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Abstract 

 

NRC’s Portage system participated in the Eng-

lish-French (E-F) and French-English (F-E) 

translation tasks of the ACL WMT 2010 eval-

uation. The most notable improvement over 

earlier versions of Portage is an efficient im-

plementation of lattice MERT. While Portage 

has typically performed well in Chinese to 

English MT evaluations, most recently in the 

NIST09 evaluation, our participation in WMT 

2010 revealed some interesting differences be-

tween Chinese-English and E-F/F-E transla-
tion, and alerted us to certain weak spots in 

our system. Most of this paper discusses the 

problems we found in our system and ways of 

fixing them. We learned several lessons that 

we think will be of general interest.  

1 Introduction 

Portage, the statistical machine translation sys-
tem of the National Research Council of Canada 

(NRC), is a two-pass phrase-based system. The 
translation tasks to which it is most often applied 

are Chinese to English, English to French (hen-

ceforth “E-F”), and French to English (hence-
forth “F-E”): in recent years we worked on Chi-

nese-English translation for the GALE project 

and for NIST evaluations, and English and 

French are Canada’s two official languages. In 
WMT 2010, Portage scored 28.5 BLEU (un-

cased) for F-E, but only 27.0 BLEU (uncased) 

for E-F. For both language pairs, Portage tru-
ecasing caused a loss of 1.4 BLEU; other WMT 

systems typically lost around 1.0 BLEU after 

truecasing. In Canada, about 80% of translations 
between English and French are from English to 

French, so we would have preferred better results 

for that direction. This paper first describes the 

version of Portage that participated in WMT 

2010. It then analyzes problems with the system 
and describes the solutions we found for some of 

them.  

2 Portage system description 

2.1 Core engine and training data 

The NRC system uses a standard two-pass 

phrase-based approach. Major features in the 
first-pass loglinear model include phrase tables 

derived from symmetrized IBM2 alignments and 

symmetrized HMM alignments, a distance-based 

distortion model, a lexicalized distortion model, 
and language models (LMs) that can be either 

static or else dynamic mixtures. Each phrase ta-

ble used was a merged one, created by separately 
training an IBM2-based and an HMM-based 

joint count table on the same data and then add-

ing the counts. Each includes relative frequency 
estimates and lexical estimates (based on Zens 

and Ney, 2004) of forward and backward condi-

tional probabilities. The lexicalized distortion 

probabilities are also obtained by adding IBM2 
and HMM counts. They involve 6 features (mo-

notone, swap and discontinuous features for fol-

lowing and preceding phrase) and are condi-
tioned on phrase pairs in a model similar to that 

of Moses (Koehn et al., 2005); a MAP-based 

backoff smoothing scheme is used to combat 

data sparseness when estimating these probabili-
ties. Dynamic mixture LMs are linear mixtures 

of ngram models trained on parallel sub-corpora 

with weights set to minimize perplexity of the 
current source text as described in (Foster and 

Kuhn, 2007); henceforth, we’ll call them “dy-

namic LMs”.  
Decoding uses the cube-pruning algorithm of 

(Huang and Chiang, 2007) with a 7-word distor-

tion limit. Contrary to the usual implementation 

of distortion limits, we allow a new phrase to end 
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more than 7 words past the first non-covered 

word, as long as the new phrase starts within 7 

words from the first non-covered word. Notwith-

standing the distortion limit, contiguous phrases 
can always be swapped. Out-of-vocabulary 

(OOV) source words are passed through un-

changed to the target. Loglinear weights are 
tuned with Och's max-BLEU algorithm over lat-

tices (Macherey et al., 2008); more details about 

lattice MERT are given in the next section. The 
second pass rescores 1000-best lists produced by 

the first pass, with additional features including 

various LM and IBM-model probabilities; ngram, 

length, and reordering posterior probabilities and 
frequencies; and quote and parenthesis mismatch 

indicators. To improve the quality of the maxima 

found by MERT when using large sets of partial-
ly-overlapping rescoring features, we use greedy 

feature selection, first expanding from a baseline 

set, then pruning. 
We restricted our training data to data that was 

directly available through the workshop's web-

site; we didn’t use the LDC resources mentioned 

on the website (e.g., French Gigaword, English 
Gigaword). Below, “mono” refers to all mono-

lingual data (Europarl, news-commentary, and 

shuffle); “mono” English is roughly three times 
bigger than “mono” French (50.6 M lines in 

“mono” English, 17.7 M lines in “mono” French). 

“Domain” refers to all WMT parallel training 

data except GigaFrEn (i.e., Europarl, news-
commentary, and UN).   

2.2 Preprocessing and postprocessing 

We used our own English and French pre- and 

post-processing tools, rather than those available 
from the WMT web site. For training, all English 

and French text is tokenized with a language-

specific tokenizer and then mapped to lowercase. 
Truecasing uses an HMM approach, with lexical 

probabilities derived from “mono” and transition 

probabilities from a 3-gram LM trained on tru-

ecase “mono”. A subsequent rule-based pass ca-
pitalizes sentence-initial words. A final detokeni-

zation step undoes the tokenization. 

2.3 System configurations for WMT 2010 

In the weeks preceding the evaluation, we tried 
several ways of arranging the resources available 

to us. We picked the configurations that gave the 

highest BLEU scores on WMT2009 Newstest. 

We found that tuning with lattice MERT rather 
than N-best MERT allowed us to employ more 

parameters and obtain better results.  

E-F system components: 

1. Phrase table trained on “domain”;  

2. Phrase table trained on GigaFrEn;  

3. Lexicalized distortion model trained on 

“domain”;  
4. Distance-based distortion model; 

5. 5-gram French LM trained on “mono”;  

6. 4-gram LM trained on French half of 
GigaFrEn;  

7. Dynamic LM composed of 4 LMs, each 

trained on the French half of a parallel 
corpus (5-gram LM trained on “domain”, 

4-gram LM on GigaFrEn, 5-gram LM on 

news-commentary and 5-gram LM on 

UN). 
 

The F-E system is a mirror image of the E-F sys-

tem.  

3 Details of lattice MERT (LMERT) 

Our system’s implementation of LMERT (Ma-

cherey et al., 2008) is the most notable recent 
change in our system. As more and more features 

are included in the loglinear model, especially if 

they are correlated, N-best MERT (Och, 2003) 
shows more and more instability, because of 

convergence to local optima (Foster and Kuhn, 

2009). We had been looking for methods that 

promise more stability and better convergence. 
LMERT seemed to fit the bill. It optimizes over 

the complete lattice of candidate translations af-

ter a decoding run. This avoids some of the prob-
lems of N-best lists, which lack variety, leading 

to poor local optima and the need for many de-

coder runs. 
Though the algorithm is straightforward and is 

highly parallelizable, attention must be paid to 

space and time resource issues during implemen-

tation. Lattices output by our decoder were large 
and needed to be shrunk dramatically for the al-

gorithm to function well. Fortunately, this could 

be achieved via the finite state equivalence algo-
rithm for minimizing deterministic finite state 

machines. The second helpful idea was to sepa-

rate out the features that were a function of the 
phrase associated with an arc (e.g., translation 

length and translation model probability fea-

tures). These features could then be stored in a 

smaller phrase-feature table. Features associated 
with language or distortion models could be han-

dled in a larger transition-feature table. 

The above ideas, plus careful coding of data 
structures, brought the memory footprint down 

sufficiently to allow us to use complete lattices 

from the decoder and optimize over the complete 
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development set for NIST09 Chinese-English. 

However, combining lattices between decoder 

runs again resulted in excessive memory re-

quirements. We achieved acceptable perfor-
mance by searching only the lattice from the lat-

est decoder run; perhaps information from earlier 

runs, though critical for convergence in N-best 
MERT, isn’t as important for LMERT.  

Until a reviewer suggested it, we had not 

thought of pruning lattices to a specified graph 
density as a solution for our memory problems. 

This is referred to in a single sentence in (Ma-

cherey et al., 2008), which does not specify its 

implementation or its impact on performance, 
and is an option of OpenFst (we didn’t use 

OpenFst). We will certainly experiment with lat-

tice pruning in future.  
Powell's algorithm (PA), which is at the core 

of MERT, has good convergence when features 

are mostly independent and do not depart much 
from a simple coordinate search; it can run into 

problems when there are many correlated fea-

tures (as with multiple translation and language 

models). Figure 1 shows the kind of case where 
PA works well. The contours of the function be-

ing optimized are relatively smooth, facilitating 

learning of new search directions from gradients. 
Figure 2 shows a more difficult case: there is 

a single optimum, but noise dominates and PA 

has difficulty finding new directions. Search of-

ten iterates over the original co-ordinates, miss-
ing optima that are nearby but in directions not 

discoverable from local gradients. Probes in ran-

dom directions can do better than iteration over 
the same directions (this is similar to the method 

proposed for N-best MERT by Cer et al., 2008). 

Each 1-dimensional MERT optimization is exact, 
so if our probe stabs a region with better scores, 

it will be discovered. Figures 1 and 2 only hint 

at the problem: in reality, 2-dimensional search 

isn’t a problem. The difficulties occur as the di-
mension grows: in high dimensions, it is more 

important to get good directions and they are 

harder to find. 
For WMT 2010, we crafted a compromise 

with the best properties of PA, yet allowing for a 

more aggressive search in more directions. We 
start with PA. As long as PA is adding new di-

rection vectors, it is continued. When PA stops 

adding new directions, random rotation (ortho-

gonal transformation) of the coordinates is per-
formed and PA is restarted in the new space. PA 

almost always fails to introduce new directions 

within the new coordinates, then fails again, so 
another set of random coordinates is chosen. This 

process repeats until convergence. In future 

work, we will look at incorporating random res-

tarts into the algorithm as additional insurance 

against premature convergence.  
Our LMERT implementation has room for 

improvement: it may still run into over-fitting 

problems with many correlated features. Howev-
er, during preparation for the evaluation, we no-

ticed that LMERT converged better than N-best 

MERT, allowing models with more features and 
higher BLEU to be chosen.  

After the WMT submission, we discovered 

that our LMERT implementation had a bug; our 

submission was tuned with this buggy LMERT. 
Comparison between our E-F submission tuned 

with N-best MERT and the same system tuned 

with bug-fixed LMERT shows BLEU gains of 
+1.5-3.5 for LMERT (on dev, WMT2009, and 

WMT2010, with no rescoring). However, N-best 

MERT performed very poorly in this particular 
case; we usually obtain a gain due to LMERT of 

+0.2-1.0 (e.g., for the submitted F-E system).  

 

 
Figure 1: Convergence for PA (Smooth Feature 

Space)  
 

 
Figure 2: Convergence for PA with Random Rotation 

(Rough Feature Space) 
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4 Problems and Solutions 

4.1 Fixing LMERT  

Just after the evaluation, we noticed a discrepan-

cy for E-F between BLEU scores computed dur-
ing LMERT optimization and scores from the 1-

best list immediately after decoding. Our 

LMERT code had a bug that garbled any ac-
cented word in the version of the French refer-

ence in memory; previous LMERT experiments 

had English as target language, so the bug hadn’t 

showed up. The bug didn’t affect characters in 
the 7-bit ASCII set, such as English ones, only 

accented characters. Words in candidate transla-

tions were not garbled, so correct translations 
with accents received a lower BLEU score than 

they should have. As Table 1 shows, this bug 

cost us about 0.5 BLEU for WMT 2010 E-F after 

rescoring (according to NRC’s internal version 
of BLEU, which differs slightly from WMT’s 

BLEU). Despite this bug, the system tuned with 

buggy LMERT (and submitted) was still better 
than the best system we obtained with N-best 

MERT. The bug didn’t affect F-E scores.  

 

 Dev WMT2009 WMT2010 

LMERT (bug) 25.26 26.85 27.55 

LMERT 

 (no bug) 

25.43 26.89 28.07 

 
Table 1: LMERT bug fix (E-F BLEU after rescoring) 

4.2 Fixing odd translations 

After the evaluation, we carefully studied the 

system outputs on the WMT 2010 test data, par-

ticularly for E-F. Apart from truecasing errors, 
we noticed two kinds of bad behaviour: transla-

tions of proper names and apparent passthrough 

of English words to the French side.  
Examples of E-F translations of proper names 

from our WMT 2010 submission (each from a 

different sentence): 

 

Mr. Onderka → M. Roman, Lukáš Marvan → G. 

Lukáš, Janey → The, Janette Tozer → Janette, 

Aysel Tugluk → joints tugluk, Tawa Hallae → 

Ottawa, Oleson →  production,  Alcobendas →  ; 

 

When the LMERT bug was fixed, some but 
not all of these bad translations were corrected 

(e.g., 3 of the 8 examples above were corrected). 

Our system passes OOV words through un-

changed. Thus, the names above aren’t OOVs, 
but words that occur rarely in the training data, 

and for which bad alignments have a dispropor-

tionate effect. We realized that when a source 

word begins with a capital, that may be a signal 

that it should be passed through. We thus de-
signed a passthrough feature function that applies 

to all capitalized forms not at the start of a sen-

tence (and also to forms at the sentence start if 
they’re capitalized elsewhere). Sequences of one 

or more capitalized forms are grouped into a 

phrase suggestion (e.g., Barack Obama → bar-

rack obama) which competes with phrase table 
entries and is assigned a weight by MERT. 

The passthrough feature function yields a tiny 

improvement over the E-F system with the bug-

fixed LMERT on the dev corpus (WMT2008): 
+0.06 BLEU (without rescoring). It yields a larg-

er improvement on our test corpus: +0.27 BLEU 

(without rescoring). Furthermore, it corrects all 
the examples from the WMT 2010 test shown 

above (after the LMERT bug fix 5 of the 8 ex-

amples above still had problems, but when the 
passthrough function is incorporated all of them 

go away). Though the BLEU gain is small, we 

are happy to have almost eradicated this type of 

error, which human beings find very annoying.  
The opposite type of error is apparent pass-

through. For instance, “we’re” appeared 12 times 

in the WMT 2010 test data, and was translated 6 
times into French as “we’re” - even though better 

translations had higher forward probabilities. The 

source of the problem is the backward probabili-
ty P(E=“we’re”|F=“we’re”), which is 1.0; the 

backward probabilities for valid French transla-

tions of “we’re” are lower. Because of the high 

probability P(E=“we’re”|F=“we’re”) within the 
loglinear combination, the decoder often chooses 

“we’re” as the French translation of “we’re”. 

The (E=“we’re”, F=“we’re”) pair in WMT 
2010 phrase tables arose from two sentence pairs 

where the “French” translation of an English sen-

tence is a copy of that English sentence. In both, 

the original English sentence contains “we’re”. 
Naturally, the English words on the “French” 

side are word-aligned with their identical twins 

on the English side. Generally, if the training 
data has sentence pairs where the “French” sen-

tence contains words from the English sentence, 

those words will get high backward probabilities 
of being translated as themselves. This problem 

may not show up as an apparent passthrough; 

instead, it may cause MERT to lower the weight 

of the backward probability component, thus 
hurting performance.  

We estimated English contamination of the 

French side of the parallel training data by ma-
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nually inspecting a random sample of “French” 

sentences containing common English function 

words. Manual inspection is needed for accurate 

estimation: a legitimate French sentence might 
contain mostly English words if, e.g., it is short 

and cites the title of an English work (this 

wouldn’t count as contamination). The degree of 
contamination is roughly 0.05% for Europarl, 

0.5% for news-commentary, 0.5% for UN, and 

1% for GigaFrEn (in these corpora the French is 
also contaminated by other languages, particular-

ly German). Foreign contamination of English 

for these corpora appears to be much less fre-

quent.  
Contamination can take strange forms. We ex-

pected to see English sentences copied over in-

tact to the French side, and we did, but we did 
not expect to see so many “French” sentences 

that interleaved short English word sequences 

with short French word sequences, apparently 
because text with an English and a French col-

umn had been copied by taking lines from alter-

nate columns. We found many of these inter-

leaved “French” sentences, and found some of 
them in exactly this form on the Web (i.e., the 

corruption didn’t occur during WMT data collec-

tion). The details may not matter: whenever the 
“French” training sentence contains words from 

its English twin, there can be serious damage via 

backward probabilities. 

To test this hypothesis, we filtered all parallel 
and monolingual training data for the E-F system 

with a language guessing tool called text_cat 

(Cavnar and Trenkle, 1994). From parallel data, 
we filtered out sentence pairs whose French side 

had a high probability of not being French; from 

LM training data, sentences with a high non-
French probability. We set the filtering level by 

inspecting the guesser’s assessment of news-

commentary sentences, choosing a rather aggres-

sive level that eliminated 0.7% of news-
commentary sentence pairs. We used the same 

level to filter Europarl (0.8% of sentence pairs 

removed), UN (3.4%), GigaFrEn (4.7%), and 
“mono” (4.3% of sentences).  

 

 Dev WMT2009 WMT2010 

Baseline 25.23 26.47 27.72 

Filtered 25.45 26.66 27.98 
 

Table 2: Data filtering (E-F BLEU, no rescoring) 

 

Table 2 shows the results: a small but consis-
tent gain (about +0.2 BLEU without rescoring). 

We have not yet confirmed the hypothesis that 

copies of source-language words in the paired 

target sentence within training data can damage 

system performance via backward probabilities.  

4.3 Fixing problems with LM training   

Post-evaluation, we realized that our arrange-
ment of the training data for the LMs for both 

language directions was flawed. The grouping 

together of disparate corpora in “mono” and 
“domain” didn’t allow higher-quality, truly in-

domain corpora to be weighted more heavily 

(e.g., the news corpora should have higher 
weights than Europarl, but they are lumped to-

gether in “mono”). There are also potentially 

harmful overlaps between LMs (e.g., GigaFrEn 

is used both inside and outside the dynamic LM).  
We trained a new set of French LMs for the E-

F system, which replaced all the French LMs 

(#5-7) described in section 2.3 in the E-F system: 
1. 5-gram LM trained on news-commentary 

and shuffle;  

2. Dynamic LM based on 4 5-gram LMs 

trained on French side of parallel data 
(LM trained on GigaFrEn, LM on UN, 

LM on Europarl, and LM on news-

commentary). 
We did not apply the passthrough function or 

language filtering (section 4.2) to any of the 

training data for any component (LMs, TMs, dis-
tortion models) of this system; we did use the 

bug-fixed version of LMERT (section 4.1). 

The experiments with these new French LMs 

for the E-F system yielded a small decrease of 
NRC BLEU on dev (-0.15) and small increases 

on WMT Newstest 2009 and Newstest 2010 

(+0.2 and +0.4 respectively without rescoring). 
We didn’t do F-E experiments of this type.  

4.4 Pooling improvements   

The improvements above were (individual un-

cased E-F BLEU gains without rescoring in 

brackets): LMERT bug fix (about +0.5); pass-
through feature function (+0.1-0.3); language 

filtering for French (+0.2). There was also a 

small gain on test data by rearranging E-F LM 
training data, though the loss on “dev” suggests 

this may be a statistical fluctuation. We built 

these four improvements into the evaluation E-F 
system, along with quote normalization: in all 

training and test data, diverse single quotes were 

mapped onto the ascii single quote, and diverse 

double quotes were mapped onto the ascii double 
quote. The average result on WMT2009 and 

WMT2010 was +1.7 BLEU points compared to 

the original system, so there may be synergy be-
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tween the improvements. The original system 

had gained +0.3 from rescoring, while the final 

improved system only gained +0.1 from rescor-

ing: a post-evaluation rescored gain of +1.5.  
An experiment in which we dropped lexica-

lized distortion from the improved system 

showed that this component yields about +0.2 
BLEU. Much earlier, when we were still training 

systems with N-best MERT, incorporation of the 

6-feature lexicalized distortion often caused 
scores to go down (by as much as 2.8 BLEU). 

This illustrates how LMERT can make incorpo-

ration of many more features worthwhile.  

4.5 Fixing truecasing  

Our truecaser doesn’t work as well as truecasers 
of other WMT groups: we lost 1.4 BLEU by tru-

ecasing in both language directions, while others 

lost 1.0 or less. To improve our truecaser, we 
tried: 1. Training it on all relevant data and 2. 

Collecting 3-gram case-pattern statistics instead 

of unigrams. Neither of these helped significant-

ly. One way of improving the truecaser would be 
to let case information from source words influ-

ence the case of the corresponding target words. 

Alternatively, one of the reviewers stated that 
several labs involved in WMT have no separate 

truecaser and simply train on truecase text. We 

had previously tried this approach for NIST Chi-
nese-English and discarded it because of its poor 

performance. We are currently re-trying it on 

WMT data; if it works better than having a sepa-

rate truecaser, this was yet another area where 
lessons from Chinese-English were misleading. 

5 Lessons  

LMERT is an improvement over N-best MERT. 

The submitted system was one for which N-best 

MERT happened to work very badly, so we got 

ridiculously large gains of +1.5-3.5 BLEU for 
non-buggy LMERT over N-best MERT. These 

results are outliers: in experiments with similar 

configurations, we typically get +0.2-1.0 for 
LMERT over N-best MERT. Post-evaluation, 

four minor improvements – a case-based pass-

through function, language filtering, LM rear-

rangement, and quote normalization – collective-
ly gave a nice improvement. Nothing we tried 

helped truecaser performance significantly, 

though we have some ideas on how to proceed. 
We learned some lessons from WMT 2010. 

Always test your system on the relevant lan-

guage pair. Our original version of LMERT was 
developed on Chinese-English and worked well 

there, but had a bug that surfaced only when the 

target language had accents.  

European language pairs are more porous to 

information than Chinese-English. Our WMT 
system reflected design decisions for Chinese-

English, and thus didn’t exploit case information 

in the source: it passed through OOVs to the tar-
get, but didn’t pass through upper-case words 

that are likely to be proper nouns.  

It is beneficial to remove foreign-language 
contamination from the training data.  

When entering an evaluation one hasn’t parti-

cipated in for several years, always read system 

papers from the previous year. Some of the 
WMT 2008 system papers mention passthrough 

of some non-OOVs, filtering out of noisy train-

ing data, and using the case of a source word to 
predict the case of the corresponding target word. 
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