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Abstract

We investigate parsing accuracy on the Ko-

rean Treebank 2.0 with a number of different

grammars. Comparisons among these gram-

mars and to their English counterparts suggest

different aspects of Korean that contribute to

parsing difficulty. Our results indicate that the

coarseness of the Treebank’s nonterminal set

is a even greater problem than in the English

Treebank. We also find that Korean’s rela-

tively free word order does not impact parsing

results as much as one might expect, but in

fact the prevalence of zero pronouns accounts

for a large portion of the difference between

Korean and English parsing scores.

1 Introduction

Korean is a head-final, agglutinative, and mor-

phologically productive language. The language

presents multiple challenges for syntactic pars-

ing. Like some other head-final languages such

as German, Japanese, and Hindi, Korean exhibits

long-distance scrambling (Rambow and Lee, 1994;

Kallmeyer and Yoon, 2004). Compound nouns are

formed freely (Park et al., 2004), and verbs have

well over 400 paradigmatic endings (Martin, 1992).

Korean Treebank 2.0 (LDC2006T09) (Han and

Ryu, 2005) is a subset of a Korean newswire corpus

(LDC2000T45) annotated with morphological and

syntactic information. The corpus contains roughly

5K sentences, 132K words, and 14K unique mor-

phemes. The syntactic bracketing rules are mostly

the same as the previous version of the treebank

(Han et al., 2001) and the phrase structure annota-

tion schemes used are very similar to the ones used

in Penn English treebank. The Korean Treebank is

constructed over text that has been morphologically

analyzed; not only is the text tokenized into mor-

phemes, but all allomorphs are neutralized.

To our knowledge, there have been only a few pa-

pers focusing on syntactic parsing of Korean. Herm-

jakob (2000) implemented a shift-reduce parser for

Korean trained on very limited (1K sentences) data,

and Sarkar and Han (2002) used an earlier version

of the Treebank to train a lexicalized tree adjoining

grammar. In this paper, we conduct a range of ex-

periments using the Korean Treebank 2.0 (hereafter,

KTB) as our training data and provide analyses that

reveal insights into parsing morphologically rich lan-

guages like Korean. We try to provide comparisons

with English parsing using parsers trained on a simi-

lar amount of data wherever applicable.

2 Difficulties parsing Korean

There are several challenges in parsing Korean com-

pared to languages like English. At the root of many

of these challenges is the fact that it is highly in-

flected and morphologically productive. Effective

morphological segmentation is essential to learning

grammar rules that can generalize beyond the train-

ing data by limiting the number of out-of-vocabulary

words. Fortunately, there are good techniques for do-

ing so. The sentences in KTB have been segmented

into basic morphological units.

Second, Korean is a pro-drop language: subjects

and objects are dropped wherever they are pragmati-

cally inferable, which is often possible given its rich

morphology. Zero pronouns are a remarkably fre-

quent phenomenon in general (Han, 2006), occuring
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an average of 1.8 times per sentence in the KTB.

The standard approach in parsing English is to ig-

nore NULL elements entirely by removing them (and

recursively removing unary parents of empty nodes

in a bottom-up fashion). This is less of a problem in

English because these empty nodes are mostly trace

elements that denote constituent movement. In the

KTB, these elements are removed altogether and a

crucial cue to grammatical inference is often lost.

Later we will show the profound effect this has on

parsing accuracy.

Third, word order in Korean is relatively free.

This is also partly due to the richer morphology,

since morphemes (rather than word order) are used

to denote semantic roles of phrases. Consider the

following example:

㩕㨋 㜔㛽㦂㐳 㫾㧺 㩳㥽㖰 .

John-NOM Mary-DAT book-ACC give-PAST .

In the example, any permutation of the first three

words produces a perfectly acceptable sentence.

This freedom of word order could potentially result

in a large number of rules, which could complicate

analysis with new ambiguities. However, formal

written Korean generally conforms to a canonical

word order (SOV).

3 Initial experiments

There has been some work on Korean morphologi-

cal analysis showing that common statistical meth-

ods such as maximum entropy modeling and condi-

tional random fields perform quite well (Lee et al.,

2000; Sarkar and Han, 2002; Han and Palmer, 2004;

Lee and Rim, 2005). Most claim accuracy rate over

95%. In light of this, we focus on the parsing part of

the problem utilizing morphology analysis already

present in the data.

3.1 Setup

For our experiments we used all 5,010 sentences in

the Korean Treebank (KTB), which are already seg-

mented. Due to the small size of the corpus, we used

ten-fold cross validation for all of our experiments,

unless otherwise noted. Sentences were assigned to

folds in blocks of one (i.e., fold 1 contained sen-

tences 1, 11, 21, and so on.). Within each fold, 80%

of the data was assigned to training, 10% to devel-

opment, and 10% to testing. Each fold’s vocabulary

model F1 F1≤40 types tokens

Korean 52.78 56.55 6.6K 194K

English (§02–03) 71.06 72.26 5.5K 96K

English (§02–04) 72.20 73.29 7.5K 147K

English (§02–21) 71.61 72.74 23K 950K

Table 1: Parser scores for Treebank PCFGs in Korean

and English. For English, we vary the size of the training

data to provide a better point of comparison against Ko-

rean. Types and tokens denote vocabulary sizes (which

for Korean is the mean over the folds).

was set to all words occurring more than once in its

training data, with a handful of count one tokens re-

placing unknown words based on properties of the

word’s surface form (all Korean words were placed

in a single bin, and English words were binned fol-

lowing the rules of Petrov et al. (2006)). We report

scores on the development set.

We report parser accuracy scores using the stan-

dard F1 metric, which balances precision and recall

of the labeled constituents recovered by the parser:

2PR/(P + R). Throughout the paper, all evalua-

tion occurs against gold standard trees that contain

no NULL elements or nonterminal function tags or

annotations, which in some cases requires the re-

moval of those elements from parse trees output by

the parser.

3.2 Treebank grammars

We begin by presenting in Table 1 scores for the

standard Treebank grammar, obtained by reading a

standard context-free grammar from the trees in the

training data and setting rule probabilities to rela-

tive frequency (Charniak, 1996). For these initial

experiments, we follow standard practice in English

parsing and remove all (a) nonterminal function tags

and (b) NULL elements from the parse trees before

learning the grammar. For comparison purposes, we

present scores from parsing the Wall Street Journal

portion of the English Penn Treebank (PTB), using

both the standard training set and subsets of it cho-

sen to be similar in size to the KTB. All English

scores are tested on section 22.

There are two interesting results in this table.

First, Korean parsing accuracy is much lower than

English parsing accuracy, and second, the accuracy

difference does not appear to be due to a difference

in the size of the training data, since reducing the
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size of the English training data did not affect accu-

racy scores very much.

Before attempting to explain this empirically, we

note that Rehbein and van Genabith (2007) demon-

strate that the F1 metric is biased towards parse trees

with a high ratio of nonterminals to terminals, be-

cause mistakes made by the parser have a smaller

effect on the overall evaluation score.1 They rec-

ommend that F1 not be used for comparing parsing

accuracy across different annotation schemes. The

nonterminal to terminal ratio in the KTB and PTB

are 0.40 and 0.45, respectively. It is a good idea to

keep this bias in mind, but we believe that this small

ratio difference is unlikely to account for the huge

gap in scores displayed in Table 1.

The gap in parsing accuracy is unsurprising in

light of the basic known difficulties parsing Korean,

summarized earlier in the paper. Here we observe a

number of features of the KTB that contribute to this

difficulty.

Sentence length On average, KTB sentences are

much longer than PTB sentences (23 words versus

48 words, respectively). Sentence-level F1 is in-

versely correlated with sentence length, and the rel-

atively larger drop in F1 score going from column 3

to 2 in Table 1 is partially accounted for by the fact

that column 3 represents 33% of the KTB sentences,

but 92% of the English sentences.

Flat annotation scheme The KTB makes rela-

tively frequent use of very flat and ambiguous rules.

For example, consider the extreme cases of rule am-

biguity in which the lefthand side nonterminal is

present three or more times on its righthand side.

There are only three instances of such “triple+-

recursive” NPs among the∼40K trees in the training

portion of the PTB, each occurring only once.

NP→ NP NP NP , CC NP

NP→ NP NP NP CC NP

NP→ NP NP NP NP .

The KTB is an eighth of the size of this, but has

fifteen instances of such NPs (listed here with their

frequencies):

1We thank one of our anonymous reviewers for bringing this

to our attention.

NP→ NP NP NP NP (6)

NP→ NP NP NP NP NP (3)

NP→ NP NP NP NP NP NP (2)

NP→ NP NP NP NP NP NP NP (2)

NP→ SLQ NP NP NP SRQ PAD (1)

NP→ SLQ NP NP NP NP SRQ PAN (1)

Similar rules are common for other nonterminals as

well. Generally, flatter rules are easier to parse with

because they contribute to parse trees with fewer

nodes (and thus fewer independent decision points).

However, the presence of a single nonterminal on

both the left and righthand side of a rule means that

the annotation scheme is failing to capture distribu-

tional differences which must be present.

Nonterminal granularity This brings us to a final

point about the granularity of the nonterminals in the

KTB. After removing function tags, there are only

43 nonterminal symbols in the KTB (33 of them

preterminals), versus 72 English nonterminals (44

of them preterminals). Nonterminal granularity is

a well-studied problem in English parsing, and there

is a long, successful history of automatically refin-

ing English nonterminals to discover distributional

differences. In light of this success, we speculate

that the disparity in parsing performance might be

explained by this disparity in the number of nonter-

minals. In the next section, we provide evidence that

this is indeed the case.

4 Nonterminal granularity

There are many ways to refine the set of nontermi-

nals in a Treebank. A simple approach suggested

by Johnson (1998) is to simply annotate each node

with its parent’s label. The effect of this is to re-

fine the distribution of each nonterminal over se-

quences of children according to its position in the

sentence; for example, a VP beneath an SBAR node

will have a different distribution over children than a

VP beneath an S node. This simple technique alone

produces a large improvement in English Treebank

parsing. Klein and Manning (2003) expanded this

idea with a series of experiments wherein they manu-

ally refined nonterminals to different degrees, which

resulted in parsing accuracy rivaling that of bilexi-

calized parsing models of the time. More recently,

Petrov et al. (2006) refined techniques originally

proposed by Matsuzaki et al. (2005) and Prescher
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SBJ subject with nominative case marker

OBJ complement with accusative case marker

COMP complement with adverbial postposition

ADV NP that function as adverbial phrase

VOC noun with vocative case maker

LV NP coupled with “light” verb construction

Table 2: Function tags in the Korean treebank

model F1 F1≤40

Korean

coarse 52.78 56.55

w/ function tags 56.18 60.21

English (small)

coarse 72.20 73.29

w/ function tags 70.50 71.78

English (standard)

coarse 71.61 72.74

w/ function tags 72.82 74.05

Table 3: Parser scores for Treebank PCFGs in Korean

and English with and without function tags. The small

English results were produced by training on §02–04.

(2005) for automatically learning latent annotations,

resulting in state of the art parsing performance with

cubic-time parsing algorithms.

We begin this section by conducting some sim-

ple experiments with the existing function tags, and

then apply the latent annotation learning procedures

of Petrov et al. (2006) to the KTB.

4.1 Function tags

The KTB has function tags that mark grammatical

functions of NP and S nodes (Han et al., 2001),

which we list all of them in Table 2. These function

tags are principally grammatical markers. As men-

tioned above, the parsing scores for both English

and Korean presented in Table 1 were produced with

grammars stripped of their function tags. This is

standard practice in English, where the existing tags

are known not to help very much. Table 3 presents

results of parsing with grammars with nonterminals

that retain these function tags (we include results

from Section 3 for comparison). Note that evalua-

tion is done against the unannotated gold standard

parse trees by removing the function tags after pars-

ing with them.

The results for Korean are quite pronounced:

we see a nearly seven-point improvement when re-

taining the existing tags. This very strongly sug-

gests that the KTB nonterminals are too coarse

when stripped of their function tags, and raises the

question of whether further improvement might be

gained from latent annotations.

The English scores allow us to make another point.

Retaining the provided function tags results in a

solid performance increase with the standard train-

ing corpus, but actually hurts performance when

training on the small dataset. Note clearly that this

does not suggest that parsing performance with the

grammar from the small English data could not be

improved with latent annotations (indeed, we will

show that they can), but only that the given annota-

tions do not help improve parsing accuracy. Taking

the Korean and English accuracy results from this ta-

ble together provides another piece of evidence that

the Korean nonterminal set is too coarse.

4.2 Latent annotations

We applied the latent annotation learning procedures

of Petrov et al.2 to refine the nonterminals in the

KTB. The trainer learns refinements over the coarse

version of the KTB (with function tags removed). In

this experiment, rather than doing 10-fold cross vali-

dation, we split the KTB into training, development,

and test sets that roughly match the 80/10/10 splits

of the folds:

section file IDs

training 302000 to 316999

development 317000 to 317999

testing 320000 to 320999

This procedure results in grammars which can then

be used to parse new sentences. Table 4 displays the

parsing accuracy results for parsing with the gram-

mar (after smoothing) at the end of each split-merge-

smooth cycle.3 The scores in this table show that,

just as with the PTB, nonterminal refinement makes

a huge difference in parser performance.

Again with the caveat that direct comparison of

parsing scores across annotation schemes must be

taken loosely, we note that the KTB parsing accu-

racy is still about 10 points lower than the best ac-

2
http://code.google.com/p/berkeleyparser/

3As described in Petrov et al. (2006), to score a parse tree

produced with a refined grammar, we can either take the Viterbi

derivation or approximate a sum over derivations before project-

ing back to the coarse tree for scoring.
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Viterbi max-sum

cycle F1 F1≤40 F1 F1≤40

1 56.93 61.11 61.04 64.23

2 63.82 67.94 66.31 68.90

3 69.86 72.83 72.85 75.63

4 74.36 77.15 77.18 78.18

5 78.07 80.09 79.93 82.04

6 78.91 81.55 80.85 82.75

Table 4: Parsing accuracy on Korean test data from the

grammars output by the Berkeley state-splitting grammar

trainer. For comparison, parsing all sentences of §22 in

the PTB with the same trainer scored 89.58 (max-sum

parsing with five cycles) with the standard training corpus

and 85.21 when trained on §2–4.

curacy scores produced in parsing the PTB which,

in our experiments, were 89.58 (using max-sum to

parse all sentences with the grammar obtained after

five cycles of training).

An obvious suspect for the difference in parsing

accuracy with latent grammars between English and

Korean is the difference in training set sizes. This

turns out not to be the case. We learned latent anno-

tations on sections 2–4 of the PTB and again tested

on section 22. The accuracy scores on the test set

peak at 85.21 (max-sum, all sentences, five cycles of

training). This is about five points lower than the En-

glish grammar trained on sections 2–21, but is still

over four points higher than the KTB results.

In the next section, we turn to one of the theoret-

ical difficulties with Korean parsing with which we

began the paper.

5 NULL elements

Both the PTB and KTB include many NULL ele-

ments. For English, these elements are traces de-

noting constituent movement. In the KTB, there

are many more kinds of NULL elements, in includ-

ing trace markers, zero pronouns, relative clause re-

duction, verb deletions, verb ellipsis, and other un-

known categories. Standard practice in English pars-

ing is to remove NULL elements in order to avoid

the complexity of parsing with ǫ-productions. How-
ever, another approach to parsing that avoids such

productions is to retain the NULL elements when

reading the grammar; at test time, the parser is given

sentences that contain markers denoting the empty

elements. To evaluate, we remove these elements

model F1 F1≤40 tokens

English (standard training corpus)

coarse 71.61 72.74 950K

w/ function tags 72.82 74.05 950K

w/ NULLs 73.29 74.38 1,014K

Korean

w/ verb ellipses 52.85 56.52 3,200

w/ traces 55.88 59.42 3,868

w/ r.c. markers 56.74 59.87 3,794

w/ zero pronouns 57.56 61.17 4,101

latent (5) w/ NULLs 89.56 91.03 22,437

Table 5: Parser scores for Treebank PCFGs in English

and Korean with NULL elements. Tokens denotes the

number of words in the test data. The latent grammar

was trained for five iterations.

from the resulting parse trees output by the parser

and compare against the stripped-down gold stan-

dard used in previous sections, in order to provide

a fair point of comparison.

Parsing in this manner helps us to answer the ques-

tion of how much easier or more difficult parsing

would be if the NULL elements were present. In

this section, we present results from a variety of ex-

periments parsing will NULL tokens in this manner.

These results can be seen in Table 5. The first ob-

servation from this table is that in English, retaining

NULL elements makes a few points difference.

The first four rows of the KTB portion of Table 5

contains results with retaining different classes of

NULL elements, one at a time, according to the man-

ner described above. Restoring deleted pronouns

and relative clause markers has the largest effect,

suggesting that the absence of these optional ele-

ments removes key cues needed for parsing.

In order to provide a more complete picture of

the effect of empty elements, we train the Berkeley

latent annotation system on a version of the KTB

in which all empty elements are retained. The fi-

nal row of Table 5 contains the score obtained when

evaluating parse trees produced from parsing with

the grammar after the fifth iteration (after which per-

formance began to fall). With the empty elements,

we have achieved accuracy scores that are on par

with the best accuracy scores obtained parsing the

English Treebank.
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6 Tree substitution grammars

We have shown that coarse labels and the prevalence

of NULL elements in Korean both contribute to pars-

ing difficulty. We now turn to grammar formalisms

that allow us to work with larger fragments of parse

trees than the height-one rules of standard context-

free grammars. Tree substitution grammars (TSGs)

have been shown to improve upon the standard En-

glish Treebank grammar (Bod, 2001) in parser ac-

curacy, and more recently, techniques for inferring

TSG subtrees in a Bayesian framework have enabled

learning more efficiently representable grammars,

permitting some interesting analysis (O’Donnell et

al., 2009; Cohn et al., 2009; Post and Gildea, 2009).

In this section, we try parsing the KTB with TSGs.

We experiment with different methods of learning

TSGs to see whether they can reveal any insights

into the difficulties parsing Korean.

6.1 Head rules

TSGs present some difficulties in learning and rep-

resentation, but a simple extraction heuristic called

a spinal grammar has been shown to be very use-

ful (Chiang, 2000; Sangati and Zuidema, 2009; Post

and Gildea, 2009). Spinal subtrees are extracted

from a parse tree by using a set of head rules to

maximally project each lexical item (a word or mor-

pheme). Each node in the parse tree having a differ-

ent head from its parent becomes the root of a new

subtree, which induces a spinal TSG derivation in

the parse tree (see Figure 1). A probabilistic gram-

mar is derived by taking counts from these trees,

smoothing them with counts of all depth-one rules

from the same training set, and setting rule probabil-

ities to relative frequency.

This heuristic requires a set of head rules, which

we present in Table 6. As an evaluation of our rules,

we list in Table 7 the accuracy results for parsing

with spinal grammars extracted using the head rules

we developed as well as with two head rule heuris-

tics (head-left and head-right). As a point of compar-

ison, we provide the same results for English, using

the standard Magerman/Collins head rules for En-

glish (Magerman, 1995; Collins, 1997). Function

tags were retained for Korean but not for English.

We observe a number of things from Table 7.

First, the relative performance of the head-left and

NT RC rule

S SFN second rightmost child

VV EFN rightmost XSV

VX EFN rightmost VJ or CO

ADJP EFN rightmost VJ

CV EFN rightmost VV

LV EFN rightmost VV

NP EFN rightmost CO

VJ EFN rightmost XSV or XSJ

VP EFN rightmost VX, XSV, or VV

⋆ ⋆ rightmost child

Table 6: Head rules for the Korean Treebank. NT is the

nonterminal whose head is being determined, RC identi-

fies the label of its rightmost child. The default is to take

the rightmost child as the head.

head-right spinal grammars between English and

Korean capture the linguistic fact that English is pre-

dominantly head-first and Korean is predominantly

head-final. In fact, head-finalness in Korean was so

strong that our head rules consist of only a handful

of exceptions to it. The default rule makes heads

of postpositions (case and information clitics) such

as dative case marker and topic marker. It is these

words that often have dependencies with words in

the rest of the sentence. The exceptions concern

predicates that occur in the sentence-final position.

As an example, predicates in Korean are composed

of several morphemes, the final one of which indi-

cates the mood of the sentence. However, this mor-

pheme often does not require any inflection to re-

flect long-distance agreement with the rest of the

sentence. Therefore, we choose the morpheme that

would be considered the root of the phrase, which

in Korean is the verbalization/adjectivization suf-

fix, verb, adjective, auxiliary predicate, and copula

(XSV, XSJ, VV, VJ, VX, CO). These items often in-

clude the information about valency of the predicate.

Second, in both languages, finer-grained specifi-

cation of head rules results in performance above

that of the heuristics (and in particular, the head-

left heuristic for English and head-right heuristic for

Korean). The relative improvements in the two lan-

guages are in line with each other: significant, but

not nearly as large as the difference between the

head-left and head-right heuristics.

Finally, we note that the test results together sug-

gest that parsing with spinal grammars may be a
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(a) TOP

S

NP-SBJ

NPR

㣙㧗㭐

NNC

㞇㡐

PAU

㧹

VP

NP-ADV

DAN

㒔

NNC

㘏

VP

VV

NNC

㲩㑌

XSV

㖾㖾㖾㲠㲠㲠

EPF

㥽

EFN

㖰

SFN

.

(b) S

NP-SBJ

NPR

㣙㧗㭐

NNC PAU

VP SFN

(c) S

NP-SBJ VP SFN

.

Figure 1: (a) A KTB parse tree; the bold nodes denote the top-level spinal subtree using our head selection rules. (b)

The top-level spinal subtree using the head-left and (c) head-right extraction heuristics. A gloss of the sentence is

Doctor Schwartz was fired afterward.

model F1 F1≤40 size

Korean

spinal (head left) 59.49 63.33 49K

spinal (head right) 66.05 69.96 29K

spinal (head rules) 66.28 70.61 29K

English

spinal (head left) 77.92 78.94 158K

spinal (head right) 72.73 74.09 172K

spinal (head rules) 78.82 79.79 189K

Table 7: Spinal grammar scores on the KTB and on PTB

section 22.

good evaluation of a set of head selection rules.

6.2 Induced tree substitution grammars

Recent work in applying nonparametric machine

learning techniques to TSG induction has shown that

the resulting grammars improve upon standard En-

glish treebank grammars (O’Donnell et al., 2009;

Cohn et al., 2009; Post and Gildea, 2009). These

techniques use a Dirichlet Process prior over the sub-

tree rewrites of each nonterminal (Ferguson, 1973);

this defines a model of subtree generation that pro-

duces new subtrees in proportion to the number of

times they have previously been generated. Infer-

ence under this model takes a treebank and uses

Gibbs sampling to determine how to deconstruct a

parse tree into a single TSG derivation. In this sec-

tion, we apply these techniques to Korean.

This TSG induction requires one to specify a base

measure, which assigns probabilities to subtrees be-

ing generated for the first time in the model. One

base measure employed in previous work scored a

subtree by multiplying together the probabilities of

the height-one rules inside the subtree with a ge-

ometric distribution on the number of such rules.

Since Korean is considered to be a free word-order

language, we modified this base measure to treat the

children of a height-one rule as a multiset (instead of

a sequence). This has the effect of producing equiva-

lence classes among the sets of children of each non-

terminal, concentrating the mass on these classes in-

stead of spreading it across their different instantia-

tions.

To build the sampled grammars, we initialized the

samplers from the best spinal grammar derivations

and ran them for 100 iterations (once again, func-

tion tags were retained). We then took the state of

the training data at every tenth iteration, smoothed

together with the height-one rules from the standard

Treebank. The best score on the development data

for a sampled grammar was 68.93 (all sentences)

and 73.29 (sentences with forty or fewer words):

well above the standard Treebank scores from ear-

lier sections and above the spinal heuristics, but well

below the scores produced by the latent annotation

learning procedures (a result that is consistent with

English).

This performance increase reflects the results for

English demonstrated in the above works. We see a

large performance increase above the baseline Tree-

bank grammar, and a few points above the best

spinal grammar. One nice feature of these induced

TSGs is that the rules learned lend themselves to

analysis, which we turn to next.

6.3 Word order

In addition to the base measure mentioned above,

we also experimented with the standard base mea-
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NP

NPR NNC

㨆㧙

NNU NNX

㜼

Figure 2: Example of a long distance dependency learned

by TSG induction.

sure proposed by Cohn et al. and Post & Gildea, that

treats the children of a nonterminal as a sequence.

The grammars produced sampling under a model

with this base measure were not substantively differ-

ent from those of the unordered base measure. A par-

tial explanation for this is that although Korean does

permit a significant amount of reordering relative to

English, the sentences in the KTB come from writ-

ten newswire text, where word order is more stan-

dardized. Korean sentences are characterized as hav-

ing a subject-object-verb (SOV) word order. There

is some flexibility; OSV, in particular, is common

in spoken Korean. In formal writing, though, SOV

word order is overwhelmingly preferred. We see this

reflected in the KTB, where SOV sentences are 63.5

times more numerous that OSV among sentences

that have explicitly marked both the subject and the

object. However, word order is not completely fixed

even in the formal writing. NP-ADV is most likely

to occur right before the VP it modifies, but can be

moved earlier. For example,

S→ NP-SBJ NP-ADV VP

is 2.4 times more frequent than the alternative with

the order of the NPs reversed.

Furthermore, the notion of free(er) word order

does not apply to all constituents. An example is

nonterminals directly above preterminals. A Korean

verb may have up to seven affixes; however, they al-

ways agglutinate in a fixed order.

6.4 Long distance dependencies

The TSG inference procedure can be thought of

as discovering structural collocations in parse trees.

The model prefers subtrees that are common in the

data set and that comprise highly probable height-

one rules. The parsing accuracy of these grammars

is well below state of the art, but the grammars are

smaller, and the subtrees learned can help us analyze

the parse structure of the Treebank. One particular

class of subtree is one that includes multiple lexical

items with intervening nonterminals, which repre-

sent long distance dependencies that commonly co-

occur. In Korean, a certain class of nouns must ac-

company a particular class of measure word (a mor-

pheme) when counting the noun. In the example

shown in Figure 2, (NNC 㨆㧙) (members of as-

sembly) is followed by NNU, which expands to in-

dicate ordinal, cardinal, and numeral nouns; NNU is

in turn followed by (NNX㜼), the politeness neutral

measure word for counting people.

7 Summary & future work

In this paper, we addressed several difficult aspects

of parsing Korean and showed that good parsing ac-

curacy for Korean can be achieved despite the small

size of the corpus.

Analysis of different parsing results from differ-

ent grammatical formalisms yielded a number of

useful observations. We found, for example, that the

set of nonterminals in the KTB is not differentiated

enough for accurate parsing; however, parsing accu-

racy improves substantially from latent annotations

and state-splitting techniques that have been devel-

oped with English as a testbed. We found that freer

word order may not be as important as might have

been thought from basic a priori linguistic knowl-

edge of Korean.

The prevalence of NULL elements in Korean is

perhaps the most interesting difficulty in develop-

ing good parsing approaches for Korean; this is

a key difference from English parsing that to our

knowledge is not addressed by any available tech-

niques. One potential approach is a special an-

notation of parents with deleted nodes in order to

avoid conflating rewrite distributions. For example,

S → VP is the most common rule in the Korean

treebank after stripping away empty elements; how-

ever, this is a result of condensing the rule S→ (NP-

SBJ *pro*) VP and S→VP, which presumably have

different distributions. Another approach would be

to attempt automatic recovery of empty elements as

a pre-processing step.
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