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Abstract

This paper describes our Statistical Ma-
chine Translation systems for the WMT10
evaluation, where LIMSI participated for
two language pairs (French-English and
German-English, in both directions). For
German-English, we concentrated on nor-
malizing the German side through a proper
preprocessing, aimed at reducing the lex-
ical redundancy and at splitting complex
compounds. For French-English, we stud-
ied two extensions of our in-houseN -code
decoder: firstly, the effect of integrating a
new bilingual reordering model; second,
the use of adaptation techniques for the
translation model. For both set of exper-
iments, we report the improvements ob-
tained on the development and test data.

1 Introduction

LIMSI took part in the WMT 2010 evalua-
tion campaign and developed systems for two
languages pairs: French-English and German-
English in both directions. For German-English,
we focused on preprocessing issues and performed
a series of experiments aimed at normalizing the
German side by removing some of the lexical re-
dundancy and by splitting compounds. For this
pair, all the experiments were performed using the
Moses decoder (Koehn et al., 2007). For French-
English, we studied two extensions of ourn-gram
based system: first, the effect of integrating a
new bilingual reordering model; second, the use
of adaptation techniques for the translation model.
Decoding is performed using our in-houseN -code
(Mariño et al., 2006) decoder.

2 System architecture and resources

In this section, we describe the main characteris-
tics of the phrase-based systems developed for this

evaluation and the resources that were used to train
our models. As far as resources go, we used all the
data supplied by the 2010 evaluation organizers.
Based on our previous experiments (Déchelotte et
al., 2008) which have demonstrated that better nor-
malization tools provide betterBLEUscores (Pap-
ineni etal., 2002), we took advantage of our in-
house text processing tools for the tokenization
and detokenization steps. Only for German data
did we used the TreeTagger (Schmid, 1994) tok-
enizer. Similar to last year’s experiments, all of
our systems are built in ”true-case”.

3 German-English systems

As German is morphologically more complex than
English, the default policy which consists in treat-
ing each word form independently from the oth-
ers is plagued with data sparsity, which poses a
number of difficulties both at training and de-
coding time. When aligning parallel texts at
the word level, German compound words typi-
cally tend to align with more than one English
word; this, in turn, tends to increase the number
of possible translation counterparts for each En-
glish type, and to make the corresponding align-
ment scores less reliable. In decoding, new com-
pounds or unseen morphological variants of ex-
isting words artificially increase the number out-
of-vocabulary (OOV) forms, which severely hurts
the overall translation quality. Several researchers
have proposed normalization (Niessen and Ney,
2004; Corston-oliver and Gamon, 2004; Goldwa-
ter and McClosky, 2005) and compound splitting
(Koehn and Knight, 2003; Stymne, 2008; Stymne,
2009) methods. Our approach here is similar, yet
uses different implementations; we also studied
the joint effect of combining both techniques.

3.1 Reducing the lexical redundancy

In German, determiners, pronouns, nouns and ad-
jectives carry inflection marks (typically suffixes)
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Input POS Lemma Analysis
In APPR in APPR.In
der* ART d ART.Def.Dat.Sg.Fem
Folge NN Folge N.Reg.Dat.Sg.Fem
befand VVFIN befinden VFIN.Full.3.Sg.Past.Ind
die* ART d ART.Def.Nom.Sg.Fem
derart ADV derart ADV
gesẗarkte* ADJA gesẗarkt ADJA.Pos.Nom.Sg.Fem
Justiz NN Justiz N.Reg.Nom.Sg.Fem
wiederholt ADJD wiederholt ADJD.Pos
gegen APPR gegen APPR.Acc
die* ART d ART.Def.Acc.Sg.Fem
Regierung NN Regierung N.Reg.Acc.Sg.Fem
und KON und CONJ.Coord.-2
insbesondere ADV insbesondere ADV
gegen APPR gegen APPR.Acc
deren* PDAT d PRO.Dem.Subst.-3.Gen.Sg.Fem
Geheimdienste* NN Geheimdienst N.Reg.Acc.Pl.Masc
. $. . SYM.Pun.Sent

Table 1: TreeTagger and RFTagger outputs. Starred word forms are modified during preprocessing.

so as to satisfy agreement constraints. Inflections
vary according to gender, case, and number infor-
mation. For instance, the German definite deter-
miner could be marked in sixteen different ways
according to the possible combinations of genders
(3), case (4) and number (2)1, which are fused
in six different tokensder, das, die, den, dem,
des. With the exception of the plural and gen-
itive cases, all these words translate to the same
English word: the. In order to reduce the size of
the German vocabulary and to improve the robust-
ness of the alignment probabilities, we considered
various normalization strategies for the different
word classes. In a nutshell, normalizing amounts
to collapsing several German forms of a given
lemma into a unique representative, using manu-
ally written normalization patterns. A pattern typ-
ically specifies which forms of a given morpho-
logical paradigm should be considered equivalent
when translating into English. These normaliza-
tion patterns use the lemma information computed
by the TreeTagger and the fine-grained POS infor-
mation computed by the RFTagger (Schmid and
Laws, 2008), which uses a tagset containing ap-
proximately 800 tags. Table 1 displays the analy-
sis of an example sentence.2

In most cases, normalization patterns replace a
word form by its lemma; in order to partially pre-

1For the plural forms, gender distinctions are neutralized
and the same 4 forms are used for all genders .

2The English reference:Subsequently , the energized judi-
ciary continued ruling against government decisions , embar-
rassing the government – especially its intelligence agencies
.

serve some inflection marks, we introduced two
generic suffixes,+s and +en which respectively
denote plural and genitive wherever needed. Typ-
ical normalization rules take the following form:

• For articles, adjectives, and pronouns (Indef-
inite , possessive, demonstrative, relative and
reflexive), if a token has;

– Genitive case: replace with lemma+en
(Ex. des, der, des, der→ d+en)

– Plural number: replace with lemma+s
(Ex. die, den→ d+s)

– All other gender, case and number: re-
place with lemma (Ex.der, die, das, die
→ d)

• For nouns;

– Plural number: replace with lemma+s
(Ex. Bilder, Bildern, Bilder→ Bild+s))

– All other gender and case: replace with
lemma (ExBild, Bilde, Bildes→ Bild;

Using these tags, a normalized version of previ-
ous sentence is as follows:In d Folge befand d de-
rart gesẗarkt Justiz wiederholt gegen d Regierung
und insbesondere gegen d+en Geheimdienst+s.
Several experiments were carried out to assess the
effect of different normalization schemes. Remov-
ing all gender and case information, except for the
genitive for articles, adjectives and pronouns, al-
lowed to achieve the bestBLEUscores.

3.2 Compound Splitting

Combining nouns, verbs and adjectives to forge
new words is a very common process in German.
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It partly explains the difference between the num-
ber of types and tokens between English and Ger-
man in parallel texts. In most cases, compounds
are formed by a mere concatenation of existing
word forms, and can easily be split into simpler
units. As words are freely conjoined, the vocab-
ulary size increases vastly, yielding to sparse data
problems that turn into unreliable parameter esti-
mates. We used the frequency-based segmenta-
tion algorithm initially introduced in (Koehn and
Knight, 2003) to handle compounding. Our im-
plementation extends this technique to handle the
most common letter fillers at word junctions. In
our experiments, we investigated different split-
ting schemes in a manner similar to the work of
(Stymne, 2008).

4 French-English systems

4.1 BaselineN -coder systems

For this language pair, we used our in-house
N -code system, which implements then-gram-
based approach to SMT. In a nutshell, the transla-
tion model is implemented as a stochastic finite-
state transducer trained using an-gram model
of (source,target) pairs (Casacuberta and Vidal,
2004). Training this model requires to reorder
source sentences so as to match the target word
order. This is performed by a stochastic finite-
state reordering model, which uses part-of-speech
information3 to generalize reordering patterns be-
yond lexical regularities.

In addition to the translation model, our sys-
tem implements eight feature functions which are
optimally combined using a discriminative train-
ing framework (Och, 2003): atarget-language
model; two lexicon models, which give comple-
mentary translation scores for each tuple; two
lexicalized reordering modelsaiming at predict-
ing the orientation of the next translation unit;
a ’weak’ distance-baseddistortion model; and
finally a word-bonus modeland a tuple-bonus
model which compensate for the system prefer-
ence for short translations. One novelty this year
are the introduction of lexicalized reordering mod-
els (Tillmann, 2004). Such models require to
estimate reordering probabilities for each phrase
pairs, typically distinguishing three case, depend-
ing whether the current phrase is translatedmono-
tone, swappedor discontiguouswith respect to the

3Part-of-speech information for English and French is
computed using the above mentioned TreeTagger.

previous (respectively next phrase pair).
In our implementation, we modified the three

orientation types originally introduced and con-
sider: a consecutivetype, where the original
monotone and swap orientations are lumped to-
gether, aforward type, specifying a discontiguous
forward orientation, and abackwardtype, specify-
ing a discontiguous backward orientation. Empir-
ical results showed that in our case, the new orien-
tations slightly outperform the original ones. This
may be explained by the fact that the model is ap-
plied over tuples instead of phrases.

Counts of these three types are updated for
each unit collected during the training process.
Given these counts, we can learn probability dis-
tributions of the formpr(orientation|(st)) where
orientation ∈ {c, f, b} (consecutive, forward
and backward) and(st) is a translation unit.
Counts are typically smoothed for the estimation
of the probability distribution.

The overall search process is performed by our
in-housen-codedecoder. It implements a beam-
search strategy on top of a dynamic programming
algorithm. Reordering hypotheses are computed
in a preprocessing step, making use of reordering
rules built from the word reorderings introduced
in the tuple extraction process. The resulting re-
ordering hypotheses are passed to the decoder in
the form of word lattices (Crego and no, 2006).

4.2 A bilingual POS-based reordering model

For this year evaluation, we also experimented
with an additional reordering model, which is esti-
mated as a standardn-gram language model, over
generalized translation units. In the experiments
reported below, we generalized tuples using POS
tags, instead of raw word forms. Figure 1 displays
the same sequence of tuples when built from sur-
face word forms (top), and from POS tags (bot-
tom).

Figure 1: Sequence of units built from surface
word forms (top) and POS-tags (bottom).

Generalizing units greatly reduces the number
of symbols in the model and enables to take larger
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n-gram contexts into account: in the experiments
reported below, we used up to6-grams. This new
model is thus helping to capture the mid-range
syntactic reorderings that are observed in the train-
ing corpus. This model can also be seen as a trans-
lation model of the sentence structure. It models
the adequacy of translating sequences of source
POS tags into target POS tags. Additional details
on these new reordering models can be found in
(Crego and Yvon, 2010).

4.3 Combining translation models

Our main translation model being a conventional
n-gram model over bilingual units, it can directly
take advantage of all the techniques that exist for
these models. To take the diversity of the available
parallel corpora into account, we independently
trained several translation models on subpart of
the training data. These translation models were
then linearly interpolated, where the interpolation
weights are chosen so as to minimize the perplex-
ity on the development set.

5 Language Models

The English and French language models (LMs)
are the same as for the last year’s French-English
task (Allauzen et al., 2009) and are heavily tuned
to the newspaper/newswire genre, using the first
part of the WMT09 official development data
(dev2009a). We used all the authorized news
corpora, including the French and English Gi-
gaword corpora, for translating both into French
(1.4 billion tokens) and English (3.7 billion to-
kens). To estimate such LMs, a vocabulary was
defined for both languages by including all to-
kens in the WMT parallel data. This initial vo-
cabulary of 130K words was then extended with
the most frequent words observed in the training
data, yielding a vocabulary of one million words
in both languages. The training data was divided
into several sets based on dates and genres (resp.
7 and 9 sets for English and French). On each
set, a standard 4-gram LM was estimated from
the 1M word vocabulary with in-house tools using
Kneser-Ney discounting interpolated with lower
order models (Kneser and Ney, 1995; Chen and
Goodman, 1998)4. The resulting LMs were then
linearly combined using interpolation coefficients

4Given the amount of training data, the use of the modi-
fied Kneser-Ney smoothing is prohibitive while previous ex-
periments did not show significant improvements.

chosen so as to minimize perplexity of the de-
velopment set (dev2009a). The final LMs were
finally pruned using perplexity as pruning crite-
rion (Stolcke, 1998).

For German, since we have less training
data, we only used the German monolingual
texts (Europarl-v5, News Commentary and News
Monolingual) provided by the organizers to train
a singlen-gram language model, with modified
Kneser-Ney smoothing scheme (Chen and Good-
man, 1998), using the SRILM toolkit (Stolcke,
2002).

6 Tuning

Moses-based systems were tuned using the imple-
mentation of minimum error rate training (MERT)
(Och, 2003) distributed with the Moses decoder,
using the development corpus (news-test2008).

The N -code systems were also tuned by
the same implementation ofMERT, which was
slightly modified to match the requirements of our
decoder. TheBLEU score is used as objective
function for MERT and to evaluate test perfor-
mance. The interpolation experiment for French-
English was tuned on news-test2008a (first 1025
lines). Optimization was carried out over new-
stest2008b (last 1026 lines).

7 Experiments

For each system, we used all the available par-
allel corpora distributed for this evaluation. We
usedEuroparl andNews commentarycorpora for
German-English task andEuroparl, News com-
mentary, United Nationsand Gigaword corpora
for the French-English tasks. All corpora were
aligned with GIZA++ for word-to-word align-
ments withgrow-diag-final-andand default set-
tings. For the German-English tasks, we applied
normalization and compound splitting as a pre-
processing step. For the French-English tasks, we
used new POS-based reordering model and inter-
polation.

7.1 German-English Tasks

We combined our two preprocessing schemes (see
Section 3) by applying compound splitting over
normalized data. Our experiments showed that for
German to English, using 4 characters as the mini-
mum split length and 8 characters as the minimum
compound candidate, and allowing the insertion of
-s -n -en -nen -e -es -er -ien)and the truncation of
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-e -en -nyielded the bestBLEU scores. On the
reverse direction, the best setting is different: 5
characters as minimum split length, 10 characters
as minimum compound candidate, no truncation.

These processes are performed before align-
ment, training, tuning and decoding. Before de-
coding, we also replaced all OOV words with their
lemma. We used the Moses (Koehn et al., 2007)
decoder, with default settings, to obtain the trans-
lations. For translating from English to German,
we used a two-level decoding. The first decoding
step translates English to “preprocessed German”,
which is then turned into German by undoing the
effect of normalization. In this second step, we
thus aim at restoring inflection marks and at merg-
ing compounds. For this second “translation” step,
we also use a Moses-based system. To point out
the error rate of the second step, we also translated
the preprocessed reference German text and com-
puted theBLEU score as97.05. Our experiments
showed that this two-level decoding strategy was
not improving the direct baseline systems. Table 2
reports theBLEU scores5 on newstest2010of our
official submissions.

System De→ En En→ De
Baseline 20.0 15.3

Norm+Split 21.3 15.0

Table 2: Results for German-English

7.2 French-English tasks

As explained above, in addition to the baseline
system (base), two contrast systems were built.
The first introduces an additional POS-based bilin-
gual6-gram reordering model (bilrm ), the second
implements the bilingualn-gram model after in-
terpolating 4 models trained respectively on the
news, epps, UNdoc and gigaword subparts of the
parallel corpus (interp ). Optimization was carried
out over newstest2008b (last 1026 lines) and tested
over newstest2010 (2489 lines). Table 3 reports
translation accuracy for the three systems and for
both translation directions.

As can be seen, the system using the new
reordering model (base+bilrm) outperformed the
baseline system when translating into French,
while no difference was measured when translat-
ing into English. The interpolation experiments

5Scores are computed with the official script mteval-
v11b.pl

System Fr→ En En→ Fr
base 26.52 27.22

base+bilrm 26.50 27.84

base+bilrm+interp 26.84 27.62

Table 3: Results for French-English

did not show any clear impact on performance.

8 Conclusions

In this paper, we presented our statistical MT sys-
tems developed for the WMT’10 shared task, in-
cluding several novelties, namely the preprocess-
ing of German, and the integration of several new
techniques in ourn-gram based decoder.
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