
Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 22–30,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Two methods to incorporate local morphosyntactic features in Hindi de-

pendency parsing

Bharat Ram Ambati, Samar Husain, Sambhav Jain, Dipti Misra Sharma

and Rajeev Sangal
Language Technologies Research Centre, IIIT-Hyderabad, India - 500032.

{ambati,samar}@research.iiit.ac.in, sambhav-

jain@students.iiit.ac.in,{dipti,sangal}@mail.iiit.ac.in

Abstract

In this paper we explore two strategies to in-

corporate local morphosyntactic features in

Hindi dependency parsing. These features are

obtained using a shallow parser. We first ex-

plore which information provided by the shal-

low parser is most beneficial and show that

local morphosyntactic features in the form of

chunk type, head/non-head information,

chunk boundary information, distance to the

end of the chunk and suffix concatenation are

very crucial in Hindi dependency parsing. We

then investigate the best way to incorporate

this information during dependency parsing.

Further, we compare the results of various ex-

periments based on various criterions and do

some error analysis. All the experiments were

done with two data-driven parsers, MaltParser

and MSTParser, on a part of multi-layered and

multi-representational Hindi Treebank which

is under development. This paper is also the

first attempt at complete sentence level pars-

ing for Hindi.

1 Introduction

The dependency parsing community has since a

few years shown considerable interest in parsing

morphologically rich languages with flexible word

order. This is partly due to the increasing availabil-

ity of dependency treebanks for such languages,

but it is also motivated by the observation that the

performance obtained for these languages have not

been very high (Nivre et al., 2007a). Attempts at

handling various non-configurational aspects in

these languages have pointed towards shortcom-

ings in traditional parsing methodologies (Tsarfaty

and Sima'an, 2008; Eryigit et al., 2008; Seddah et

al., 2009; Husain et al., 2009; Gadde et al., 2010).

Among other things, it has been pointed out that

the use of language specific features may play a

crucial role in improving the overall parsing per-

formance. Different languages tend to encode syn-

tactically relevant information in different ways,

and it has been hypothesized that the integration of

morphological and syntactic information could be

a key to better accuracy. However, it has also been

noted that incorporating these language specific

features in parsing is not always straightforward

and many intuitive features do not always work in

expected ways.

In this paper we explore various strategies to in-

corporate local morphosyntactic features in Hindi

dependency parsing. These features are obtained

using a shallow parser. We conducted experiments

with two data-driven parsers, MaltParser (Nivre et

al., 2007b) and MSTParser (McDonald et al.,

2006). We first explore which information pro-

vided by the shallow parser is most beneficial and

show that local morphosyntactic features in the

form of chunk type, head/non-head information,

chunk boundary information, distance to the end of

the chunk and suffix concatenation are very crucial

in Hindi dependency parsing. We then investigate

the best way to incorporate this information during

dependency parsing. All the experiments were

done on a part of multi-layered and multi-

representational Hindi Treebank (Bhatt et al.,

2009)
1
.

The shallow parser performs three tasks, (a) it

gives the POS tags for each lexical item, (b) pro-

vides morphological features for each lexical item,

and (c) performs chunking. A chunk is a minimal

(non-recursive) phrase consisting of correlated,

inseparable words/entities, such that the intra-

chunk dependencies are not distorted (Bharati et

1 This Treebank is still under development. There are currently

27k tokens with complete sentence level annotation.

22

al., 2006). Together, a group of lexical items with

some POS tag and morphological features within a

chunk can be utilized to automatically compute

local morphosyntactic information. For example,

such information can represent the postposi-

tion/case-marking in the case of noun chunks, or it

may represent the tense, aspect and modality

(TAM) information in the case of verb chunks. In

the experiments conducted for this paper such local

information is automatically computed and incor-

porated as a feature to the head of a chunk. In gen-

eral, local morphosyntactic features correspond to

all the parsing relevant local linguistic features that

can be utilized using the notion of chunk. Previous-

ly, there have been some attempts at using chunk

information in dependency parsing. Attardi and

Dell’Orletta (2008) used chunking information in

parsing English. They got an increase of 0.35% in

labeled attachment accuracy and 0.47% in unla-

beled attachment accuracy over the state-of-the-art

dependency parser.

Among the three components (a-c, above), the

parsing accuracy obtained using the POS feature is

taken as baseline. We follow this by experiments

where we explore how each of morph and chunk

features help in improving dependency parsing

accuracy. In particular, we find that local morpho-

syntactic features are the most crucial. These expe-

riments are discussed in section 2. In section 3 we

will then see an alternative way to incorporate the

best features obtained in section 2. In all the pars-

ing experiments discussed in section 2 and 3, at

each step we explore all possible features and ex-

tract the best set of features. Best features of one

experiment are used when we go to the next set of

experiments. For example, when we explore the

effect of chunk information, all the relevant morph

information from previous set of experiments is

taken into account.

This paper is also the first attempt at complete

sentence level parsing for Hindi. Due to the availa-

bility of dependency treebank for Hindi (Begum et

al., 2008), there have been some previous attempts

at Hindi data-driven dependency parsing (Bharati

et al., 2008; Mannem et al., 2009; Husain et al.,

2009). Recently in ICON-09 NLP Tools Contest

(Husain, 2009; and the references therein), rule-

based, constraint based, statistical and hybrid ap-

proaches were explored for dependency parsing.

Previously, constraint based approaches to Indian

language (IL) dependency parsing have also been

explored (Bharati et al., 1993, 1995, 2009b,

2009c). All these attempts, however, were finding

inter-chunk dependency relations, given gold-

standard POS and chunk tags. Unlike these pre-

vious parsers, the dependencies in this work are

between lexical items, i.e. the dependency tree is

complete.

The paper is arranged as follows, in section 2

and 3, we discuss the parsing experiments. In sec-

tion 4, we describe the data and parser settings.

Section 5 gives the results and discusses some re-

lated issues. General discussion and possible future

work is mentioned in section 6. We conclude the

paper in section 7.

2 Getting the best linguistic features

As mentioned earlier, a shallow parser consists of

three main components, (a) POS tagger, (b) mor-

phological analyzer and (c) chunker. In this section

we systematically explore what is the effect of

each of these components. We’ll see in section 2.3

that the best features of a-c can be used to compute

local morphosyntactic features that, as the results

show, are extremely useful.

2.1 Using POS as feature (PaF):

In this experiment we only use the POS tag infor-

mation of individual words during dependency

parsing. First a raw sentence is POS-tagged. This

POS-tagged sentence is then given to a parser to

predict the dependency relations. Figure 1, shows

the steps involved in this approach for (1).

(1) raama ne eka seba khaayaa

 ‘Ram’ ERG ‘one’ ‘apple’ ‘ate’

 ‘Ram ate an apple’

Figure 1: Dependency parsing using only POS informa-

tion from a shallow parser.

23

In (1) above, ‘NN’, ‘PSP’, ‘QC’, ‘NN’ and ‘VM’

are the POS tags2 for raama, ne, eka, seba and

khaayaa respectively. This information is provided

as a feature to the parser. The result of this experi-

ment forms our baseline accuracy.

2.2 Using Morph as feature (MaF):

In addition to POS information, in this experiment

we also use the morph information for each token.

This morphological information is provided as a

feature to the parser. Morph has the following in-

formation

· Root: Root form of the word

· Category: Course grained POS

· Gender: Masculine/Feminine/Neuter

· Number: Singular/Plural

· Person: First/Second/Third person

· Case: Oblique/Direct case

· Suffix: Suffix of the word

Take raama in (1), its morph information com-

prises of root = ‘raama’, category = ‘noun’ gender

= ‘masculine’, number = ‘singular’, person =

‘third’, case = ‘direct’, suffix = ‘0’. Similarly,

khaayaa (‘ate’) has the following morph informa-

tion. root = ‘khaa’, category = ‘verb’ gender =

‘masculine’, numer = ‘singular’, person = ‘third’,

case = ‘direct’, suffix = ‘yaa’.

Through a series of experiments, the most cru-

cial morph features were selected. Root, case and

suffix turn out to be the most important features.

Results are discussed in section 5.

2.3 Using local morphosyntax as feature

(LMSaF)

Along with POS and the most useful morph fea-

tures (root, case and suffix), in this experiment we

also use local morphosyntactic features that reflect

various chunk level information. These features

are:

· Type of the chunk

· Head/non-head of the chunk

2 NN: Common noun, PSP: Post position, QC: Cardinal, VM:

Verb. A list of complete POS tags can be found here:

http://ltrc.iiit.ac.in/MachineTrans/research/tb/POS-Tag-

List.pdf. The POS/chunk tag scheme followed in the Treebank

is described in Bharati et al. (2006).

· Chunk boundary information

· Distance to the end of the chunk

· Suffix concatenation

In example 1 (see section 2.1), there are two

noun chunks and one verb chunk. raama and seba

are the heads of the noun chunks. khaayaa is the

head of the verb chunk. We follow standard IOB
3

notation for chunk boundary. raama, eka and

khaayaa are at the beginning (B) of their respective

chunks. ne and seba are inside (I) their respective

chunks. raama is at distance 1 from the end of the

chunk and ne is at a distance 0 from the end of the

chunk.

Once we have a chunk and morph feature like

suffix, we can perform suffix concatenation auto-

matically. A group of lexical items with some POS

tags and suffix information within a chunk can be

utilized to automatically compute this feature. This

feature can, for example, represent the postposi-

tion/case-marking in the case of noun chunk, or it

may represent the tense, aspect and modality

(TAM) information in the case of verb chunks.

Note that, this feature becomes part of the lexical

item that is the head of a chunk. Take (2) as a case

in point:

(2) [NP raama/NNP ne/PSP] [NP seba/NN]

 ‘Ram’ ERG ‘apple’

 [VGF khaa/VM liyaa/VAUX]

 ‘eat’ ‘PRFT’

 ‘Ram ate an apple’

The suffix concatenation feature for khaa, which

is the head of the VGF chunk, will be ‘0+yaa’ and

is formed by concatenating the suffix of the main

verb with that of its auxiliary. Similarly, the suffix

concatenation feature for raama, which is head of

the NP chunk, will be ‘0+ne’. This feature turns

out to be very important. This is because in Hindi

(and many other Indian languages) there is a direct

correlation between the TAM markers and the case

that appears on some nominals (Bharati et al.,

1995). In (2), for example, khaa liyaa together

gives the past perfective aspect for the verb khaa-
naa ‘to eat’. Since, Hindi is split ergative, the sub-

ject of the transitive verb takes an ergative case

marker when the verb is past perfective. Similar

3
 Inside, Outside, Beginning of the chunk.

24

correlation between the case markers and TAM

exist in many other cases.

3 An alternative approach to use best fea-

tures: A 2-stage setup (2stage)

So far we have been using various information

such as POS, chunk, etc. as features. Rather than

using them as features and doing parsing at one go,

we can alternatively follow a 2-stage setup. In par-

ticular, we divide the task of parsing into:

· Intra-chunk dependency parsing

· Inter-chunk dependency parsing

We still use POS, best morphological features

(case, suffix, root) information as regular features

during parsing. But unlike LMSaF mentioned in

section 2.3, where we gave local morphosyntactic

information as a feature, we divided the task of

parsing into sub-tasks. A similar approach was also

proposed by Bharati et al. (2009c). During intra-

chunk dependency parsing, we try to find the de-

pendency relations of the words within a chunk.

Following which, chunk heads of each chunk with-

in a sentence are extracted. On these chunk heads

we run an inter-chunk dependency parser. For each

chunk head, in addition to POS tag, useful morpho-

logical features, any useful intra-chunk information

in the form of lexical item, suffix concatenation,

dependency relation are also given as a feature.

Figure 2: Dependency parsing using chunk information:

2-stage approach.

Figure 2 shows the steps involved in this ap-

proach for (1). There are two noun chunks and one

verb chunk in this sentence. raama and seba are

the heads of the noun chunks. khaaya is the head

of the verb chunk. The intra-chunk parser attaches

ne to raama and eka to seba with dependency la-

bels ‘lwg__psp’ and ‘nmod__adj’
4
 respectively.

Heads of each chunk along with its POS, morpho-

logical features, local morphosyntactic features and

intra-chunk features are extracted and given to in-

ter-chunk parser. Using this information the inter-

chunk dependency parser marks the dependency

relations between chunk heads. khaaya becomes

the root of the dependency tree. raama and seba

are attached to khaaya with dependency labels ‘k1’

and ‘k2’
5
respectively.

4 Experimental Setup

In this section we describe the data and the parser

settings used for our experiments.

4.1 Data

For our experiments we took 1228 dependency

annotated sentences (27k tokens), which have

complete sentence level annotation from the new

multi-layered and multi-representational Hindi

Treebank (Bhatt et al., 2009). This treebank is still

under development. Average length of these sen-

tences is 22 tokens/sentence and 10

chunks/sentence. We divided the data into two

sets, 1000 sentences for training and 228 sentences

for testing.

4.2 Parsers and settings

All experiments were performed using two data-

driven parsers, MaltParser
6
 (Nivre et al., 2007b),

and MSTParser
7
 (McDonald et al., 2006).

4 nmod__adj is an intra-chunk label for quantifier-noun mod-

ification. lwg__psp is the label for post-position marker. De-

tails of the labels can be seen in the intra-chunk guidelines

http://ltrc.iiit.ac.in/MachineTrans/research/tb/IntraChunk-

Dependency-Annotation-Guidelines.pdf
5 k1 (karta) and k2 (karma) are syntactico-semantic labels

which have some properties of both grammatical roles and

thematic roles. k1 behaves similar to subject and agent. k2

behaves similar to object and patient (Bharati et al., 1995;

Vaidya et al., 2009). For complete tagset, see (Bharati et al.,

2009).
6 Malt Version 1.3.1
7 MST Version 0.4b

25

 Malt MST+MaxEnt

Cross-validation Test-set Cross-validation Test-set

UAS LAS LS UAS LAS LS UAS LAS LS UAS LAS LS

PaF 89.4 78.2 80.5 90.4 80.1 82.4 86.3 75.1 77.9 87.9 77.0 79.3

MaF 89.6 80.5 83.1 90.4 81.7 84.1 89.1 79.2 82.5 90.0 80.9 83.9

LMSaF 91.5 82.7 84.7 91.8 84.0 86.2 90.8 79.8 82.0 92.0 81.8 83.8

2stage 91.8 83.3 85.3 92.4 84.4 86.3 92.1 82.2 84.3 92.7 84.0 86.2

Table 1: Results of all the four approaches using gold-standard shallow parser information.

Malt is a classifier based shift/reduce parser. It

provides option for six parsing algorithms, namely,

arc-eager, arc-standard, convington projective, co-

vington non-projective, stack projective, stack ea-

ger and stack lazy. The parser also provides option

for libsvm and liblinear learning model. It uses

graph transformation to handle non-projective trees

(Nivre and Nilsson, 2005). MST uses Chu-Liu-

Edmonds (Chu and Liu, 1965; Edmonds, 1967)

Maximum Spanning Tree algorithm for non-

projective parsing and Eisner's algorithm for pro-

jective parsing (Eisner, 1996). It uses online large

margin learning as the learning algorithm (McDo-

nald et al., 2005). In this paper, we use MST only

for unlabeled dependency tree and use a separate

maximum entropy model
8
 (MaxEnt) for labeling.

Various combination of features such as node, its

parent, siblings and children were tried out before

arriving at the best results.

As the training data size is small we did 5-fold

cross validation on the training data for tuning the

parameters of the parsers and for feature selection.

Best settings obtained using cross-validated data

are applied on test set. We present the results both

on cross validated data and on test data.

For the Malt Parser, arc-eager algorithm gave

better performance over others in all the approach-

es. Libsvm consistently gave better performance

over liblinear in all the experiments. For SVM set-

tings, we tried out different combinations of best

SVM settings of the same parser on different lan-

guages in CoNLL-2007 shared task (Hall et al.,

2007) and applied the best settings. For feature

model, apart from trying best feature settings of the

same parser on different languages in CoNLL-

2007 shared task (Hall et al., 2007), we also tried

out different combinations of linguistically intui-

tive features and applied the best feature model.

The best feature model is same as the feature mod-

el used in Ambati et al. (2009a), which is the best

8 http://maxent.sourceforge.net/

performing system in the ICON-2009 NLP Tools

Contest (Husain, 2009).

For the MSTParser, non-projective algorithm,

order=2 and training-k=5 gave best results in all

the approaches. For the MaxEnt, apart from some

general useful features, we experimented consider-

ing different combinations of features of node, par-

ent, siblings, and children of the node.

5 Results and Analysis

All the experiments discussed in section 2 and 3

were performed considering both gold-standard

shallow parser information and automatic shallow

parser
9
 information. Automatic shallow parser uses

a rule based system for morph analysis, a

CRF+TBL based POS-tagger and chunker. The

tagger and chunker are 93% and 87% accurate re-

spectively. These accuracies are obtained after us-

ing the approach of PVS and Gali, (2007) on larger

training data. In addition, while using automatic

shallow parser information to get the results, we

also explored using both gold-standard and auto-

matic information during training. As expected,

using automatic shallow parser information for

training gave better performance than using gold

while training.

Table 1 and Table 2 shows the results of the four

experiments using gold-standard and automatic

shallow parser information respectively. We eva-

luated our experiments based on unlabeled attach-

ment score (UAS), labeled attachment score (LAS)

and labeled score (LS) (Nivre et al., 2007a). Best

LAS on test data is 84.4% (with 2stage) and 75.4%

(with LMSaF) using gold and automatic shallow

parser information respectively. These results are

obtained using MaltParser. In the following sub-

section we discuss the results based on different

criterion.

9 http://ltrc.iiit.ac.in/analyzer/hindi/

26

 Malt MST+MaxEnt

Cross-validation Test-set Cross-validation Test-set

UAS LAS LS UAS LAS LS UAS LAS LS UAS LAS LS

PaF 82.2 69.3 73.4 84.6 72.9 76.5 79.4 66.5 70.7 81.6 69.4 73.1

MaF 82.5 71.6 76.1 84.0 73.6 77.6 82.3 70.4 75.4 83.4 72.7 77.3

LMSaF 83.2 73.0 77.0 85.5 75.4 78.9 82.6 71.3 76.1 85.0 73.4 77.3

2stage 79.0 69.5 75.6 79.6 71.1 76.8 78.8 66.6 72.6 80.1 69.7 75.4

Table 2: Results of all the four experiments using automatic shallow parser information.

POS tags provide very basic linguistic informa-

tion in the form of broad grained categories. The

best LAS for PaF while using gold and automatic

tagger were 80.1% and 72.9% respectively. The

morph information in the form of case, suffix and

root information proved to be the most important

features. But surprisingly, gender, number and per-

son features didn’t help. Agreement patterns in

Hindi are not straightforward. For example, the

verb agrees with k2 if the k1 has a post-position; it

may also sometimes take the default features. In a

passive sentence, the verb agrees only with k2. The

agreement problem worsens when there is coordi-

nation or when there is a complex verb. It is un-

derstandable then that the parser is unable to learn

the selective agreement pattern which needs to be

followed.

LMSaF on the other hand encode richer infor-

mation and capture some local linguistic patterns.

The first four features in LMSaF (chunk type,

chunk boundary, head/non-head of chunk and dis-

tance to the end of chunk) were found to be useful

consistently. The fifth feature, in the form of suffix

concatenation, gave us the biggest jump, and cap-

tures the correlation between the TAM markers of

the verbs and the case markers on the nominals.

5.1 Feature comparison: PaF, MaF vs.

LMSaF

Dependency labels can be classified as two types

based on their nature, namely, inter-chunk depen-

dency labels and intra-chunk labels. Inter-chunk

dependency labels are syntacto-semantic in nature.

Whereas intra-chunk dependency labels are purely

syntactic in nature.

Figure 3, shows the f-measure for top six inter-

chunk and intra-chunk dependency labels for PaF,

MaF, and LMSaF using Maltparser on test data

using automatic shallow parser information. The

first six labels (k1, k2, pof, r6, ccof, and k7p) are

the top six inter-chunk labels and the next six la-

bels (lwg__psp, lwg__aux, lwg__cont, rsym,

nmod__adj, and pof__cn) are the top six intra-

chunk labels. First six labels (inter-chunk) corres-

pond to 28.41% and next six labels (intra-chunk)

correspond to 48.81% of the total labels in the test

data. The figure shows that with POS information

alone, f-measure for top four intra-chunk labels

reached more than 90% accuracy. The accuracy

increases marginally with the addition of morph

and local morphosytactic features. The results cor-

roborates with our intuition that intra-chunk de-

pendencies are mostly syntactic. For example,

consider an intra-chunk label ‘lwg__psp’. This is

the label for postposition marker. A post-position

marker succeeding a noun is attached to that noun

with the label ‘lwg__psp’. POS tag for post-

position marker is PSP. So, if a NN (common

noun) or a NNP (proper noun) is followed by a

PSP (post-position marker), then the PSP will be

attached to the preceding NN/NNP with the de-

pendency label ‘lwg_psp’. As a result, providing

POS information itself gave an f-measure of 98.3%

for ‘lwg_psp’. With morph and local morphosy-

tactic features, this got increased to 98.4%. How-

ever, f-measure for some labels like ‘nmod__adj’

is around 80% only. ‘nmod__adj’ is the label for

adjective-noun, quantifier-noun modifications.

Low accuracy for these labels is mainly due to two

reasons. One is POS tag errors. And the other is

attachment errors due to genuine ambiguities such

as compounding.

For inter-chunk labels (first six columns in the

figure 3), there is considerable improvement in the

f-measure using morph and local morphosytactic

features. As mentioned, local morphosyntactic fea-

tures provide local linguistic information. For ex-

ample, consider the case of verbs. At POS level,

there are only two tags ‘VM’ and ‘VAUX’ for

main verbs and auxiliary verbs respectively (Bha-

rati et al., 2006). Information about finite/non-

finiteness is not present in the POS tag. But, at

chunk level there are four different chunk tags for

27

30

40

50

60

70

80

90

100

k1 k2 pof r6 ccof k7p lwg__psp lwg__vaux lwg__cont rsym nmod__adj pof__cn

PaF

MaF

LMaF

Figure 3: F-measure of top 6, inter-chunk and intra-chunk labels for PaF, MaF and LMSaF approaches using Malt-

parser on test data using automatic shallow parser information.

verbs, namely VGF, VGNF, VGINF and VGNN.

They are respectively, finite, non-finite, infinitival

and gerundial chunk tags. The difference in the

verbal chunk tag is a good cue for helping the

parser in identifying different syntactic behavior of

these verbs. Moreover, a finite verb can become

the root of the sentence, whereas a non-finite or

infinitival verb can’t. Thus, providing chunk in-

formation also helped in improving the correct

identification of the root of the sentence.

Similar to Prague Treebank (Hajicova, 1998),

coordinating conjuncts are heads in the treebank

that we use. The relation between a conjunct and

its children is shown using ‘ccof’ label. A coordi-

nating conjuct takes children of similar type only.

For example, a coordinating conjuct can have two

finite verbs or two non-finite verbs as its children,

but not a finite verb and a non-finite verb. Such

instances are also handled more effectively if

chunk information is incorporated. The largest in-

crease in performance, however, was due to the

‘suffix concatenation’ feature. Significant im-

provement in the core inter-chunk dependency la-

bels (such as k1, k2, k4, etc.) due to this feature is

the main reason for the overall improvement in the

parsing accuracy. As mentioned earlier, this is be-

cause this feature captures the correlation between

the TAM markers of the verbs and the case mark-

ers on the nominals.

5.2 Approach comparison: LMSaF vs. 2stage

Both LMSaF and 2stage use chunk information. In

LMSaF, chunk information is given as a feature

whereas in 2stage, sentence parsing is divided into

intra-chunk and inter-chunk parsing. Both the ap-

proaches have their pros and cons. In LMSaF as

everything is done in a single stage there is much

richer context to learn from. In 2stage, we can pro-

vide features specific to each stage which can’t be

done in a single stage approach (McDonald et al.,

2006). But in 2stage, as we are dividing the task,

accuracy of the division and the error propagation

might pose a problem. This is reflected in the re-

sults where the 2-stage performs better than the

single stage while using gold standard information,

but lags behind considerably when the features are

automatically computed.

During intra-chunk parsing in the 2stage setup,

we tried out using both a rule-based approach and

a statistical approach (using MaltParser). The rule

based system performed slightly better (0.1%

LAS) than statistical when gold chunks are consi-

dered. But, with automatic chunks, the statistical

approach outperformed rule-based system with a

difference of 7% in LAS. This is not surprising

because, the rules used are very robust and mostly

based on POS and chunk information. Due to er-

rors induced by the automatic POS tagger and

chunker, the rule-based system couldn’t perform

well. Consider a small example chunk given be-

low.

 ((NP

 meraa ‘my’ PRP

 bhaaii ‘brother’ NN

))

As per the Hindi chunking guidelines (Bharati et

al., 2006), meraa and bhaaii should be in two sepa-

rate chunks. And as per Hindi dependency annota-

tion guidelines (Bharati et al., 2009), meraa is

attached to bhaaii with a dependency label ‘r6’
10

.

When the chunker wrongly chunks them in a single

10‘r6’ is the dependency label for genitive relation.

28

chunk, intra-chunk parser will assign the depen-

dency relation for meraa. Rule based system can

never assign ‘r6’ relation to meraa as it is an inter-

chunk label and the rules used cannot handle such

cases. But in a statistical system, if we train the

parser using automatic chunks instead of gold

chunks, the system can potentially assign ‘r6’ la-

bel.

5.3 Parser comparison: MST vs. Malt

In all the experiments, results of MaltParser are

consistently better than MST+MaxEnt. We know

that Maltparser is good at short distance labeling

and MST is good at long distance labeling (McDo-

nald and Nivre, 2007). The root of the sentence is

better identified by MSTParser than MaltParser.

Our results also confirm this. MST+MaxEnt and

Malt could identify the root of the sentence with an

f-measure of 89.7% and 72.3% respectively. Pres-

ence of more short distance labels helped Malt to

outperform MST. Figure 5, shows the f-measure

relative to dependency length for both the parsers

on test data using automatic shallow parser infor-

mation for LMSaF.

30

40

50

60

70

80

90

100

0 5 10 15+

Dependency Length

f-
m

e
a

su
re

Malt
MST+MaxEnt

Figure 5: Dependency arc f-measure relative to depen-

dency length.

6 Discussion and Future Work

We systematically explored the effect of various

linguistic features in Hindi dependency parsing.

Results show that POS, case, suffix, root, along

with local morphosyntactic features help depen-

dency parsing. We then described 2 methods to

incorporate such features during the parsing

process. These methods can be thought as different

paradigms of modularity. For practical reasons (i.e.

given the POS tagger/chunker accuracies), it is

wiser to use this information as features rather than

dividing the task into two stages.

As mentioned earlier, this is the first attempt at

complete sentence level parsing for Hindi. So, we

cannot compare our results with previous attempts

at Hindi dependency parsing, due to, (a) The data

used here is different and (b) we produce complete

sentence parses rather than chunk level parses.

As mentioned in section 5.1, accuracies of intra-

chunk dependencies are very high compared to

inter-chunk dependencies. Inter-chunk dependen-

cies are syntacto-semantic in nature. The parser

depends on surface syntactic cues to identify such

relations. But syntactic information alone is always

not sufficient, either due to unavailability or due to

ambiguity. In such cases, providing some semantic

information can help in improving the inter-chunk

dependency accuracy. There have been attempts at

using minimal semantic information in dependency

parsing for Hindi (Bharati et al., 2008). Recently,

Ambati et al. (2009b) used six semantic features

namely, human, non-human, in-animate, time,

place, and abstract for Hindi dependency parsing.

Using gold-standard semantic features, they

showed considerable improvement in the core in-

ter-chunk dependency accuracy. Some attempts at

using clause information in dependency parsing for

Hindi (Gadde et al., 2010) have also been made.

These attempts were at inter-chunk dependency

parsing using gold-standard POS tags and chunks.

We plan to see their effect in complete sentence

parsing using automatic shallow parser information

also.

7 Conclusion

In this paper we explored two strategies to incorpo-

rate local morphosyntactic features in Hindi de-

pendency parsing. These features were obtained

using a shallow parser. We first explored which

information provided by the shallow parser is use-

ful and showed that local morphosyntactic fea-

tures in the form of chunk type, head/non-head

info, chunk boundary info, distance to the end of

the chunk and suffix concatenation are very crucial

for Hindi dependency parsing. We then investi-

gated the best way to incorporate this information

during dependency parsing. Further, we compared

the results of various experiments based on various

criterions and did some error analysis. This paper

was also the first attempt at complete sentence lev-

el parsing for Hindi.

29

References

B. R. Ambati, P. Gadde, and K. Jindal. 2009a. Experi-

ments in Indian Language Dependency Parsing. In

Proc of the ICON09 NLP Tools Contest: Indian Lan-

guage Dependency Parsing, pp 32-37.

B. R. Ambati, P. Gade, C. GSK and S. Husain. 2009b.

Effect of Minimal Semantics on Dependency Pars-

ing. In Proc of RANLP09 student paper workshop.

G. Attardi and F. Dell’Orletta. 2008. Chunking and De-

pendency Parsing. In Proc of LREC Workshop on

Partial Parsing: Between Chunking and Deep Pars-
ing. Marrakech, Morocco.

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai, and

R. Sangal. 2008. Dependency annotation scheme for

Indian languages. In Proc of IJCNLP-2008.

A. Bharati, V. Chaitanya and R. Sangal. 1995. Natural
Language Processing: A Paninian Perspective, Pren-

tice-Hall of India, New Delhi.

A. Bharati, S. Husain, B. Ambati, S. Jain, D. Sharma,

and R. Sangal. 2008. Two semantic features make all

the difference in parsing accuracy. In Proc of ICON.

A. Bharati, R. Sangal, D. M. Sharma and L. Bai. 2006.

AnnCorra: Annotating Corpora Guidelines for POS

and Chunk Annotation for Indian Languages. Tech-
nical Report (TR-LTRC-31), LTRC, IIIT-Hyderabad.

A. Bharati, D. M. Sharma, S. Husain, L. Bai, R. Begam

and R. Sangal. 2009a. AnnCorra: TreeBanks for In-

dian Languages, Guidelines for Annotating Hindi

TreeBank.

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-

guidelines/DS-guidelines-ver2-28-05-09.pdf

A. Bharati, S. Husain, D. M. Sharma and R. Sangal.

2009b. Two stage constraint based hybrid approach

to free word order language dependency parsing. In

Proc. of IWPT.

A. Bharati, S. Husain, M. Vijay, K. Deepak, D. M.

Sharma and R. Sangal. 2009c. Constraint Based Hy-

brid Approach to Parsing Indian Languages. In Proc

of PACLIC 23. Hong Kong. 2009.

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D.

M. Sharma and F. Xia. 2009. Multi-Representational

and Multi-Layered Treebank for Hindi/Urdu. In

Proc. of the Third LAW at 47th ACL and 4th IJCNLP.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-

cence of a directed graph. Science Sinica, 14:1396–

1400.

J. Edmonds. 1967. Optimum branchings. Journal of

Research of the National Bureau of Standards,

71B:233–240.

J. Eisner. 1996. Three new probabilistic models for de-

pendency parsing: An exploration. In Proc of

COLING-96, pp. 340–345.
G. Eryigit, J. Nivre, and K. Oflazer. 2008. Dependency

Parsing of Turkish. Computational Linguistics 34(3),

357-389.

P. Gadde, K. Jindal, S. Husain, D. M. Sharma, and R.

Sangal. 2010. Improving Data Driven Dependency

Parsing using Clausal Information. In Proc of
NAACL-HLT 2010, Los Angeles, CA.

E. Hajicova. 1998. Prague Dependency Treebank: From

Analytic to Tectogrammatical Annotation. In Proc of

TSD’98.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M.

Nilsson and M. Saers. 2007. Single Malt or Blended?

A Study in Multilingual Parser Optimization. In Proc

of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, 933—939.

S. Husain. 2009. Dependency Parsers for Indian Lan-

guages. In Proc of ICON09 NLP Tools Contest: In-

dian Language Dependency Parsing. Hyderabad,

India.

S. Husain, P. Gadde, B. Ambati, D. M. Sharma and R.

Sangal. 2009. A modular cascaded approach to com-

plete parsing. In Proc. of the COLIPS IALP.
P. Mannem, A. Abhilash and A. Bharati. 2009. LTAG-

spinal Treebank and Parser for Hindi. In Proc of In-

ternational Conference on NLP, Hyderabad. 2009.

R. McDonald, K. Crammer, and F. Pereira. 2005. On-

line large-margin training of dependency parsers. In

Proc of ACL. pp. 91–98.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-

lingual dependency analysis with a two-stage discri-

minative parser. In Proc of the Tenth (CoNLL-X), pp.

216–220.

R. McDonald and J. Nivre. 2007. Characterizing the

errors of data-driven dependency parsing models. In
Proc. of EMNLP-CoNLL.

J. Nivre, J. Hall, S. Kubler, R. McDonald, J. Nilsson, S.

Riedel and D. Yuret. 2007a. The CoNLL 2007

Shared Task on Dependency Parsing. In Proc of
EMNLP/CoNLL-2007.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E Marsi. 2007b. MaltParser:

A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,

13(2), 95-135.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-

dency parsing. In Proc. of ACL-2005, pp. 99–106.

Avinesh PVS and K. Gali. 2007. Part-Of-Speech Tag-

ging and Chunking Using Conditional Random

Fields and Transformation Based Learning. In Proc

of the SPSAL workshop during IJCAI '07.
D. Seddah, M. Candito and B. Crabbé. 2009. Cross

parser evaluation: a French Treebanks study. In Proc.

of IWPT, 150-161.

R. Tsarfaty and K. Sima'an. 2008. Relational-

Realizational Parsing. In Proc. of CoLing, 889-896.

A. Vaidya, S. Husain, P. Mannem, and D. M. Sharma.

2009. A karaka-based dependency annotation scheme

for English. In Proc. of CICLing, 41-52.

30

