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Abstract 

In this paper we explore two strategies to in-

corporate local morphosyntactic features in 

Hindi dependency parsing. These features are 

obtained using a shallow parser. We first ex-

plore which information provided by the shal-

low parser is most beneficial and show that 

local morphosyntactic features in the form of 

chunk type, head/non-head information, 

chunk boundary information, distance to the 

end of the chunk and suffix concatenation are 

very crucial in Hindi dependency parsing. We 

then investigate the best way to incorporate 

this information during dependency parsing. 

Further, we compare the results of various ex-

periments based on various criterions and do 

some error analysis. All the experiments were 

done with two data-driven parsers, MaltParser 

and MSTParser, on a part of multi-layered and 

multi-representational Hindi Treebank which 

is under development. This paper is also the 

first attempt at complete sentence level pars-

ing for Hindi. 

1 Introduction 

The dependency parsing community has since a 

few years shown considerable interest in parsing 

morphologically rich languages with flexible word 

order. This is partly due to the increasing availabil-

ity of dependency treebanks for such languages, 

but it is also motivated by the observation that the 

performance obtained for these languages have not 

been very high (Nivre et al., 2007a). Attempts at 

handling various non-configurational aspects in 

these languages have pointed towards shortcom-

ings in traditional parsing methodologies (Tsarfaty 

and Sima'an, 2008; Eryigit et al., 2008; Seddah et 

al., 2009; Husain et al., 2009; Gadde et al., 2010). 

Among other things, it has been pointed out that 

the use of language specific features may play a 

crucial role in improving the overall parsing per-

formance. Different languages tend to encode syn-

tactically relevant information in different ways, 

and it has been hypothesized that the integration of 

morphological and syntactic information could be 

a key to better accuracy. However, it has also been 

noted that incorporating these language specific 

features in parsing is not always straightforward 

and many intuitive features do not always work in 

expected ways. 

In this paper we explore various strategies to in-

corporate local morphosyntactic features in Hindi 

dependency parsing. These features are obtained 

using a shallow parser. We conducted experiments 

with two data-driven parsers, MaltParser (Nivre et 

al., 2007b) and MSTParser (McDonald et al., 

2006). We first explore which information pro-

vided by the shallow parser is most beneficial and 

show that local morphosyntactic features in the 

form of chunk type, head/non-head information, 

chunk boundary information, distance to the end of 

the chunk and suffix concatenation are very crucial 

in Hindi dependency parsing. We then investigate 

the best way to incorporate this information during 

dependency parsing. All the experiments were 

done on a part of multi-layered and multi-

representational Hindi Treebank (Bhatt et al., 

2009)
1
.  

The shallow parser performs three tasks, (a) it 

gives the POS tags for each lexical item, (b) pro-

vides morphological features for each lexical item, 

and (c) performs chunking. A chunk is a minimal 

(non-recursive) phrase consisting of correlated, 

inseparable words/entities, such that the intra-

chunk dependencies are not distorted (Bharati et 

                                                           
1 This Treebank is still under development. There are currently 

27k tokens with complete sentence level annotation.  
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al., 2006). Together, a group of lexical items with 

some POS tag and morphological features within a 

chunk can be utilized to automatically compute 

local morphosyntactic information. For example, 

such information can represent the postposi-

tion/case-marking in the case of noun chunks, or it 

may represent the tense, aspect and modality 

(TAM) information in the case of verb chunks. In 

the experiments conducted for this paper such local 

information is automatically computed and incor-

porated as a feature to the head of a chunk. In gen-

eral, local morphosyntactic features correspond to 

all the parsing relevant local linguistic features that 

can be utilized using the notion of chunk. Previous-

ly, there have been some attempts at using chunk 

information in dependency parsing. Attardi and 

Dell’Orletta (2008) used chunking information in 

parsing English. They got an increase of 0.35% in 

labeled attachment accuracy and 0.47% in unla-

beled attachment accuracy over the state-of-the-art 

dependency parser. 

Among the three components (a-c, above), the 

parsing accuracy obtained using the POS feature is 

taken as baseline. We follow this by experiments 

where we explore how each of morph and chunk 

features help in improving dependency parsing 

accuracy. In particular, we find that local morpho-

syntactic features are the most crucial. These expe-

riments are discussed in section 2. In section 3 we 

will then see an alternative way to incorporate the 

best features obtained in section 2. In all the pars-

ing experiments discussed in section 2 and 3, at 

each step we explore all possible features and ex-

tract the best set of features. Best features of one 

experiment are used when we go to the next set of 

experiments. For example, when we explore the 

effect of chunk information, all the relevant morph 

information from previous set of experiments is 

taken into account.  

This paper is also the first attempt at complete 

sentence level parsing for Hindi. Due to the availa-

bility of dependency treebank for Hindi (Begum et 

al., 2008), there have been some previous attempts 

at Hindi data-driven dependency parsing (Bharati 

et al., 2008; Mannem et al., 2009; Husain et al., 

2009). Recently in ICON-09 NLP Tools Contest 

(Husain, 2009; and the references therein), rule-

based, constraint based, statistical and hybrid ap-

proaches were explored for dependency parsing. 

Previously, constraint based approaches to Indian 

language (IL) dependency parsing have also been 

explored (Bharati et al., 1993, 1995, 2009b, 

2009c). All these attempts, however, were finding 

inter-chunk dependency relations, given gold-

standard POS and chunk tags. Unlike these pre-

vious parsers, the dependencies in this work are 

between lexical items, i.e. the dependency tree is 

complete.  

The paper is arranged as follows, in section 2 

and 3, we discuss the parsing experiments. In sec-

tion 4, we describe the data and parser settings. 

Section 5 gives the results and discusses some re-

lated issues. General discussion and possible future 

work is mentioned in section 6. We conclude the 

paper in section 7. 

2 Getting the best linguistic features  

As mentioned earlier, a shallow parser consists of 

three main components, (a) POS tagger, (b) mor-

phological analyzer and (c) chunker. In this section 

we systematically explore what is the effect of 

each of these components. We’ll see in section 2.3 

that the best features of a-c can be used to compute 

local morphosyntactic features that, as the results 

show, are extremely useful. 

2.1 Using POS as feature (PaF): 

In this experiment we only use the POS tag infor-

mation of individual words during dependency 

parsing. First a raw sentence is POS-tagged. This 

POS-tagged sentence is then given to a parser to 

predict the dependency relations. Figure 1, shows 

the steps involved in this approach for (1). 
 

(1)  raama   ne         eka     seba        khaayaa  

  ‘Ram’   ERG    ‘one’  ‘apple’      ‘ate’ 

       ‘Ram ate an apple’ 

 
Figure 1: Dependency parsing using only POS informa-

tion from a shallow parser. 
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In (1) above, ‘NN’, ‘PSP’, ‘QC’, ‘NN’ and ‘VM’ 

are the POS tags2 for raama, ne, eka, seba and 

khaayaa respectively. This information is provided 

as a feature to the parser. The result of this experi-

ment forms our baseline accuracy. 

2.2 Using Morph as feature (MaF): 

In addition to POS information, in this experiment 

we also use the morph information for each token. 

This morphological information is provided as a 

feature to the parser. Morph has the following in-

formation 
 

· Root: Root form of the word 

· Category: Course grained POS 

· Gender: Masculine/Feminine/Neuter 

· Number: Singular/Plural 

· Person: First/Second/Third person 

· Case: Oblique/Direct case 

· Suffix: Suffix of the word 
 

Take raama in (1), its morph information com-

prises of root = ‘raama’, category = ‘noun’ gender 

= ‘masculine’, number = ‘singular’, person = 

‘third’, case = ‘direct’, suffix = ‘0’. Similarly, 

khaayaa (‘ate’) has the following morph informa-

tion. root = ‘khaa’, category = ‘verb’ gender = 

‘masculine’, numer = ‘singular’, person = ‘third’, 

case = ‘direct’, suffix = ‘yaa’. 

Through a series of experiments, the most cru-

cial morph features were selected. Root, case and 

suffix turn out to be the most important features. 

Results are discussed in section 5. 

2.3 Using local morphosyntax as feature 

(LMSaF) 

Along with POS and the most useful morph fea-

tures (root, case and suffix), in this experiment we 

also use local morphosyntactic features that reflect 

various chunk level information. These features 

are: 

· Type of the chunk 

· Head/non-head of the chunk 

                                                           
2 NN: Common noun, PSP: Post position, QC: Cardinal, VM: 

Verb. A list of complete POS tags can be found here: 

http://ltrc.iiit.ac.in/MachineTrans/research/tb/POS-Tag-

List.pdf. The POS/chunk tag scheme followed in the Treebank 

is described in Bharati et al. (2006). 

· Chunk boundary information 

· Distance to the end of the chunk 

· Suffix concatenation 
 

In example 1 (see section 2.1), there are two 

noun chunks and one verb chunk. raama and seba 

are the heads of the noun chunks. khaayaa is the 

head of the verb chunk. We follow standard IOB
3
 

notation for chunk boundary. raama,  eka and 

khaayaa are at the beginning (B) of their respective 

chunks. ne and seba are inside (I) their respective 

chunks. raama is at distance 1 from the end of the 

chunk and ne is at a distance 0 from the end of the 

chunk. 

Once we have a chunk and morph feature like 

suffix, we can perform suffix concatenation auto-

matically. A group of lexical items with some POS 

tags and suffix information within a chunk can be 

utilized to automatically compute this feature. This 

feature can, for example, represent the postposi-

tion/case-marking in the case of noun chunk, or it 

may represent the tense, aspect and modality 

(TAM) information in the case of verb chunks. 

Note that, this feature becomes part of the lexical 

item that is the head of a chunk. Take (2) as a case 

in point: 
 

(2) [NP raama/NNP   ne/PSP]     [NP seba/NN]        

              ‘Ram’           ERG                ‘apple’   

      [VGF khaa/VM     liyaa/VAUX] 

                 ‘eat’           ‘PRFT’ 

      ‘Ram ate an apple’ 
 

The suffix concatenation feature for khaa, which 

is the head of the VGF chunk, will be ‘0+yaa’ and 

is formed by concatenating the suffix of the main 

verb with that of its auxiliary. Similarly, the suffix 

concatenation feature for raama, which is head of 

the NP chunk, will be ‘0+ne’. This feature turns 

out to be very important. This is because in Hindi 

(and many other Indian languages) there is a direct 

correlation between the TAM markers and the case 

that appears on some nominals (Bharati et al., 

1995). In (2), for example, khaa liyaa together 

gives the past perfective aspect for the verb khaa-
naa ‘to eat’. Since, Hindi is split ergative, the sub-

ject of the transitive verb takes an ergative case 

marker when the verb is past perfective. Similar 

                                                           
3
 Inside, Outside, Beginning of the chunk. 
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correlation between the case markers and TAM 

exist in many other cases. 

3 An alternative approach to use best fea-

tures: A 2-stage setup (2stage) 

So far we have been using various information 

such as POS, chunk, etc. as features. Rather than 

using them as features and doing parsing at one go, 

we can alternatively follow a 2-stage setup. In par-

ticular, we divide the task of parsing into:  

 

· Intra-chunk dependency parsing 

· Inter-chunk dependency parsing 
 

We still use POS, best morphological features 

(case, suffix, root) information as regular features 

during parsing. But unlike LMSaF mentioned in 

section 2.3, where we gave local morphosyntactic 

information as a feature, we divided the task of 

parsing into sub-tasks. A similar approach was also 

proposed by Bharati et al. (2009c). During intra-

chunk dependency parsing, we try to find the de-

pendency relations of the words within a chunk. 

Following which, chunk heads of each chunk with-

in a sentence are extracted. On these chunk heads 

we run an inter-chunk dependency parser. For each 

chunk head, in addition to POS tag, useful morpho-

logical features, any useful intra-chunk information 

in the form of lexical item, suffix concatenation, 

dependency relation are also given as a feature. 

 

Figure 2: Dependency parsing using chunk information: 

2-stage approach. 

Figure 2 shows the steps involved in this ap-

proach for (1). There are two noun chunks and one 

verb chunk in this sentence. raama and seba are 

the heads of the noun chunks. khaaya is the head 

of the verb chunk. The intra-chunk parser attaches 

ne to raama and eka to seba with dependency la-

bels ‘lwg__psp’ and ‘nmod__adj’
4
 respectively. 

Heads of each chunk along with its POS, morpho-

logical features, local morphosyntactic features and 

intra-chunk features are extracted and given to in-

ter-chunk parser. Using this information the inter-

chunk dependency parser marks the dependency 

relations between chunk heads. khaaya becomes 

the root of the dependency tree. raama and seba 

are attached to khaaya with dependency labels ‘k1’ 

and ‘k2’
5 
respectively. 

4 Experimental Setup 

In this section we describe the data and the parser 

settings used for our experiments.  

4.1 Data 

For our experiments we took 1228 dependency 

annotated sentences (27k tokens), which have 

complete sentence level annotation from the new 

multi-layered and multi-representational Hindi 

Treebank (Bhatt et al., 2009). This treebank is still 

under development. Average length of these sen-

tences is 22 tokens/sentence and 10 

chunks/sentence. We divided the data into two 

sets, 1000 sentences for training and 228 sentences 

for testing.  

4.2 Parsers and settings 

All experiments were performed using two data-

driven parsers, MaltParser
6
 (Nivre et al., 2007b), 

and MSTParser
7
 (McDonald et al., 2006).

                                                           
4 nmod__adj is an intra-chunk label for quantifier-noun mod-

ification. lwg__psp is the label for post-position marker. De-

tails of the labels can be seen in the intra-chunk guidelines 

http://ltrc.iiit.ac.in/MachineTrans/research/tb/IntraChunk-

Dependency-Annotation-Guidelines.pdf 
5 k1 (karta) and k2 (karma) are syntactico-semantic labels 

which have some properties of both grammatical roles and 

thematic roles. k1 behaves similar to subject and agent. k2 

behaves similar to object and patient (Bharati et al., 1995; 

Vaidya et al., 2009). For complete tagset, see (Bharati et al., 

2009). 
6 Malt Version 1.3.1 
7 MST Version 0.4b 
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 Malt MST+MaxEnt 

Cross-validation Test-set Cross-validation Test-set 

UAS LAS LS UAS LAS LS UAS LAS LS UAS LAS LS 

PaF 89.4 78.2 80.5 90.4 80.1 82.4 86.3 75.1 77.9 87.9 77.0 79.3 

MaF 89.6 80.5 83.1 90.4 81.7 84.1 89.1 79.2 82.5 90.0 80.9 83.9 

LMSaF 91.5 82.7 84.7 91.8 84.0 86.2 90.8 79.8 82.0 92.0 81.8 83.8 

2stage 91.8 83.3 85.3 92.4 84.4 86.3 92.1 82.2 84.3 92.7 84.0 86.2 

Table 1: Results of all the four approaches using gold-standard shallow parser information. 

 

Malt is a classifier based shift/reduce parser. It 

provides option for six parsing algorithms, namely, 

arc-eager, arc-standard, convington projective, co-

vington non-projective, stack projective, stack ea-

ger and stack lazy. The parser also provides option 

for libsvm and liblinear learning model. It uses 

graph transformation to handle non-projective trees 

(Nivre and Nilsson, 2005). MST uses Chu-Liu-

Edmonds (Chu and Liu, 1965; Edmonds, 1967) 

Maximum Spanning Tree algorithm for non-

projective parsing and Eisner's algorithm for pro-

jective parsing (Eisner, 1996). It uses online large 

margin learning as the learning algorithm (McDo-

nald et al., 2005). In this paper, we use MST only 

for unlabeled dependency tree and use a separate 

maximum entropy model
8
 (MaxEnt) for labeling. 

Various combination of features such as node, its 

parent, siblings and children were tried out before 

arriving at the best results. 

As the training data size is small we did 5-fold 

cross validation on the training data for tuning the 

parameters of the parsers and for feature selection. 

Best settings obtained using cross-validated data 

are applied on test set. We present the results both 

on cross validated data and on test data.  

For the Malt Parser, arc-eager algorithm gave 

better performance over others in all the approach-

es. Libsvm consistently gave better performance 

over liblinear in all the experiments. For SVM set-

tings, we tried out different combinations of best 

SVM settings of the same parser on different lan-

guages in CoNLL-2007 shared task (Hall et al., 

2007) and applied the best settings. For feature 

model, apart from trying best feature settings of the 

same parser on different languages in CoNLL-

2007 shared task (Hall et al., 2007), we also tried 

out different combinations of linguistically intui-

tive features and applied the best feature model. 

The best feature model is same as the feature mod-

el used in Ambati et al. (2009a), which is the best 

                                                           
8 http://maxent.sourceforge.net/ 

performing system in the ICON-2009 NLP Tools 

Contest (Husain, 2009). 

For the MSTParser, non-projective algorithm, 

order=2 and training-k=5 gave best results in all 

the approaches. For the MaxEnt, apart from some 

general useful features, we experimented consider-

ing different combinations of features of node, par-

ent, siblings, and children of the node.  

5 Results and Analysis 

All the experiments discussed in section 2 and 3 

were performed considering both gold-standard 

shallow parser information and automatic shallow 

parser
9
 information. Automatic shallow parser uses 

a rule based system for morph analysis, a 

CRF+TBL based POS-tagger and chunker. The 

tagger and chunker are 93% and 87% accurate re-

spectively. These accuracies are obtained after us-

ing the approach of PVS and Gali, (2007) on larger 

training data. In addition, while using automatic 

shallow parser information to get the results, we 

also explored using both gold-standard and auto-

matic information during training. As expected, 

using automatic shallow parser information for 

training gave better performance than using gold 

while training.  

Table 1 and Table 2 shows the results of the four 

experiments using gold-standard and automatic 

shallow parser information respectively. We eva-

luated our experiments based on unlabeled attach-

ment score (UAS), labeled attachment score (LAS) 

and labeled score (LS) (Nivre et al., 2007a). Best 

LAS on test data is 84.4% (with 2stage) and 75.4% 

(with LMSaF) using gold and automatic shallow 

parser information respectively. These results are 

obtained using MaltParser. In the following sub-

section we discuss the results based on different 

criterion.

                                                           
9 http://ltrc.iiit.ac.in/analyzer/hindi/ 
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 Malt MST+MaxEnt 

Cross-validation Test-set Cross-validation Test-set 

UAS LAS LS UAS LAS LS UAS LAS LS UAS LAS LS 

PaF 82.2 69.3  73.4  84.6  72.9  76.5  79.4  66.5  70.7  81.6  69.4  73.1  

MaF 82.5 71.6  76.1  84.0  73.6  77.6  82.3  70.4  75.4  83.4  72.7  77.3  

LMSaF 83.2 73.0  77.0  85.5  75.4  78.9  82.6  71.3  76.1  85.0  73.4  77.3  

2stage 79.0 69.5 75.6 79.6 71.1 76.8 78.8  66.6  72.6 80.1  69.7  75.4  

Table 2: Results of all the four experiments using automatic shallow parser information. 

 

POS tags provide very basic linguistic informa-

tion in the form of broad grained categories. The 

best LAS for PaF while using gold and automatic 

tagger were 80.1% and 72.9% respectively. The 

morph information in the form of case, suffix and 

root information proved to be the most important 

features. But surprisingly, gender, number and per-

son features didn’t help. Agreement patterns in 

Hindi are not straightforward. For example, the 

verb agrees with k2 if the k1 has a post-position; it 

may also sometimes take the default features. In a 

passive sentence, the verb agrees only with k2. The 

agreement problem worsens when there is coordi-

nation or when there is a complex verb. It is un-

derstandable then that the parser is unable to learn 

the selective agreement pattern which needs to be 

followed.  

LMSaF on the other hand encode richer infor-

mation and capture some local linguistic patterns. 

The first four features in LMSaF (chunk type, 

chunk boundary, head/non-head of chunk and dis-

tance to the end of chunk) were found to be useful 

consistently. The fifth feature, in the form of suffix 

concatenation, gave us the biggest jump, and cap-

tures the correlation between the TAM markers of 

the verbs and the case markers on the nominals. 

5.1 Feature comparison: PaF, MaF vs. 

LMSaF 

Dependency labels can be classified as two types 

based on their nature, namely, inter-chunk depen-

dency labels and intra-chunk labels. Inter-chunk 

dependency labels are syntacto-semantic in nature. 

Whereas intra-chunk dependency labels are purely 

syntactic in nature.  

Figure 3, shows the f-measure for top six inter-

chunk and intra-chunk dependency labels for PaF, 

MaF, and LMSaF using Maltparser on test data 

using automatic shallow parser information. The 

first six labels (k1, k2, pof, r6, ccof, and k7p) are 

the top six inter-chunk labels and the next six la-

bels (lwg__psp, lwg__aux, lwg__cont, rsym, 

nmod__adj, and pof__cn) are the top six intra-

chunk labels. First six labels (inter-chunk) corres-

pond to 28.41% and next six labels (intra-chunk) 

correspond to 48.81% of the total labels in the test 

data. The figure shows that with POS information 

alone, f-measure for top four intra-chunk labels 

reached more than 90% accuracy. The accuracy 

increases marginally with the addition of morph 

and local morphosytactic features. The results cor-

roborates with our intuition that intra-chunk de-

pendencies are mostly syntactic.  For example, 

consider an intra-chunk label ‘lwg__psp’. This is 

the label for postposition marker. A post-position 

marker succeeding a noun is attached to that noun 

with the label ‘lwg__psp’. POS tag for post-

position marker is PSP. So, if a NN (common 

noun) or a NNP (proper noun) is followed by a 

PSP (post-position marker), then the PSP will be 

attached to the preceding NN/NNP with the de-

pendency label ‘lwg_psp’. As a result, providing 

POS information itself gave an f-measure of 98.3% 

for ‘lwg_psp’.  With morph and local morphosy-

tactic features, this got increased to 98.4%. How-

ever, f-measure for some labels like ‘nmod__adj’ 

is around 80% only. ‘nmod__adj’ is the label for 

adjective-noun, quantifier-noun modifications. 

Low accuracy for these labels is mainly due to two 

reasons. One is POS tag errors. And the other is 

attachment errors due to genuine ambiguities such 

as compounding. 

For inter-chunk labels (first six columns in the 

figure 3), there is considerable improvement in the 

f-measure using morph and local morphosytactic 

features. As mentioned, local morphosyntactic fea-

tures provide local linguistic information. For ex-

ample, consider the case of verbs. At POS level, 

there are only two tags ‘VM’ and ‘VAUX’ for 

main verbs and auxiliary verbs respectively (Bha-

rati et al., 2006). Information about finite/non-

finiteness is not present in the POS tag. But, at 

chunk level there are four different chunk tags for
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Figure 3: F-measure of top 6, inter-chunk and intra-chunk labels for PaF, MaF and LMSaF approaches using Malt-

parser on test data using automatic shallow parser information. 
 

verbs, namely VGF, VGNF, VGINF and VGNN. 

They are respectively, finite, non-finite, infinitival 

and gerundial chunk tags. The difference in the 

verbal chunk tag is a good cue for helping the 

parser in identifying different syntactic behavior of 

these verbs. Moreover, a finite verb can become 

the root of the sentence, whereas a non-finite or 

infinitival verb can’t. Thus, providing chunk in-

formation also helped in improving the correct 

identification of the root of the sentence. 

Similar to Prague Treebank (Hajicova, 1998), 

coordinating conjuncts are heads in the treebank 

that we use. The relation between a conjunct and 

its children is shown using ‘ccof’ label. A coordi-

nating conjuct takes children of similar type only. 

For example, a coordinating conjuct can have two 

finite verbs or two non-finite verbs as its children, 

but not a finite verb and a non-finite verb. Such 

instances are also handled more effectively if 

chunk information is incorporated. The largest in-

crease in performance, however, was due to the 

‘suffix concatenation’ feature. Significant im-

provement in the core inter-chunk dependency la-

bels (such as k1, k2, k4, etc.) due to this feature is 

the main reason for the overall improvement in the 

parsing accuracy. As mentioned earlier, this is be-

cause this feature captures the correlation between 

the TAM markers of the verbs and the case mark-

ers on the nominals. 

5.2 Approach comparison: LMSaF vs. 2stage 

Both LMSaF and 2stage use chunk information. In 

LMSaF, chunk information is given as a feature 

whereas in 2stage, sentence parsing is divided into 

intra-chunk and inter-chunk parsing. Both the ap-

proaches have their pros and cons. In LMSaF as 

everything is done in a single stage there is much 

richer context to learn from. In 2stage, we can pro-

vide features specific to each stage which can’t be 

done in a single stage approach (McDonald et al., 

2006). But in 2stage, as we are dividing the task, 

accuracy of the division and the error propagation 

might pose a problem. This is reflected in the re-

sults where the 2-stage performs better than the 

single stage while using gold standard information, 

but lags behind considerably when the features are 

automatically computed.  

During intra-chunk parsing in the 2stage setup, 

we tried out using both a rule-based approach and 

a statistical approach (using MaltParser). The rule 

based system performed slightly better (0.1% 

LAS) than statistical when gold chunks are consi-

dered. But, with automatic chunks, the statistical 

approach outperformed rule-based system with a 

difference of 7% in LAS. This is not surprising 

because, the rules used are very robust and mostly 

based on POS and chunk information. Due to er-

rors induced by the automatic POS tagger and 

chunker, the rule-based system couldn’t perform 

well. Consider a small example chunk given be-

low. 

 ((    NP 

 meraa ‘my’   PRP  

 bhaaii ‘brother’ NN 

)) 

As per the Hindi chunking guidelines (Bharati et 

al., 2006), meraa and bhaaii should be in two sepa-

rate chunks. And as per Hindi dependency annota-

tion guidelines (Bharati et al., 2009), meraa is 

attached to bhaaii with a dependency label ‘r6’
10

. 

When the chunker wrongly chunks them in a single 

                                                           
10‘r6’ is the dependency label for genitive relation. 
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chunk, intra-chunk parser will assign the depen-

dency relation for meraa. Rule based system can 

never assign ‘r6’ relation to meraa as it is an inter-

chunk label and the rules used cannot handle such 

cases. But in a statistical system, if we train the 

parser using automatic chunks instead of gold 

chunks, the system can potentially assign ‘r6’ la-

bel.  

5.3 Parser comparison: MST vs. Malt 

In all the experiments, results of MaltParser are 

consistently better than MST+MaxEnt. We know 

that Maltparser is good at short distance labeling 

and MST is good at long distance labeling (McDo-

nald and Nivre, 2007). The root of the sentence is 

better identified by MSTParser than MaltParser. 

Our results also confirm this. MST+MaxEnt and 

Malt could identify the root of the sentence with an 

f-measure of 89.7% and 72.3% respectively. Pres-

ence of more short distance labels helped Malt to 

outperform MST. Figure 5, shows the f-measure 

relative to dependency length for both the parsers 

on test data using automatic shallow parser infor-

mation for LMSaF.  
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Figure 5: Dependency arc f-measure relative to depen-

dency length. 

6 Discussion and Future Work 

We systematically explored the effect of various 

linguistic features in Hindi dependency parsing. 

Results show that POS, case, suffix, root, along 

with local morphosyntactic features help depen-

dency parsing. We then described 2 methods to 

incorporate such features during the parsing 

process. These methods can be thought as different 

paradigms of modularity. For practical reasons (i.e. 

given the POS tagger/chunker accuracies), it is 

wiser to use this information as features rather than 

dividing the task into two stages.  

As mentioned earlier, this is the first attempt at 

complete sentence level parsing for Hindi. So, we 

cannot compare our results with previous attempts 

at Hindi dependency parsing, due to, (a) The data 

used here is different and (b) we produce complete 

sentence parses rather than chunk level parses. 

As mentioned in section 5.1, accuracies of intra-

chunk dependencies are very high compared to 

inter-chunk dependencies. Inter-chunk dependen-

cies are syntacto-semantic in nature. The parser 

depends on surface syntactic cues to identify such 

relations. But syntactic information alone is always 

not sufficient, either due to unavailability or due to 

ambiguity. In such cases, providing some semantic 

information can help in improving the inter-chunk 

dependency accuracy. There have been attempts at 

using minimal semantic information in dependency 

parsing for Hindi (Bharati et al., 2008). Recently, 

Ambati et al. (2009b) used six semantic features 

namely, human, non-human, in-animate, time, 

place, and abstract for Hindi dependency parsing. 

Using gold-standard semantic features, they 

showed considerable improvement in the core in-

ter-chunk dependency accuracy. Some attempts at 

using clause information in dependency parsing for 

Hindi (Gadde et al., 2010) have also been made. 

These attempts were at inter-chunk dependency 

parsing using gold-standard POS tags and chunks. 

We plan to see their effect in complete sentence 

parsing using automatic shallow parser information 

also.  

7 Conclusion 

In this paper we explored two strategies to incorpo-

rate local morphosyntactic features in Hindi de-

pendency parsing. These features were obtained 

using a shallow parser. We first explored which 

information provided by the shallow parser is use-

ful  and showed that local morphosyntactic fea-

tures in the form of chunk type, head/non-head 

info, chunk boundary info, distance to the end of 

the chunk and suffix concatenation are very crucial 

for Hindi dependency parsing. We then investi-

gated the best way to incorporate this information 

during dependency parsing. Further, we compared 

the results of various experiments based on various 

criterions and did some error analysis. This paper 

was also the first attempt at complete sentence lev-

el parsing for Hindi. 
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