated the frequency of mentions of
prominent PTM types by combining MeSH
ontology2 PTM terms with terms occurring
in the post-translational protein
modification branch of the Gene Ontology
(The Gene Ontology Consortium, 2000). After
removing variants (e.g. polyamination for amina-
tion or dephosphorylation for phosphorylation)
and two cases judged likely to occur frequently

2http://www.nlm.nih.gov/mesh/meshhome.
html

in non-PTM contexts (hydration and oxidation),
we searched PubMed for the remaining 31 PTM
types. The results for the most frequent types
are shown in Table 1. We find a power-law
- like distribution with phosphorylation alone
accounting for over 50% of the total, and the top
6 types together for over 90%. By contrast, the
bottom ten types together represent less than a
percent of total occurrences.

This result implies that fair coverage of individ-
ual PTM event mentions can be achieved without
considering even dozens of different PTM event
types, let alone hundreds. Thus, as a step toward
extending the coverage of event extraction systems
for PTM, we chose to focus limited resources on
annotating a small selection of types so that a num-
ber of annotations sufficient for supervised learn-
ing and stable evaluation can be provided. To
maximize the utility of the created annotation, the
types were selected based on their frequency of oc-
currence.

2.2 Text Selection

Biomedical domain corpora are frequently anno-
tated from selections of texts chosen as a sample
of publications in a particular subdomain of inter-
est. While several areas in present-day molecu-
lar biology are likely to provide ample source data
for PTM statements, a sample of articles from any
subdomain is unlikely to provide a well-balanced
distribution of event types: for example, the most
frequent PTM event type annotated in the GENIA
event corpus occurs more than 10 times as often
as the second most frequent (Kim et al., 2008).
Further, avoiding explicit subdomain restrictions
is not alone sufficient to assure a balanced distri-
bution of event types: in the BioInfer corpus, for
which sentences were selected on the basis of their
containing mentions of protein pairs known to in-
teract, the most frequent PTM type is again anno-
tated nearly four times as often as the second most
frequent (Pyysalo et al., 2007).

To focus annotation efforts on texts relevant to
PTM and to guarantee that the annotation results
in relatively balanced numbers of PTM events of
each targeted type, we decided to annotate a tar-
geted set of source texts instead of a random sam-
ple of texts for a particular subdomain. This type
of targeted annotation involves a risk of introduc-
ing bias: a badly performed selection could pro-
duce a corpus that is not representative of the
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PTM type AB FT
Acetylation 103 128
Glycosylation 226 336
Methylation 72 69
Phosphorylation 186 76
Hydroxylation 71 133

Table 2: Number of abstracts (AB) and full-text ar-
ticles (FT) tagged in PIR as containing PTM state-
ments.

statements expressing PTMs in text and thus poor
material for either meaningful evaluation or for
training methods with good generalization perfor-
mance.3 To avoid such bias, we decided to base
our selection of the source texts on an indepen-
dently annotated PTM resource with biological (as
opposed to textual) criteria for inclusion. Owing
in part to the recent interest in PTMs, there are
currently a wealth of resources providing different
levels of annotation for PTMs.

Here, we have chosen to base initial annotation
on corpora provided by the Protein Information
Resource4 (PIR) (Wu et al., 2003). These corpora
contain annotation for spans with evidence for five
different PTM types (Table 2), corresponding to
the five PTMs found above to occur in PubMed
with the highest frequency. A key feature setting
this resource apart from others we are aware of is
that it provides text-bound annotations identifying
the statement by which a PTM record was made in
the context of the full publication abstracts. While
this annotation is less specific and detailed than
the full BioNLP shared task markup, it could both
serve as an initial seed for annotation and assure
that the annotation agrees with relevant database
curation criteria. The PIR corpora have also been
applied in previous PTM extraction studies (e.g.
(Hu et al., 2005; Narayanaswamy et al., 2005)).

We judged that the annotated Phosphorylation
events in the BioNLP shared task data provide
sufficient coverage for the extraction of this PTM
type, and chose to focus on producing annota-
tion for the four other PTM types in the PIR data.
As the high extraction performance for phospho-
rylation events in the BioNLP shared task was

3One could easily gather PTM-rich texts by performing
protein name tagging and searching for known patterns such
as “[PROTEIN] methylates [PROTEIN]”, but a corpus cre-
ated in this way would not necessarily provide significant
novelty over the original search patterns.

4http://pir.georgetown.edu

Protein Site PTM Count
collagen lysine Hydroxylate 44
myelin arginine Methylate 17
M protein N-terminal Glycosylate 2
EF-Tu lysine Methylate 1
Actobindin NH2 terminus Acetylate 0

Table 3: Example queried triples and match counts
from Medie.

achieved with annotated training data containing
215 PTM events, in view of the available resources
we set as an initial goal the annotation of 100
events of each of the four PTM types. To assure
that the annotated resource can be made publicly
available, we chose to use only the part of the PIR
annotations that identified sections of PubMed ab-
stracts, excluding full-text references and non-
PubMed abstracts. Together with the elimination
of duplicates and entries judged to fall outside of
the event annotation criteria (see Section 2.4), this
reduced the number of source texts below our tar-
get, necessitating a further selection strategy.

For further annotation, we aimed to select ab-
stracts that contain specific PTM statements iden-
tifying both the name of a modified protein and the
modified site. As for the initial selection, we fur-
ther wished to avoid limiting the search by search-
ing for any specific PTM expressions. To imple-
ment this selection, we used the Medie system5

(Ohta et al., 2006; Miyao et al., 2006) to search
PubMed for sentences where a specific protein and
a known modified site were found together in a
sentence occurring in an abstract annotated with a
specific MeSH term. The (protein name, modified
site, MeSH term) triples were extracted from PIR
records, substituting the appropriate MeSH term
for each PTM type. Some examples with the num-
ber of matching documents are shown in Table 3.
As most queries returned either no documents or a
small number of hits, we gave priority to responses
to queries that returned a small number of docu-
ments to avoid biasing the corpus toward proteins
whose modifications are frequently discussed.

We note that while the PIR annotations typically
identified focused text spans considerably shorter
than a single sentence and sentence-level search
was used in the Medie-based search to increase the
likelihood of identifying relevant statements, after
selection all annotation was performed to full ab-
stracts.

5http://www-tsujii.is.s.u-tokyo.ac.jp/
medie/
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Event type Count
Protein modification 38
Phosphorylation 546
Dephosphorylation 28
Acetylation 7
Deacetylation 1
Ubiquitination 6
Deubiquitination 0

Table 4: GENIA PTM-related event types and
number of events in the GENIA event corpus.
Type names are simplified: the full form of e.g.
the Phosphorylation type in the GENIA event on-
tology is Protein amino acid phosphorylation.

Event type Arguments Count
Protein modification Theme 31
Phosphorylation Theme 261
Phosphorylation Theme, Site 230
Phosphorylation Site 20
Phosphorylation Theme, Cause 14
Dephosphorylation Theme 16

Table 5: GENIA PTM-related event arguments.
Only argument combinations appearing more than
10 times in the corpus shown.

2.3 Representation
The employed event representation can capture
the association of varying numbers of participants
in different roles. To apply an event extraction
approach to PTM, we must first define the tar-
geted representation, specifying the event types,
the mandatory and optional arguments, and the ar-
gument types – the roles that the participants play
in the events. In the following, we discuss alterna-
tives and present the representation applied in this
work.

The GENIA Event ontology, applied in the
annotation of the GENIA Event corpus (Kim
et al., 2008) that served as the basis of the
BioNLP shared task data, defines a general Pro-
tein modification event type and six more specific
modification subtypes, shown in Table 4. While
the existing Acetylation type could thus be applied
together with the generic Protein modification
type to capture all the annotated PTMs, we be-
lieve that identification of the specific PTM type
is not only important to users of extracted PTM
events but also a relatively modest additional bur-
den for automatic extraction, owing to the unam-
biguous nature of typical expressions used to state

Figure 1: Alternative representations for PTM
statements including a catalyst in GENIA Event
corpus. PTM events can be annotated with a di-
rect Cause argument (top, PMID 9374467) or us-
ing an additional Regulation event (middle, PMID
10074432). The latter annotation can be applied
also in cases where there is no expression directly
“triggering” the secondary event (bottom, PMID
7613138).

PTMs in text. We thus chose to introduce three
additional specific modification types, Glycosyla-
tion, Hydroxylation and Methylation for use in the
annotation.

The GENIA Event corpus annotation allows
PTM events to take Theme, Site and Cause argu-
ments specifying the event participants, where the
Theme identifies the entity undergoing the mod-
ification, Site the specific region being modified,
and Cause an entity or event leading to the modi-
fication. Table 5 shows frequent argument combi-
nations appearing in the annotated data. We note
that while Theme is specified in the great majority
of events and Site in almost half, Cause is anno-
tated for less than 5% of the events. However, the
relative sparsity of Cause arguments in modifica-
tion events does not imply that e.g. catalysts of the
events are stated only very rarely, but instead re-
flects also the use of an alternative representation
for capturing such statements without a Cause ar-
gument for the PTM event. The GENIA event an-
notation specifies a Regulation event (with Posi-
tive regulation and Negative regulation subtypes),
used to annotate not only regulation in the biolog-
ical sense but also statements of general causality
between events: Regulation events are used gen-
erally to connect entities or events stated to other
events that they are stated to cause. Thus, PTM
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events with a stated cause (e.g. a catalyst) can be
alternatively represented with a Cause argument
on the PTM event or using a separate Regulation
event (Figure 1). The interpretation of these event
structures is identical, and from an annotation per-
spective there are advantages to both. However,
for the purpose of automatic extraction it is impor-
tant to establish a consistent representation, and
thus only one should be used.

In this work, we follow the latter representation,
disallowing Cause arguments for annotated PTM
events and applying separate Regulation events
to capture e.g. catalyst associations. This choice
has the benefits of providing an uniform repre-
sentation for catalysis and inhibition (one involv-
ing a Positive regulation and the other a Nega-
tive regulation event), reducing the sparseness of
specific event structures in the data, and matching
the representation chosen in the BioNLP shared
task, thus maintaining compatibility with exist-
ing event extraction methods. Finally, we note
that while we initially expected that glycosylation
statements might frequently identify specific at-
tached side chains, necessitating the introduction
of an additional argument type to accurately cap-
ture all the stated information regarding Glycosy-
lation events, the data contained too few examples
for either training material or to justify the mod-
ification of the event model. We adopt the con-
straints applied in the BioNLP shared task regard-
ing the entity types allowed as specific arguments.
Thus, the representation we apply here annotated
PTM events with specific types, taking as Theme
argument a gene/gene product type entity and as
Site argument a physical (non-event) entity that
does not need to be assigned a specific type.

2.4 Annotation criteria

To create PTM annotation compatible with the
event extraction systems introduced for the
BioNLP shared task, we created annotation fol-
lowing the GENIA Event corpus annotation cri-
teria (Kim et al., 2008), as adapted for the shared
task. The criteria specify that annotation should be
applied to statements that involve the occurrence
of a change in the state of an entity – even if stated
as having occurred in the past, or only hypotheti-
cally – but not in cases merely discussing the state
or properties of entities, even if these can serve as
the basis for inference that a specific change has
occurred. We found that many of the spans an-

notated in PIR as evidence for PTM did not ful-
fill the criteria for event annotation. The most fre-
quent class consisted of cases where the only evi-
dence for a PTM was in the form of a sequence of
residues, for example

Characterization [. . . ] gave the follow-
ing sequence, Gly-Cys-Hyp-D-Trp-Glu-
Pro-Trp-Cys-NH2 where Hyp = 4-trans-
hydroxyproline. (PMID 8910408)

Here, the occurrence of hydroxyproline in the se-
quence implies that the protein has been hydrox-
ylated, but as the hydroxylation event is only im-
plied by the protein state, no event is annotated.

Candidates drawn from PIR but not fulfilling
the criteria were excluded from annotation. While
this implies that the general class of event extrac-
tion approaches considered here will not recover
all statements providing evidence of PTM to bi-
ologists (per the PIR criteria), several factors mit-
igate this limitation of their utility. First, while
PTMs implied by sequence only are relatively fre-
quent in PIR, its selection criteria give emphasis
to publications initially reporting the existence of a
PTM, and further publications discussing the PTM
are not expected to state it as sequence only. Thus,
it should be possible to extract the correspond-
ing PTMs from later sources. Similarly, one of
the promises of event extraction approaches is the
potential to extract associations of multiple enti-
ties and extract causal chains connecting events
with others (e.g. E catalyzes the hydroxylation of
P, leading to . . . ), and the data indicates that the
sequence-only statements typically provide little
information on the biological context of the modi-
fication beyond identifying the entity and site. As
such non-contextual PTM information is already
available in multiple databases, this class of state-
ments may not be of primary interest for event ex-
traction.

2.5 Annotation results

The new PTM annotation covers 157 PubMed
abstracts. Following the model of the BioNLP
shared task, all mentions of specific gene or gene
product names in the abstracts were annotated, ap-
plying the annotation criteria of (Ohta et al., 2009).
This new named entity annotation covers 1031
gene/gene product mentions, thus averaging more
than six mentions per annotated abstract. In to-
tal, 422 events of which 405 are of the novel PTM
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Event type Count
Glycosylation 122
Hydroxylation 103
Methylation 90
Acetylation 90
Positive reg. 12
Phosphorylation 3
Protein modification 2
TOTAL 422

Table 6: Statistics of the introduced event annota-
tion.

Arguments Count
Theme, Site 363
Theme 36
Site 6

Table 7: Statistics for the arguments of the anno-
tated PTM events.

types were annotated, matching the initial annota-
tion target in number and giving a well-balanced
distribution of the specific PTM types (Table 6).
Reflecting the selection of the source texts, the
argument structures of the annotated PTM events
(Table 7) show a different distribution from those
annotated in the GENIA event corpus (Table 5):
whereas less than half of the GENIA event corpus
PTM events include a Site argument, almost 90%
of the PTM events in the new data include a Site.
PTM events identifying both the modified protein
and the specific modified site are expected to be
of more practical interest. However, we note that
the greater number of multi-argument events is ex-
pected to make the dataset more challenging as an
extraction target.

3 Evaluation

To estimate the capacity of the newly annotated
resource to support the extraction of the targeted
PTM events and the performance of current event
extraction methods at open-domain PTM extrac-
tion, we performed a set of experiments using an
event extraction method competitive with the state
of the art, as established in the BioNLP shared task
on event extraction (Kim et al., 2009a; Björne et
al., 2009).

3.1 Methods

We adopted the recently introduced event extrac-
tion system of Miwa et al. (2010). The system

applies a pipeline architecture consisting of three
supervised classification-based modules: a trig-
ger detector, an event edge detector, and an event
detector. In evaluation on the BioNLP shared
task test data, the system extracted phosphory-
lation events at 75.7% precision and 85.2% re-
call (80.1% F-score) for Task 1, and 75.7% preci-
sion and 83.3% recall (79.3% F-score) for Task 2,
showing performance comparable to the best re-
sults reported in the literature for this event class
(Buyko et al., 2009). We assume three precondi-
tions for the PTM extraction: proteins are given,
all PTMs have Sites, and all arguments in a PTM
co-occur in sentence scope. The first of these is
per the BioNLP shared task setup, the second fixed
based the corpus statistics, and the third a property
intrinsic to the extraction method, which builds on
analysis of sentence structure.6 In the experiments
reported here, only the four novel PTM event types
with Sites in the corpus are regarded as a target for
the extraction.

The system extracted PTMs as follows: the
trigger detector detected the entities (triggers and
sites) of the PTMs, the event edge detector de-
tected the edges in the PTMs, and the event de-
tector detected the PTMs. The evaluation setting
was the same as the evaluation in (Miwa et al.,
2010) except for the threshold. The thresholds in
the three modules were tuned with the develop-
ment data set.

Performance evaluation is performed using the
BioNLP shared task primary evaluation criteria,
termed the “Approximate Span Matching” crite-
rion. This criterion relaxes the requirements of
strict matching in accepting extracted event trig-
gers and entities as correct if their span is inside
the region of the corresponding region in the gold
standard annotation.

3.2 Data Preparation
The corpus data was split into training and test sets
on the document level with a sampling strategy
that aimed to preserve a roughly 3:1 ratio of oc-
currences of each event type between training and
test data. The test data was held out during sys-
tem development and parameter selection and only
applied in a single final experiment. The event ex-
traction system was trained using the 112 abstracts
of the training set, further using 24 of the abstracts

6We note that in the BioNLP shared task data, all argu-
ments were contained within single sentences for 95% of
events.
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Figure 2: Performance of PTM extraction on the
development data set.

Event type Prec Rec F
Acetylation 69.6% 36.7% 48.1%
Methylation 50.0% 34.2% 40.6%
Glycosylation 36.7% 42.5% 39.4%
Hydroxylation 57.1% 29.3% 38.7%
Overall 52.1% 35.7% 42.4%

Table 8: Event extraction results on the test set.

as a development test set.

3.3 Results

We first performed parameter selection, setting the
machine learning method parameter by estimating
performance on the development data set. Figure 2
shows the performance of PTM extraction on the
development data set with different values of pa-
rameter. The threshold value corresponding to the
best performance (0.3) was then applied for an ex-
periment on the held-out test set.

Performance on the test set was evaluated as
52% precision and 36% recall (42% F-score),
matching estimates on the development data. A
breakdown by event type (Table 8) shows that
Acetylation is most reliably extracted with extrac-
tion for the other three PTM types showing sim-
ilar F-scores despite some variance in the preci-
sion/recall balance. We note that while these re-
sults fall notably below the best result reported
for Phosphorylation events in the BioNLP shared
task, they are comparable to the best results re-
ported in the task for Regulation and Binding
events (Kim et al., 2009a), suggesting that the
dataset allows the extraction of the novel PTM
events with Theme and Site arguments at levels
comparable to multi-argument shared task events.

Figure 3: Learning curve of PTM extraction on the
development data set.

Further, a learning curve (Figure 3) plotted on
the development data suggests roughly linearly
increasing performance over most of the curve.
While the increase appears to be leveling off to
an extent when using all of the available data, the
learning curve indicates that performance can be
further improved by increasing the size of the an-
notated dataset.

4 Discussion

Post-translational modifications have been a fo-
cus of interest in the biomedical text mining com-
munity, and a number of resources and systems
targeting PTM have been proposed. The GE-
NIES and GeneWays systems (Friedman et al.,
2001; Rzhetsky et al., 2004) targeted PTM events
such as phosphorylation and dephosphorylation
under the more general createbond and breakbond
types. Hu et al. (2005) introduce the RLIMS-P
rule-based system for mining the substrates and
sites for phosphorylation, which is extended with
the capacity to extract intra-clausal statements by
Narayanaswamy et al. (2005). Saric et al. (2006)
present an extension of their rule-based STRING-
IE system for extracting regulatory networks to
capture phosphorylation and dephosphorylation
events. Lee et al. (2008) present E3Miner, a tool
for automatically extracting information related to
ubiquitination, and Kim et al. (2009b) present a
preliminary study adapting the E3Miner approach
to the mining of acetylation events.

It should be noted that while studies target-
ing single specific PTM types report better re-
sults than found in the initial evaluation presented
here (in many cases dramatically so), different
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extraction targets and evaluation criteria compli-
cate direct comparison. Perhaps more importantly,
our aim here is to extend the capabilities of gen-
eral event extraction systems targeting multiple
types of structured events. Pursuing this broader
goal necessarily involves some compromise in the
ability to focus on the extraction of individual
event types, and it is expected that highly focused
systems will provide better performance than re-
trained general systems.

The approach to PTM extraction adopted here
relies extensively on the availability of annotated
resources, the creation of which requires consider-
able effort and expertise in understanding the tar-
get domain as well as the annotation methodology
and tools. The annotation created in this study,
performed largely on the basis of partial existing
annotations drawn from PIR data, involved an es-
timated three weeks of full-time effort from an ex-
perienced annotator. As experiments further in-
dicated that a larger corpus may be necessary for
reliable annotation, we can estimate that extending
the approach to sufficient coverage of each of hun-
dreds of PTM types without a partial initial anno-
tation would easily require several person-years of
annotation efforts. We thus see a clear need for the
development of unsupervised or semisupervised
methods for PTM extraction to extend the cover-
age of event extraction systems to the full scale of
different PTM types. Nevertheless, even if reliable
methods for PTM extraction that entirely avoid the
need for annotated training data become available,
a manually curated reference standard will still be
necessary for reliable estimation of their perfor-
mance. To efficiently support the development of
event extraction systems capable of capturing the
full variety of PTM events, it may be beneficial to
reverse the approach taken here: instead of anno-
tating hundreds of examples of a small number of
PTM types, annotate a small number of each of
hundreds of PTM types, thus providing both seed
data for semisupervised approaches as well as ref-
erence data for the evaluation of broad-coverage
PTM event extraction systems.

5 Conclusions and Future Work

We have presented an event extraction approach
to automatic PTM recognition, building on the
model introduced in the BioNLP shared task on
event extraction. By annotating a targeted cor-
pus for four prominent PTM types not considered

in the BioNLP shared task data, we have created
a resource that can be straightforwardly used to
extend the capability of event extraction systems
for PTM extraction. We estimated that while sys-
tems trained on the original shared task dataset
could not recognize more than 50% of PTM men-
tions due to their types, the introduced annotation
increases this theoretical upper bound to nearly
90%. An initial experiment on the newly intro-
duced dataset using a state-of-the-art method indi-
cated that straightforward adoption of the dataset
as training data to extend coverage of PTM events
without specific adaptations of the method is feasi-
ble, although the measured performance indicates
remaining challenges for reliable extraction. Fur-
ther, while the experiments were performed on a
dataset selected to avoid bias toward e.g. a partic-
ular subdomain or specific forms of event expres-
sions, it remains an open question how extraction
performance generalizes to biomedical literature
beyond the selected sample. As experiments in-
dicated clear remaining potential for the improve-
ment of extraction performance from more train-
ing data, the extension of the annotated dataset is
a natural direction for future work. We considered
also the possiblity of extending annotation to cover
small numbers of each of a large variety of PTM
types, which would place focus on the challenges
of event extraction with little or no training data
for specific event types.

The annotated corpus covering over 1000 gene
and gene product entities and over 400 events is
freely available in the widely adopted BioNLP
shared task format at the GENIA project home-
page.7
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