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Introduction

More and more people are using Web data for linguistic and NLP research. The workshop, the sixth in
an annual series, provides a venue for exploring how we can use it effectively and what we will find if
we do, with particular attention to

• Web corpus collection projects, or modules for one part of the process (crawling, filtering, de-
duplication, language-id, tokenising, indexing, . . . )

• characteristics of Web data from a linguistics/NLP perspective including registers, domains,
frequency distributions, comparisons between datasets

• using crawled Web data for NLP purposes (with emphasis on the data rather than the use)

Previous WAC workshops have been in Europe and Africa. The west coast of the US is the global
centre for web development, hosting Google, Microsoft, Yahoo and a thousand others, so we are glad
to be here!
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Abstract

In this paper we introduce the first version

of noWaC, a large web-based corpus of Bok-

mål Norwegian currently containing about

700 million tokens. The corpus has been

built by crawling, downloading and process-

ing web documents in the .no top-level in-

ternet domain. The procedure used to col-

lect the noWaC corpus is largely based on

the techniques described by Ferraresi et al.

(2008). In brief, first a set of “seed” URLs

containing documents in the target language

is collected by sending queries to commer-

cial search engines (Google and Yahoo). The

obtained seeds (overall 6900 URLs) are then

used to start a crawling job using the Heritrix

web-crawler limited to the .no domain. The

downloaded documents are then processed in

various ways in order to build a linguistic cor-

pus (e.g. filtering by document size, language

identification, duplicate and near duplicate de-

tection, etc.).

1 Introduction and motivations

The development, training and testing of NLP tools

requires suitable electronic sources of linguistic data

(corpora, lexica, treebanks, ontological databases,

etc.), which demand a great deal of work in or-

der to be built and are, very often copyright pro-

tected. Furthermore, the ever growing importance of

heavily data-intensive NLP techniques for strategic

tasks such as machine translation and information

retrieval, has created the additional requirement that

these electronic resources be very large and general

in scope.

Since most of the current work in NLP is carried

out with data from the economically most impact-

ing languages (and especially with English data),

an amazing wealth of tools and resources is avail-

able for them. However, researchers interested in

“smaller” languages (whether by the number of

speakers or by their market relevance in the NLP

industry) must struggle to transfer and adapt the

available technologies because the suitable sources

of data are lacking. Using the web as corpus is a

promising option for the latter case, since it can pro-

vide with reasonably large and reliable amounts of

data in a relatively short time and with a very low

production cost.

In this paper we present the first version of

noWaC, a large web-based corpus of Bokmål Nor-

wegian, a language with a limited web presence,

built by crawling the .no internet top level domain.

The computational procedure used to collect the

noWaC corpus is by and large based on the tech-

niques described by Ferraresi et al. (2008). Our

initiative was originally aimed at collecting a 1.5–2

billion word general-purpose corpus comparable to

the corpora made available by the WaCky initiative

(http://wacky.sslmit.unibo.it). How-

ever, carrying out this project on a language with a

relatively small online presence such as Bokmål has

lead to results which differ from previously reported

similar projects. In its current, first version, noWaC

contains about 700 million tokens.
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1.1 Norwegian: linguistic situation and

available corpora

Norway is a country with a population of ca. 4.8 mil-

lion inhabitants that has two official national written

standards: Bokmål and Nynorsk (respectively, ‘book

language’ and ‘new Norwegian’). Of the two stan-

dards, Bokmål is the most widely used, being ac-

tively written by about 85% of the country’s popu-

lation (cf. http://www.sprakrad.no/ for de-

tailed up to date statistics). The two written stan-

dards are extremely similar, especially from the

point of view of their orthography. In addition, Nor-

way recognizes a number of regional minority lan-

guages (the largest of which, North Sami, has ca.

15,000 speakers).

While the written language is generally standard-

ized, the spoken language in Norway is not, and

using one’s dialect in any occasion is tolerated and

even encouraged. This tolerance is rapidly extend-

ing to informal writing, especially in modern means

of communication and media such as internet fo-

rums, social networks, etc.

There is a fairly large number of corpora of the

Norwegian language, both spoken and written (in

both standards). However, most of them are of a

limited size (under 50 million words, cf. http://

www.hf.uio.no/tekstlab/ for an overview).

To our knowledge, the largest existing written cor-

pus of Norwegian is the Norsk Aviskorpus (Hofland

2000, cf. http://avis.uib.no/), an expand-

ing newspaper-based corpus currently containing

700 million words. However, the Norsk Aviskor-

pus is only available though a dedicated web inter-

face for non commercial use, and advanced research

tasks cannot be freely carried out on its contents.

Even though we have only worked on building a

web corpus for Bokmål Norwegian, we intend to

apply the same procedures to create web-corpora

also for Nynorsk and North Sami, thus covering the

whole spectrum of written languages in Norway.

1.2 Obtaining legal clearance

The legal status of openly accessible web-

documents is not clear. In practice, when one

visits a web page with a browsing program, an

electronic exact copy of the remote document is

created locally; this logically implies that any online

document must be, at least to a certain extent,

copyright-free if it is to be visited/viewed at all.

This is a major difference with respect to other types

of documents (e.g. printed materials, films, music

records) which cannot be copied at all.

However, when building a web corpus, we do not

only wish to visit (i.e. download) web documents,

but we would like to process them in various ways,

index them and, finally, make them available to other

researchers and users in general. All of this would

ideally require clearance from the copyright holders

of each single document in the corpus, something

which is simply impossible to realize for corpora

that contain millions of different documents.1

In short, web corpora are, from the legal point of

view, still a very dark spot in the field of computa-

tional linguistics. In most countries, there is simply

no legal background to refer to, and the internet is a

sort of no-man’s land.

Norway is a special case: while the law explicitly

protects online content as intellectual property,

there is rather new piece of legislation in Forskrift

til åndsverkloven av 21.12 2001 nr. 1563, § 1-4

that allows universities and other research insti-

tutions to ask for permission from the Ministry

of Culture and Church in order to use copyright

protected documents for research purposes that

do not cause conflict with the right holders’

own use or their economic interests (cf. http:

//www.lovdata.no/cgi-wift/ldles?

ltdoc=/for/ff-20011221-1563.html).

We have been officially granted this permission for

this project, and we can proudly say that noWaC

is a totally legal and recognized initiative. The

results of this work will be legally made available

free of charge for research (i.e. non commercial)

purposes. NoWaC will be distributed in association

with the WaCky initiative and also directly from the

University of Oslo.

1Search engines are in a clear contradiction to the copyright

policies in most countries: they crawl, download and index bil-

lions of documents with no clearance whatsoever, and also re-

distribute whole copies of the cached documents.
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2 Building a corpus of Bokmål by
web-crawling

2.1 Methods and tools

In this project we decided to follow the methods

used to build the WaCky corpora, and to use the re-

lated tools as much as possible (e.g. the BootCaT

tools). In particular, we tried to reproduce the pro-

cedures described by Ferraresi et al. (2008) and Ba-

roni et al. (2009). The methodology has already

produced web-corpora ranging from 1.7 to 2.6 bil-

lion tokens (German, Italian, British English). How-

ever, most of the steps needed some adaptation, fine-

tuning and some extra programming. In particu-

lar, given the relatively complex linguistic situation

in Norway, a step dedicated to document language

identification was added.

In short, the building and processing chain used

for noWaC comprises the following steps:

1. Extraction of list of mid-frequency Bokmål

words from Wikipedia and building query

strings

2. Retrieval of seed URLs from search engines by

sending automated queries, limited to the .no

top-level domain

3. Crawling the web using the seed URLS, limited

to the .no top-level domain

4. Removing HTML boilerplate and filtering doc-

uments by size

5. Removing duplicate and near-duplicate docu-

ments

6. Language identification and filtering

7. Tokenisation

8. POS-tagging

At the time of writing, the first version of noWaC is

being POS-tagged and will be made available in the

course of the next weeks.

2.2 Retrieving seed URLs from search engines

We started by obtaining the Wikipedia text dumps

for Bokmål Norwegian and related languages

(Nynorsk, Danish, Swedish and Icelandic) and se-

lecting the 2000 most frequent words that are unique

to Bokmål. We then sent queries of 2 randomly

selected Bokmål words though search engine APIs

(Google and Yahoo!). A maximum of ten seed

URLs were saved for each query, and the retrieved

URLs were collapsed in a single list of root URLs,

deduplicated and filtered, only keeping those in the

.no top level domain.

After one week of automated queries (limited

to 1000 queries per day per search engine by the

respective APIs) we had about 6900 filtered seed

URLs.

2.3 Crawling

We used the Heritrix open-source, web-scale

crawler (http://crawler.archive.org/)

seeded with the 6900 URLs we obtained to tra-

verse the internet .no domain and to download

only HTML documents (all other document types

were discarded from the archive). We instructed

the crawler to use a multi-threaded breadth-first

strategy, and to follow a very strict politeness policy,

respecting all robots.txt exclusion directives

while downloading pages at a moderate rate (90

second pause before retrying any URL) in order not

to disrupt normal website activity.

The final crawling job was stopped after 15 days.

In this period of time, a total size of 1 terabyte

was crawled, with approximately 90 million URLs

being processed by the crawler. Circa 17 million

HTML documents were downloaded, adding up to

an overall archive size of 550 gigabytes. Only

about 13.5 million documents were successfully re-

trieved pages (the rest consisting of various “page

not found” replies and other server-side error mes-

sages).

The documents in the archive were filtered by

size, keeping only those documents that were be-

tween 5Kb and 200Kb in size (following Ferraresi

et al. 2008 and Baroni et al. 2009). This resulted

in a reduced archive of 11.4 million documents for

post-processing.

2.4 Post-processing: removing HTML

boilerplate and de-duplication

At this point of the process, the archive contained

raw HTML documents, still very far from being a

linguistic corpus. We used the BootCaT toolkit (Ba-

roni and Bernardini 2004, cf. http://sslmit.

unibo.it/~baroni/bootcat.html) to per-

form the major operations to clean our archive.

First, every document was processed with the

HTML boilerplate removal tool in order to select
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only the linguistically interesting portions of text

while removing all HTML, Javascript and CSS code

and non-linguistic material (made mainly of HTML

tags, visual formatting, tables, navigation links, etc.)

Then, the archive was processed with the dupli-

cate and near-duplicate detecting script in the the

BootCaT toolkit, based on a 5-gram model. This is

a very drastic strategy leading to a huge reduction in

the number of kept documents: any two documents

sharing more than 1/25 5-grams were considered du-

plicates, and both documents were discarded. The

overall number of documents in the archive went

down from 11.40 to 1.17 million after duplicate re-

moval.2

2.5 Language identification and filtering

The complex linguistic situation in Norway makes

us expect that the Norwegian internet be at least a

bilingual domain (Bokmål and Nynorsk). In addi-

tion, we also expect a number of other languages to

be present to a lesser degree.

We used Damir Cavar’s tri-gram algorithm

for language identification (cf. http://ling.

unizd.hr/~dcavar/LID/), training 16 lan-

guage models onWikipedia text from languages that

are closely related to, or that have contact with Bok-

mål (Bokmål, Danish, Dutch, English, Faeroese,

Finnish, French, German, Icelandic, Italian, North-

ern Sami, Nynorsk, Polish, Russian, Spanish and

Swedish). The best models were trained on 1Mb

of random Wikipedia lines and evaluated against a

database of one hundred 5 Kb article excerpts for

each language. The models performed very well,

often approaching 100% accuracy; however, the ex-

tremely similar orthography of Bokmål and Nynorsk

make them the most difficult pair of languages to

spot for the system, one being often misclassified as

the other. In any case, our results were relatively

good: Bokmål Precision = 1.00, Recall = 0.89, F-

measure = 0.94, Nynorsk Precision = 0.90, Recall =

1.00, F-measure = 0.95.

The language identifying filter was applied on a

document basis, recognizing about 3 out of 4 docu-

2As pointed out by an anonymous reviewer, this drastic re-

duction in number of documents may be due to faults in the

boilerplate removal phase, leading to 5-grams of HTML or sim-

ilar code counting as real text. We are aware of this issue, and

the future versions of noWaC will be revised to this effect.

ments as Bokmål:

• 72.25% Bokmål

• 16.00% Nynorsk

• 05.80% English

• 02.43% Danish

• 01.95% Swedish

This filter produced another sensible drop in the

overall number of kept documents: from 1.17 to 0.85

million.

2.6 POS-tagging and lemmatization

At the time of writing noWaC is in the process of be-

ing POS-tagged. This is not at all an easy task, since

the best and most widely used tagger for Norwe-

gian (the Oslo-Bergen tagger, cf. Hagen et al. 2000)

is available as a binary distribution which, besides

not being open to modifications, is fairly slow and

does not handle large text files. A number of statisti-

cal taggers have been trained, but we are still unde-

cided about which system to use because the avail-

able training materials for Bokmål are rather lim-

ited (about 120,000 words). The tagging accuracy

we have obtained so far is still not comparable to

the state-of-the-art (94.32% with TnT, 94.40% with

SVMT). In addition, we are also working on creat-

ing a large list of tagged lemmas to be used with

noWaC. We estimate that a final POS-tagged and

lemmatized version of the corpus will be available

in the next few weeks (in any case, before the WAC6

workshop).

3 Comparing results

While it is still too early for us to carry out a

fully fledged qualitative evaluation of noWaC, we

are able to compare our results with previous pub-

lished work, especially with the WaCky corpora we

tried to emulate.

3.1 NoWaC and the WaCky corpora

As we stated above, we tried to follow the WaCky

methodology as closely as possible, in the hopes that

we could obtain a very large corpus (we aimed at

collecting above 1 billion tokens). However, even

though our crawling job produced a much bigger

initial archive than those reported for German, Ital-

ian and British English in Baroni et al. (2009), and
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even though after document size filtering was ap-

plied our archive contained roughly twice as many

documents, our final figures (number of tokens and

number of documents) only amount to about half the

size reported for the WaCky corpora (cf. table 1).

In particular, we observe that the most significant

drop in size and in number of documents took place

during the detection of duplicate and near-duplicate

documents (drastically dropping from 11.4 million

documents to 1.17 million documents after duplicate

filtering). This indicates that, even if a huge num-

ber of documents in Bokmål Norwegian are present

in the internet, a large portion of them must be

machine generated content containing repeated n-

grams that the duplicate removal tool successfully

identifies and discards.3

These figures, although unexpected by us, may

actually have a reasonable explanation. If we con-

sider that Bokmål Norwegian has about 4.8 million

potential content authors (assuming that every Nor-

wegian inhabitant is able to produce web documents

in Bokmål), and given that our final corpus contains

0.85 million documents, this means that we have so

far sampled roughly one document every five poten-

tial writers: as good as it may sound, it is a highly

unrealistic projection, and a great deal of noise and

possibly also machine generated content must still

be present in the corpus. The duplicate removal tools

are only helping us understand that a speaker com-

munity can only produce a limited amount of lin-

guistically relevant online content. We leave the in-

teresting task of estimating the size of this content

and its growth rate for further research. The Norwe-

gian case, being a relatively small but highly devel-

oped information society, might prove to be a good

starting point.

3.2 Scaling noWaC: how much Bokmål is

there? How much did we get?

The question arises immediately. We want to know

how representative our corpus is, in spite of the fact

that we now know that it must still contain a great

deal of noise and that a great deal of documents were

plausibly not produced by human speakers.

To this effect, we applied the scaling factors

3Although we are aware that the process of duplicate re-

moval in noWaC must be refined further, constituting in itself

an interesting research area.

methodology used by Kilgarrif (2007) to estimate

the size of the Italian and German internet on the

basis of the WaCky corpora. The method consists

in comparing document hits for a sample of mid-

frequency words in Google and in our corpus before

and after duplicate removal. The method assumes

that Google does indeed apply duplicate removal to

some extent, though less drastically than we have.

Cf. table 2 for some example figures.

From this document hit comparison, two scaling

factors are extracted. The scaling ratio tells us how

much smaller our corpus is compared to the Google

index for Norwegian (including duplicates and non-

running-text). The duplicate ratio gives us an idea

of how much duplicated material was found in our

archive.

Since we do not know exactly how much dupli-

cate detection Google performs, we will multiply

the duplicate ratio by a weight of 0.1, 0.25 and 0.5

(these weights, in turn, assume that Google discards

10 times less, 4 times less and half what our dupli-

cate removal has done – the latter hypothesis is used

by Kilgarriff 2007).

• Scaling ratio (average):

Google frq. / noWaC raw frq. = 24.9

• Duplicate ratio (average):

noWaC raw frq. / dedup. frq. = 7.8

We can then multiply the number of tokens in our

final cleaned corpus by the scaling ratio and by the

duplicate ratio (weighted) in order to obtain a rough

estimate of how much Norwegian text is contained

in the Google index. We can also estimate howmuch

of this amount is present in noWaC. Cf. table 3.

Using exactly the same procedure as Kilgarrif

(2007) leads us to conclude that noWaC should

contain over 15% of the Bokmål text indexed by

Google. A much more restrictive estimate gives us

about 3%. More precise estimates are extremely

difficult to make, and these results should be taken

only as rough approximations. In any case, noWaC

certainly is a reasonably representative web-corpus

containing between 3% and 15% of all the currently

indexed online Bokmål (Kilgarriff reports an esti-

mate of 3% for German and 7% for Italian in the

WaCky corpora).
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deWaC itWaC ukWaC noWaC

N. of seed pairs 1,653 1,000 2,000 1,000

N. of seed URLs 8,626 5,231 6,528 6,891

Raw crawl size 398GB 379GB 351GB 550GB

Size after document size filter 20GB 19GB 19GB 22GB

N. of docs after document size filter 4.86M 4.43M 5.69M 11.4M

Size after near-duplicate filter 13GB 10GB 12GB 5GB

N. of docs after near-duplicate filter 1.75M 1.87M 2.69M 1.17M

N. of docs after lang-ID – – – 0.85M

N. of tokens 1.27 Bn 1.58 Bn 1.91 Bn 0.69 Bn

N. of types 9.3M 3.6M 3.8M 6.0M

Table 1: Figure comparison of noWaC and the published WaCky corpora (German, Italian and British English data

from Baroni et al. 2009)

Word Google frq. noWaC raw frq. noWaC dedup. frq.

bilavgifter 33700 1637 314

mekanikk 82900 3266 661

musikkpris 16700 570 171

Table 2: Sample of Google and noWaC document frequencies before and after duplicate removal.

noWaC Scaling ratio Dup. ratio (weight) Google estimate % in noWaC

0.78 (0.10) 21.8 bn 3.15%

0.69 bn 24.9 1.97 (0.25) 8.7 bn 7.89%

3.94 (0.50) 4.3 bn 15.79%

Table 3: Estimating the size of the Bokmål Norwegian internet as indexed by Google in three different settings (method

from Kilgarriff 2007)

4 Concluding remarks

Building large web-corpora for languages with a

relatively small internet presence and with a lim-

ited speaker population presents problems and chal-

lenges that have not been found in previous work.

In particular, the amount of data that can be col-

lected with similar efforts is considerably smaller. In

our experience, following as closely as possible the

WaCky corpora methodology yielded a corpus that

is roughly between one half and one third the size of

the published comparable Italian, German and En-

glish corpora.

In any case, the experience has been very success-

ful so far, and the first version of the noWaC cor-

pus is about the same size than the largest currently

available corpus of Norwegian (i.e. Norske Avisko-

rpus, 700 million tokens), and it has been created in

just a minimal fraction of the time it took to build it.

Furthermore, the scaling experiments showed that

noWaC is a very representative web-corpus contain-

ing a significant portion of all the online content in

Bokmål Norwegian, in spite of our extremely drastic

cleaning and filtering strategies.

There is clearly a great margin for improvement

in almost every processing step we applied in this

work. And there is clearly a lot to be done in or-

der to qualitatively assess the created corpus. In the

future, we intend to pursue this activity by carrying

out an even greater crawling job in order to obtain a

larger corpus, possibly containing over 1 billion to-

kens. Moreover, we shall reproduce this corpus cre-

ation process with the remaining two largest written

languages of Norway, Nynorsk and North Sami. All

of these resources will soon be publicly and freely

available both for the general public and for the re-

search community.
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Abstract

Post-positional particles are a significant

source of errors for learners of Korean. Fol-

lowing methodology that has proven effective

in handling English preposition errors, we are

beginning the process of building a machine

learner for particle error detection in L2 Ko-

rean writing. As a first step, however, we must

acquire data, and thus we present a method-

ology for constructing large-scale corpora of

Korean from the Web, exploring the feasibil-

ity of building corpora appropriate for a given

topic and grammatical construction.

1 Introduction

Applications for assisting second language learners

can be extremely useful when they make learners

more aware of the non-native characteristics in their

writing (Amaral and Meurers, 2006). Certain con-

structions, such as English prepositions, are difficult

to characterize by grammar rules and thus are well-

suited for machine learning approaches (Tetreault

and Chodorow, 2008; De Felice and Pulman, 2008).

Machine learning techniques are relatively portable

to new languages, but new languages bring issues in

terms of defining the language learning problem and

in terms of acquiring appropriate data for training a

machine learner.

We focus in this paper mainly on acquiring data

for training a machine learning system. In partic-

ular, we are interested in situations where the task

is constant—e.g., detecting grammatical errors in

particles—but the domain might fluctuate. This is

the case when a learner is asked to write an essay on

a prompt (e.g., “What do you hope to do in life?”),

and the prompts may vary by student, by semester,

by instructor, etc. By isolating a particular domain,

we can hope for greater degrees of accuracy; see,

for example, the high accuracies for domain-specific

grammar correction in Lee and Seneff (2006).

In this situation, we face the challenge of obtain-

ing data which is appropriate both for: a) the topic

the learners are writing about, and b) the linguistic

construction of interest, i.e., containing enough rel-

evant instances. In the ideal case, one could build

a corpus directly for the types of learner data to

analyze. Luckily, using the web as a data source

can provide such specialized corpora (Baroni and

Bernardini, 2004), in addition to larger, more gen-

eral corpora (Sharoff, 2006). A crucial question,

though, is how one goes about designing the right

web corpus for analyzing learner language (see, e.g.,

Sharoff, 2006, for other contexts)

The area of difficulty for language learners which

we focus on is that of Korean post-positional parti-

cles, akin to English prepositions (Lee et al., 2009;

Ko et al., 2004). Korean is an important language

to develop NLP techniques for (see, e.g., discussion

in Dickinson et al., 2008), presenting a variety of

features which are less prevalent in many Western

languages, such as agglutinative morphology, a rich

system of case marking, and relatively free word or-

der. Obtaining data is important in the general case,

as non-English languages tend to lack resources.

The correct usage of Korean particles relies on

knowing lexical, syntactic, semantic, and discourse

information (Lee et al., 2005), which makes this

challenging for both learners and machines (cf. En-
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glish determiners in Han et al., 2006). The only

other approach we know of, a parser-based one, had

very low precision (Dickinson and Lee, 2009). A

secondary contribution of this work is thus defin-

ing the particle error detection problem for a ma-

chine learner. It is important that the data represent

the relationships between specific lexical items: in

the comparable English case, for example, interest

is usually found with in: interest in/*with learning.

The basic framework we employ is to train a ma-

chine learner on correct Korean data and then apply

this system to learner text, to predict correct parti-

cle usage, which may differ from the learner’s (cf.

Tetreault and Chodorow, 2008). After describing the

grammatical properties of particles in section 2, we

turn to the general approach for obtaining relevant

web data in section 3, reporting basic statistics for

our corpora in section 4. We outline the machine

learing set-up in section 5 and present initial results

in section 6. These results help evaluate the best way

to build specialized corpora for learner language.

2 Korean particles

Similar to English prepositions, Korean postposi-

tional particles add specific meanings or grammat-

ical functions to nominals. However, a particle can-

not stand alone in Korean and needs to be attached

to the preceding nominal. More importantly, par-

ticles indicate a wide range of linguistic functions,

specifying grammatical functions, e.g., subject and

object; semantic roles; and discourse functions. In

(1), for instance, ka marks both the subject (func-

tion) and agent (semantic role), eykey the dative and

beneficiary; and so forth.1

(1) Sumi-ka

Sumi-SBJ

John-eykey

John-to

chayk-ul

book-OBJ

ilhke-yo

read-polite

‘Sumi reads a book to John.’

Particles can also combine with nominals to form

modifiers, adding meanings of time, location, instru-

ment, possession, and so forth, as shown in (2). Note

in this case that the marker ul/lul has multiple uses.2

1We use the Yale Romanization scheme for writing Korean.
2Ul/lul, un/nun, etc. only differ phonologically.

(2) Sumi-ka

Sumi-SBJ

John-uy

John-GEN

cip-eyse

house-LOC

ku-lul

he-OBJ

twu

two

sikan-ul

hours-OBJ

kitaly-ess-ta.

wait-PAST-END

‘Sumi waited for John for (the whole) two hours in

his house.’

There are also particles associated with discourse

meanings. For example, in (3) the topic marker nun

is used to indicate old information or a discourse-

salient entity, while the delimiter to implies that

there is someone else Sumi likes. In this paper, we

focus on syntactic/semantic particle usage for nom-

inals, planning to extend to other cases in the future.

(3) Sumi-nun

Sumi-TOP

John-to

John-also

cohahay.

like

‘Sumi likes John also.’

Due to these complex linguistic properties, parti-

cles are one of the most difficult topics for Korean

language learners. In (4b), for instance, a learner

might replace a subject particle (as in (4a)) with an

object (Dickinson et al., 2008). Ko et al. (2004) re-

port that particle errors were the second most fre-

quent error in a study across different levels of Ko-

rean learners, and errors persist across levels (see

also Lee et al., 2009).

(4) a. Sumi-nun

Sumi-TOP

chayk-i

book-SBJ

philyohay-yo

need-polite

‘Sumi needs a book.’

b. *Sumi-nun

Sumi-TOP

chayk-ul

book-OBJ

philyohay-yo

need-polite

‘Sumi needs a book.’

3 Approach

3.1 Acquiring training data

Due to the lexical relationships involved, machine

learning has proven to be a good method for sim-

ilar NLP problems like detecting errors in En-

glish preposition use. For example Tetreault and

Chodorow (2008) use a maximum entropy classifier

to build a model of correct preposition usage, with

7 million instances in their training set, and Lee and

Knutsson (2008) use memory-based learning, with

10 million sentences in their training set. In expand-

ing the paradigm to other languages, one problem
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is a dearth of data. It seems like a large data set is

essential for moving forward.

For Korean, there are at least two corpora pub-

licly available right now, the Penn Korean Treebank

(Han et al., 2002), with hundreds of thousands of

words, and the Sejong Corpus (a.k.a., The Korean

National Corpus, The National Institute of Korean

Language, 2007), with tens of millions of words.

While we plan to include the Sejong corpus in fu-

ture data, there are several reasons we pursue a dif-

ferent tack here. First, not every language has such

resources, and we want to work towards a language-

independent platform of data acquisition. Secondly,

these corpora may not be a good model for the kinds

of topics learners write about. For example, news

texts are typically written more formally than learner

writing. We want to explore ways to quickly build

topic-specific corpora, and Web as Corpus (WaC)

technology gives us tools to do this.3

3.2 Web as Corpus

To build web corpora, we use BootCat (Baroni and

Bernardini, 2004). The process is an iterative algo-

rithm to bootstrap corpora, starting with various seed

terms. The procedure is as follows:

1. Select initial seeds (terms).
2. Combine seeds randomly.
3. Run Google/Yahoo queries.
4. Retrieve corpus.
5. Extract new seeds via corpus comparison.
6. Repeat steps #2-#5.

For non-ASCII languages, one needs to check

the encoding of webpages in order to convert the

text into UTF-8 for output, as has been done for,

e.g., Japanese (e.g., Erjavec et al., 2008; Baroni and

Ueyama, 2004). Using a UTF-8 version of Boot-

Cat, we modified the system by using a simple Perl

module (Encode::Guess) to look for the EUC-

KR encoding of most Korean webpages and switch

it to UTF-8. The pages already in UTF-8 do not need

to be changed.

3.3 Obtaining data

A crucial first step in constructing a web corpus is

the selection of appropriate seed terms for construct-

ing the corpus (e.g., Sharoff, 2006; Ueyama, 2006).

3Tetreault and Chodorow (2009) use the web to derive

learner errors; our work, however, tries to obtain correct data.

In our particular case, this begins the question of

how one builds a corpus which models native Ko-

rean and which provides appropriate data for the task

of particle error detection. The data should be genre-

appropriate and contain enough instances of the par-

ticles learners know and used in ways they are ex-

pected to use them (e.g., as temporal modifiers). A

large corpus will likely satisfy these criteria, but has

the potential to contain distracting information. In

Korean, for example, less formal writing often omits

particles, thereby biasing a machine learner towards

under-guessing particles. Likewise, a topic with dif-

ferent typical arguments than the one in question

may mislead the machine. We compare the effec-

tiveness of corpora built in different ways in training

a machine learner.

3.3.1 A general corpus

To construct a general corpus, we identify words

likely to be in a learner’s lexicon, using a list of 50

nouns for beginning Korean students for seeds. This

includes basic vocabulary entries like the words for

mother, father, cat, dog, student, teacher, etc.

3.3.2 A focused corpus

Since we often know what domain4 learner es-

says are written about, we experiment with building

a more topic-appropriate corpus. Accordingly, we

select a smaller set of 10 seed terms based on the

range of topics covered in our test corpus (see sec-

tion 6.1), shown in figure 1. As a first trial, we select

terms that are, like the aforementioned general cor-

pus seeds, level-appropriate for learners of Korean.

han-kwuk ‘Korea’ sa-lam ‘person(s)’

han-kwuk-e ‘Korean (lg.)’ chin-kwu ‘friend’

kyey-cel ‘season’ ga-jok ‘family’

hayng-pok ‘happiness’ wun-tong ‘exercise’

ye-hayng ‘travel’ mo-im ‘gathering’

Figure 1: Seed terms for the focused corpus

3.3.3 A second focused corpus

There are several issues with the quality of data

we obtain from our focused terms. From an ini-

tial observation (see section 4.1), the difficulty stems

in part from the simplicity of the seed terms above,

4By domain, we refer to the subject of a discourse.
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leading to, for example, actual Korean learner data.

To avoid some of this noise, we use a second set of

seed terms, representing relevant words in the same

domains, but of a more advanced nature, i.e., topic-

appropriate words that may be outside of a typical

learner’s lexicon. Our hypothesis is that this is more

likely to lead to native, quality Korean. For each

one of the simple words above, we posit two more

advanced words, as given in figure 2.

kyo-sa ‘teacher’ in-kan ‘human’

phyung-ka ‘evaluation’ cik-cang ‘workplace’

pen-yuk ‘translation’ wu-ceng ‘friendship’

mwun-hak ‘literature’ sin-loy ‘trust’

ci-kwu ‘earth’ cwu-min ‘resident’

swun-hwan ‘circulation’ kwan-kye ‘relation’

myeng-sang ‘meditation’ co-cik ‘organization’

phyeng-hwa ‘peace’ sik-i-yo-pep ‘diet’

tham-hem ‘exploration’ yen-mal ‘end of a year’

cwun-pi ‘preparation’ hayng-sa ‘event’

Figure 2: Seed terms for the second focused corpus

3.4 Web corpus parameters

One can create corpora of varying size and general-

ity, by varying the parameters given to BootCaT. We

examine three parameters here.

Number of seeds The first way to vary the type

and size of corpus obtained is by varying the number

of seed terms. The exact words given to BootCaT af-

fect the domain of the resulting corpus, and utilizintg

a larger set of seeds leads to more potential to create

a bigger corpus. With 50 seed terms, for example,

there are 19,600 possible 3-tuples, while there are

only 120 possible 3-tuples for 10 seed terms, limit-

ing the relevant pages that can be returned.

For the general (G) corpus, we use: G1) all 50

seed terms, G2) 5 sets of 10 seeds, the result of split-

ting the 50 seeds randomly into 5 buckets, and G3)

5 sets of 20 seeds, which expand the 10-seed sets in

G2 by randomly selecting 10 other terms from the

remaining 40 seeds. This breakdown into 11 sets (1

G1, 5 G2, 5 G3) allows us to examine the effect of

using different amounts of general terms and facili-

tates easy comparison with the first focused corpus,

which has only 10 seed terms.

For the first focused (F1) corpus, we use: F11) the

10 seed terms, and F12) 5 sets of 20 seeds, obtained

by combining F11 with each seed set from G2. This

second group provides an opportunity to examine

what happens when augmenting the focused seeds

with more general terms; as such, this is a first step

towards larger corpora which retain some focus. For

the second focused corpus (F2), we simply use the

set of 20 seeds. We have 7 sets here (1 F11, 5 F12, 1

F2), giving us a total of 18 seed term sets at this step.

Tuple length One can also experiment with tuple

length in BootCat. The shorter the tuple, the more

webpages that can potentially be returned, as short

tuples are likely to occur in several pages (e.g., com-

pare the number of pages that all of person happi-

ness season occur in vs. person happiness season

exercise travel). On the other hand, longer tuples are

more likely truly relevant to the type of data of inter-

est, more likely to lead to well-formed language. We

experiment with tuples of different lengths, namely

3 and 5. With 2 different tuple lengths and 18 seed

sets, we now have 36 sets.

Number of queries We still need to specify how

many queries to send to the search engine. The max-

imum number is determined by the number of seeds

and the tuple size. For 3-word tuples with 10 seed

terms, for instance, there are 10 items to choose 3

objects from:
(10

3

)

= 10!
3!(10−3)! = 120 possibilities.

Using all combinations is feasible for small seed

sets, but becomes infeasible for larger seed sets, e.g.,
(50

5

)

= 2, 118, 760 possibilities. To reduce this, we

opt for the following: for 3-word tuples, we generate

120 queries for all cases and 240 queries for the con-

ditions with 20 and 50 seeds. Similarly, for 5-word

tuples, we generate the maximum 252 queries with

10 seeds, and both 252 and 504 for the other condi-

tions. With the previous 36 sets (12 of which have

10 seed terms), evenly split between 3 and 5-word

tuples, we now have 60 total corpora, as in table 1.

# of seeds

tuple # of General F1 F2

len. queries 10 20 50 10 20 20

3 120 5 5 1 1 5 1

240 n/a 5 1 n/a 5 1

5 252 5 5 1 1 5 1

504 n/a 5 1 n/a 5 1

Table 1: Number of corpora based on parameters
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Other possibilities There are other ways to in-

crease the size of a web corpus using BootCaT. First,

one can increase the number of returned pages for a

particular query. We set the limit at 20, as anything

higher will more likely result in non-relevant data

for the focused corpora and/or duplicate documents.

Secondly, one can perform iterations of search-

ing, extracting new seed terms with every iteration.

Again, the concern is that by iterating away from the

initial seeds, a corpus could begin to lose focus. We

are considering both extensions for the future.

Language check One other constraint we use is to

specify the particular language of interest, namely

that we want Korean pages. This parameter is set

using the language option when collecting URLs.

We note that a fair amount of English, Chinese, and

Japanese appears in these pages, and we are cur-

rently developing our own Korean filter.

4 Corpus statistics

To gauge the properties of size, genre, and degree of

particle usage in the corpora, independent of appli-

cation, basic statistics of the different web corpora

are given in table 2, where we average over multiple

corpora for conditions with 5 corpora.5

There are a few points to understand in the table.

First, it is hard to count true words in Korean, as

compounds are frequent, and particles have a de-

batable status. From a theory-neutral perspective,

we count ejels, which are tokens occurring between

white spaces. Secondly, we need to know about the

number of particles and number of nominals, i.e.,

words which could potentially bear particles, as our

machine learning paradigm considers any nominal a

test case for possible particle attachment. We use a

POS tagger (Han and Palmer, 2004) for this.

Some significant trends emerge when comparing

the corpora in the table. First of all, longer queries

(length 5) result in not only more returned unique

webpages, but also longer webpages on average than

shorter queries (length 3). This effect is most dra-

matic for the F2 corpora. The F2 corpora also exhibit

a higher ratio of particles to nominals than the other

web corpora, which means there will be more pos-

5For the 252 5-tuple 20 seed General corpora, we average

over four corpora, due to POS tagging failure on the fifth corpus.

itive examples in the training data for the machine

learner based on the F2 corpora.

4.1 Qualitative evaluation

In tandem with the basic statistics, it is also impor-

tant to gauge the quality of the Korean data from

a more qualitative perspective. Thus, we examined

the 120 3-tuple F1 corpus and discovered a number

of problems with the data.

First, there are issues concerning collecting data

which is not pure Korean. We find data extracted

from Chinese travel sites, where there is a mixture of

non-standard foreign words and unnatural-sounding

translated words in Korean. Ironically, we also find

learner data of Korean in our search for correct Ko-

rean data. Secondly, there are topics which, while

exhibiting valid forms of Korean, are too far afield

from what we expect learners to know, including re-

ligious sites with rare expressions; poems, which

commonly drop particles; gambling sites; and so

forth. Finally, there are cases of ungrammatical uses

of Korean, which are used in specific contexts not

appropriate for our purposes. These include newspa-

per titles, lists of personal names and addresses, and

incomplete phrases from advertisements and chats.

In these cases, we tend to find less particles.

Based on these properties, we developed the

aforementioned second focused corpus with more

advanced Korean words and examined the 240 3-

tuple F2 corpus. The F2 seeds allow us to capture a

greater percentage of well-formed data, namely data

from news articles, encyclopedic texts, and blogs

about more serious topics such as politics, literature,

and economics. While some of this data might be

above learners’ heads, it is, for the most part, well-

formed native-like Korean. Also, the inclusion of

learner data has been dramatically reduced. How-

ever, some of the same problems from the F1 corpus

persist, namely the inclusion of poetry, newspaper

titles, religious text, and non-Korean data.

Based on this qualitative analysis, it is clear that

we need to filter out more data than is currently be-

ing filtered, in order to obtain valid Korean of a type

which uses a sufficient number of particles in gram-

matical ways. In the future, we plan on restrict-

ing the genre, filtering based on the number of rare

words (e.g., religious words), and using a trigram

language model to check the validity.
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Ejel Particles Nominals

Corpus Seeds Len. Queries URLs Total Avg. Total Avg. Total Avg.

Gen. 10 3 120 1096.2 1,140,394.6 1044.8 363,145.6 331.5 915,025 838.7

5 252 1388.2 2,430,346.4 1779.9 839,005.8 618.9 1,929,266.0 1415.3

20 3 120 1375.2 1,671,549.2 1222.1 540,918 394.9 1,350,976.6 988.6

3 240 2492.4 2,735,201.6 1099.4 889,089 357.3 2,195,703 882.4

5 252 1989.6 4,533,642.4 2356 1,359,137.2 724.5 3,180,560.6 1701.5

5 504 3487 7,463,776 2193.5 2,515,235.8 741.6 5,795,455.8 1709.7

50 3 120 1533 1,720,261 1122.1 584,065 380.9 1,339,308 873.6

3 240 2868 3,170,043 1105.3 1,049,975 366.1 2,506,995 874.1

5 252 1899.5 4,380,684.2 2397.6 1,501,358.7 821.5 3,523,746.2 1934.6

5 504 5636 5,735,859 1017.7 1,773,596 314.6 4,448,815 789.3

F1 10 3 120 1315 628,819 478.1 172,415 131.1 510,620 388.3

5 252 1577 1,364,885 865.4 436,985 277.1 1,069,898 678.4

20 3 120 1462.6 1,093,772.4 747.7 331,457.8 226.8 885,157.2 604.9

240 2637.2 1,962,741.8 745.2 595,570.6 226.1 1,585,730.4 602.1

5 252 2757.6 2,015,077.8 730.8 616,163.8 223.4 1,621,306.2 588

504 4734 3,093,140.4 652.9 754,610 159.8 1,993,104.4 422.1

F2 20 3 120 1417 1,054,925 744.5 358,297 252.9 829,416 585.3

240 2769 1,898,383 685.6 655,757 236.8 1,469,623 530.7

5 252 1727 4,510,742 2611.9 1,348,240 780.7 2,790,667 1615.9

504 2680 6,916,574 2580.8 2,077,171 775.1 4,380,571 1634.5

Table 2: Basic statistics of different web corpora

Note that one might consider building even larger

corpora from the start and using the filtering step to

winnow down the corpus for a particular application,

such as particle error detection. However, while re-

moving ungrammatical Korean is a process of re-

moving noise, identifying whether a corpus is about

traveling, for example, is a content-based decision.

Given that this is what a search engine is designed

to do, we prefer filtering based only on grammatical

and genre properties.

5 Classification

We describe the classification paradigm used to de-

termine how effective each corpus is for detecting

correct particle usage; evaluation is in section 6.

5.1 Machine learning paradigm

Based on the parallel between Korean particles and

English prepositions, we use preposition error de-

tection as a starting point for developing a classifier.

For prepositions, Tetreault and Chodorow (2008) ex-

tract 25 features to guess the correct preposition (out

of 34 selected prepositions), including features cap-

turing the lexical and grammatical context (e.g., the

words and POS tags in a two-word window around

the preposition) and features capturing various rel-

evant selectional properties (e.g., the head verb and

noun of the preceding VP and NP).

We are currently using TiMBL (Daelemans et al.,

2007) for development purposes, as it provides a

range of options for testing. Given that learner

data needs to be processed instantaneously and that

memory-based learning can take a long time to clas-

sify, we will revisit this choice in the future.

5.2 Defining features

5.2.1 Relevant properties of Korean

As discussed in section 2, Korean has major dif-

ferences from English, leading to different features.

First, the base word order of Korean is SOV, which

means that the following verb and following noun

could determine how the current word functions.

However, since Korean allows for freer word order

than English, we do not want to completely disre-

gard the previous noun or verb, either.

Secondly, the composition of words is different

than English. Words contain a stem and an arbitrary

number of suffixes, which may be derivational mor-
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phemes as well as particles, meaning that we must

consider sub-word features, i.e., segment words into

their component morphemes.

Finally, particles have more functions than prepo-

sitions, requiring a potentially richer space of fea-

tures. Case marking, for example, is even more de-

pendent upon the word’s grammatical function in

a sentence. In order to ensure that our system can

correctly handle all of the typical relations between

words without failing on less frequent constructions,

we need (large amounts of) appropriate data.

5.2.2 Feature set

To begin with, we segment and POS tag the text,

using a hybrid (trigram + rule-based) morphological

tagger for Korean (Han and Palmer, 2004). This seg-

mentation phase means that we can define subword

features and isolate the particles in question. For our

features, we break each word into: a) its stem and b)

its combined affixes (excluding particles), and each

of these components has its own POS, possibly a

combined tag (e.g., EPF+EFN), with tags from the

Penn Korean Treebank (Han et al., 2002).

The feature vector uses a five word window that

includes the target word and two words on either

side for context. Each word is broken down into four

features: stem, affixes, stem POS, and affixes POS.

Given the importance of surrounding noun and verbs

for attachment in Korean, we have features for the

preceding as well as the following noun and verb.

For the noun/verb features, only the stem is used, as

this is largely a semantically-based property.

In terms of defining a class, if the target word’s

affixes contain a particle, it is removed and used as

the basis for the class; otherwise the class is NONE.

We also remove particles in the context affixes, as

we cannot rely on surrounding learner particles.

As an example, consider predicting the particle

for the word Yenge (‘English’) in (5a). We gener-

ate the instance in (5b). The first five lines refer

to the previous two words, the target word, and the

following two words, each split into stem and suf-

fixes along with their POS tags, and with particles

removed. The sixth line contains the stems of the

preceding and following noun and verb, and finally,

there is the class (YES/NO).

(5) a. Mikwuk-eyse

America-in

sal-myense

live-while

Yenge-man-ul

English-only-OBJ

cip-eyse

home-at

ss-ess-eyo.

use-Past-Decl

‘While living in America, (I/she/he) used only

English at home.’

b. Mikwuk NPR NONE NONE

sal VV myense ECS

Yenge NPR NONE NONE

cip NNC NONE NONE

ss VV ess+eyo EPF+EFN

sal Mikwuk ss cip

YES

For the purposes of evaluating the different cor-

pora, we keep the task simple and only guess YES

or NO for the existence of a particle. We envision

this as a first pass, where the specific particle can

be guessed later. This is also a practical task, in

that learners can benefit from accurate feedback on

knowing whether or not a particle is needed.

6 Evaluation

We evaluate the web corpora for the task of predict-

ing particle usage, after describing the test corpus.

6.1 Learner Corpus

To evaluate, we use a corpus of learner Korean made

up of essays from college students (Lee et al., 2009).

The corpus is divided according to student level (be-

ginner, intermediate) and student background (her-

itage, non-heritage),6 and is hand-annotated for par-

ticle errors. We expect beginners to be less accurate

than intermediates and non-heritage less accurate

than heritage learners. To pick a middle ground, the

current research has been conducted on non-heritage

intermediate learners. The test corpus covers a range

of common language classroom topics such as Ko-

rean language, Korea, friends, family, and traveling.

We run our system on raw learner data, i.e, un-

segmented and with spelling and spacing errors in-

cluded. As mentioned in section 5.2.2, we use a POS

tagger to segment the words into morphemes, a cru-

cial step for particle error detection.7

6Heritage learners have had exposure to Korean at a young

age, such as growing up with Korean spoken at home.
7In the case of segmentation errors, we cannot possibly get

the particle correct. We are currently investigating this issue.
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Seeds Len. Quer. P R F

Gen. 10 3 120 81.54% 76.21% 78.77%

5 252 82.98% 77.77% 80.28%

20 3 120 81.56% 77.26% 79.33%

3 240 82.89% 78.37% 80.55%

5 252 83.79% 78.17% 80.87%

5 504 84.30% 79.44% 81.79%

50 3 120 82.97% 77.97% 80.39%

3 240 83.62% 80.46% 82.00%

5 252 82.57% 78.45% 80.44%

5 504 84.25% 78.69% 81.36%

F1 10 3 120 81.41% 74.67% 77.88%

5 252 83.82% 77.09% 80.30%

20 3 120 82.23% 76.40% 79.20%

240 82.57% 77.19% 79.78%

5 252 83.62% 77.97% 80.68%

504 81.86% 75.88% 78.73%

F2 20 3 120 81.63% 76.44% 78.93%

240 82.57% 78.45% 80.44%

5 252 84.21% 80.62% 82.37%

504 83.87% 81.51% 82.67%

Table 3: Results of guessing particle existence, training

with different corpora

The non-heritage intermediate (NHI) corpus gives

us 3198 words, with 1288 particles and 1836 nom-

inals. That is, about 70% of the nominals in the

learner corpus are followed by a particle. This is a

much higher average than in the 252 5-tuple F2 cor-

pus, which exhibits the highest average of all of the

web corpora at about 48% ( 781
1616 ; see table 2).

6.2 Results

We use the default settings for TiMBL for all the re-

sults we report here. Though we have obtained 4-5%

higher F-scores using different settings, the compar-

isons between corpora are the important measure for

the current task. The results are given in table 3.

The best results were achieved when training

on the 5-tuple F2 corpora, leading to F-scores of

82.37% and 82.67% for the 252 tuple and 504 tu-

ple corpora, respectively. This finding reinforces our

hypothesis that more advanced seed terms result in

more reliable Korean data, while staying within the

domain of the test corpus. Both longer tuple lengths

and greater amounts of queries have an effect on the

reliability of the resulting corpora. Specificaly, 5-

tuple corpora produce better results than similar 3-

tuple corpora, and corpora with double the amount

of queries of n-length perform better than smaller

comparable corpora. Although larger corpora tend

to do better, it is important to note that there is not

a clear relationship. The general 50/5/252 corpus,

for instance, is similarly-sized to the F2 focused

20/5/252 corpus, with over 4 million ejels (see ta-

ble 2). The focused corpus—based on fewer yet

more relevant seed terms—has 2% better F-score.

7 Summary and Outlook

In this paper, we have examined different ways to

build web corpora for analyzing learner language

to support the detection of errors in Korean parti-

cles. This type of investigation is most useful for

lesser-resourced languages, where the error detec-

tion task stays constant, but the topic changes fre-

quently. In order to develop a framework for testing

web corpora, we have also begun developing a ma-

chine learning system for detecting particle errors.

The current web data, as we have demonstrated, is

not perfect, and thus we need to continue improving

that. One approach will be to filter out clearly non-

Korean data, as suggested in section 4.1. We may

also explore instance sampling (e.g., Wunsch et al.,

2009) to remove many of the non-particle nominal

(negative) instances, which will reduce the differ-

ence between the ratios of negative-to-positive in-

stances of the web and learner corpora. We still feel

that there is room for improvement in our seed term

selection, and plan on constructing specific web cor-

pora for each topic covered in the learner corpus.

We will also consider adding currently available cor-

pora, such as the Sejong Corpus (The National Insti-

tute of Korean Language, 2007), to our web data.

With better data, we can work on improving the

machine learning system. This includes optimizing

the set of features, the parameter settings, and the

choice of machine learning algorithm. Once the sys-

tem has been optimized, we will need to test the re-

sults on a wider range of learner data.
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Abstract

In this paper, we address the challenges
posed by large amounts of text data by
exploiting the power of hashing in the
context of streaming data. We explore
sketch techniques, especially the Count-
Min Sketch, which approximates the fre-
quency of a word pair in the corpus with-
out explicitly storing the word pairs them-
selves. We use the idea of a conservative
update with the Count-Min Sketch to re-
duce the average relative error of its ap-
proximate counts by a factor of two. We
show that it is possible to store all words
and word pairs counts computed from37
GB of web data in just2 billion counters
(8 GB RAM). The number of these coun-
ters is up to30 times less than the stream
size which is a big memory and space gain.
In Semantic Orientation experiments, the
PMI scores computed from2 billion coun-
ters are as effective as exact PMI scores.

1 Introduction

Approaches to solve NLP problems (Brants et al.,
2007; Turney, 2008; Ravichandran et al., 2005) al-
ways benefited from having large amounts of data.
In some cases (Turney and Littman, 2002; Pat-
wardhan and Riloff, 2006), researchers attempted
to use the evidence gathered from web via search
engines to solve the problems. But the commer-
cial search engines limit the number of automatic
requests on a daily basis for various reasons such
as to avoid fraud and computational overhead.
Though we can crawl the data and save it on disk,
most of the current approaches employ data struc-
tures that reside in main memory and thus do not
scale well to huge corpora.

Fig. 1 helps us understand the seriousness of
the situation. It plots the number of unique word-
s/word pairs versus the total number of words in
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Figure 1:Token Type Curve

a corpus of size577 MB. Note that the plot is in
log-log scale. This78 million word corpus gen-
erates63 thousand unique words and118 million
unique word pairs. As expected, the rapid increase
in number of unique word pairs is much larger
than the increase in number of words. Hence, it
shows that it is computationally infeasible to com-
pute counts of all word pairs with a giant corpora
using conventional main memory of8 GB.

Storing only the118 million unique word pairs
in this corpus require1.9 GB of disk space. This
space can be saved by avoiding storing the word
pair itself. As a trade-off we are willing to tolerate
a small amount of error in the frequency of each
word pair. In this paper, we explore sketch tech-
niques, especially the Count-Min Sketch, which
approximates the frequency of a word pair in the
corpus without explicitly storing the word pairs
themselves. It turns out that, in this technique,
both updating (adding a new word pair or increas-
ing the frequency of existing word pair) and query-
ing (finding the frequency of a given word pair) are
very efficient and can be done in constant time1.

Counts stored in the CM Sketch can be used to
compute various word-association measures like

1depend only on one of the user chosen parameters
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Pointwise Mutual Information (PMI), and Log-
Likelihood ratio. These association scores are use-
ful for other NLP applications like word sense
disambiguation, speech and character recognition,
and computing semantic orientation of a word. In
our work, we use computing semantic orientation
of a word using PMI as a canonical task to show
the effectiveness of CM Sketch for computing as-
sociation scores.

In our attempt to advocate the Count-Min
sketch to store the frequency of keys (words or
word pairs) for NLP applications, we perform both
intrinsic and extrinsic evaluations. In our intrinsic
evaluation, first we show that low-frequent items
are more prone to errors. Second, we show that
computing approximate PMI scores from these
counts can give the same ranking as Exact PMI.
However, we need counters linear in size of stream
to achieve that. We use these approximate PMI
scores in our extrinsic evaluation of computing se-
mantic orientation. Here, we show that we do not
need counters linear in size of stream to perform
as good as Exact PMI. In our experiments, by us-
ing only2 billion counters (8GB RAM) we get the
same accuracy as for exact PMI scores. The num-
ber of these counters is up to30 times less than the
stream size which is a big memory and space gain
without any loss of accuracy.

2 Background

2.1 Large Scale NLP problems

Use of large data in the NLP community is not
new. A corpus of roughly1.6 Terawords was used
by Agirre et al. (2009) to compute pairwise sim-
ilarities of the words in the test sets using the
MapReduce infrastructure on2, 000 cores. Pan-
tel et al. (2009) computed similarity between500
million terms in the MapReduce framework over a
200 billion words in50 hours using200 quad-core
nodes. The inaccessibility of clusters for every one
has attracted the NLP community to use stream-
ing, randomized, approximate and sampling algo-
rithms to handle large amounts of data.

A randomized data structure called Bloom fil-
ter was used to construct space efficient language
models (Talbot and Osborne, 2007) for Statis-
tical Machine Translation (SMT). Recently, the
streaming algorithmparadigm has been used to
provide memory and space-efficient platform to
deal with terabytes of data. For example, We
(Goyal et al., 2009) pose language modeling as

a problem of finding frequent items in a stream
of data and show its effectiveness in SMT. Subse-
quently, (Levenberg and Osborne, 2009) proposed
a randomized language model to efficiently deal
with unbounded text streams. In (Van Durme and
Lall, 2009b), authors extend Talbot Osborne Mor-
ris Bloom (TOMB) (Van Durme and Lall, 2009a)
Counter to find the highly rankedk PMI response
words given a cue word. The idea of TOMB is
similar to CM Sketch. TOMB can also be used to
store word pairs and further compute PMI scores.
However, we advocate CM Sketch as it is a very
simple algorithm with strong guarantees and good
properties (see Section 3).

2.2 Sketch Techniques

A sketch is a summary data structure that is used
to store streaming data in a memory efficient man-
ner. These techniques generally work on an input
stream, i.e. they process the input in one direc-
tion, say from left to right, without going back-
wards. The main advantage of these techniques
is that they require storage which is significantly
smaller than the input stream length. For typical
algorithms, the working storage is sublinear inN ,
i.e. of the order oflogk N , whereN is the input
size andk is some constant which is not explicitly
chosen by the algorithm but it is an artifact of it..
Sketch based methods use hashing to map items in
the streaming data onto a small-space sketch vec-
tor that can be easily updated and queried. It turns
out that both updating and querying on this sketch
vector requires only a constant time per operation.

Streaming algorithms were first developed in
the early 80s, but gained in popularity in the late
90s as researchers first realized the challenges of
dealing with massive data sets. A good survey
of the model and core challenges can be found in
(Muthukrishnan, 2005). There has been consid-
erable work on coming up with different sketch
techniques (Charikar et al., 2002; Cormode and
Muthukrishnan, 2004; Li and Church, 2007). A
survey by (Rusu and Dobra, 2007; Cormode and
Hadjieleftheriou, 2008) comprehensively reviews
the literature.

3 Count-Min Sketch

The Count-Min Sketch (Cormode and Muthukr-
ishnan, 2004) is a compact summary data structure
used to store the frequencies of all items in the in-
put stream. The sketch allows fundamental queries
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on the data stream such as point, range and in-
ner product queries to be approximately answered
very quickly. It can also be applied to solve the
finding frequent items problem (Manku and Mot-
wani, 2002) in a data stream. In this paper, we are
only interested in point queries. The aim of a point
query is to estimate the count of an item in the in-
put stream. For other details, the reader is referred
to (Cormode and Muthukrishnan, 2004).

Given an input stream of word pairs of lengthN

and user chosen parametersδ andǫ, the algorithm
stores the frequencies of all the word pairs with the
following guarantees:

• All reported frequencies are within the true
frequencies by at mostǫN with a probability
of at leastδ.

• The space used by the algorithm is
O(1

ǫ
log 1

δ
).

• Constant time of O(log(1

δ
)) per each update

and query operation.

3.1 CM Data Structure

A Count-Min Sketch with parameters (ǫ,δ) is rep-
resented by a two-dimensional array with widthw

and depthd :






sketch[1,1] · · · sketch[1,w]
...

...
...

sketch[d,1] · · · sketch[d,w]







Among the user chosen parameters,ǫ controls the
amount of tolerable error in the returned count and
δ controls the probability with which the returned
count is not within the accepted error. These val-
ues ofǫ andδ determine the width and depth of the
two-dimensional array respectively. To achieve
the guarantees mentioned in the previous section,
we setw=2

ǫ
andd=log(1

δ
). The depthd denotes

the number of pairwise-independent hash func-
tions employed by the algorithm and there exists
an one-to-one correspondence between the rows
and the set of hash functions. Each of these hash
functionshk:{1 . . . N} → {1 . . . w} (1 ≤ k ≤ d)
takes an item from the input stream and maps it
into a counter indexed by the corresponding hash
function. For example,h2(w) = 10 indicates that
the word pairw is mapped to the10th position in
the second row of the sketch array. Thesed hash
functions are chosen uniformly at random from a
pairwise-independent family.

Figure 2: Update Procedure for CM sketch and conserva-
tive update (CU)

Initially the entire sketch array is initialized
with zeros.

Update Procedure:When a new item (w,c) ar-
rives, where w is a word pair andc is its count2,
one counter in each row, as decided by its corre-
sponding hash function, is updated byc. Formally,
∀1 ≤ k ≤ d

sketch[k,hk(w)] ← sketch[k,hk(w)] + c

This process is illustrated in Fig. 2 CM. The item
(w,2) arrives and gets mapped to three positions,
corresponding to the three hash functions. Their
counts before update were (4,2,1) and after update
they become (6,4,3). Note that, since we are using
a hash to map a word into an index, a collision can
occur and multiple word pairs may get mapped to
the same counter in any given row. Because of
this, the values stored by thed counters for a given
word pair tend to differ.

Query Procedure: The querying involves find-
ing the frequency of a given item in the input
stream. Since multiple word pairs can get mapped
into same counter and the observation that the
counts of items are positive, the frequency stored
by each counter is an overestimate of the true
count. So in answering the point query, we con-
sider all the positions indexed by the hash func-
tions for the given word pair and return the mini-
mum of all these values. The answer to Query(w)
is:

ĉ = mink sketch[k,hk(w)]

Note that, instead of positive counts if we had neg-
ative counts as well then the algorithm returns the
median of all the counts and the bounds we dis-
cussed in Sec. 3 vary. In Fig. 2 CM, for the word
pair w it takes the minimum over (6,4,3) and re-
turns3 as the count of word pair w.

2In our setting,c is always1. However, in other NLP
problem, word pairs can be weighted according to recency.
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Both update and query procedures involve eval-
uatingd hash functions and a linear scan of all the
values in those indices and hence both these pro-
cedures are linear in the number of hash functions.
Hence both these steps requireO(log(1

δ
)) time. In

our experiments (see Section 4.2), we found that a
small number of hash functions are sufficient and
we use d=3. Hence, the update and query oper-
ations take only a constant time. The space used
by the algorithm is the size of the array i.e.wd

counters, wherew is the width of each row.

3.2 Properties

Apart from the advantages of being space efficient,
and having constant update and constant querying
time, the Count-Min sketch has also other advan-
tages that makes it an attractive choice for NLP
applications.

• Linearity: given two sketchess1 ands2 com-
puted (using the same parametersw andd)
over different input streams, the sketch of
the combined data stream can be easily ob-
tained by adding the individual sketches in
O(1

ǫ
log 1

δ
) time which is independent of the

stream size.

• The linearity is especially attractive because,
it allows the individual sketches to be com-
puted independent of each other. Which
means that it is easy to implement it in dis-
tributed setting, where each machine com-
putes the sketch over a sub set of corpus.

• This technique also extends to allow the dele-
tion of items. In this case, to answer a point
query, we should return the median of all the
values instead of the minimum value.

3.3 Conservative Update

Estan and Varghese introduce the idea of conser-
vative update (Estan and Varghese, 2002) in the
context of networking. This can easily be used
with CM Sketch to further improve the estimate
of a point query. To update an item, word pair, w
with frequency c, we first compute the frequency
ĉ of this item from the existing data structure and
the counts are updated according to:∀1 ≤ k ≤ d

sketch[k,hk(w)] ← max{sketch[k,hk(w)], ĉ + c}

The intuition is that, since the point query returns
the minimum of all thed values, we will update

a counter only if it is necessary as indicated by
the above equation. Though this is a heuristic, it
avoids the unnecessary updates of counter values
and thus reduces the error.

The process is also illustrated in Fig. 2CU.
When an item “w” with a frequency of2 arrives
in the stream, it gets mapped into three positions
in the sketch data structure. Their counts before
update were (4,2,1) and the frequency of the item
is 1 (the minimum of all the three values). In this
particular case, the update rule says that increase
the counter value only if its updated value is less
than ĉ + 2 = 3. As a result, the values in these
counters after the update become (4,3,3).

However, if the value in any of the counters
is already greater than3 e.g. 4, we cannot at-
tempt to correct it by decreasing, as it could con-
tain the count for other items hashed at that posi-
tion. Therefore, in this case, for the first counter
we leave the value4 unchanged. The query pro-
cedure remains the same as in the previous case.
In our experiments, we found that employing the
conservative update reduces the Average Relative
Error (ARE) of these counts approximately by a
factor of 2. (see Section 4.2). But unfortunately,
this update prevents deletions and items with neg-
ative updates cannot be processed3.

4 Intrinsic Evaluations

To show the effectiveness of the Count-Min sketch
in the context of NLP, we perform intrinsic evalu-
ations. The intrinsic evaluations are designed to
measure the error in the approximate counts re-
turned by CMS compared to their true counts. By
keeping the total size of the data structure fixed,
we study the error by varying the width and the
depth of the data structure to find the best setting
of the parameters for textual data sets. We show
that using conservative update (CU) further im-
proves the quality of counts over CM sketch.

4.1 Corpus Statistics

Gigaword corpus (Graff, 2003) and a copy of web
crawled by (Ravichandran et al., 2005) are used
to compute counts of words and word pairs. For
both the corpora, we split the text into sentences,
tokenize and convert into lower-case. We generate
words and word pairs (items) over a sliding win-
dow of size14. Unlike previous work (Van Durme

3Here, we are only interested in the insertion case.
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Corpus Sub Giga 50% 100%
set word Web Web

Size .15 6.2 15 31GB
# of sentences 2.03 60.30 342.68 686.63(Million)

# of words 19.25 858.92 2122.47 4325.03(Million)
Stream Size 0.25 19.25 18.63 39.0510 (Billion)
Stream Size 0.23 25.94 18.79 40.0014 (Billion)

Table 1: Corpus Description

and Lall, 2009b) which assumes exact frequen-
cies for words, we store frequencies of both the
words and word pairs in the CM sketch4. Hence,
the stream size in our case is the total number of
words and word pairs in a corpus. Table 1 gives
the characteristics of the corpora.

Since, it is not possible to compute exact fre-
quencies of all word pairs using conventional main
memory of8 GB from a large corpus, we use a
subset of2 million sentences (Subset) from Giga-
word corpus for our intrinsic evaluation. We store
the counts of all words and word pairs (occurring
in a sliding window of length14) from Subset us-
ing the sketch and also the exact counts.

4.2 Comparing CM and CU counts and
tradeoff between width and depth

To evaluate the amount of over-estimation in CM
and CU counts compared to the true counts, we
first group all items (words and word pairs) with
same true frequency into a single bucket. We then
compute the average relative error in each of these
buckets. Since low-frequent items are more prone
to errors, making this distinction based on fre-
quency lets us understand the regions in which the
algorithm is over-estimating. Average Relative er-
ror (ARE) is defined as the average of absolute dif-
ference between the predicted and the exact value
divided by the exact value over all the items in
each bucket.

ARE =
1

N

N
∑

i=1

|Exacti − Predictedi|
Exacti

Where Exact and Predicted denotes values of exact
and CM/CU counts respectively;N denotes the
number of items with same counts in a bucket.

In Fig. 3(a), we fixed the number of counters
to 50 million with four bytes of memory per each

4Though a minor point, it allows to process more text.

counter (thus it only requires200 MB of main
memory). Keeping the total number of counters
fixed, we try different values of depth (2, 3, 5 and
7) of the sketch array and in each case the width
is set to 50M

d
. The ARE curves in each case are

shown in Fig. 3(a). There are three main observa-
tions: First it shows that most of the errors occur
on low frequency items. For frequent items, in al-
most all the different runs the ARE is close to zero.
Secondly, it shows that ARE is significantly lower
(by a factor of two) for the runs which use conser-
vative update (CUx run) compared to the runs that
use direct CM sketch (CMx run). The encouraging
observation is that, this holds true for almost all
different (width,depth) settings. Thirdly, in our ex-
periments, it shows that using depth of3 gets com-
paratively less ARE compared to other settings.

To be more certain about this behavior with re-
spect to different settings of width and depth, we
tried another setting by increasing the number of
counters to100 million. The curves in 3(b) follow
a pattern which is similar to the previous setting.
Low frequency items are more prone to error com-
pared to the frequent ones and employing conser-
vative update reduces the ARE by a factor of two.
In this setting, depth3 and5 do almost the same
and get lowest ARE. In both the experiments, set-
ting the depth to three did well and thus in the rest
of the paper we fix this parameter to three.

Fig. 4 studies the effect of the number of coun-
ters in the sketch (the size of the two-dimensional
sketch array) on the ARE. Using more number of
counters decreases the ARE in the counts. This is
intuitive because, as the length of each row in the
sketch increases, the probability of collision de-
creases and hence the array is more likely to con-
tain true counts. By using200 million counters,
which is comparable to the length of the stream
230 million (Table. 1), we are able to achieve al-
most zero ARE over all the counts including the
rare ones5. Note that the actual space required
to represent the exact counts is almost two times
more than the memory that we use here because
there are230 million word pairs and on an aver-
age each word is eight characters long and requires
eight bytes (double the size of an integer). The
summary of this Figure is that, if we want to pre-
serve the counts of low-frequent items accurately,
then we need counters linear in size of stream.

5Even with other datasets we found that using counters
linear in the size of the stream leads to ARE close to zero∀

counts.
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Figure 3:Comparing50 and100 million counter models with different (width,depth) settings. The notation CMxrepresents
the Count-Min Sketch with a depth of ’x’ and CUx represents the CM sketch along with conservative update and depth ’x’.
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Figure 4:Comparing different size models with depth3

4.3 Evaluating the CU PMI ranking

In this experiment, we compare the word pairs as-
sociation rankings obtained using PMI with CU
and exact counts. We use two kinds of measures,
namely accuracy and Spearman’s correlation, to
measure the overlap in the rankings obtained by
both these approaches.

4.3.1 PointWise Mutual Information

The Pointwise Mutual Information (PMI) (Church
and Hanks, 1989) between two wordsw1 andw2

is defined as:

PMI(w1, w2) = log2

P (w1, w2)

P (w1)P (w2)

Here,P (w1, w2) is the likelihood thatw1 andw2

occur together, andP (w1) andP (w2) are their in-
dependent likelihoods respectively. The ratio be-
tween these probabilities measures the degree of
statistical dependence betweenw1 andw2.

4.3.2 Description of the metrics

Accuracy is defined as fraction of word pairs that
are found in both rankings to the size of top ranked
word pairs.

Accuracy=
|CP-WPs∩ EP-WPs|

|EP-WPs|

Where CP-WPs represent the set of top rankedK

word pairs under the counts stored using the CU
sketch and EP-WPs represent the set of top ranked
word pairs with the exact counts.

Spearman’s rank correlation coefficient (ρ)
computes the correlation between the ranks of
each observation (i.e. word pairs) on two variables
(that are topN CU-PMI and exact-PMI values).
This measure captures how different the CU-PMI
ranking is from the Exact-PMI ranking.

ρ = 1−
6

∑

d2

i

F (F 2 − 1)

Wheredi is the difference between the ranks of
a word pair in both rankings andF is the number
of items found in both sets.

Intuitively, accuracy captures the number of
word pairs that are found in both the sets and then
Spearman’s correlation captures if the relative or-
der of these common items is preserved in both the
rankings. In our experimental setup, both these
measures are complimentary to each other and
measure different aspects. If the rankings match
exactly, then we get an accuracy of100% and a
correlation of1.

4.3.3 Comparing CU PMI ranking

The results with respect to different sized counter
(50, 100 and200 million) models are shown in Ta-
ble 2. Table 2 shows that having counters linear
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Counters 50M 100M 200M
TopK Acc ρ Acc ρ Acc ρ

50 .20 -0.13 .68 .95 .92 1.00
100 .18 .31 .77 .80 .96 .95
200 .21 .68 .73 .86 .97 .99
500 .24 .31 .71 .97 .95 .99
1000 .33 .17 .74 .87 .95 .98
5000 .49 .38 .82 .82 .96 .97

Table 2: Evaluating the PMI rankings obtained using CM
Sketch with conservative update (CU) and Exact counts

in size of stream (230M ) results in better rank-
ing (i.e. close to the exact ranking). For example,
with 200M counters, among the top50 word pairs
produced using the CU counts, we found46 pairs
in the set returned by using exact counts. Theρ

score on those word pairs is1 means that the rank-
ing of these46 items is exactly the same on both
CU and exact counts. We see the same phenom-
ena for200M counters with other TopK values.
While both accuracy and the ranking are decent
with 100M counters, if we reduce the number of
counters to say50M , the performance degrades.

Since, we are not throwing away any infrequent
items, PMI will rank pairs with low frequency
counts higher (Church and Hanks, 1989). Hence,
we are evaluating the PMI values for rare word
pairs and we need counters linear in size of stream
to get almost perfect ranking. Also, using coun-
ters equal to half the length of the stream is decent.
However, in some NLP problems, we are not inter-
ested in low-frequency items. In such cases, even
using space less than linear in number of coun-
ters would suffice. In our extrinsic evaluations, we
show that using space less than the length of the
stream does not degrades the performance.

5 Extrinsic Evaluations

5.1 Experimental Setup

To evaluate the effectiveness of CU-PMI word
association scores, we infer semantic orientation
(S0) of a word from CU-PMI and Exact-PMI
scores. Given a word, the task of finding the SO
(Turney and Littman, 2002) of the word is to iden-
tify if the word is more likely to be used in positive
or negative sense. We use a similar framework as
used by the authors6 to infer the SO. We take the
seven positive words (good, nice, excellent, posi-
tive, fortunate, correct, and superior) and the nega-
tive words (bad, nasty, poor, negative, unfortunate,

6We compute this score slightly differently. However, our
main focus is to show that CU-PMI scores are useful.

wrong, and inferior) used in (Turney and Littman,
2002) work. The SO of a given word is calculated
based on the strength of its association with the
seven positive words, and the strength of its asso-
ciation with the seven negative words. We com-
pute the SO of a word ”w” as follows:

SO-PMI(W) = PMI(+, w)− PMI(−, w)

PMI(+,W) =
∑

p∈Pwords

log
hits(p, w)

hits(p) · hits(w)

PMI(-,W) =
∑

n∈Nwords

log
hits(n, w)

hits(n) · hits(w)

Where, Pwords and Nwords denote the seven pos-
itive and negative prototype words respectively.

We compute SO score from different sized cor-
pora (Section 4.1). We use the General Inquirer
lexicon7 (Stone et al., 1966) as a benchmark to
evaluate the semantic orientation scores similar to
(Turney and Littman, 2002) work. Words with
multiple senses have multiple entries in the lexi-
con, we merge these entries for our experiment.
Our test set consists of1619 positive and1989
negative words. Accuracy is used as an evaluation
metric and is defined as the fraction of number of
correctly identified SO words.

Accuracy=
Correctly Identified SO Words∗ 100

Total SO words

5.2 Results

We evaluate SO of words on three different sized
corpora: Gigaword (GW)6.2GB, GigaWord +
50% of web data (GW+WB1)21.2GB and Gi-
gaWord +100% of web data (GW+WB2)31GB.
Note that computing the exact counts of all word
pairs on these corpora is not possible using main
memory, so we consider only those pairs in which
one word appears in the prototype list and the
other word appears in the test set.

We compute the exact PMI (denoted using Ex-
act) scores for pairs of test-set wordsw1 and proto-
type wordsw2 using the above data-sets. To com-
pute PMI, we count the number of hits of individ-
ual wordsw1 andw2 and the pair (w1,w2) within a
sliding window of sizes10 and14 over these data-
sets. After computing the PMI scores, we compute
SO score for a word using SO-PMI equation from
Section 5.1. If this score is positive, we predict
the word as positive. Otherwise, we predict it as

7The General Inquirer lexicon is freely available at
http://www.wjh.harvard.edu/ inquirer/
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Model Accuracy window 10 Accuracy window 14
#of counters Mem. Usage GW GW+WB1 GW+WB2 GW GW+WB1 GW+WB2

Exact n/a 64.77 75.67 77.11 64.86 74.25 75.30
500M 2GB 62.98 71.09 72.31 63.21 69.21 70.35

1B 4GB 62.95 73.93 75.03 63.95 72.42 72.73
2B 8GB 64.69 75.86 76.96 65.28 73.94 74.96

Table 3:Evaluating Semantic Orientation of words with different # of counters of CUsketch with increasing amount of data
on window size of 10 and 14. Scores are evaluated using Accuracy metric.

negative. The results on inferring correct SO for
a word w with exact PMI (Exact) are summarized
in Table 3. It (the second row) shows that increas-
ing the amount of data improves the accuracy of
identifying the SO of a word with both the win-
dow sizes. The gain is more prominent when we
add50% of web data in addition to Gigaword as
we get an increase of more than10% in accuracy.
However, when we add the remaining50% of web
data, we only see an slight increase of1% in accu-
racy8. Using words within a window of10 gives
better accuracy than window of14.

Now, we use our CU Sketches of500 million
(500M ), 1 billion (1B) and2 billion (2B) coun-
ters to compute CU-PMI. These sketches contain
the number of hits of all words/word pairs (not just
the pairs of test-set and prototype words) within a
window size of10 and 14 over the whole data-
set. The results in Table 3 show that even with
CU-PMI scores, the accuracy improves by adding
more data. Again we see a significant increase in
accuracy by adding50% of web data to Gigaword
over both window sizes. The increase in accuracy
by adding the rest of the web data is only1%.

By using 500M counters, accuracy with CU-
PMI are around4% worse than the Exact. How-
ever, increasing the size to1B results in only2
% worse accuracy compared to the Exact. Go-
ing to 2B counters (8 GB of RAM), results in ac-
curacy almost identical to the Exact. These re-
sults hold almost the same for all the data-sets
and for both the window sizes. The increase in
accuracy comes at expense of more memory Us-
age. However,8GB main memory is not large as
most of the conventional desktop machines have
this much RAM. The number of2B counters is
less than the length of stream for all the data-sets.
For GW, GW+WB1 and GW+WB2,2B counters
are10, 20 and30 times smaller than the stream
size. This shows that using counters less than the
stream length does not degrade the performance.

8These results are similar to the results reported in (Tur-
ney and Littman, 2002) work.

The advantage of using Sketch is that it con-
tains counts for all words and word pairs. Suppose
we are given a new word to label it as positive or
negative. We can find its exact PMI in two ways:
First, we can go over the whole corpus and com-
pute counts of this word with positive and nega-
tive prototype words. This procedure will return
PMI in time needed to traverse the whole corpus.
If the corpus is huge, this could be too slow. Sec-
ond option is to consider storing counts of all word
pairs but this is not feasible as their number in-
creases rapidly with increase in data (see Fig. 1).
Therefore, using a CM sketch is a very good al-
ternative which returns the PMI in constant time
by using only8GB of memory. Additionally, this
Sketch can easily be used for other NLP applica-
tions where we need word-association scores.

6 Conclusion

We have explored the idea of the CM Sketch,
which approximates the frequency of a word pair
in the corpus without explicitly storing the word
pairs themselves. We used the idea of a conserva-
tive update with the CM Sketch to reduce the av-
erage relative error of its approximate counts by
a factor of 2. It is an efficient, small-footprint
method that scales to at least37 GB of web data
in just2 billion counters (8 GB main memory). In
our extrinsic evaluations, we found that CU Sketch
is as effective as exact PMI scores.

Word-association scores from CU Sketch can be
used for other NLP tasks like word sense disam-
biguation, speech and character recognition. The
counts stored in CU Sketch can be used to con-
struct small-space randomized language models.
In general, this sketch can be used for any applica-
tion where we want to query a count of an item.
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Abstract

A procedure is described to gather corpora of aca-
demic writing from the web using BootCaT. The 
procedure uses terms distinctive of different regis-
ters and disciplines in COCA to locate and gather 
web pages containing them.

1 Introduction

This is  a preliminary report of the results of a new 
procedure  for  building a  webcorpus of  academic 
writing  using  BootCaT  seeded  searches  (Baroni 
and Bernardini,  2004).  The procedure inverts the 
usual one of finding text-internal traits that corre-
late with externally defined corpora and subcorpo-
ra (Lee, 2001).  Instead, we seek words and lexical 
bundles  so  distinctive  of  a  text-type  (“register”) 
that they will induce BootCaT to download texts of 
that type and no other.  In the initial phase, a list of 
search seed terms is developed to download aca-
demic texts; in the second phase, this procedure is 
refined to increase its resolution, developing search 
seeds that can bring in texts belonging to sub-types 
such as Science and Technology, Arts and Human-
ities, History and Political Science, and so on. 

One might object that this is a solution to a non-
problem:  that  all  that  is  necessary  is  to  limit 
searches  to  the  .edu and  .ac.uk domains  to 
search for academic web texts, at least for US and 
UK academics.   It will become clear, however, that 
quite a number of qualifying texts can be found else-

where in other web domains such as .org, .gov, 
and even .com.  

2 Definitions

2.1 Academic writing:

Academic  writing  is  very  much  a  commonsense 
(or “folk”) category. There is considerable agree-
ment that it has research articles and books for dis-
ciplinary audiences at its core, but how much more 
beyond that is in question. This study will draw on 
three corpus-based studies:
• Coxhead's  Academic Word List  (AWL; 2000) 

is drawn from a corpus of 3.5 million words of 
running text in 441 samples. It is sorted into four 
equally  represented domains  (Arts,  Commerce, 
Law, and Science). AWL gives lists of key aca-
demic words and word families stratified by fre-
quency in the corpus.  

• Biber et al.'s (1999) reference corpus for their 
lists of academic lexical bundles is a 5.5 million 
word corpus of articles and sections from books 
(in equal  halves)  with a few textbooks for  lay 
readers included. This they further divide into 13 
disciplines. Academic is one of four main parti-
tions (which they call 'registers')1

• Davies'  Corpus  of  Contemporary  American 
English (COCA) (n.d.).  which divides contem-
porary English into five meta-types, with Aca-
demic as one of the five (80 million words)2.  It 

1The others are Conversation, Fiction, and News.
2The others are Spoken, Fiction, (popular) Magazines, News-
paper and Academic.
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is made up entirely of articles in specialist jour-
nals and in a few high-brow general interest pe-
riodicals  (American  Scholar,  Raritan  Review,  
Literary  Review,  Cato  Journal).   It  includes 
more disciplines (Religion, Fisheries, Photogra-
phy, Military Science, Agriculture) and is sorted 
by Library of Congress top headings (A=Gener-
al Works, B=Philosophy, Psychology, Religion, 
etc.)  consolidated into eight  groupings:  Educa-
tion,  History,  Geog/SocSci,  Law/PolSci,  Hu-
manities,  Phil/Rel,  Sci/Tech,  Medicine,  Misc 
(=LC A+Z).  These eight parts are searchable, so 
that  we  can  determine  for  any  expression  not 
just  whether  it  is  distinctively  academic,  but 
what subtype or types it is distinctive of.  

COCA is thus built along principles very similar to 
those of AWL  and Biber et al.'s reference corpus, 
though it is 2 orders of magnitude larger than ei-
ther.  We would expect AWL words and Biber et 
al.'s distinctively academic lexical bundles also to 
be distinctively academic in COCA.

 2.2 “Distinctive of”

Here are two lists of  words and bundles that we 
can check for distinctiveness in COCA:

AWL LGSWE

hypothesis as we have seen

empirical extent to which

constrain has been shown 

a priori has been suggested that

ideology interesting to note

bias in the development of

concurrent no significant difference

intrinsic presence or absence of

whereas was found that

qualitative

Table 1: Academic Key Words (starter set)

Each of these expressions occurs over four times 
more frequently in the COCA Academic register 
than any other and twice as frequently there as in 
all the others combined.  Let that be the working 
definition  of  “distinctive.”   So  for  example,  the 
presence or absence of  occurs 3.72 times per mil-
lion  words  in  the  COCA  Academic  subcorpus, 
0.35 times  per million in the Magazines, and neg-

ligibly in Spoken,  Fiction,  and Newspapers.  It  is 
thus 10 times more frequent in the Academic sub-
corpus than in Magazines and passes the 4 times or 
more  criterion  for  distinctiveness.  In  addition, 
some frequent AWL words were checked for com-
bining in bigrams, which have the potential of be-
ing even more specific for domain/genre than indi-
vidual words.   These indeed prove to be more dis-
tinctive  than  the  individual  words  (though  of 
course less frequent). In the first column of Table 2 
are  the  frequencies  per  million  words  of  these 
words, phrases, and bigrams in COCA. 

Table 2: Frequency/Million of Seeds in COCA, 
Wikipedia,3 and  the  Collected Web Corpora

The next three columns give the frequencies/mil-
lion words of these distinctive terms in each of the 
three corpora collected from the Web with words, 
bundles,  and bigrams for  seeds.  (The x's  replace 
the frequencies of the seed terms in the respective 

3from Corpuseye's 115M word Wikipedia A, B, C corpus at 
http://corp.hum.sdu.dk/cqp.en.html

words seeds COCA words bundl bigram wikiped

hypothesis 74 x 145 140 23

empirical 58 x 30 189 8

constrain 5.5 x 3 10 1

a priori 7 x 3 15 1

ideology 58 x 6 12 16

bias 46 x 41 45 13

concurrent 11 x 10 20 5

intrinsic* 27 x 43 * 6

whereas 105 x 237 114 46

qualitative 38 x 22 109 3

402 498 655 122

acad_bundle
as we have seen 6 9 x 2 0

extent to which 37 40 x 47 3

has been shown 9 11 x 30 4

has been suggested that 3 4 x 3 6

It is interesting to note 5 5 x 4 3

in the development of 19 16 x 30 10

no significant difference 8 4 x 6 0

presence or absence of 4 4 x 7 1

it was found that 5 2 x 9 2

96 95 137 29

bigrams
face validity 2 5 1 x 0

these data 18 16 98 x 1

important implications 5 4 5 x 0

basic concepts 2 4 0 x 1

theoretical framework 5 5 1 x 0

intrinsic motivation 6 * 3 x 0

these findings 32 19 75 x 1

this interpretation 6 13 4 x 3

previous work 3 3 11 x 1

indicative of 11 7 15 x 3

89 75 214 10

Total (minus  intrinsic)

Total  

Total (minus  intrinsic)
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corpora  made  with  them—the  numbers  are  of 
course very high.)  These frequencies track those 
of  the  terms  in  the  COCA Academic  subcorpus 
quite  closely,  especially  the  'words'  corpus,  with 
the  'bundle'  and  'bigram'  corpora  following  the 
same pattern but at somewhat higher (i.e., 'richer') 
levels. 

The Wikipedia figures  are  included for compari-
son. The low frequency of these marker words and 
phrases  suggests  that  Wikipedia  is  not  very aca-
demic in its style, which is perhaps not surprising 
since Wikipedia authors are not allowed to report 
their own research or argue positions.

 Most of these putative marker terms are well rep-
resented  across  the  eight  academic  domains  (the 
“spread” is good).  A word that occurs only in one 
domain will  appear  to  be  distinctively academic, 
but that is a misleading impression.  Stent,  for ex-
ample,  occurs  only  in  the  Medical  domain  in 
COCA (along with many other terms: stenosis, mi-
tral—the list is very long).  Even when the match 
of word and domain is not so clear cut, there are 
words and phrases that are found preponderantly in 
a discipline or group of disciplines (a “division” in 
university parlance) such as  the text itself and ear-
ly modern, both Art/Humanities terms, and similar-
ly of the nature of,  which scarcely occurs in Sci-
ence or Medicine and only infrequently in Geogra-
phy  and  Social  Science.  The  next  phase  of  this 
project will take up the question of increasing the 
resolution down to the level of a subdomain where 
a particular set of terms is distinctive. 

3 Details of Constructing the Web Corpora

These  three  groups  of  seed  terms  were  used  to 
make BootCaT tuples (3) and to find URLs of files 
which contained all three terms of a tuple (with 20 
tuples each) and 40 documents for each tuple. Each 
list of URLs was downloaded and cleaned of CSS 
style sheets: duplicates and dead-end (e. g., pass-
worded)  sites  were  removed,  along  with  uncon-
verted .pdf files. (Yahoo! rather than Google was 
used  because  Yahoo!  filtered  out  most  of  the 
.pdfs and .doc files.  BootCaT was not too suc-
cessful converting .pdf files: a number of them 
seemed non-standard or corrupt).
At 3.4 million words, the 'single word' corpus was 
the largest  and had the most  pages;  the 'bundles' 

corpus was  intermediate in word count but had the 
fewest  pages.  The  corpus made  with the  bigram 
seeds was notably shorter (2.2 million words), but 
it was very efficient at bringing in occurrences of 
seed terms from the other  sets.   The seed terms 
from all sets were used to cross-check (probe) for 
occurrence in the other two corpora.  These results 
are given in Table 2 in the second and third col-
umns.  There was no overlap of files (i. e., no files 
in common) in the three downloaded Web corpora 
and only one overlap between probe term (intrin-
sic) and file seed  (intrinsic motivation).   

A further set of  lexical bundles (not used as seeds) 
were run as probes and produced the same pattern 
(See  Table  3).   Most  of  these  are  it-impersonal 
constructions,  and  it  is  not  news  that  academic 
writing cultivates  the  impersonal  (though it  does 
allow a little  we  plural first person to slip in);  in 
fact, at this proof-of-concept stage, expected find-
ings  are  confirmation  that  the  collected  corpora 
have  the  properties  of  academic  writing  as  we 
know it  across  many  distinctive  lexical  bundles, 
not just the ones used as seeds.

Table 3: Further probes of the 3 Collected Web Corpora
Again, the three web corpora track COCA very 
closely, with the 'bigram' corpus as the most effi-
cient.

4 Analysis of Web Corpora

4.1  Top-level domains

Table 4 shows that these corpora draw from sever-
al web top-level domains, with .com either first or 
second in rank for the three corpora. (The top four 
domains  account  for  a  little  over  90%  of  the 
pages.)

lexical bundlesCOCA 20words40/M20bun40/Mbigram4/M
it should be noted 13 14 16 19
It is possible that 16 22 49 13
it is necessary to 11 16 9 13
it is important to 39 39 30 55
as we shall see 4 1 5 1
it can be seen that 1 1 2 1
in the context of  44 49 28 70
the degree to which 19 16 15 27
of the nature of 7 13 7 12
in this paper 14 27 24 53
Total 188 198 182 264

28



Table 4: Size of Corpora and Range of Domains
(Estimated Domain Counts)

The  domain  counts  are  estimated,  since  a  grep 
search over-counts by including URLs referred to 
on the page as well as that of the page itself.  These 
figures  are  estimated  from  the  URLs  in  the 
“cleaned_urls_list”  that  is  used  to  download  the 
pages.  Clearly  the  .edu top-level  domain is  not 
the  only  or  even  the  most  productive  source  of 
pages containing the search key words. If these are 
indeed pages of academic writing, then quite a lot 
of academic writing on the web would get filtered 
out by using an .edu domain filter and a great deal 
filtered out using ac.uk.

4.2 Types of sites

The  1656  downloaded  pages  came  from a  wide 
range of sites. 281 URLs had words such as  arti-
cle, journal, paper, research, publication, or other 
term that identified the contents as scholarly arti-
cles.  On the other hand, there were 26 entries from 
en.wikipedia.org/wiki/; 17  pages  had  the 
word   blog in  their  URL  and  17  had  the  word 
courses,  the latter being teaching sites with hand-
outs. There were nine pages of customer reviews 
from  www.amazon.com/review and  15 pages 
from  plato.stanford.edu/entries  which 
is an encyclopedia of philosophy.  All of these sites 
might be said to be academic in a looser sense, the 
Amazon reviews being the most distant. 

5.0 The Next Phase: Increasing Resolution

It is probably only a minority of 'academic' terms 
that are commonly used across the board in all dis-
ciplines (or groups of disciplines).  All disciplines 

use have argued,  presumably because argument is 
at the core of academic endeavor and because the 
present perfect is just right for summarizing other 
people's  claims and your own. And similarly,  all 
disciplines have, or agree they should have, a theo-
retical framework.  But one does NOT write I ar-
gue in Medicine, or so COCA records, nor has the 
word interpretive any use in Medicine, though it is 
widely used in all  the  other  disciplines.   On the 
other hand, Medicine has its own distinctive bun-
dles  including  it  is  known that,  and  it  has  been 
shown/suggested that (Oakey, 2002)4. 

It is fairly easy to gather terms that appear to be 
distinctive of a certain discipline, or group of disci-
plines, to use them to build web corpora like the 
ones  illustrated  here,  and  to  take  frequent  terms 
from  the  gathered  corpora  to  do  another  search 
within the discipline/domain, and so to build larger 
and  more  differentiated  corpora  that  match  the 
COCA/Library  of  Congress  groupings  of  disci-
plines  much as  has  been reported here  for  'Aca-
demic' writing as such.  'Distinctive'  can be less 
stringently  defined  in  this  application:  a  term  is 
distinctive  in  an academic subdomain when it  is 
distinctively academic and is at least twice as fre-
quent in the subdomain as in the Academic domain 
as a whole. The terms still have a strong selective 
effect because when used in triplets, their selective 
weights are as it were multiplied.

For example, the left column of Table 5 has a set 
of  search  seed  terms  distinctive  of  texts  in  the 
COCA 'Phil/Rel'  subcorpus  (LC:  B).5  The  right 
column  gives a set of search seeds selected from 
the first 100-300 most frequent words in the corpus 
made with the initial set of seeds. (Very frequent 
terms were checked as possible bigram members 
and the bigram used instead in the actual download 
of the second corpus.) 

4Oakey's model study is based on data from the BNC. Some of 
his discipline-distinctive patterns scarcely occur in the much 
larger COCA (e. g, it is found/concluded that). 
5It actually includes Philosophy, Religion, and Psychology.

3 Webcorpora 20word40 20bun40 bigrams4

CURRENT URL 636 464 556

tokens 3.4M 2.8M 2.23M

tokens/url 5346 6034 4011

.org/ 182 245 127

.edu/ 174 36 163

.com/ 197 113 176

.gov/ 27 32 46

.net/ 35 13 18

.ca/ 19 4 15

.de/ 19 13 11

.ac.uk/ 6 3 7

.ca/ 23 5 18
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Initial set of seeds Second, derived set of seeds 

this interpretation phenomenal consciousness

incomprehensible methodology

dialectic scientific theories 

situational  reductionist

hermeneutics incoherent

intelligible in this sense

materialism in principle

means that

Table 5: First and Second Seed Sets for Phil/Rel
The two resulting lists of  URLs overlapped only 
slightly.  By using each corpus as reference for a 
keyword search of the other,  the terms most dis-
tinctive of each (vis-a-vis the other) were extract-
ed.   These terms fall  into fairly distinct  clusters: 
The first  corpus leans toward hermeneutics/inter-
pretation  and  toward  marxism (via  dialectic and 
materialism)—in  short,  a  course  in  Continental 
philosophy  (sample  key  words:  historical  con-
sciousness,  Marx,  Gadamer,  bourgeois,  class  
struggle,  Scripture,  exegesis).   The  second  has 
Dennett and  falsifiable  as keys and leans toward 
Anglo-American  philosophy  of  science  and  of 
mind  (other  key  words:  qualia,  representational  
contents, mental states, argument for/against, sen-
sory experience, physicalism).   Here we begin to 
tap into key terms and themes of various schools of 
thought within and overlapping disciplines. 

It is possible to determine which of the seed tuplets 
brought  in  the key phrases;  i.  e.,  the  strength of 
particular seeds as attractors of other terms.  It can 
also be determined when a particular web page is 
causing a term to spike, which happens fairly often 
in academic writing, since it favors frequent repeti-
tion of the key concepts of the article.

These  clusters  reflect  dependencies  (or  co-loca-
tions) within texts rather than within local 'frames' 
of contiguous words—which is to say registers of 
the particular disciplines/subdisciplines.  Proceed-
ing  in  this  way,  specific  lists  of  terms  and  also 
turns of phrase for these disciplines can be extract-
ed. This phase of the project is nearing completion.

The power of BootCaT tuplet search to collect cor-
pora rich in the features of academic registers is re-
markable, and its potential uses are many.
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Abstract

This paper introduces Web1T5-Easy, a sim-

ple indexing solution that allows interactive

searches of the Web 1T 5-gram database and

a derived database of quasi-collocations. The

latter is validated against co-occurrence data

from the BNC and ukWaC on the automatic

identification of non-compositional VPC.

1 Introduction

The Google Web 1T 5-gram (Web1T5) database

(Brants and Franz, 2006) consists of frequency

counts for bigram, trigrams, 4-grams and 5-grams

extracted from 1 trillion words of English Web text,

i.e. from a corpus 10,000 times the size of the British

National Corpus (Aston and Burnard, 1998). While

primarily designed as a resource to build better lan-

guage models for machine translation and other NLP

applications, its public release in 2006 was greeted

with great enthusiasm by many researchers in com-

putational linguistics. As one example, Mitchell et

al. (2008) used the Web1T5 data successfully to pre-

dict fMRI neural activation associated with concrete

noun concepts.

For linguistic applications, though, the Web1T5

database presents three major obstacles:

(i) The lack of linguistic annotation: Google’s to-

kenisation splits hyphenated compounds (e.g., part-

time is split into a three-token sequence part|-|time)

and differs in many other ways from the rules used

in liguistic corpora. The n-grams are neither anno-

tated with part-of-speech tags nor lemmatised, and

there are separate entries for sentence-initial upper-

case and the corresponding lowercase forms.

(ii) The application of frequency thresholds: De-

spite the enormous size of the database, its com-

pilers found it necessary to omit low-frequency n-

grams with fewer than 40 occurrences. This means

that non-adjacent word combinations are listed only

if the occur in a relatively frequent pattern. As a

consequence, it is impossible to obtain reliable fre-

quency estimates for latent phenomena by pooling

data (e.g. the co-occurrence frequency of a particu-

lar verb with nouns denoting animals).

(iii) The difficulty of interactive search: The com-

plete Web1T5 database consists of 24.4 GiB of

binary-sorted, compressed text files. While this for-

mat is suitable for building n-gram language models

and other offline processing, searching the database

is not efficient enough for interactive use. Except for

simple, case-sensitive prefix searches – which can

be restricted to a single file containing 50–90 MiB

of compressed text – every query requires a linear

scan of the full database.

This paper presents a simple open-source soft-

ware solution to the third problem, called Web1T5-

Easy. The n-gram data are encoded and indexed

in a relational database. Building on convenient

open-source tools such as SQLite and Perl, the

software aims to strike a good balance between

search efficiency and ease of use and implemen-

tation. With its focus on interactive, but accu-

rate search it complements the approximate index-

ing and batch processing approaches of Hawker et

al. (2007). Web1T5-Easy can be downloaded from

http://webascorpus.sf.net/Web1T5-Easy/.1

1An online demo of the complete Web1T5 database is avail-

able at http://cogsci.uos.de/~korpora/ws/Web1T5/.
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word 1 word 2 word 3 f

supplement depend on 193

supplement depending on 174

supplement depends entirely 94

supplement depends on 338

supplement derived from 2668

supplement des coups 77

supplement described in 200

Table 1: Example of Web1T5 3-gram frequency data (ex-

cerpt from file 3gm-0088.gz).

The rest of this paper is organised as follows. Sec-

tion 2 describes the general system architecture in

more detail. Section 3 explains how collocations

(with a maximal span size of four tokens) and dis-

tributional semantic models (DSM) can be approxi-

mated on the basis of Web1T5 frequency data. Some

technical aspects are summarised in Section 4. Sec-

tion 5 addresses the consequences of problems (i)

and (ii). The linguistic usefulness of Web1T5 col-

location data is validated on a multiword extraction

task from the MWE 2008 workshop.2 Section 6 con-

cludes with a brief outlook on the future develop-

ment of Web1T5-Easy.

2 System architecture

While designing the fastest possible indexing archi-

tecture for the Web1T5 database is an interesting

computer science problem, linguistic applications

typically do not require the millisecond response

times of a commercial search engine. It is sufficient

for interactive queries to be completed within a few

seconds, and many users will also be willing to wait

several minutes for the result of a complex search

operation. Given the tabular format of the Web1T5

n-gram frequency data (cf. Table 1), it was a natural

choice to make use of a standard relational database

(RDBMS). Database tables can be indexed on sin-

gle or multiple columns for fast access, and the SQL

query languge allows flexible analysis and aggrega-

tion of frequency data (see Section 2.2 for some ex-

amples). While the indexing procedure can be very

time-consuming, it is carried out offline and has to

run only once.

2http://multiword.sf.net/mwe2008/

Web1T5-Easy was designed to balance com-

putational efficiency against implementation effort

and ease of use. Its main ingredients are the

public-domain embedded relational database engine

SQLite and the open-source scripting language Perl

which are connected through the portable DBI/DBD

interface.3 The Web1T5-Easy package consists of

two sets of Perl scripts. The first set automates

pre-processing and indexing, detailed in Section 2.1.

The second set, which facilitates command-line ac-

cess to the database and provides a Web-based GUI,

is described in Section 2.2. Technical details of the

representation format and performance figures are

presented in Section 4.

The embedded database engine SQLite was pre-

ferred over a full-fledged RDBMS such as MySQL

or PostgreSQL for several reasons: (i) running the

database as a user-level process gives better con-

trol over huge database files and expensive indexing

operations, which might otherwise clog up a ded-

icated MySQL server computer; (ii) each SQLite

database is stored in a single, platform-independent

file, so it can easily be copied to other locations or

servers; (iii) an embedded database avoids the over-

head of exchanging large amounts of data between

client and server; (iv) tight integration with the ap-

plication program allows more flexible use of the

database than pure SQL queries (e.g., a Perl script

can define its own SQL functions, cf. Section 3).

It is quite possible that the sophisticated query op-

timisers of MySQL and commercial RDMBS im-

plementations would improve performance on com-

plex SQL queries. Since Web1T5-Easy uses the

generic DBI interface, it can easily be adapted to any

RDMBS back-end for which DBI/DBD drivers are

available.

2.1 The indexing procedure

Indexing of the Web1T5 n-gram data is carried out

in four stages:

1. In an optional pre-processing step, words are

filtered and normalised to lowercase.4 Each

3See the Web pages at http://www.sqlite.org/, http:

//www.perl.org/ and http://dbi.perl.org/.
4The default filter replaces numbers by the code NUM, var-

ious punctuation symbols by the code PUN, and all “messy”

strings by the code UNK. It can easily be replaced by a user-

defined normalisation mapping.
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word in an n-gram entry is then coded as a nu-

meric ID, which reduces database size and im-

proves both indexing and query performance

(see Section 4 for details on the representation

format). The resulting tuples of n + 1 integers

(n word IDs plus frequency count) are inserted

into a database table.

2. If normalisation was applied, the table will con-

tain multiple entries for many n-grams.5 In

Stage 2, their frequency counts are aggregated

with a suitable SQL query. This is one of the

most expensive and disk-intensive operations

of the entire indexing procedure.

3. A separate SQL index is created for each n-

gram position (e.g., word 1, word 2 and word 3

in Table 1). Multi-column indexes are currently

omitted, as they would drastically increase the

size of the database files.6 Moreover, the use of

an index only improves query execution speed

if it is highly selective, as explained in Sec-

tion 4. If desired, the Perl scripts can trivially

be extended to create additional indexes.

4. A statistical analysis of the database is per-

formed to improve query optimisation (i.e., ap-

propriate selection of indexes).

The indexing procedure is carried out separately for

bigrams, trigrams, 4-grams and 5-grams, using a

shared lexicon table to look up numeric IDs. Users

who do not need the larger n-grams can easily skip

them, resulting in a considerably smaller database

and much faster indexing.

2.2 Database queries and the Web GUI

After the SQLite database has been populated and

indexed, it can be searched with standard SQL

queries (typically a join between one of the n-gram

tables and the lexicon table), e.g. using the sqlite3

5For example, with the default normalisation, bought 2 bot-

tles, bought 5 bottles, Bought 3 bottles, BOUGHT 2 BOT-

TLES and many other trigrams are mapped to the representation

bought NUM bottles. The database table thus contains multiple

entries of the trigram bought NUM bottles, whose frequency

counts have to be added up.
6For the 5-gram table, 10 different two-column indexes

would be required to cover a wide range of queries, more than

doubling the size of the database file.

command-line utility. Since this requires detailed

knowledge of SQL syntax as well as the database

layout and normalisation rules, the Web1T5-Easy

package offers a simpler, user-friendly query lan-

guage, which is internally translated into appropriate

SQL code.

A Web1T5-Easy query consists of 2–5 search

terms separated by blanks. Each search term is ei-

ther a literal word (e.g. sit), a set of words in square

brackets (e.g. [sit,sits,sat,sitting]), a prefix

(under%) or suffix (%ation) expression, * for an ar-

bitrary word, or ? to skip a word. The difference be-

tween the latter two is that positions marked by * are

included in the query result, while those marked by ?

are not. If a query term cannot match because of nor-

malisation, an informative error message is shown.

Matches can be ranked by frequency or by associa-

tion scores, according to one of the measures recom-

mended by Evert (2008): t-score (t), log-likelihood

(G2), chi-squared with Yates’ correction (X2), point-

wise MI, or a version of the Dice coefficient.

For example, the query web as corpus shows

that the trigram Web as Corpus occurs 1,104

times in the Google corpus (case-insensitive).

%ly good fun lists ways of having fun such

as really good fun (12,223×), jolly good fun

(3,730×) and extremely good fun (2,788×). The

query [sit,sits,sat,sitting] * ? chair re-

turns the patterns SIT in . . . chair (201,084×), SIT

on . . . chair (61,901×), SIT at . . . chair (1,173×),

etc. Corpus frequencies are automatically summed

over all fillers in the third slot.

The query implementation is available as a

command-line version and as a CGI script that

provides a Web-based GUI to the Web1T5-Easy

database. The CGI version also offers CSV and

XML output formats for use as a Web service.

3 Quasi-collocations and DSM

Many corpus linguists and lexicographers will par-

ticularly be interested in using the Web1T5 database

as a source of collocations (in the sense of Sinclair

(1991)). While the British National Corpus at best

provides sufficient data for a collocational analysis

of some 50,000 words (taking f ≥ 50 to be the min-

imum corpus frequency necessary), Web1T5 offers

comprehensive collocation data for almost 500,000
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Figure 1: Quasi-collocations for the node word corpus in the Web GUI of Web1T5-Easy.

words (which have at least 50 different collocates in

the database, and f ≥ 10,000 in the original Google

corpus).

Unfortunately, the Web1T5 distribution does not

include co-occurrence frequencies of word pairs,

except for data on immediately adjacent bigrams.

It is possible, though, to derive approximate co-

occurrence frequencies within a collocational span

of up to 4 tokens. In this approach, each n-gram ta-

ble yields information about a specific collocate po-

sition relative to the node. For instance, one can

use the 4-gram table to identify collocates of the

node word corpus at position +3 (i.e., 3 tokens to

the right of the node) with the Web1T5-Easy query

corpus ? ? *, and collocates at position −3 (i.e.,

3 tokens to the left of the node) with the query

* ? ? corpus. Co-occurrence frequencies within

a collocational span, e.g. (−3,+3), are obtained by

summation over all collocate positions in this win-

dow, collecting data from multiple n-gram tables.

It has to be kept in mind that such quasi-

collocations do not represent the true co-occurrence

frequencies, since an instance of co-occurrence of

two words is counted only if it forms part of an n-

gram with f ≥ 40 that has been included in Web1T5.

Especially for larger distances of 3 or 4 tokens, this

limitation is likely to discard most of the evidence

for co-occurrence and put a focus on collocations

that form part of a rigid multiword unit or insti-

tutionalised phrase. Thus, cars becomes the most

salient collocate of collectibles merely because the

two words appear in the slogan from collectibles to

cars (9,443,572×). Section 5 validates the linguistic

usefulness of Web1T5 quasi-collocations in a multi-

word extraction task.

Web1T5-Easy compiles frequency data for quasi-

collocations in an additional step after the complete

n-gram data have been indexed. For each pair of co-

occurring words, the number of co-occurrences in

each collocational position (−4,−3, . . . ,+3,+4) is

recorded. If the user has chosen to skip the largest

n-gram tables, only a shorter collocational span will

be available.

The Web GUI generates SQL code to determine

co-occurrence frequencies within a user-defined col-

locational span on the fly, by summation over the

appropriate columns of the quasi-collocations table.

Collocates can be ranked by a range of association

measures (t, G2, X2, MI, Dice, or frequency f ),

which are implemented as user-defined SQL func-

tions in the Perl code. In this way, sophisticated

statistical analyses can be performed even if they

are not directly supported by the RDBMS back-end.

Figure 1 shows an example of quasi-collocations in

the Web GUI, ranked according to the t-score mea-

sure. On the right-hand side of the table, the distri-

bution across collocate positions is visualised.

In computational linguistics, collocations play

an important role as the term-term co-occurrence

matrix underlying distributional semantic models
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size (GiB) database file no. of rows

0.23 vocabulary 5,787,556

7.24 2-grams 153,634,491

32.81 3-grams 594,453,302

64.32 4-grams 933,385,623

75.09 5-grams 909,734,581

31.73 collocations 494,138,116

211.42 total 3,091,133,669

Table 2: Size of the fully indexed Web1T5 database, in-

cluding quasi-collocations.

(DSM), with association scores used as feature

weights (see e.g. Curran (2004, Sec. 4.3)). The

Web1T5-Easy quasi-collocations table provides a

sparse representation of such a term-term matrix,

where only 494×106 or 0.0015% of the 5.8×106 ·
5.8×106 = 33.5×1012 cells of a full co-occurrence

matrix are populated with nonzero entries.

4 Technical aspects

An essential feature of Web1T5-Easy is the numeric

coding of words in the n-gram tables, which allows

for compact storage and more efficient indexing of

the data than a full character string representation. A

separate lexicon table lists every (normalised) word

form together with its corpus frequency and an in-

teger ID. The lexicon is sorted by decreasing fre-

quency: since SQLite encodes integers in a variable-

length format, it is advantageous to assign low ID

numbers to the most frequent terms.

Every table is stored in its own SQLite database

file, e.g. vocabulary for the lexicon table and

collocations for quasi-collocations (cf. Sec-

tion 3). The database files for different n-gram sizes

(2-grams, 3-grams, 4-grams, 5-grams) share

the same layout and differ only in the number of

columns. Table 2 lists the disk size and number of

rows of each database file, with default normalisa-

tion applied. While the total size of 211 GiB by far

exceeds the original Web1T5 distribution, it can eas-

ily be handled by modern commodity hardware and

is efficient enough for interactive queries.

Performance measurements were made on a

midrange 64-bit Linux server with 2.6 GHz AMD

Opteron CPUs (4 cores) and 16 GiB RAM. SQLite

database files and temporary data were stored on a

fast, locally mounted hard disk. Similar or better

hardware will be available at most academic institu-

tions, and even in recent personal desktop PCs.

Indexing the n-gram tables in SQLite took about

two weeks. Since the server was also used for mul-

tiple other memory- and disk-intensive tasks during

this period, the timings reported here should only

be understood as rough indications. The indexing

process might be considerably faster on a dedicated

server. Roughly equal amounts of time were spent

on each of the four stages listed in Section 2.1.

Database analysis in Stage 4 turned out to be of

limited value because the SQLite query optimiser

was not able to make good use of this information.

Therefore, a heuristic optimiser based on individual

term frequencies was added to the Perl query scripts.

This optimiser chooses the n-gram slot that is most

likely to speed up the query, and explicitly disables

the use of indexes for all other slots. Unless another

constraint is much more selective, preference is al-

ways given to the first slot, which represents a clus-

tered index (i.e. database rows are stored in index

order) and can be scanned very efficiently.

With these explicit optimisations, Stage 4 of the

indexing process can be omitted. If normalisation is

not required, Stage 2 can also be skipped, reducing

the total indexing time by half.

At first sight, it seems to be easy to compile the

database of quasi-collocations one node at a time,

based on the fully indexed n-gram tables. However,

the overhead of random disk access during index

lookups made this approach intractable.7 A brute-

force Perl script that performs multiple linear scans

of the complete n-gram tables, holding as much data

in RAM as possible, completed the compilation of

co-occurrence frequencies in about three days.

Table 3 shows execution times for a selection of

Web1T5-Easy queries entered in the Web GUI. In

general, prefix queries that start with a reasonably

specific term (such as time of *) are very fast,

even on a cold cache. The query %ly good fun

is a pathological case: none of the terms is selec-

tive enough to make good use of the corresponding

7In particular, queries like * ? ? corpus that scan for col-

locates to the left of the node word are extremely inefficient,

since the index on the last n-gram slot is not clustered and ac-

cesses matching database rows in random order.
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Web1T5-Easy query cold cache warm cache

corpus linguistics 0.11s 0.01s

web as corpus 1.29s 0.44s

time of * 2.71s 1.09s

%ly good fun 181.03s 24.37s

[sit,sits,sat,sitting] * ? chair 1.16s 0.31s

* linguistics (association ranking) 11.42s 0.05s

university of * (association ranking) 1.48s 0.48s

collocations of linguistics 0.21s 0.13s

collocations of web 6.19s 3.89s

Table 3: Performance of interactive queries in the Web GUI of Web1T5-Easy. Separate timings are given for a cold

disk cache (first query) and warm disk cache (repeated query). Re-running a query with modified display or ranking

settings will only take the time listed in the last column.

index, and entries matching the wildcard expression

%ly in the first slot are scattered across the entire

trigram table.

5 Validation on a MWE extraction task

In order to validate the linguistic usefulness

of Web1T5 quasi-collocations, they were evalu-

ated on the English VPC shared task from the

MWE 2008 workshop.8 This data set consists of

3,078 verb-particle constructions (VPC), which have

been manually annotated as compositional or non-

compositional (Baldwin, 2008). The task is to iden-

tify non-compositional VPC as true positives (TP)

and re-rank the data set accordingly. Evaluation is

carried out in terms of precision-recall graphs, using

average precision (AP, corresponding to the area un-

der a precision-recall curve) as a global measure of

accuracy.

Frequency data from the Web1T5 quasi-

collocations table was used to calculate association

scores and rankings. Since previous studies suggest

that no single association measure works equally

well for all tasks and data sets, several popular mea-

sures were included in the evaluation: t-score (t),

chi-squared with Yates’ continuity correction (X2),

Dice coefficient (Dice), co-occurrence frequency

( f ), log-likelihood (G2) and Mutual Information

(MI); see e.g. Evert (2008) for full equations and

references. The results are compared against rank-

ings obtained from more traditional, linguistically

8http://multiword.sf.net/mwe2008/

annotated corpora of British English: the balanced,

100-million-word British National Corpus (Aston

and Burnard, 1998) and the 2-billion-word Web

corpus ukWaC (Baroni et al., 2009).

For BNC and ukWaC, three different extraction

methods were used: (i) adjacent bigrams of verb +

particle/preposition; (ii) shallow syntactic patterns

based on POS tags (allowing pronouns and simple

noun phrases between verb and particle); and (iii)

surface co-occurrence within a collocational span of

3 tokens to the right of the node (+1,+3), filtered

by POS tag. Association scores were calculated us-

ing the same measures as for the Web1T5 quasi-

collocations. Preliminary experiments with different

collocational spans showed consistently lower accu-

racy than for (+1,+3). In each case, the same asso-

ciation measures were applied as for Web1T5.

Evaluation results are shown in Figure 3 (graphs)

and Table 4 (AP). The latter also describes the cover-

age of the corpus data by listing the number of can-

didates for which no frequency information is avail-

able (second column). These candidates are always

ranked at the end of the list. While the BNC has

a coverage of 92%–94% (depending on extraction

method), scaling up to Web1T5 completely elimi-

nates the missing data problem.

However, identification of non-compositional

VPC with the Web1T5 quasi-collocations is consid-

erably less accurate than with linguistically anno-

tated data from the much smaller BNC. For recall

values above 50%, the precision of statistical associ-

ation measures such as t and X2 is particularly poor
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coverage average precision (%)

(missing) t X2 Dice f G2 MI

BNC (bigrams) 242 30.04 29.75 27.12 26.55 29.86 22.79

BNC (syntactic patterns) 201 30.42 30.49 27.48 25.87 30.64 22.48

BNC (span +1 . . .+3) 185 29.15 32.12 30.13 24.33 31.06 22.58

ukWaC (bigrams) 171 29.28 30.32 27.79 25.37 29.63 25.13

ukWaC (syntactic patterns) 162 29.20 31.19 27.90 24.19 30.06 25.08

ukWaC (span +1 . . .+3) 157 27.82 32.66 30.54 23.03 30.01 25.76

Web1T5 (span +1 . . .+3) 3 25.83 25.27 25.33 20.88 25.77 20.81

BNC untagged (+1 . . .+3) 39 27.22 27.85 28.98 22.51 28.13 19.60

Table 4: Evaluation results for English non-compositional VPC (Baldwin, 2008): average precision (AP) as a global

indicator. The baseline AP for random candidate ranking is 14.29%. The best result in each row is highlighted in bold.

(Figure 3.h). On the annotated corpora, where nodes

and collocates are filtered by POS tags, best results

are obtained with the least constrained extraction

method and the chi-squared (X2) measure. Scal-

ing up to the 2-billion-word ukWaC corpus gives

slightly better coverage and precision than on the

BNC. Moreover, X2 is now almost uniformly better

than (or equal to) any other measure (Figure 3.f).
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Figure 2: Comparison of X2 association scores on ukWaC

and Web1T5. Axes are rescaled logarithmically, preserv-

ing sign to indicate positive vs. negative association.

In order to determine whether the poor perfor-

mance of Web1T5 is simply due to the lack of lin-

guistic annotation or whether it points to an intrin-

sic problem of the n-gram database, co-occurrence

data were extracted from an untagged version of the

BNC using the same method as for the Web1T5 data.

While there is a significant decrease in precision (cf.

Figure 3.g and the last row of Table 4), the results

are still considerably better than on Web1T5. In the

MWE 2008 competition, Ramisch et al. (2008) were

also unable to improve on the BNC results using a

phrase entropy measure based on search engine data.

The direct comparison of X2 association scores on

ukWaC and Web1T5 in Figure 2 reveals that the lat-

ter are divided into strongly positive and strongly

negative association, while scores on ukWaC are

spread evenly across the entire range. It is re-

markable that many true positives (TP) exhibit neg-

ative association in Web1T5, while all but a few

show the expected positive association in ukWaC.

This unusual pattern, which may well explain the

poor VPC evaluation results, can also be observed

for adjacent bigrams extracted from the 2-grams ta-

ble (not shown). It suggests a general problem of

the Web1T5 data that is compounded by the quasi-

collocations approach.

6 Future work

A new release of Web1T5-Easy is currently in

preparation. It will refactor the Perl code into

reusable and customisable modules that can easily

be embedded in user scripts and adapted to other

databases such as Brants and Franz (2009). We are

looking forward to Web1T5 v2, which promises eas-

ier indexing and much richer interactive queries.
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Figure 3: Evaluation results for English non-compositional VPC (Baldwin, 2008): precision-recall graphs. Rankings

according to the Web1T5 quasi-collocations are shown in the bottom right panel (h). The baseline precision is 14.29%.
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