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Abstract

This paper describes the augmented three-
pass system combination framework of
the Dublin City University (DCU) MT
group for the WMT 2010 system combi-
nation task. The basic three-pass frame-
work includes building individual confu-
sion networks (CNs), a super network, and
a modified Minimum Bayes-risk (mCon-
MBR) decoder. The augmented parts for
WMT2010 tasks include 1) a rescoring
component which is used to re-rank the
N-best lists generated from the individual
CNs and the super network, 2) a new hy-
pothesis alignment metric — TERp — that
is used to carry out English-targeted hy-
pothesis alignment, and 3) more differ-
ent backbone-based CNs which are em-
ployed to increase the diversity of the
mConMBR decoding phase. We took
part in the combination tasks of English-
to-Czech and French-to-English. Exper-
imental results show that our proposed
combination framework achieved 2.17 ab-
solute points (13.36 relative points) and
1.52 absolute points (5.37 relative points)
in terms of BLEU score on English-to-
Czech and French-to-English tasks re-
spectively than the best single system. We
also achieved better performance on hu-
man evaluation.

1 Introduction

In several recent years, system combination has
become not only a research focus, but also a pop-
ular evaluation task due to its help in improving
machine translation quality. Generally, most com-
bination approaches are based on a confusion net-

translation hypotheses and generate a new target
sentence. A CN is essentially a directed acyclic
graph built from a set of translation hypotheses
against a reference or “backbone”. Each arc be-
tween two nodes in the CN denotes a word or to-
ken, possibly a null item, with an associated pos-
terior probability.

Typically, the dominant CN is constructed at the
word level by a state-of-the-art framework: firstly,
a minimum Bayes-risk (MBR) decoder (Kumar
and Byrne, 2004) is utilised to choose the back-
bone from a merged set of hypotheses, and then
the remaining hypotheses are aligned against the
backbone by a specific alignment approach. Cur-
rently, most research in system combination has
focused on hypothesis alignment due to its signif-
icant influence on combination quality.

A multiple CN or “super-network” framework
was firstly proposed in Rosti et al. (2007) who
used each of all individual system results as the
backbone to build CNs based on the same align-
ment metric, TER (Snover et al., 2006). A consen-
sus network MBR (ConMBR) approach was pre-
sented in (Sim et al., 2007), where MBR decod-
ing is employed to select the best hypothesis with
the minimum cost from the original single system
outputs compared to the consensus output.

Du and Way (2009) proposed a combination
strategy that employs MBR, super network, and
a modified ConMBR (mConMBR) approach to
construct a three-pass system combination frame-
work which can effectively combine different hy-
pothesis alignment results and easily be extended
to more alignment metrics. Firstly, a number of
individual CNs are built based on different back-
bones and different kinds of alignment metrics.
Each network generates a 1-best output. Secondly,
a super network is constructed combining all the
individual networks, and a consensus is generated

work (CN) which can effectively re-shuffle thezgobased on a weighted search model. In the third
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pass, all the 1-best hypotheses coming from sin-
gle MT systems, individual networks, and the su-
per network are combined to select the final result
using the mConMBR decoder.

In the system combination task of WMT 2010,
we adopted an augmented framework by extend-
ing the strategy in (Du and Way, 2009). In addi-
tion to the basic three-pass architecture, we aug-
ment our combination system as follows:

e We add a rescoring component in Pass 1 and
Pass 2.

e We introduce the TERp (Snover et al., 2009)
alignment metric for the English-targeted
combination.

e We employ different backbones and hypothe-
sis alignment metrics to increase the diversity
of candidates for our mConMBR decoding.

The remainder of this paper is organised as fol-
lows. In Section 2, we introduce the three hy-
pothesis alignment methods used in our frame-
work. Section 3 details the steps for building our
augmented three-pass combination framework. In
Section 4, a rescoring model with rich features
is described. Then, Sections 5 and 6 respec-
tively report the experimental settings and exper-
imental results on English-to-Czech and French-
to-English combination tasks. Section 7 gives our
conclusions.

2 Hypothesis Alignment Methods

Hypothesis alignment plays a vital role in the CN,
as the backbone sentence determines the skeleton
and the word order of the consensus output.

In the combination evaluation task, we inte-
grated TER (Snover et al., 2006), HMM (Ma-
tusov et al., 2006) and TERp (Snover et al.,
2009) into our augmented three-pass combination
framework. In this section, we briefly describe
these three methods.

2.1 TER

The TER (Translation Edit Rate) metric measures
the ratio of the number of edit operations between
the hypothesis E’ and the reference Fj to the total
number of words in Fj,. Here the backbone FEj, is
assumed to be the reference. The allowable edits
include insertions (Ins), deletions (Del), substitu-
tions (Sub), and phrase shifts (Shft). The TER of
E’ compared to Ej, is computed as in (1):

Ins + Del + Sub + Shft

TER(E',E,) = N
b

where NV, is the total number of words in . The
difference between TER and Levenshtein edit dis-
tance (or WER) is the sequence shift operation al-
lowing phrasal shifts in the output to be captured.

The phrase shift edit is carried out by a greedy
algorithm and restricted by three constraints: 1)
The shifted words must exactly match the refer-
ence words in the destination position. 2) The
word sequence of the hypothesis in the original
position and the corresponding reference words
must not exactly match. 3) The word sequence
of the reference that corresponds to the desti-
nation position must be misaligned before the
shift (Snover et al., 2006).

2.2 HMM

The hypothesis alignment model based on HMM
(Hidden Markov Model) considers the align-
ment between the backbone and the hypoth-
esis as a hidden variable in the conditional
probability P.(E’|Ey). Given the backbone

» = {e1,...,er} and the hypothesis F/ =
{€},...,€;}, which are both in the same lan-
guage, the probability P.(E’|E}) is defined as in
2):

P.(E'|Ey) =Y P.(E', A|E,) 2)

A

where the alignemnt A C {(j,7) : 1 < j <
J;1 < i < I}, i and j represent the word po-
sition in E}, and E’ respectively. Hence, the align-
ment issue is to seek the optimum alignment A
such that:

A = argmax P(Alel, /) 3)
A

For the HMM-based model, equation (2) can be
represented as in (4):

ejleq;)] @)

E/‘Eb Z H a]’a] 1,1
al J=

where p(ajla;j—1,I) is the alignment probability
and p(eje;) is the translation probability.

2.3 TER-Plus

TER-Plus (TERp) is an extension of TER that
aligns words in the hypothesis and reference not
only when they are exact matches but also when
the words share a stem or are synonyms (Snover
et al., 2009). In addition, it uses probabilistic
phrasal substitutions to align phrases in the hy-

x 100% (1)29 1pothesis and reference. In contrast to the use of



the constant edit cost for all operations such as
shifts, insertion, deleting or substituting in TER,
all edit costs in TERp are optimized to maximize
correlation with human judgments.

TERp uses all the edit operations of TER —
matches, insertions, deletions, substitutions, and
shifts — as well as three new edit operations:
stem matches, synonym matches, and phrase sub-
stitutions (Snover et al., 2009). TERp employs
the Porter stemming algorithm (Porter, 1980) and
WordNet (Fellbaum, 1998) to perform the “stem
match” and “synonym match” respectively. Se-
quences of words in the reference are considered
to be paraphrases of a sequence of words in the
hypothesis if that phrase pair occurs in the TERp
phrase table (Snover et al., 2009).

In our experiments, TERp was used for the
French-English system combination task, and we
used the default configuration of optimised edit
Costs.

3 Augmented Three-Pass Combination
Framework

The construction of the augmented three-pass
combination framework is shown in Figure 1.
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Figure 1: Three-Pass Combination Framework

In Figure 1, the dashed boxes labeled “TERp”
indicate that the TERp alignment is only appli-
cable for English-targeted hypothesis alignment.
The lines with arrows pointing to “mConMBR”
represent adding outputs into the mConMBR de-
coding component. “Top M Single” indicates that
the 1-best results from the best M individual MT
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systems are also used as backbones to build in-
dividual CNs under different alignment metrics.
The three dashed boxes represent Pass 1, Pass 2
and Pass 3 respectively. The steps can be sum-
marised as follows:

Pass 1: Specific Metric-based Single Networks

1. Merge all the 1-best hypotheses from single
MT systems into a new N-best set V.

2. Utilise the standard MBR decoder to se-
lect one from the Ny as the backbone given
some specific loss function such as TER,
BLEU (Papineni et al., 2002) and TERp; Ad-
ditionally, in order to increase the diversity
of candidates used for Pass 2 and Pass 3, we
also use the 1-best hypotheses from the top
M single MT systems as the backbone. Add
the backbones generated by MBR into N;.

3. Perform the word alignment between the dif-
ferent backbones and the other hypotheses
via the TER, HMM, TERp (only for English)
metrics.

4. Carry out word reordering based on word
alignment (TER and TERp have completed
the reordering in the process of scoring) and
build individual CNs (Rosti et al., 2007);

5. Decode the single networks and export the 1-
best outputs and the N-best lists separately.
Add these 1-best outputs into N;.

Pass 2: Super-Network

1. Connect the single networks using a start
node and an end node to form a super-
network based on multiple hypothesis align-
ment and different backbones. In this evalu-
ation, we set uniform weights for these dif-
ferent individual networks when building the
super network(Du and Way, 2009).

2. Decode the super network and generate a
consensus output as well as the N-best list.
Add the 1-best result into V.

3. Rescore the N-best lists from all individual
networks and super network and add the new
1-best results into V.

Pass 3: mConMBR

1. Rename the set Ny as a new set Neop;

2. Use mConMBR decoding to search for the
best final result from N.,,. In this step, we
set a uniform distribution between the candi-
dates in N op,.



4 Rescoring Model

We adapted our previous rescoring model (Du
et al., 2009) to larger-scale data. The features we
used are as follows:

e Direct and inverse IBM model;
e 4-gram and 5-gram target language model;

e 3, 4, and 5-gram Part-of-Speech (POS) lan-
guage model (Schmid, 1994; Ratnaparkhi,
1996);

e Sentence-length posterior probability (Zens
and Ney, 2006);

e N-gram posterior probabilities within the N-
best list (Zens and Ney, 2006);

e Minimum Bayes Risk cost. This process is
similar to the calculation of the MBR decod-
ing in which we take the current hypothesis
in the IV -best list as the “backbone”, and then
calculate and sum up all the Bayes risk cost
between the backbone and each of the rest of
the /V-best list using BLEU metric as the loss
function;

e Length ratio between source and target sen-
tence.

The weights are optimized via the MERT algo-
rithm (Och, 2003).

5 Experimental Settings

We participated in the English—-Czech and
French-English system combination tasks.

In our system combination framework, we use
a large-scale monolingual data to train language
models and carry out POS-tagging.

5.1 English-Czech

Training Data
The statistics of the data used for language models
training are shown in Table 1.

Monolingual | Number of
Corpus tokens (Cz) sentences
News-Comm 2,214,757 84,706
CzEng 81,161,278 8,027,391
News 205,600,053 | 13,042,040
Total 288,976,088 | 21,154,137

Table 1: Statistics of data in the En—Cz task

All the data are provided by the workshop
organisers. ! In Table 1, “News-Comm” indi-
cates the data set of News-Commentary v1.0 and

"http://www.statmt.org/wmt10/translation-task.html

“CzEng” is the Czech—English corpus v0.9 (Bo-
jar and Zabokrtsky, 2009). “News” is the Czech
monolingual News corpus.

As to our CN and rescoring components,
we use “News-Comm+CzEng” to train a
4-gram language model and use “News-
Comm+CzEng+News” to train a 5-gram
language model. Additionally, we per-
form POS tagging (Haji¢, 2004) for ‘News-
Comm+CzEng+News” data, and train 3-gram,
4-gram, and 5-gram POS-tag language models.

Devset and Testset

The devset includes 455 sentences and the testset
contains 2,034 sentences. Both data sets are pro-
vided by the workshop organizers. Each source
sentence has only one reference. There are 11 MT
systems in the En-Cz track and we use all of them
in our combination experiments.

5.2 French-English

Training Data
The statistics of the data used for language models
training and POS tagging are shown in Table 2.

Monolingual | Number of
Corpus tokens (En) sentences
News-Comm 2,973,711 125,879
Europarl 50,738,215 1,843,035
News 1,131,527,255 | 48,648,160
Total 1,184,234,384 | 50,617,074

Table 2: Statistics of data in the Fr—En task

“News” is the English monolingual News
corpus. We use “News-Comm+Europarl” to
train a 4-gram language model and use “News-
Comm-+Europarl+News” to train a 5-gram lan-
guage model. We also perform POS tagging (Rat-
naparkhi, 1996) for all available data, and train
3-gram, 4-gram and, 5-gram POS-tag language
models.

Devset and Testset
We also use all the 1-best results to carry out sys-
tem combination. There are 14 MT systems in the
Fr-En track and we use all of them in our combi-
nation experiments.

6 Experimental Results

In this section, all the results are reported on de-
vsets in terms of BLEU and NIST scores.

6.1 English—-Czech

In this task, we only used one hypothesis align-

rgzment method — TER — to carry out hypothesis



alignment. However, in order to increase diversity
for our 3-pass framework, in addition to using the
output from MBR decoding as the backbone, we
also separately selected the top 4 individual sys-
tems (SYS1, SYS4, SYS6, and SYS11 in our sys-
tem set) in terms of BLEU scores on the devset as
the backbones so that we can build multiple indi-
vidual CNs for the super network. All the results
are shown in Table 3.

[ SYS [ BLEU4 [ NIST ]
Worst 9.09 3.83
Best 17.28 4.99
SYS1 15.11 4.76
SYS4 12.67 4.40
SYS6 17.28 4.99
SYSI11 15.75 4.81
CN-SYS1 17.36 5.12
CN-SYS4 16.94 5.10
CN-SYS6 17.91 5.13
CN-SYSI11 17.45 5.09
CN-MBR 18.29 5.15

[ SuperCN [ 1844 [ 517 |
mConMBR-BAS 18.60 5.18
mConMBR-New 18.84 5.11

Table 3: Automatic evaluation of the combination
results on the En-Cz devset.

“Worst” indicates the 1-best hypothesis from
the worst single system, the “Best” is the 1-best
hypothesis from the best single system (SYS11)).
“CN-SYS X" denotes that we use SYSX (X =
1,4,6,11 and MBR) as the backbone to build an
individual CN. “mConMBR-BAS” stands for the
original three-pass combination framework with-
out rescoring component, while “mConMBR-
New” indicates the proposed augmented combina-
tion framework. It can be seen from Table 3 that 1)
in all individual CNs, the CN-MBR achieved the
best performance; 2) SuperCN and mConMBR-
New improved by 1.16 (6.71% relative) and 1.56
(9.03% relative) absolute BLEU points compared
to the best single MT system. 3) our new
three-pass combination framework achieved the
improvement of 0.24 absolute (1.29% relative)
BLEU points than the original framework.

The final results on the test set are shown in Ta-
ble 4.

It can be seen that our “mConMBR-New”
framework performs better than the best single
system and our original framework “mConMBR-
BAS” in terms of automatic BLEU scores and hu-
man evaluation for the English-to-Czech task. In
this task campaign, we achieved top 1 in terms of
the human evaluation.

6.2 French-English

We used three hypothesis alignment methods —
TER, TERp and HMM - to carry out word align-
ment between the backbone and the rest of the
hypotheses. Apart from the backbone generated
from MBR, we separately select the top 5 individ-
ual systems (SYS1, SYS10, SYS11, SYS12, and
SYS13 in our system set) respectively as the back-
bones using HMM, TER and TERp to carry out
hypothesis alignment so that we can build more
individual CNs for the super network to increase
the diversity of candidates for mConMBR. The re-
sults are shown in Table 5.3

[ SYS [ BLEU4(%) [ NIST ]
Worst 15.04 4.97
Best 28.88 6.71
CN-SYSI1-TER 29.56 6.78
CN-SYS1-HMM 29.60 6.84
CN-SYSI-TERp 29.77 6.83
CN-MBR-TER 30.16 6.91
CN-MBR-HMM 30.19 6.92
CN-MBR-TERp 30.27 6.92

[ SuperCN [ 3058 [ 690 |
mConMBR-BAS 30.74 7.01
mConMBR-New 31.02 6.96

Table 5: Automatic evaluation of the combination
results on the Fr-En devset.

“CN-MBR-X" represents the different possi-
ble hypothesis alignment methods (X = {TER,
HMM, TERp}) which are used to build indi-
vidual CNs using the output from MBR de-
coding as the backbone. We can see that the
SuperCN and mConMBR-New respectively im-
proved by 1.7 absolute (5.89% relative) and 2.88
absolute (9.97% relative) BLEU points compared
to the best single system. Furthermore, our aug-
mented framework “mConMBR-New” achieved
the improvement of 0.28 absolute (0.91% relative)
BLEU points than the original three-pass frame-

>This score was measured in-house on the refer-

[ SYS [ BLEU4 [ human eval.(%win) |

| Best [ 1624 | 7038 ] work as well,
mConMBR-BAS 17.91 -
mConMBR-New | 18.412 75.17

Table 4: Evaluation of the combination results on
the En-Cz testset.

ence provided by the organizer using metric mteval-v13
(ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl).

3In this Table, we take SYSI as an example to show the
results using a single MT system as the backbone under the

three alignment metrics.
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The final results on the test set are shown in Ta-
ble 6.

[ SYS [ BLEU4 [ human eval.(%win) |

[ Best [ 2830 | 66.84 ]
mConMBR-BAS 29.21 -
mConMBR-New | 29.822 72.15

Table 6: Evaluation of the combination results on
Fr-En test set.

It can be seen that our “mConMBR-New”
framework performs the best than the best single
system and our original framework “mConMBR-
BAS” in terms of automatic BLEU scores and hu-
man evaluation for the French—English task.

7 Conclusions and Future Work

We proposed an augmented three-pass mul-
tiple system combination framework for the
WMT2010 system combination shared task. The
augmented parts include 1) a rescoring model to
select the potential 1-best result from the indi-
vidual CNs and super network to increase the di-
versity for “mConMBR” decoding; 2) a new hy-
pothesis alignment metric “TERp” for English-
targeted alignment; 3) 1-best results from the top
M individual systems employed to build CNs
to augment the “mConMBR” decoding. We
took part in the English-to-Czech and French-to-
English tasks. Experimental results reported on
test set of these two tasks showed that our aug-
mented framework performed better than the best
single system in terms of BLEU scores and hu-
man evaluation. Furthermore, the proposed aug-
mented framework achieved better results than our
basic three-pass combination framework (Du and
Way, 2009) as well in terms of automatic evalua-
tion scores. In the released preliminary results, we
achieved top 1 and top 3 for the English-to-Czech
and French-to-English tasks respectively in terms
of human evaluation.

As for future work, firstly we plan to do further
experiments using automatic weight-tuning algo-
rithm to tune our framework. Secondly, we plan
to examine how the differences between the hy-
pothesis alignment metrics impact on the accuracy
of the super network. We also intend to integrate
more alignment metrics to the networks and verify
on the other language pairs.
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