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Abstract

We explore the contribution of different lexi-

cal and inflectional morphological features to

dependency parsing of Arabic, a morpholog-

ically rich language. We experiment with all

leading POS tagsets for Arabic, and introduce

a few new sets. We show that training the

parser using a simple regular expressive ex-

tension of an impoverished POS tagset with

high prediction accuracy does better than us-

ing a highly informative POS tagset with only

medium prediction accuracy, although the lat-

ter performs best on gold input. Using con-

trolled experiments, we find that definiteness

(or determiner presence), the so-called phi-

features (person, number, gender), and undi-

acritzed lemma are most helpful for Arabic

parsing on predicted input, while case and

state are most helpful on gold.

1 Introduction

Parsers need to learn the syntax of the modeled lan-

guage, in order to project structure on newly seen

sentences. Parsing model design aims to come up

with features that best help parsers to learn the syn-

tax and choose among different parses. One aspect

of syntax, which is often not explicitly modeled in

parsing, involves morphological constraints on syn-

tactic structure, such as agreement. In this paper, we

explore the role of morphological features in pars-

ing Modern Standard Arabic (MSA). For MSA, the

space of possible morphological features is fairly

large. We determine which morphological features

help and why, and we determine the upper bound for

their contribution to parsing quality.

We first present the corpus we use (§2), then rel-

evant Arabic linguistic facts (§3); we survey related

work (§4), describe our experiments (§5), and con-

clude with analysis of parsing error types (§6).

2 Corpus

We use the Columbia Arabic Treebank (CATiB)

(Habash and Roth, 2009). Specifically, we use the

portion converted from part 3 of the Penn Arabic

Treebank (PATB) (Maamouri et al., 2004) to the

CATiB format, which enriches the CATiB depen-

dency trees with full PATB morphological informa-

tion. CATiB’s dependency representation is based

on traditional Arabic grammar and emphasizes syn-

tactic case relations. It has a reduced POS tagset

(with six tags only), but a standard set of eight

dependency relations: SBJ and OBJ for subject

and (direct or indirect) object, respectively, (whether

they appear pre- or post-verbally); IDF for the idafa

(possessive) relation; MOD for most other modifica-

tions; and other less common relations that we will

not discuss here. For more information, see (Habash

and Roth, 2009). The CATiB treebank uses the word

segmentation of the PATB.1 It splits off several cat-

egories of orthographic clitics, but not the definite

article È@ Al. In all of the experiments reported in

this paper, we use the gold segmentation. An exam-

ple CATiB dependency tree is shown in Figure 1.2

3 Relevant Linguistic Concepts

Morphemes: At a shallow level, Arabic words can

be described in terms of their morphemes. In ad-

dition to concatenative prefixes and suffixes, Ara-

1Tokenization involves further decisions on the segmented

token forms, such as spelling normalization.
2All Arabic transliterations are presented in the HSB

transliteration scheme (Habash et al., 2007).
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Figure 1: CATiB.
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bic has templatic morphemes called root and pat-

tern. For example, the word
	àñJ.

�KA¾K
 yu+kAtib+uwn
‘they correspond’ has one prefix and one suffix, in

addition to a stem composed of the root H.
�H¼ k-t-b

‘writing related’ and the pattern 1A2i3. 3

Lexeme and Features: At a deeper level, Arabic

words can be described in terms of sets of inflec-

tional and lexical morphological features. We first

discuss lexical features. The set of word forms that

only vary inflectionally among each other is called

the lexeme. A lemma is a particular word form used

to represent, or cite, the lexeme word set. For ex-

ample, verb lemmas are third person masculine sin-

gular perfective. We explore using both diacritized

lemma, and undiacritized lemma (lmm). Just as the

lemma abstracts over inflectional morphology, the

root abstracts over both inflectional and derivational

morphology and thus provides a deeper level of lex-

ical abstraction than the lemma. The pattern feature

is the pattern of the lemma of the lexeme, not of the

word form.

The inflectional morphological features4 define

the dimensions of Arabic inflectional morphology,

or the space of variations of a particular word.

PATB-tokenized words vary along nine dimensions:

3The digits in the pattern correspond to the positions root

radicals are inserted.
4The inflectional features we use in this paper are form-

based (illusory) as opposed to functional features (Smrž, 2007).

We plan to work with functional features in the future.

GENDER and NUMBER (for nominals and verbs);

PERSON, ASPECT, VOICE and MOOD (for verbs);

and CASE, STATE, and the attached definite article

proclitic DET (for nominals). The inflectional fea-

tures abstract away from the specifics of morpheme

forms, since they can affect more than one mor-

pheme in Arabic. For example, changing the value

of the aspect feature in the example above from im-

perfective to perfective yields the word form @ñJ.
�KA¿

kAtab+uwA ‘they corresponded’, which differs in

terms of prefix, suffix and pattern.

Inflectional features interact with syntax in two

ways. First, there are agreement features: two

words in a sentence which are in a specific syn-

tactic configuration have the same value for a spe-

cific set of features. In MSA, we have subject-

verb agreement on PERSON, GENDER, and NUMBER

(but NUMBER only if the subject precedes the verb),

and we have noun-adjective agreement in PERSON,

NUMBER, GENDER, and DET.5 Second, morphol-

ogy can show a specific syntactic configuration on

a single word. In MSA, we have CASE and STATE

marking. Different types of dependents have differ-

ent CASE; for example, verbal subjects are always

marked NOMINATIVE. CASE and STATE are rarely

explicitly manifested in undiacritized MSA.

Lexical features do not participate in syntactic

constraints on structure as inflectional features do.

Instead, bilexical dependencies are used in parsing

to model semantic relations which often are the only

way to disambiguate among different possible syn-

tactic structures; lexical features provide a way of

reducing data sparseness through lexical abstraction.

We compare the effect on parsing of different sub-

sets of lexical and inflectional features. Our hypoth-

esis is that the inflectional features involved in agree-

ment and the lexical features help parsing.

The core POS tagsets: Words also have associ-

ated part-of-speech (POS) tags, e.g., “verb”, which

further abstract over morphologically and syntac-

tically similar lexemes. Traditional Arabic gram-

mars often describe a very general three-way dis-

tinction into verbs, nominals and particles. In com-

parison, the tagset of the Buckwalter Morphologi-

cal Analyzer (Buckwalter, 2004) used in the PATB

has a core POS set of 44 tags (before morphologi-

5We do not explicitly address here agreement phenomena

that require more complex morpho-syntactic modeling. These

include adjectival modifiers of irrational (non-human) plural

nominals, and pre-nominal number modifiers.
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cal extension). Henceforth, we refer to this tagset

as CORE44. Cross-linguistically, a core set con-

taining around 12 tags is often assumed, including:

noun, proper noun, verb, adjective, adverb, preposi-

tion, particles, connectives, and punctuation. Hence-

forth, we reduce CORE44 to such a tagset, and dub

it CORE12. The CATIB6 tagset can be viewed as

a further reduction, with the exception that CATIB6

contains a passive voice tag; however, it constitutes

only 0.5% of the tags in the training.

Extended POS tagsets: The notion of “POS

tagset” in natural language processing usually does

not refer to a core set. Instead, the Penn English

Treebank (PTB) uses a set of 46 tags, including not

only the core POS, but also the complete set of mor-

phological features (this tagset is still fairly small

since English is morphologically impoverished). In

modern standard Arabic (MSA), the corresponding

type of tagset (core POS extended with a complete

description of morphology) would contain upwards

of 2,000 tags, many of which are extremely rare (in

our training corpus of about 300,000 words, we en-

counter only 430 of such POS tags with complete

morphology). Therefore, researchers have proposed

tagsets for MSA whose size is similar to that of the

English PTB tagset, as this has proven to be a use-

ful size computationally. These tagsets are hybrids

in the sense that they are neither simply the core

POS, nor the complete morphological tagset, but in-

stead they choose certain morphological features to

include along with the core POS tag.

The following are the various tagsets we compare

in this paper: (a) the core POS tagsets CORE44 and

the newly introduced CORE12; (b) CATiB treebank

tagset (CATIB6) (Habash and Roth, 2009); and its

newly introduced extension, CATIBEX, by greedy

regular expressions indicating particular morphemes

such as the prefix È@ Al+ or the suffix
	àð +wn.6

(c) the PATB full tagset (BW), size ≈2000+ (Buck-

walter, 2004); and two extensions of the PATB re-

duced tagset (PENN POS, a.k.a. RTS, size 24), both

outperforming it: (d) Kulick et al. (2006)’s tagset

(KULICK), size ≈43, one of whose most impor-

tant extensions is the marking of the definite arti-

cle clitic, and (e) Diab and BenAjiba (2010)’s EX-

TENDED RTS tagset (ERTS), which marks gender,

number and definiteness, size ≈134; Besides using

morphological information to extend POS tagsets,

6Inspired by a similar extension in Habash and Roth (2009).

we explore using it in separate features in parsing

models. Following this exploration, we also extend

CORE12, producing (f) CORE12EX (see Section 5

for details).

4 Related Work

Much work has been done on the use of morpho-

logical features for parsing of morphologically rich

languages. Collins et al. (1999) report that an op-

timal tagset for parsing Czech consists of a basic

POS tag plus a CASE feature (when applicable).

This tagset (size 58) outperforms the basic Czech

POS tagset (size 13) and the complete tagset (size

≈3000+). They also report that the use of gender,

number and person features did not yield any im-

provements. We get similar results for CASE in the

gold experimental setting but not when using pre-

dicted POS tags (POS tagger output). This may be

a result of CASE tagging having a lower error rate

in Czech (5.0%) (Hajič and Vidová-Hladká, 1998)

compared to Arabic (≈14.0%, see Table 3). Simi-

larly, Cowan and Collins (2005) report that the use

of a subset of Spanish morphological features (num-

ber for adjectives, determiners, nouns, pronouns,

and verbs; and mode for verbs) outperforms other

combinations. Our approach is comparable to their

work in terms of its systematic exploration of the

space of morphological features. We also find that

the number feature helps for Arabic. Looking at He-

brew, a Semitic language related to Arabic, Tsarfaty

and Sima’an (2007) report that extending POS and

phrase structure tags with definiteness information

helps unlexicalized PCFG parsing.

As for work on Arabic, results have been reported

on PATB (Kulick et al., 2006; Diab, 2007), the

Prague Dependency Treebank (PADT) (Buchholz

and Marsi, 2006; Nivre, 2008) and the Columbia

Arabic Treebank (CATiB) (Habash and Roth, 2009).

Besides the work we describe in §3, Nivre (2008)

reports experiments on Arabic parsing using his

MaltParser (Nivre et al., 2007), trained on the PADT.

His results are not directly comparable to ours be-

cause of the different treebanks representations and

tokenization used, even though all our experiments

reported here were performed using the MaltParser.

Our results agree with previous published work on

Arabic and Hebrew in that marking the definite ar-

ticle is helpful for parsing. However, we go beyond

previous work in that we also extend this morpho-

logically enhanced feature set to include additional
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lexical and inflectional morphological features. Pre-

vious work with MaltParser in Russian, Turkish and

Hindi showed gains with case but not with agree-

ment features (Nivre et al., 2008; Eryigit et al., 2008;

Nivre, 2009). Our work is the first to show gains

using agreement in MaltParser and in Arabic depen-

dency parsing.

5 Experiments

5.1 Experimental Space

We examined a large space of settings including the

following: (a) the contribution of POS tagsets to the

parsing quality, as a function of the amount of in-

formation encoded in the tagset; (b) parsing perfor-

mance on gold vs. predicted POS and morphologi-

cal feature values for all models; (c) prediction accu-

racy of each POS tagset and morphological feature;

(d) the contribution of numerous morphological fea-

tures in a controlled fashion; and (e) the contribution

of certain feature and POS tagset combinations. All

results are reported mainly in terms of labeled at-

tachment accuracy (parent word and the dependency

relation to it). Unlabeled attachment accuracy and

label accuracy are also given, space permitting.

5.2 Parser

For all experiments reported here we used the syn-

tactic dependency parser MaltParser v1.3 (Nivre,

2003; Nivre, 2008; Kübler et al., 2009) – a

transition-based parser with an input buffer and a

stack, using SVM classifiers to predict the next

state in the parse derivation. All experiments were

done using the Nivre "eager" algorithm.7 We

trained the parser on the training portion of PATB

part 3 (Maamouri et al., 2004). We used the same

split as in Zitouni et al. (2006) for dev/test, and kept

the test unseen during training.

There are five default attributes, in the MaltParser

terminology, for each token in the text: word ID

(ordinal position in the sentence), word form, POS

7Nivre (2008) reports that non-projective and pseudo-

projective algorithms outperform the "eager" projective algo-

rithm in MaltParser; however, our training data did not contain

any non-projective dependencies, so there was no point in us-

ing these algorithms. The Nivre "standard" algorithm is also

reported to do better on Arabic, but in a preliminary experimen-

tation, it did slightly worse than the "eager” one. This could

be due to high percentage of right branching (left headed struc-

tures) in our Arabic training set, an observation already noted

in Nivre (2008).

tag, head (parent word ID), and deprel (the depen-

dency relation between the current word and its par-

ent). There are default MaltParser features (in the

machine learning sense),8 which are the values of

functions over these attributes, serving as input to

the MaltParser internal classifiers. The most com-

monly used feature functions are the top of the in-

put buffer (next word to process, denoted buf[0]), or

top of the stack (denoted stk[0]); following items on

buffer or stack are also accessible (buf[1], buf[2],

stk[1], etc.). Hence MaltParser features are de-

fined as POS tag at top of the stack, word form at

top of the buffer, etc. Kübler et al. (2009) de-

scribe a “typical” MaltParser model configuration

of attributes and features.9 Starting with it, in

a series of initial controlled experiments, we set-

tled on using buf[0], buf[1], stk[0], stk[1] for the

wordform, and buf[0], buf[1], buf[2], buf[3], stk[0],

stk[1], stk[2] for the POS tag. For features of all

new MaltParser-attributes (discussed later), we used

buf[0] and stk[0]. We did not change the features

for the deprel. This new MaltParser configuration

resulted in gains of 0.3-1.1% in labeled attachment

accuracy (depending on the POS tagset) over the

default MaltParser configuration. We also exper-

imented with using normalized word forms (Alif

Maqsura conversion to Ya, and hamza removal from

each Alif ) as is common in parsing and statistical

machine translation literature. This resulted in a

small decrease in performance (0.1-0.2% in labeled

attachment accuracy). We settled on using the non-

normalized word form. All experiments reported be-

low were conducted using this new configuration.

5.3 Parsing quality as a function of POS tag

richness

We turn first to the contribution of POS information

to parsing quality, as a function of the amount of in-

formation encoded in the POS tagset. A first rough

estimation for the amount of information is the ac-

tual tagset size, as it appears in the training data.

For this purpose we compared POS tagsets based

on, or closely inspired by, previously published

work. These sets are typically morphologically-

enriched (marking the existence of a determiner in

the word, person, gender, number, etc.). The num-

8The terms “feature” and “attribute” are over loaded in the

literature. We use them in the linguistic sense, unless specifi-

cally noted otherwise, e.g., “MaltParser feature(s)”.
9It is slightly different from the default configuration.
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ber of tag types occurring in the training data fol-

low each tagset in parentheses: BW (430 tags), ERTS

(134 tags), KULICK (32 tags), and the smallest POS

tagset published: CATIB6 (6 tags). In optimal con-

ditions (using gold POS tags), the richest tagset

(BW) is indeed the best performer (84.02%), and the

poorest (CATIB6) is the worst (81.04%). Mid-size

tagsets are in the high 82%, with the notable ex-

ception of KULICK, which does better than ERTS,

in spite of having 1/4 the tagset size; moreover, it is

the best performer in unlabeled attachment accuracy

(85.98%), in spite of being less than tenth the size of

BW. Our extended mid-size tagset, CATIBEX, was a

mid-level performer as expected.

In order to control the level of morphological and

lexical information in the POS tagset, we used the

above-mentioned additional tagsets: CORE44 (40

tags), and CORE12 (12 tags). Both were also

mid-size mid-level performers (in spite of contain-

ing no morphological extension), with CORE12 do-

ing slightly better. See Table 1 columns 2-4.

5.4 Predicted POS tags

So far we discussed optimal (gold) conditions. But

in practice, POS tags are annotated by automatic tag-

gers, so parsers get predicted POS tags as input, as

opposed to gold (human-annotated) tags. The more

informative the tagset, the less accurate the tag pre-

diction might be, so the effect on overall parsing

quality is unclear. Therefore, we repeated the exper-

iments above with POS tags predicted by the Mor-

phological Analysis and Disambiguation for Arabic

(MADA) toolkit (Habash and Rambow, 2005). See

Table 1, columns 5-7. It turned out that BW, the

best gold performer, with lowest POS prediction ac-

curacy (81.8%), suffered the biggest drop (11.38%)

and was the worst performer with predicted tags.

The simplest tagset, CATIB6, and its extension, CAT-

IBEX, benefited from the highest POS prediction ac-

curacy (97.7%), and their performance suffered the

least. CATIBEX was the best performer with pre-

dicted POS tags. Performance drop and POS pre-

diction accuracy are given in columns 8 and 9, re-

spectively. Next, we augmented the parsing models

with inflectional and lexical morphological features.

5.5 Inflectional features

Experimenting with inflectional morphological fea-

tures is especially important in Arabic parsing, since

Arabic is morphologically rich. In order to further

explore the contribution of inflectional and lexical

morphological information in a controlled manner,

we focused on the best performing core POS tagset,

CORE12 as baseline; using three different setups, we

added nine morphological features, extracted from

MADA: DET, PERSON, ASPECT, VOICE, MOOD,

GENDER, NUMBER, STATE, and CASE. In setup

All , we augmented the baseline model with all nine

MADA features (as nine additional MaltParser at-

tributes); in setup Sep , we augmented the baseline

model with each of the MADA features, one at a

time, separately; and in setup Greedy , we com-

bined them in a greedy heuristic (since the entire

feature space is too vast to exhaust): starting with

the most gainful feature from Sep, adding the next

most gainful feature, keeping it as additional Malt-

Parser attribute if it helped, or discarding it other-

wise, and repeating this heuristics through the least

gainful feature. We also augmented the same base-

line CORE12 model with a manually constructed list

of surface affixes (e.g., Al+, +wn, ~) as additional

MaltParser attributes (LINGNGRAMS). This list was

also in the base of the CATIBEX extension; it is lin-

guistically informed, yet represents a simple (albeit

shallow) alternative to morphological analysis. Re-

sults are given in Table 2.

Somewhat surprisingly, setup All hurts perfor-

mance on the predicted input. This can be explained

if one examines the prediction accuracy of each fea-

ture (Table 3). Features which are not predicted

with very high accuracy, such as CASE (86.3%),

can dominate the negative contribution, even though

they are principle top contributors in optimal (gold)

conditions (see discussion below). The determiner

feature (DET), followed by the STATE (construct

state, idafa) feature, were top individual contribu-

tors in setup Sep. Adding DET and all the so-called

phi-features (PERSON, NUMBER, GENDER) in the

Greedy setup, yielded 1.43% gain over the CORE12

baseline. Adding LINGNGRAMS yielded a 1.19%

gain over the CORE12 baseline.

We repeated the same setups (All, Sep, and

Greedy) with gold POS tags, to examine the contri-

bution of the morphological features in optimal con-

ditions. Here CASE, followed by STATE and DET,

were the top contributors. Performance of CASE is

the notable difference from the predicted conditions

above. Surprisingly, only CASE and STATE helped in

the Greedy setup, although one might expect that the

phi features help too. (See lower half of Table 2).
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Table 1: Parsing performance with each POS tagset, on gold and predicted input. labeled = labeled attachment accuracy (depen-

dency + relation). unlabeled = unlabeled attachment accuracy (dependency only). label acc = relation label prediction accuracy.

labeled diff = difference between labeled attachment accuracy on gold and predicted input. POS acc = POS tag prediction accuracy.

tagset
gold predicted gold-pred. POS tagset

labeled unlabled label acc. labeled unlabled label acc. labeled diff. acc. size

CATIB6 81.04 83.66 92.59 78.31 82.03 90.55 -2.73 97.7 6

CATIBEX 82.52 84.97 93.40 79.74 83.30 91.44 -2.78 97.7 44

CORE12 82.92 85.40 93.52 78.68 82.48 90.63 -4.24 96.3 12

CORE44 82.71 85.17 93.28 78.39 82.16 90.36 -4.32 96.1 40

ERTS 82.97 85.23 93.76 78.93 82.56 90.96 -4.04 95.5 134

KULICK 83.60 85.98 94.01 79.39 83.15 91.14 -4.21 95.7 32

BW 84.02 85.77 94.83 72.64 77.91 86.46 -11.38 81.8 430

Table 2: CORE12 POS tagset with morphological features. Left half: Using predicted POS tags. In it: Top part: Adding all

nine features to CORE12. Second part: Adding each feature separately, comparing difference from CORE12+madafeats, predicted

(second part). Third part: Greedily adding best features from third part, predicted; difference from previous successful greedy step.

Bottom part: Surface affixes (leading and trailing character n-grams). Right half: Left half repeated with gold tags.

set predicted POS and features: gold POS and features:

-up CORE12+. . . labeled diff. unlabeled CORE12+. . . labeled diff. unlabeled

A
ll (baseline repeated) 78.68 – 82.48 (baseline repeated) 82.92 – 85.40

+madafeats 77.91 -0.77 82.14 +madafeats 85.15 2.23 86.61

S
ep

+DET 79.82 1.14 83.18 +CASE 84.61 1.69 86.30

+STATE 79.34 0.66 82.85 +STATE 84.15 1.23 86.38

+GENDER 78.75 0.07 82.35 +DET 83.96 1.04 86.21

+PERSON 78.74 0.06 82.45 +NUMBER 83.08 0.16 85.50

+NUMBER 78.66 -0.02 82.39 +PERSON 83.07 0.15 85.41

+VOICE 78.64 -0.04 82.41 +VOICE 83.05 0.13 85.42

+ASPECT 78.60 -0.08 82.39 +MOOD 83.05 0.13 85.47

+MOOD 78.54 -0.14 82.35 +ASPECT 83.01 0.09 85.43

+CASE 75.81 -2.87 80.24 +GENDER 82.96 0.04 85.24

G
re

ed
y

+DET+STATE 79.42 -0.40 82.84 +CASE+STATE 85.37 0.76 86.88

+DET+GENDER 79.90 0.08 83.20 +CASE+STATE+DET 85.18 -0.19 86.66

+DET+GENDER+PERSON 79.94 0.04 83.21 +CASE+STATE+NUMBER 85.36 -0.01 86.87

+DET+PHI 80.11 0.17 83.29 +CASE+STATE+PERSON 85.27 -0.10 86.76

+DET+PHI+VOICE 79.96 -0.15 83.18 +CASE+STATE+VOICE 85.25 -0.12 86.76

+DET+PHI+ASPECT 80.01 -0.10 83.20 +CASE+STATE+MOOD 85.23 -0.14 86.72

+DET+PHI+MOOD 80.03 -0.08 83.21 +CASE+STATE+ASPECT 85.23 -0.14 86.78

— +CASE+STATE+GENDER 85.26 -0.11 86.75

+NGRAMSLING 79.87 1.19 83.21 +NGRAMSLING 84.02 1.10 86.16

5.6 Lexical features

Next, we experimented with adding morpholog-

ical features involving semantic abstraction to

some degree: the diacritized LEMMA (abstracting

away from inflectional information, and indicat-

ing active/passive voice due to diacritization in-

formation), the undiacritized lemma (LMM), the

ROOT (further abstraction indicating “core” pred-

icate or action), and the PATTERN (a generally

complementary abstraction, often indicating cau-

sation and reflexiveness). We experimented with

the same setups as above: All, Sep, and Greedy.

Adding all four features yielded a minor gain in

setup All. LMM was the best single contributor

(1.05%), closely followed by ROOT (1.03%) in Sep.

CORE12+LMM+ROOT+LEMMA was the best greedy

combination (79.05%) in setup Greedy. See Table 4.

5.7 Putting it all together

We further explored whether morphological data

should be added to an Arabic parsing model as

stand-alone machine learning features, or should

they be used to enhance and extend a POS tagset.

We created a new POS tagset, CORE12EX, size

81(see bottom of Table 3), by extending the CORE12

tagset with the features that most improved the
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CORE12 baseline: DET and the phi features. But

CORE12EX did worse than its non-extended (but

feature-enhanced) counterpart, CORE12+DET+PHI.

Another variant, CORE12EX+DET+PHI, which

used both the extended tagset and the additional

DET and phi features, did not improve over

CORE12+DET+PHI either.

Following the results in Table 2, we added

the affix features NGRAMSLING (which proved

to help the CORE12 baseline) to the best aug-

mented CORE12+DET+PHI model, dubbing the new

model CORE12+DET+PHI+NGRAMSLING, but per-

formance dropped here too. We greedily augmented

CORE12+DET+PHI with lexical features, and found

that the undiacritzed lemma (LMM) improved per-

formance on predicted input (80.23%). In order to

test whether these findings hold with other tagsets,

we added the winning features (DET+PHI, with and

without LMM) to the best POS tagset in predicted

conditions, CATIBEX. Both variants yielded gains,

with CATIBEX+DET+PHI+LMM achieving 80.45%

accuracy, the best result on predicted input.

5.8 Validating Results on Unseen Test Set

Once experiments on the development set (PATB3-

DEV) were done, we ran the best performing mod-

els on a previously unseen test set – the test split of

part 3 of the PATB (PATB3-TEST). Table 6 shows

that the same trends held on this set too, with even

greater relative gains, up to 1.77% absolute gains.

Table 3: Feature prediction accuracy and set sizes. * = The set

includes a "N/A" value.

feature acc set size

normalized word form (A,Y) 99.3 29737

non-normalized word form 98.9 29980

NGRAMSLING preffix 100.0 8

NGRAMSLING suffix 100.0 20

DET 99.6 3*

PERSON 99.1 4*

ASPECT 99.1 5*

VOICE 98.9 4*

MOOD 98.6 5*

GENDER 99.3 3*

NUMBER 99.5 4*

STATE 95.6 4*

CASE 86.3 5*

ROOT 98.4 9646

PATTERN 97.0 338

LEMMA (diacritized) 96.7 16837

LMM (undiacritized lemma) 98.3 15305

CORE12EX 96.0 81

Table 4: Lexical morpho-semantic features. Top part: Adding

each feature separately; difference from CORE12, predicted.

Bottom part: Greedily adding best features from previous part,

predicted; difference from previous successful greedy step.

POS tagset labeled diff. unlab. label

A
ll

CORE12 (repeated) 78.68 – 82.48 90.63

CORE12+LMM+ROOT

+LEMMA+PATTERN

78.85 0.17 82.46 90.82

S
ep

CORE12+lmm 78.96 1.05 82.54 90.80

CORE12+ROOT 78.94 1.03 82.64 90.72

CORE12+LEMMA 78.80 0.89 82.42 90.71

CORE12+PATTERN 78.59 0.68 82.39 90.60

G
re

ed
y

CORE12+LMM+ROOT 79.04 0.08 82.63 90.86

CORE12+LMM+ROOT

+LEMMA

79.05 0.01 82.63 90.87

CORE12+LMM+ROOT

+PATTERN

78.93 -0.11 82.58 90.82

Table 6: Results on PATB3-TEST for models which performed

best on PATB3-DEV – predicted input.

POS tagset labeled diff. unlab. label

CORE12 77.29 – 81.04 90.05

CORE12+DET+PHI 78.57 1.28 81.66 91.09

CORE12+DET+PHI+LMM 79.06 1.77 82.07 91.37

6 Error Analysis

For selected feature sets, we look at the overall er-

ror reduction with respect to the CORE12 baseline,

and see what dependency relations particularly profit

from that feature combination: What dependencies

achieve error reductions greater than the average er-

ror reduction for that feature set over the whole cor-

pus. We investigate dependencies by labels, and for

MOD we also investigate by the POS label of the de-

pendent node (so MOD-P means a preposition node

attached to a governing node using a MOD arc).

DET: As expected, it particularly helps IDF and

MOD-N. The error reduction for IDF is 19.3%!

STATE: Contrary to naïve expectations, STATE

does not help IDF, but instead increases error by

9.4%. This is presumably because the feature does

not actually predict construct state except when con-

struct state is marked explicitly, but this is rare.

DET+PHI: The phi features are the only subject-

verb agreement features, and they are additional

agreement features (in addition to definiteness) for

noun-noun modification. Indeed, relative to just

adding DET, we see the strongest increases in these

two dependencies, with an additional average in-
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Table 5: Putting it all together

POS tagset inp.qual. labeled diff. unlabeled label Acc.

CORE12+DET+PHI (repeated) predicted 80.11 0.17 83.29 91.82

CORE12+DET+PHI gold 84.20 -0.95 86.23 94.49

CORE12EX predicted 78.89 -1.22 82.38 91.17

CORE12EX gold 83.06 0.14 85.26 93.80

CORE12EX+DET+PHI predicted 79.19 -0.92 82.52 91.39

CORE12+DET+PHI+NGRAMSLING predicted 79.77 -0.34 83.03 91.66

CORE12+DET+PHI+LMM predicted 80.23 0.12 83.34 91.94

CORE12+DET+PHI+LMM+ROOT predicted 80.10 -0.13 83.25 91.84

CORE12+DET+PHI+LMM+PATTERN predicted 80.03 -0.20 83.15 91.77

CATIBEX+DET+PHI predicted 80.00 0.26 83.29 91.81

CATIBEX+DET+PHI+LMM predicted 80.45 0.71 83.65 92.03

crease for IDF (presumably because certain N-N

modifications are rejected in favor of IDFs). All

other dependencies remain at the same level as with

only DET.

LMM, ROOT, LEMMA: These features abstract

over the word form and thus allow generalizations in

bilexical dependecies, which in parsing stand in for

semantic modeling. The strongest boost from these

features comes from MOD-N and MOD-P, which

is as expected since these dependencies are highly

ambiguous, and MOD-P is never helped by the mor-

phological features.

DET+PHI+LMM: This feature combination yields

gains on all main dependency types (SBJ, OBJ,

IDF, MOD-N, MOD-P, MOD-V). But the contri-

bution from the inflectional and lexical features are

unfortunately not additive. We also compare the im-

provement contributed just by LMM as compared to

DET and PHI. This improvement is quite small, but

we see that MOD-N does not improve (in fact, it

gets worse – presumably because there are too many

features), while MOD-P (which is not helped by the

morphological features) does improve. Oddly, OBJ

also improves, for which we have no explanation.

When we turn to our best-performing configura-

tion, CATIBEX with the added DET, phi features

(PERSON, NUMBER, GENDER), and LMM, we see

that this configuration improves over CORE12 with

the same features for two dependency types only:

SBJ and MOD-N These are exactly the two types

for which agreement features are useful, and both

the features DET+PHI and the CATIBEX POS tagset

represent information for agreement. The question

arises why this information is not redundant. We

speculate that the fact that we are learning differ-

ent classifiers for different POS tags helps Malt-

Parser learn attachment decisions which are specific

to types of dependent node morphology.

In summary, our best performing configuration

yields an error reduction of 8.3% over the core POS

tag (CORE12). SBJ errors are reduced by 13.3%,

IDF errors by 17.7%, and MOD-N errors by 14.9%.

Error reduction for OBJ, MOD-P, and MOD-V are

all less than 4%. We note that the remaining MOD-

P errors make up 6.2% of all dependency relations,

roughly one third of remaining errors.

7 Conclusions and Future Work

We explored the contribution of different inflec-

tional and lexical features to dependency parsing of

Arabic, under gold and predicted POS conditions.

While more informative features (e.g., richer POS

tags) yield better parsing quality in gold conditions,

they are hard to predict, and as such they might not

contribute to – and even hurt – the parsing quality

under predicted conditions. We find that definiteness

(DET), phi-features (PERSON, NUMBER, GENDER),

and undiacritzed lemma (LMM) are most helpful for

Arabic parsing on predicted input, while CASE and

STATE are most helpful on gold.

In the future we plan to improve CASE prediction

accuracy; produce high accuracy supertag features,

modeling active and passive valency; and use other

parsers (e.g., McDonald and Pereira, 2006).
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