
NAACL HLT 2010

The First Workshop on
Statistical Parsing of

Morphologically Rich Languages
(SPMRL 2010)

Proceedings of the Workshop

June 5, 2010
Los Angeles, California

USB memory sticks produced by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

• Endorsed by SIGPARSE, the ACL Special Interest Group on Natural
Language Parsing.

• Sponsored by the INRIA’S ALPAGE PROJECT.

The front-page picture is licensed by xkcd.com under the terms of the Creative Commons Attribution-
NonCommercial 2.5 License. Original link: http://xkcd.com/724/ c©xkcd.com

c©2010 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Foreword

The idea of organizing this workshop was sparked following very interesting discussions that occurred
during EACL09 among various researchers working on statistical parsing of different types of
languages. Indeed, an opportunity to discuss the issues that we were all experiencing was much needed,
and it seemed such a good idea that we decided to take advantage of IWPT’09, which was held that year
in Paris, to organize a panel on this topic. We planned to have presentations on the various issues faced
by this small emerging community, which would allow us to share our sometimes similar solutions for
parsing different languages.

Inspired by the idea of organizing such a meeting, but without knowing quite yet if there was any sense
in comparing, for example, Modern Hebrew and French parsing issues, Deirdre Hogan (Dublin City
University) suggested that - should the panel be successful - we ought to organize a real workshop.
She was right. We had an extremely successful and animated panel discussion. We were surprised to
see the extent to which the IWPT’09 audience chose to contribute to the discussion instead of taking a
break from the long presentation sessions. This encouraged us to pursue these attempts at providing a
forum for discussing such matters even further, and to create a new community of shared interests. This
workshop is the result of our common will to do so.

We believe that the issues faced by researchers involved in statistical parsing of morphologically rich
languages are not always well known outside of this small community, and that the kind of challenges
that we all face require a more thorough introduction than we could possibly provide in this foreword.
Therefore, we decided to include here an elaborated preface which presents the current state-of-affairs
with respect to parsing MRLs and frames the various contributions to our workshop in relation to it.
The overview should act as a primer for those who are not experienced in the subject and yet wish
to participate in the discussion. All in all, we are proud to have 11 very nice papers presented in our
proceedings that will help advance the state of the art in parsing MRLs. In order to obtain sufficient
presentation slots, we asked our authors to choose between different modes of presentation, we are glad
the authors involved in 3 papers accepted to present them as posters.

Finally, we would like to express our gratitude to the many people who encouraged us on this journey:
Harry Bunt, Alon Lavie and Kenji Sagae from SIGPARSE which fully endorses this project; Joakim
Nivre who heartily encouraged us to launch our workshop, Eric de la Clergerie who agreed to give us a
slot at IWPT’09 and Josef van Genabith who very kindly chaired our first panel, all of whom constantly
advised us during this year - this was precious to us. More than 20 very busy researchers agreed to
review for our workshop - without their commitment this would have been plainly impossible. We
further wish to thank Kevin Knight who kindly agreed to give a talk on a pressing topic, morphology
in SMT, in this workshop, and Dan Bikel, Julia Hockenmaier, Slav Petrov and Owen Rambow, who
willingly agreed to engage in our panel discussion. Last but not least, we want to thank Laurence
Danlos - whose team, the Alpage project, is funding our workshop - for believing in our project from
the start.

Best regards,

The SPRML2010 extended Program Committee

iii

iv

Organizers:

Djamé Seddah, INRIA/University of Paris-Sorbonne (France)
Sandra Kübler, Indiana University (USA)
Reut Tsarfaty, Uppsala University (Sweden)

Program Committee:

Marie Candito, INRIA/University Paris 7 (France)
Jennifer Foster, NCLT, Dublin City University (Ireland)
Yoav Goldberg, Ben Gurion University of the Negev (Israel)
Ines Rehbein, Universität Saarbrücken (Germany)
Lamia Tounsi, NCLT, Dublin City University (Ireland)
Yannick Versley, Universität Tübingen (Germany)

Review Committee:

Mohamed Attia (Dublin City University, Ireland)
Adriane Boyd (Ohio State University, USA)
Aoife Cahill (University of Stuttgart, Germany)
Grzegorz Chrupała (Saarland University, Germany)
Benoit Crabbé (University of Paris 7, France)
Michael Elhadad (Ben Gurion University, Israel)
Emar Mohamed (Indiana University, USA)
Josef van Genabith (Dublin City University, Ireland)
Julia Hockenmaier (University of Illinois, USA)
Deirdre Hogan (Dublin City University, Ireland)
Alberto Lavelli (FBK-irst, Italy)
Joseph Le Roux (Dublin City University, Ireland)
Wolfgang Maier (University of Tüebingen, Germany)
Takuya Matsuzaki (University of Toyko, Japan)
Yusuke Miyao (University of Toyko, Japan)
Joakim Nivre (Uppsala University, Sweden)
Ines Rehbein (Saarland University, Germany)
Kenji Sagae (University of Southern California, USA)
Benoit Sagot (Inria Rocquencourt, France)
Khalil Sima’an (University of Amsterdam, The Netherlands)
Nicolas Stroppa (Google Research Zurich, Switzerland)

Invited Speaker:

Kevin Knight, University of Southern California/Information Sciences Institute

Panelists:

Dan Bikel, Google Research NY (USA)
Julia Hockenmaier, University of Illinois at Urbana-Champaign (USA)
Slav Petrov, Google Research NY (USA)
Owen Rambow, Columbia University (USA)

v

Table of Contents

Statistical Parsing of Morphologically Rich Languages (SPMRL) What, How and Whither
Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra Kuebler, Yannick Versley, Marie Candito,

Jennifer Foster, Ines Rehbein and Lamia Tounsi . 1

Improving Arabic Dependency Parsing with Lexical and Inflectional Morphological Features
Yuval Marton, Nizar Habash and Owen Rambow . 13

Two Methods to Incorporate ’Local Morphosyntactic’ Features in Hindi Dependency Parsing
Bharat Ram Ambati, Samar Husain, Sambhav Jain, Dipti Misra Sharma and Rajeev Sangal . . . 22

Application of Different Techniques to Dependency Parsing of Basque
Kepa Bengoetxea and Koldo Gojenola . 31

Modeling Morphosyntactic Agreement in Constituency-Based Parsing of Modern Hebrew
Reut Tsarfaty and Khalil Sima’an . 40

Factors Affecting the Accuracy of Korean Parsing
Tagyoung Chung, Matt Post and Daniel Gildea . 49

Direct Parsing of Discontinuous Constituents in German
Wolfgang Maier . 58

Handling Unknown Words in Statistical Latent-Variable Parsing Models for Arabic, English and French
Mohammed Attia, Jennifer Foster, Deirdre Hogan, Joseph Le Roux, Lamia Tounsi and Josef van

Genabith . 67

Parsing Word Clusters
Marie Candito and Djamé Seddah . 76

Lemmatization and Lexicalized Statistical Parsing of Morphologically-Rich Languages: the Case of
French

Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu, Josef van Genabith and Marie Candito . 85

On the Role of Morphosyntactic Features in Hindi Dependency Parsing
Bharat Ram Ambati, Samar Husain, Joakim Nivre and Rajeev Sangal . 94

Easy-First Dependency Parsing of Modern Hebrew
Yoav Goldberg and Michael Elhadad . 103

vii

Workshop Program

Saturday, June 5, 2010

09:00-09:15 Opening Remarks

Statistical Parsing of MRLs: Workshop Preface and Overview

Statistical Parsing of Morphologically Rich Languages (SPMRL) What, How and
Whither
Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra Kuebler, Yannick Versley,
Marie Candito, Jennifer Foster, Ines Rehbein and Lamia Tounsi

09:15-10:30 Dependency-based parsing of MRLs (Chair: Reut Tsarfaty)

Improving Arabic Dependency Parsing with Lexical and Inflectional Morphological
Features
Yuval Marton, Nizar Habash and Owen Rambow

Two Methods to Incorporate ’Local Morphosyntactic’ Features in Hindi Depen-
dency Parsing
Bharat Ram Ambati, Samar Husain, Sambhav Jain, Dipti Misra Sharma and Rajeev
Sangal

Application of Different Techniques to Dependency Parsing of Basque
Kepa Bengoetxea and Koldo Gojenola

10:30-11:00 Break

11:00-12:15 Constituency-based parsing of MRLs (Chair: Djamé Seddah)

Modeling Morphosyntactic Agreement in Constituency-Based Parsing of Modern
Hebrew
Reut Tsarfaty and Khalil Sima’an

Factors Affecting the Accuracy of Korean Parsing
Tagyoung Chung, Matt Post and Daniel Gildea

Direct Parsing of Discontinuous Constituents in German
Wolfgang Maier

12:15-1:40 Lunch Break

ix

Saturday, June 5, 2010 (continued)

1:40-2:30 Invited Talk (Chair: Reut Tsarfaty)

Morphology in Statistical Machine Translation: Integrate-in or Tack-on?
Kevin Knight

2:30-3:00 Improved Estimation for parsing MRLs (Chair: Yoav Goldberg)

Handling Unknown Words in Statistical Latent-Variable Parsing Models for Arabic, En-
glish and French
Mohammed Attia, Jennifer Foster, Deirdre Hogan, Joseph Le Roux, Lamia Tounsi and
Josef van Genabith

Parsing Word Clusters
Marie Candito and Djamé Seddah

3:00-3:30 Break

3:30-4:45 Rich Morphology and Lemmatisation: Short Papers and Posters (Chair: Jennifer Fos-
ter)

Lemmatization and Lexicalized Statistical Parsing of Morphologically-Rich Languages:
the Case of French
Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu, Josef van Genabith and Marie Can-
dito

On the Role of Morphosyntactic Features in Hindi Dependency Parsing
Bharat Ram Ambati, Samar Husain, Joakim Nivre and Rajeev Sangal

Easy-First Dependency Parsing of Modern Hebrew
Yoav Goldberg and Michael Elhadad

4:45-5:45 Discussion Panel: Dan Bikel, Julia Hockenmaier, Slav Petrov and Owen Rambow
(Chair: Sandra Kübler)

5:45-6:00 Concluding remarks

x

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 1–12,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Statistical Parsing of Morphologically Rich Languages (SPMRL)
What, How and Whither

Reut Tsarfaty
Uppsala Universitet

Djamé Seddah
Alpage (Inria/Univ. Paris-Sorbonne)

Yoav Goldberg
Ben Gurion University

Sandra Kübler
Indiana University

Marie Candito
Alpage (Inria/Univ. Paris 7)

Jennifer Foster
NCLT, Dublin City University

Yannick Versley
Universiẗat Tübingen

Ines Rehbein
Universiẗat Saarbr̈ucken

Lamia Tounsi
NCLT, Dublin City University

Abstract

The term Morphologically Rich Languages
(MRLs) refers to languages in which signif-
icant information concerning syntactic units
and relations is expressed at word-level. There
is ample evidence that the application of read-
ily available statistical parsing models to such
languages is susceptible to serious perfor-
mance degradation. The first workshop on sta-
tistical parsing of MRLs hosts a variety of con-
tributions which show that despite language-
specific idiosyncrasies, the problems associ-
ated with parsing MRLs cut across languages
and parsing frameworks. In this paper we re-
view the current state-of-affairs with respect
to parsing MRLs and point out central chal-
lenges. We synthesize the contributions of re-
searchers working on parsing Arabic, Basque,
French, German, Hebrew, Hindi and Korean
to point out shared solutions across languages.
The overarching analysis suggests itself as a
source of directions for future investigations.

1 Introduction

The availability of large syntactically annotated cor-
pora led to an explosion of interest in automati-
cally inducing models for syntactic analysis and dis-
ambiguation calledstatistical parsers. The devel-
opment of successful statistical parsing models for
English focused on the Wall Street Journal Penn
Treebank (PTB, (Marcus et al., 1993)) as the pri-
mary, and sometimes only, resource. Since the ini-
tial release of the Penn Treebank (PTB Marcus et

al. (1993)), many different constituent-based parsing
models have been developed in the context of pars-
ing English (e.g. (Magerman, 1995; Collins, 1997;
Charniak, 2000; Chiang, 2000; Bod, 2003; Char-
niak and Johnson, 2005; Petrov et al., 2006; Huang,
2008; Finkel et al., 2008; Carreras et al., 2008)).
At their time, each of these models improved the
state-of-the-art, bringing parsing performance on the
standard test set of the Wall-Street-Journal to a per-
formance ceiling of 92% F1-score using the PARS-
EVAL evaluation metrics (Black et al., 1991). Some
of these parsers have been adapted to other lan-
guage/treebank pairs, but many of these adaptations
have been shown to be considerably less successful.

Among the arguments that have been proposed
to explain this performance gap are the impact of
small data sets, differences in treebanks’ annotation
schemes, and inadequacy of the widely used PARS-
EVAL evaluation metrics. None of these aspects in
isolation can account for the systematic performance
deterioration, but observed from a wider, cross-
linguistic perspective, a picture begins to emerge –
that the morphologically rich nature of some of the
languages makes them inherently more susceptible
to such performance degradation. Linguistic factors
associated with MRLs, such as a large inventory of
word-forms, higher degrees of word order freedom,
and the use of morphological information in indi-
cating syntactic relations, makes them substantially
harder to parse with models and techniques that have
been developed with English data in mind.

1

In addition to these technical and linguistic fac-
tors, the prominence of English parsing in the litera-
ture reduces the visibility of research aiming to solve
problems particular to MRLs. The lack of stream-
lined communication among researchers working
on different MRLs often leads to areinventing the
wheelsyndrome. To circumvent this, the first work-
shop on Statistical Parsing of Morphologically Rich
Languages (SPMRL 2010) offers a platform for
this growing community to share their views of the
different problems and oftentimes similar solutions.

We identify three main types of challenges, each
of which raises many questions. Many of the ques-
tions are yet to be conclusively answered. The first
type of challenges has to do with the architectural
setup of parsing MRLs:What is the nature of the in-
put? Can words be represented abstractly to reflect
shared morphological aspects? How can we cope
with morphological segmentation errors propagated
through the pipeline?The second type concerns the
representation of morphological information inside
the articulated syntactic model:Should morpholog-
ical information be encoded at the level of PoS tags?
On dependency relations? On top of non-terminals
symbols? How should the integrated representations
be learned and used? A final genuine challenge
has to do with sound estimation for lexical probabil-
ities: Given the finite, and often rather small, set of
data, and the large number of morphological analy-
ses licensed by rich inflectional systems, how can we
analyze words unseen in the training data?

Many of the challenges reported here are mostly
irrelevant when parsing Section 23 of thePTB but
they are of primordial importance in other tasks, in-
cluding out-of-domain parsing, statistical machine
translation, and parsing resource-poor languages.
By synthesizing the contributions to the workshop
and bringing it to the forefront, we hope to advance
the state of the art of statistical parsing in general.

In this paper we therefore take the opportunity
to analyze the knowledge that has been acquired in
the different investigations for the purpose of iden-
tifying main bottlenecks and pointing out promising
research directions. In section 2, we define MRLs
and identify syntactic characteristics associated with
them. We then discuss work on parsing MRLs in
both the dependency-based and constituency-based
setup. In section 3, we review the types of chal-

lenges associated with parsing MRLs across frame-
works. In section 4, we focus on the contributions to
the SPMRL workshop and identify recurring trends
in the empirical results and conceptual solutions. In
section 5, we analyze the emerging picture from a
bird’s eye view, and conclude that many challenges
could be more faithfully addressed in the context of
parsing morphologically ambiguous input.

2 Background

2.1 What are MRLs?

The term Morphologically Rich Languages (MRLs)
is used in the CL/NLP literature to refer to languages
in which substantial grammatical information, i.e.,
information concerning the arrangement of words
into syntactic units or cues to syntactic relations, is
expressed at word level.

The common linguistic and typological wisdom is
that “morphology competes with syntax” (Bresnan,
2001). In effect, this means thatrich morphology
goes hand in hand with a host ofnonconfigurational
syntactic phenomena of the kind discussed by Hale
(1983). Because information about the relations be-
tween syntactic elements is indicated in the form of
words, these words can freely change their positions
in the sentence. This is referred to asfree word or-
der (Mithun, 1992). Information about the group-
ing of elements together can further be expressed by
reference to their morphological form. Such logical
groupings of disparate elements are often calleddis-
continuous constituents. In dependency structures,
such discontinuities imposenonprojectivity. Finally,
rich morphological information is found in abun-
dance in conjunction with so-calledpro-dropor zero
anaphora. In such cases, rich morphological infor-
mation in the head (or co-head) of the clause of-
ten makes it possible to omit an overt subject which
would be semantically impoverished.

English, the most heavily studied language within
the CL/NLP community, is not an MRL. Even
though a handful of syntactic features (such as per-
son and number) are reflected in the form of words,
morphological information is often secondary to
other syntactic factors, such as the position of words
and their arrangement into phrases. German, an
Indo-European language closely related to English,
already exhibits some of the properties that make

2

parsing MRLs problematic. The Semitic languages
Arabic and Hebrew show an even more extreme case
in terms of the richness of their morphological forms
and the flexibility in their syntactic ordering.

2.2 Parsing MRLs

Pushing the envelope of constituency parsing:
The Head-Driven models of the type proposed
by Collins (1997) have been ported to parsing
many MRLs, often via the implementation of Bikel
(2002). For Czech, the adaptation by Collins et al.
(1999) culminated in an 80 F1-score.

German has become almost an archetype of the
problems caused by MRLs; even though German
has a moderately rich morphology and a moder-
ately free word order, parsing results are far from
those for English (see (K̈ubler, 2008) and references
therein). Dubey (2005) showed that, for German
parsing, adding case and morphology information
together with smoothed markovization and an ade-
quate unknown-word model is more important than
lexicalization (Dubey and Keller, 2003).

For Modern Hebrew, Tsarfaty and Sima’an (2007)
show that a simple treebank PCFG augmented with
parent annotation and morphological information as
state-splits significantly outperforms Head-Driven
markovized models of the kind made popular by
Klein and Manning (2003). Results for parsing
Modern Standard Arabic using Bikel’s implemen-
tation on gold-standard tagging and segmentation
have not improved substantially since the initial re-
lease of the treebank (Maamouri et al., 2004; Kulick
et al., 2006; Maamouri et al., 2008).

For Italian, Corazza et al. (2004) used the Stan-
ford parser and Bikel’s parser emulation of Collins’
model 2 (Collins, 1997) on the ISST treebank, and
obtained significantly lower results compared to En-
glish. It is notable that these models were ap-
plied without adding morphological signatures, us-
ing gold lemmas instead. Corazza et al. (2004) fur-
ther tried different refinements including parent an-
notation and horizontal markovization, but none of
them obtained the desired improvement.

For French, Crabb́e and Candito (2008) and Sed-
dah et al. (2010) show that, given a corpus compara-
ble in size and properties (i.e. the number of tokens
and grammar size), the performance level, both for
Charniak’s parser (Charniak, 2000) and the Berke-

ley parser (Petrov et al., 2006) was higher for pars-
ing thePTB than it was for French. The split-merge-
smooth implementation of (Petrov et al., 2006) con-
sistently outperform various lexicalized and unlexi-
calized models for French (Seddah et al., 2009) and
for many other languages (Petrov and Klein, 2007).
In this respect, (Petrov et al., 2006) is considered
MRL-friendly, due to its language agnostic design.

The rise of dependency parsing: It is commonly
assumed that dependency structures are better suited
for representing the syntactic structures of free word
order, morphologically rich, languages, because this
representation format does not rely crucially on the
position of words and the internal grouping of sur-
face chunks (Mel’̌cuk, 1988). It is an entirely differ-
ent question, however, whether dependency parsers
are in fact better suited for parsing such languages.

The CoNLL shared tasks on multilingual depen-
dency parsing in 2006 and 2007 (Buchholz and
Marsi, 2006; Nivre et al., 2007a) demonstrated that
dependency parsing for MRLs is quite challenging.
While dependency parsers are adaptable to many
languages, as reflected in the multiplicity of the lan-
guages covered,1 the analysis by Nivre et al. (2007b)
shows that the best result was obtained for English,
followed by Catalan, and that the most difficult lan-
guages to parse were Arabic, Basque, and Greek.
Nivre et al. (2007a) drew a somewhat typological
conclusion, that languages with rich morphology
and free word order are the hardest to parse. This
was shown to be the case for both MaltParser (Nivre
et al., 2007c) and MST (McDonald et al., 2005), two
of the best performing parsers on the whole.

Annotation and evaluation matter: An emerg-
ing question is therefore whether models that have
been so successful in parsing English are necessar-
ily appropriate for parsing MRLs – but associated
with this question are important questions concern-
ing the annotation scheme of the related treebanks.
Obviously, when annotating structures for languages
with characteristics different than English one has to
face different annotation decisions, and it comes as
no surprise that the annotated structures for MRLs
often differ from those employed in thePTB.

1The shared tasks involved 18 languages, including many
MRLs such as Arabic, Basque, Czech, Hungarian, and Turkish.

3

For Spanish and French, it was shown by Cowan
and Collins (2005) and in (Arun and Keller, 2005;
Schluter and van Genabith, 2007), that restructuring
the treebanks’ native annotation scheme to match
the PTB annotation style led to a significant gain in
parsing performance of Head-Driven models of the
kind proposed in (Collins, 1997). For German, a
language with four different treebanks and two sub-
stantially different annotation schemes, it has been
shown that a PCFG parser is sensitive to the kind of
representation employed in the treebank.

Dubey and Keller (2003), for example, showed
that a simple PCFG parser outperformed an emula-
tion of Collins’ model 1 on NEGRA. They showed
that using sister-head dependencies instead of head-
head dependencies improved parsing performance,
and hypothesized that it is due to the flatness of
phrasal annotation. K̈ubler et al. (2006) showed con-
siderably lower PARSEVAL scores on NEGRA (Skut
et al., 1998) relative to the more hierarchically struc-
tured T̈uBa-D/Z (Hinrichs et al., 2005), again, hy-
pothesizing that this is due to annotation differences.

Related to such comparisons is the question of the
relevance of the PARSEVAL metrics for evaluating
parsing results across languages and treebanks. Re-
hbein and van Genabith (2007) showed that PARS-
EVAL measures are sensitive to annotation scheme
particularities (e.g. the internal node ratio). It was
further shown that different metrics (i.e. the Leaf-
ancestor path (Sampson and Babarczy, 2003) and
dependency based ones in (Lin, 1995)) can lead to
different performance ranking. This was confirmed
also for French by Seddah et al. (2009).

The questions of how to annotate treebanks for
MRLs and how to evaluate the performance of the
different parsers on these different treebanks is cru-
cial. For the MRL parsing community to be able to
assess the difficulty of improving parsing results for
French, German, Arabic, Korean, Basque, Hindi or
Hebrew, we ought to first address fundamental ques-
tions including: Is the treebank sufficiently large
to allow for proper grammar induction? Does the
annotation scheme fit the language characteristics?
Does the use ofPTB annotation variants for other
languages influence parsing results? Does the space-
delimited tokenization allow for phrase boundary
detection? Do the results for a specific approach
generalize to more than one language?

3 Primary Research Questions

It is firmly established in theoretical linguistics that
morphology and syntax closely interact through pat-
terns of case marking, agreement, clitics and various
types of compounds. Because of such close interac-
tions, we expect morphological cues to help parsing
performance. But in practice, when trying to incor-
porate morphological information into parsing mod-
els, three types of challenges present themselves:

Architecture and Setup: When attempting to
parse complex word-forms that encapsulate both
lexical and functional information, important archi-
tectural questions emerge, namely, what is the na-
ture of the input that is given to the parsing system?
Does the system attempt to parse sequences of words
or does it aim to assign structures to sequences of
morphological segments? If the former is the case,
how can we represent words abstractly so as to re-
flect shared morphological aspects between them?
If the latter is the case, how can we arrive at a good
enough morphological segmentation for the purpose
of statistical parsing, given raw input texts?

When working with morphologically rich lan-
guages such as Hebrew or Arabic, affixes may have
syntactically independent functions. Many parsing
models assume segmentation of the syntactically in-
dependent parts, such as prepositions or pronominal
clitics, prior to parsing. But morphological segmen-
tation requires disambiguation which is non-trivial,
due to case syncretism and high morphological am-
biguity exhibited by rich inflectional systems. The
question is then when should we disambiguate the
morphological analyses of input forms? Should we
do that prior to parsing or perhaps jointly with it?2

Representation and Modeling: Assuming that
the input to our system reflects morphological infor-
mation, one way or another, whichtypesof morpho-

2Most studies on parsing MRLs nowadays assume the gold
standard segmentation and disambiguated morphological infor-
mation as input. This is the case, for instance, for the Arabic
parsing at CoNLL 2007 (Nivre et al., 2007a). This practice de-
ludes the community as to the validity of the parsing results
reported for MRLs in shared tasks. Goldberg et al. (2009), for
instance, show a gap of up to 6pt F1-score between performance
on gold standard segmentation vs. raw text. One way to over-
come this is to devise joint morphological and syntactic disam-
biguation frameworks (cf. (Goldberg and Tsarfaty, 2008)).

4

logical information should we include in the parsing
model? Inflectional and/or derivational? Case infor-
mation and/or agreement features? How can valency
requirements reflected in derivational morphology
affect the overall syntactic structure? In tandem with
the decision concerning the morphological informa-
tion to include, we face genuine challenges concern-
ing how to represent such information in the syntac-
tic model, be it constituency-based or dependency-
based. Should we encode morphological informa-
tion at the level of PoS tags and/or on top of syn-
tactic elements? Should we decorate non-terminals
nodes and/or dependency arcs or both?

Incorporating morphology in the statistical model
is often even more challenging than the sum of
these bare decisions, because of the nonconfigu-
rational structures (free word order, discontinuous
constituents) for rich markings are crucial (Hale,
1983). The parsing models designed for English of-
ten focus on learning rigid word order, and they do
not take morphological information into account (cf.
developing parsers for German (Dubey and Keller,
2003; Kübler et al., 2006)). The more complex ques-
tion is therefore: what type of parsing model should
we use for parsing MRLs? shall we use a general
purpose implementation and attempt to amend it?
how? or perhaps we should devise a new model from
first principles, to address nonconfigurational phe-
nomena effectively? using what form of representa-
tion? is it possible to find a single model that can
effectively cope with different kinds of languages?

Estimation and Smoothing: Compared to En-
glish, MRLs tend to have a greater number of word
forms and higher out-of-vocabulary (OOV) rates,
due to the many feature combinations licensed by
the inflectional system. A typical problem associ-
ated with parsing MRLs is substantial lexical data
sparseness due to high morphological variation in
surface forms. The question is therefore, given our
finite, and often fairly small, annotated sets of data,
how can we guess the morphological analyses, in-
cluding the PoS tag assignment and various features,
of an OOV word? How can we learn the probabil-
ities of such assignments? In a more general setup,
this problem is akin to handling out-of-vocabulary
or rare words for robust statistical parsing, and tech-
niques for domain adaptation via lexicon enhance-

Constituency-Based Dependency-Based

Arabic (Attia et al., 2010) (Marton et al., 2010)†

Basque - (Bengoetxea and Gojenola, 2010)
English (Attia et al., 2010) -
French (Attia et al., 2010)

(Seddah et al., 2010)
(Candito and Seddah, 2010)† -

German (Maier, 2010) -
Hebrew (Tsarfaty and Sima’an, 2010) (Goldberg and Elhadad, 2010)†

Hindi - (Ambati et al., 2010a)†
(Ambati et al., 2010b)

Korean (Chung et al., 2010) -

Table 1: An overview of SPMRL contributions. († report
results also for non-gold standard input)

ment (also explored for English and other morpho-
logically impoverished languages).

So, in fact, incorporating morphological informa-
tion inside the syntactic model for the purpose of
statistical parsing is anything but trivial. In the next
section we review the various approaches taken in
the individual contributions of the SPMRL work-
shop for addressing such challenges.

4 Parsing MRLs: Recurring Trends

The first workshop on parsing MRLs features 11
contributions for a variety of languages with a
range of different parsing frameworks. Table 1 lists
the individual contributions within a cross-language
cross-framework grid. In this section, we focus on
trends that occur among the different contributions.
This may be a biased view since some of the prob-
lems that exist for parsing MRLs may have not been
at all present, but it is a synopsis of where we stand
with respect to problems that are being addressed.

4.1 Architecture and Setup: Gold vs. Predicted
Morphological Information

While morphological information can be very infor-
mative for syntactic analysis, morphological anal-
ysis of surface forms is ambiguous in many ways.
In German, for instance, case syncretism (i.e. a sin-
gle surface form corresponding to different cases) is
pervasive, and in Hebrew and Arabic, the lack of vo-
calization patterns in written texts leads to multiple
morphological analyses for each space-delimited to-
ken. In real world situations, gold morphological in-
formation is not available prior to parsing. Can pars-
ing systems make effective use of morphology even
when gold morphological information is absent?

5

Several papers address this challenge by present-
ing results for both the gold and the automatically
predicted PoS and morphological information (Am-
bati et al., 2010a; Marton et al., 2010; Goldberg and
Elhadad, 2010; Seddah et al., 2010). Not very sur-
prisingly, all evaluated systems show a drop in pars-
ing accuracy in the non-gold settings.

An interesting trend is that in many cases, us-
ing noisy morphological information is worse than
not using any at all. For Arabic Dependency pars-
ing, using predicted CASE causes a substantial drop
in accuracy while it greatly improves performance
in the gold setting (Marton et al., 2010). For
Hindi Dependency Parsing, using chunk-internal
cues (i.e. marking non-recursive phrases) is benefi-
cial when gold chunk-boundaries are available, but
suboptimal when they are automatically predicted
(Ambati et al., 2010a). For Hebrew Dependency
Parsing with theMST parser, using gold morpholog-
ical features shows no benefit over not using them,
while using automatically predicted morphological
features causes a big drop in accuracy compared to
not using them (Goldberg and Elhadad, 2010). For
French Constituency Parsing, Seddah et al. (2010)
and Candito and Seddah (2010) show that while
gold information for the part-of-speech and lemma
of each word form results in a significant improve-
ment, the gain is low when switching to predicted
information. Reassuringly, Ambati et al. (2010a),
Marton et al. (2010), and Goldberg and Elhadad
(2010) demonstrate that some morphological infor-
mation can indeed be beneficial for parsing even in
the automatic setting. Ensuring that this is indeed
so, appears to be in turn linked to the question of
how morphology is represented and incorporated in
the parsing model.

The same effect in a different guise appears in
the contribution of Chung et al. (2010) concerning
parsing Korean. Chung et al. (2010) show a sig-
nificant improvement in parsing accuracy when in-
cluding traces of null anaphors (a.k.a.pro-drop) in
the input to the parser. Just like overt morphology,
traces and null elements encapsulate functional in-
formation about relational entities in the sentence
(the subject, the object, etc.), and including them at
the input level provides helpful disambiguating cues
for the overall structure that represents such rela-
tions. However, assuming that such traces are given

prior to parsing is, for all practical purposes, infeasi-
ble. This leads to an interesting question: will iden-
tifying such functional elements (marked as traces,
overt morphology, etc)during parsing, while com-
plicating that task itself, be on the whole justified?

Closely linked to the inclusion of morphological
information in the input is the choice of PoS tag set
to use. The generally accepted view is that fine-
grained PoS tags are morphologically more informa-
tive but may be harder to statistically learn and parse
with, in particular in the non-gold scenario. Mar-
ton et al. (2010) demonstrate that a fine-grained tag
set provides the best results for Arabic dependency
parsing when gold tags are known, while a much
smaller tag set is preferred in the automatic setting.

4.2 Representation and Modeling:
Incorporating Morphological Information

Many of the studies presented here explore the use
of feature representation of morphological informa-
tion for the purpose of syntactic parsing (Ambati et
al., 2010a; Ambati et al., 2010b; Bengoetxea and
Gojenola, 2010; Goldberg and Elhadad, 2010; Mar-
ton et al., 2010; Tsarfaty and Sima’an, 2010). Clear
trends among the contributions emerge concerning
thekindof morphological information that helps sta-
tistical parsing. Morphological CASE is shown to be
beneficial across the board. It is shown to help for
parsing Basque, Hebrew, Hindi and to some extent
Arabic.3 Morphological DEFINITENESSand STATE

are beneficial for Hebrew and Arabic when explic-
itly represented in the model. STATE, ASPECTand
MOOD are beneficial for Hindi, but only marginally
beneficial for Arabic. CASE and SUBORDINATION-
TYPE are the most beneficial features for Basque
transition-based dependency parsing.

A closer view into the results mentioned in the
previous paragraph suggests that, beyond the kind
of information that is being used, the way in which
morphological information is represented and used
by the model has substantial ramification as to
whether or not it leads to performance improve-
ments. The so-called “agreement features” GEN-
DER, NUMBER, PERSON, provide for an interesting
case study in this respect. When included directly as

3For Arabic, CASE is useful when gold morphology infor-
mation is available, but substantially hurt results when it is not.

6

machine learning features, agreement features ben-
efit dependency parsing for Arabic (Marton et al.,
2010), but not Hindi (dependency) (Ambati et al.,
2010a; Ambati et al., 2010b) or Hebrew (Goldberg
and Elhadad, 2010). When represented as simple
splits of non-terminal symbols, agreement informa-
tion does not help constituency-based parsing per-
formance for Hebrew (Tsarfaty and Sima’an, 2010).
However, when agreement patterns are directly rep-
resented on dependency arcs, they contribute an im-
provement for Hebrew dependency parsing (Gold-
berg and Elhadad, 2010). When agreement is en-
coded at the realization level inside a Relational-
Realizational model (Tsarfaty and Sima’an, 2008),
agreement features improve the state-of-the-art for
Hebrew parsing (Tsarfaty and Sima’an, 2010).

One of the advantages of the latter study is that
morphological information which is expressed at the
level of words gets interpreted elsewhere, on func-
tional elements higher up the constituency tree. In
dependency parsing, similar cases may arise, that
is, morphological information might not be as use-
ful on the form on which it is expressed, but would
be more useful at a different position where it could
influence the correct attachment of the main verb
to other elements. Interesting patterns of that sort
occur in Basque, where the SUBORDINATIONTYPE

morpheme attaches to the auxiliary verb, though it
mainly influences attachments to the main verb.

Bengoetxea and Gojenola (2010) attempted two
different ways to address this, one using a trans-
formation segmenting the relevant morpheme and
attaching it to the main verb instead, and another
by propagating the morpheme along arcs, through
a “stacking” process, to where it is relevant. Both
ways led to performance improvements. The idea of
a segmentation transformation imposes non-trivial
pre-processing, but it may be that automatically
learning the propagation of morphological features
is a promising direction for future investigation.

Another, albeit indirect, way to include morpho-
logical information in the parsing model is using
so-called latent information or some mechanism
of clustering. The general idea is the following:
when morphological information is added to stan-
dard terminal or non-terminal symbols, it imposes
restrictions on the distribution of these no-longer-
equivalent elements. Learning latent informa-

tion does not represent morphological information
directly, but presumably, the distributional restric-
tions can be automatically learned along with the
splits of labels symbols in models such as (Petrov
et al., 2006). For Korean (Chung et al., 2010),
latent information contributes significant improve-
ments. One can further do the opposite, namely,
merging terminals symbols for the purpose of ob-
taining an abstraction over morphological features.
When such clustering uses a morphological signa-
ture of some sort, it is shown to significantly im-
prove constituency-based parsing for French (Can-
dito and Seddah, 2010).

4.3 Representation and Modeling: Free Word
Order and Flexible Constituency Structure

Off-the-shelf parsing tools are found in abundance
for English. One problematic aspect of using them
to parse MRLs lies in the fact that these tools fo-
cus on the statistical modeling ofconfigurational
information. These models often condition on the
position of words relative to one another (e.g. in
transition-based dependency parsing) or on the dis-
tance between words inside constituents (e.g. in
Head-Driven parsing). Many of the contributions to
the workshop show that working around existing im-
plementations may be insufficient, and we may have
to come up with more radical solutions.

Several studies present results that support the
conjecture that when free word-order is explicitly
taken into account, morphological information is
more likely to contribute to parsing accuracy. The
Relational-Realizational model used in (Tsarfaty
and Sima’an, 2010) allows for reordering of con-
stituents at a configuration layer, which is indepen-
dent of the realization patterns learned from the data
(vis-à-vis case marking and agreement). The easy-
first algorithm of (Goldberg and Elhadad, 2010)
which allows for significant flexibility in the order of
attachment, allows the model to benefit from agree-
ment patterns over dependency arcs that are easier
to detect and attach first. The use of larger subtrees
in (Chung et al., 2010) for parsing Korean, within a
Bayesian framework, allows the model to learn dis-
tributions that take more elements into account, and
thus learn the different distributions associated with
morphologically marked elements in constituency
structures, to improve performance.

7

In addition to free word order, MRLs show higher
degree of freedom in extraposition. Both of these
phenomena can result in discontinuous structures.
In constituency-based treebanks, this is either an-
notated as additional information which has to be
recovered somehow (traces in the case of thePTB,
complex edge labels in the German TüBa-D/Z), or
as discontinuous phrase structures, which cannot be
handled with current PCFG models. Maier (2010)
suggests the use of Linear Context-Free Rewriting
Systems (LCFRSs) in order to make discontinuous
structure transparent to the parsing process and yet
preserve familiar notions from constituency.

Dependency representation uses non-projective
dependencies to reflect discontinuities, which is
problematic to parse with models that assume pro-
jectivity. Different ways have been proposed to deal
with non-projectivity (Nivre and Nilsson, 2005; Mc-
Donald et al., 2005; McDonald and Pereira, 2006;
Nivre, 2009). Bengoetxea and Gojenola (2010)
discuss non-projective dependencies in Basque and
show that the pseudo-projective transformation of
(Nivre and Nilsson, 2005) improves accuracy for de-
pendency parsing of Basque. Moreover, they show
that in combination with other transformations, it
improves the utility of these other ones, too.

4.4 Estimation and Smoothing: Coping with
Lexical Sparsity

Morphological word form variation augments the
vocabulary size and thus worsens the problem of lex-
ical data sparseness. Words occurring with medium-
frequency receive less reliable estimates, and the
number of rare/unknown words is increased. One
way to cope with the one of both aspects of this
problem is throughclustering, that is, providing an
abstract representation over word forms that reflects
their shared morphological and morphosyntactic as-
pects. This was done, for instance, in previous work
on parsing German. Versley and Rehbein (2009)
cluster words according to linear context features.
These clusters include valency information added to
verbs and morphological features such as case and
number added to pre-terminal nodes. The clusters
are then integrated as features in a discriminative
parsing model to cope with unknown words. Their
discriminative model thus obtains state-of-the-art re-
sults on parsing German.

Several contribution address similar challenges.
For constituency-based generative parsers, the sim-
ple technique of replacing word forms with more
abstract symbols is investigated by (Seddah et al.,
2010; Candito and Seddah, 2010). For French, re-
placing each word form by its predicted part-of-
speech and lemma pair results in a slight perfor-
mance improvement (Seddah et al., 2010). When
words are clustered, even according to a very local
linear-context similarity measure, measured over a
large raw corpus, and when word clusters are used in
place of word forms, the gain in performance is even
higher (Candito and Seddah, 2010). In both cases,
the technique provides more reliable estimates for
in-vocabulary words, since a given lemma or cluster
appear more frequently. It also increases the known
vocabulary. For instance, if a plural form is un-
seen in the training set but the corresponding singu-
lar form is known, then in a setting of using lemmas
in terminal symbols, both forms are known.

For dependency parsing, Marton et al. (2010) in-
vestigates the use of morphological features that in-
volve some semantic abstraction over Arabic forms.
The use of undiacritized lemmas is shown to im-
prove performance. Attia et al. (2010) specifically
address the handling of unknown words in the latent-
variable parsing model. Here again, the technique
that is investigated is to project unknown words to
more general symbols using morphological clues. A
study on three languages, English, French and Ara-
bic, shows that this method helps in all cases, but
that the greatest improvement is obtained for Arabic,
which has the richest morphology among three.

5 Where we’re at

It is clear from the present overview that we are
yet to obtain a complete understanding concerning
which models effectively parse MRLs, how to an-
notate treebanks for MRLs and, importantly, how
to evaluate parsing performance across types of lan-
guages and treebanks. These foundational issues are
crucial for deriving more conclusive recommenda-
tions as to the kind of models and morphological
features that can lead to advancing the state-of-the-
art for parsing MRLs. One way to target such an
understanding would be to encourage the investiga-
tion of particular tasks, individually or in the context

8

of shared tasks, that are tailored to treat those prob-
lematic aspects of MRLs that we surveyed here.

So far, constituency-based parsers have been as-
sessed based on their performance on thePTB (and
to some extent, across German treebanks (Kübler,
2008)) whereas comparison across languages was
rendered opaque due to data set differences and
representation idiosyncrasies. It would be interest-
ing to investigate such a cross-linguistic compari-
son of parsers in the context of a shared task on
constituency-based statistical parsing, in additional
to dependency-based ones as reported in (Nivre et
al., 2007a). Standardizing data sets for a large
number of languages with different characteristics,
would require us, as a community, to aim for
constituency-representation guidelines that can rep-
resent the shared aspects of structures in different
languages, while at the same time allowing differ-
ences between them to be reflected in the model.

Furthermore, it would be a good idea to intro-
duce parsing tasks, for either constituent-based or
dependency-based setups, which consider raw text
as input, rather than morphologically segmented
and analyzed text. Addressing the parsing prob-
lem while facing the morphological disambiguation
challenge in its full-blown complexity would be il-
luminating and educating for at least two reasons:
firstly, it would give us a better idea of what is the
state-of-the-art for parsing MRLs in realistic scenar-
ios. Secondly, it might lead to profound insights
about the potentially successful ways to use mor-
phology inside a parser, which may differ from the
insights concerning the use of morphology in the
less realistic parsing scenarios, where gold morpho-
logical information is given.

Finally, to be able to perceive where we stand
with respect to parsing MRLs and how models fare
against one another across languages, it would be
crucial to arrive at evaluation metrics that capture
information that is shared among the different repre-
sentations, for instance, functional information con-
cerning predicate-argument relations. Using the dif-
ferent kinds of measures in the context of cross-
framework tasks will help us understand the util-
ity of the different evaluation metrics that have been
proposed and to arrive at a clearer picture of what it
is that we wish to compare, and how we can faith-
fully do so across models, languages and treebanks.

6 Conclusion

This paper presents the synthesis of 11 contributions
to the first workshop on statistical parsing for mor-
phologically rich languages. We have shown that
architectural, representational, and estimation issues
associated with parsing MRLs are found to be chal-
lenging across languages and parsing frameworks.
The use of morphological information in the non
gold-tagged input scenario is found to cause sub-
stantial differences in parsing performance, and in
the kind of morphological features that lead to per-
formance improvements.

Whether or not morphological features help pars-
ing also depends on the kind of model in which
they are embedded, and the different ways they are
treated within. Furthermore, sound statistical esti-
mation methods for morphologically rich, complex
lexica, turn out to be crucial for obtaining good pars-
ing accuracy when using general-purpose models
and algorithms. In the future we hope to gain better
understanding of the common pitfalls in, and novel
solutions for, parsing morphologically ambiguous
input, and to arrive at principled guidelines for se-
lecting the model and features to include when pars-
ing different kinds of languages. Such insights may
be gained, among other things, in the context of
more morphologically-aware shared parsing tasks.

Acknowledgements

The program committee would like to thank
NAACL for hosting the workshop and SIGPARSE
for their sponsorship. We further thank INRIA Al-
page team for their generous sponsorship. We are
finally grateful to our reviewers and authors for their
dedicated work and individual contributions.

References

Bharat Ram Ambati, Samar Husain, Sambhav Jain,
Dipti Misra Sharma, and Rajeev Sangal. 2010a. Two
methods to incorporate local morphosyntactic features
in Hindi dependency parsing. InProceedings of the
NAACL/HLT Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL 2010), Los An-
geles, CA.

Bharat Ram Ambati, Samar Husain, Joakim Nivre, and
Rajeev Sangal. 2010b. On the role of morphosyntactic
features in Hindi dependency parsing. InProceedings

9

of the NAACL/HLT Workshop on Statistical Parsing of
Morphologically Rich Languages (SPMRL 2010), Los
Angeles, CA.

Abhishek Arun and Frank Keller. 2005. Lexicalization
in crosslinguistic probabilistic parsing: The case of
French. InProceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics, pages
306–313, Ann Arbor, MI.

Mohammed Attia, Jennifer Foster, Deirdre Hogan,
Joseph Le Roux, Lamia Tounsi, and Josef van Gen-
abith. 2010. Handling unknown words in statistical
latent-variable parsing models for Arabic, English and
French. InProceedings of the NAACL/HLT Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2010), Los Angeles, CA.

Kepa Bengoetxea and Koldo Gojenola. 2010. Applica-
tion of different techniques to dependency parsing of
Basque. InProceedings of the NAACL/HLT Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2010), Los Angeles, CA.

Daniel M. Bikel. 2002. Design of a multi-lingual,
parallel-processing statistical parsing engine. InPro-
ceedings of the Second International Conference on
Human Language Technology Research, pages 178–
182. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage
of English grammars. InProceedings of the DARPA
Speech and Natural Language Workshop, pages 306–
311, San Mateo (CA). Morgan Kaufman.

Rens Bod. 2003. An efficient implementation of a new
DOP model. InProceedings of the tenth conference
on European chapter of the Association for Computa-
tional Linguistics, pages 19–26, Budapest, Hungary.

Joan Bresnan. 2001.Lexical-Functional Syntax. Black-
well, Oxford.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Language Learning (CoNLL), pages 149–164,
New York, NY.

Marie Candito and Djaḿe Seddah. 2010. Parsing word
clusters. InProceedings of the NAACL/HLT Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL 2010), Los Angeles, CA.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
TAG, dynamic programming, and the perceptron for
efficient, feature-rich parsing. InProceedings of the

Twelfth Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 9–16, Manchester,
UK.

Eugene Charniak and Mark Johnson. 2005. Course-to-
fine n-best-parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of the
ACL, pages 173–180, Barcelona, Spain, June.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the 1st Annual Meeting of the
North American Chapter of the ACL (NAACL), Seattle.

David Chiang. 2000. Statistical parsing with an
automatically-extracted Tree Adjoining Grammar. In
Proceedings of the 38th Annual Meeting on Associ-
ation for Computational Linguistics, pages 456–463,
Hong Kong. Association for Computational Linguis-
tics Morristown, NJ, USA.

Tagyoung Chung, Matt Post, and Daniel Gildea. 2010.
Factors affecting the accuracy of Korean parsing. In
Proceedings of the NAACL/HLT Workshop on Sta-
tistical Parsing of Morphologically Rich Languages
(SPMRL 2010), Los Angeles, CA.

Michael Collins, Jan Hajič, Lance Ramshaw, and
Christoph Tillmann. 1999. A statistical parser for
Czech. InProceedings of the 37th Annual Meeting
of the ACL, volume 37, pages 505–512, College Park,
MD.

Michael Collins. 1997. Three Generative, Lexicalized
Models for Statistical Parsing. InProceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics, pages 16–23, Madrid, Spain.

Anna Corazza, Alberto Lavelli, Giogio Satta, and
Roberto Zanoli. 2004. Analyzing an Italian treebank
with state-of-the-art statistical parsers. InProceedings
of the Third Third Workshop on Treebanks and Lin-
guistic Theories (TLT 2004), Tübingen, Germany.

Brooke Cowan and Michael Collins. 2005. Morphology
and reranking for the statistical parsing of Spanish. In
in Proceedins of EMNLP.

Benoit Crabb́e and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. InActes
de la 15̀eme Conf́erence sur le Traitement Automatique
des Langues Naturelles (TALN’08), pages 45–54, Avi-
gnon, France.

Amit Dubey and Frank Keller. 2003. Probabilistic pars-
ing for German using sister-head dependencies. InIn
Proceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 96–103,
Ann Arbor, MI.

Amit Dubey. 2005. What to do when lexicalization fails:
parsing German with suffix analysis and smoothing.
In 43rd Annual Meeting of the Association for Compu-
tational Linguistics.

10

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, conditional
random field parsing. InProceedings of ACL.

Yoav Goldberg and Michael Elhadad. 2010. Easy-
first dependency parsing of Modern Hebrew. InPro-
ceedings of the NAACL/HLT Workshop on Statistical
Parsing of Morphologically Rich Languages (SPMRL
2010), Los Angeles, CA.

Yoav Goldberg and Reut Tsarfaty. 2008. A single frame-
work for joint morphological segmentation and syntac-
tic parsing. InProceedings of the 46nd Annual Meet-
ing of the Association for Computational Linguistics.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set
mapping, and em-hmm-based lexical probabilities. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 327–335.

Kenneth L. Hale. 1983. Warlpiri and the grammar of
non-configurational languages.Natural Language and
Linguistic Theory, 1(1).

Erhard W. Hinrichs, Sandra K̈ubler, and Karin Naumann.
2005. A unified representation for morphological,
syntactic, semantic, and referential annotations. In
Proceedings of the ACL Workshop on Frontiers in Cor-
pus Annotation II: Pie in the Sky, pages 13–20, Ann
Arbor, MI.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProceedings of
ACL.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. InProceedings of ACL, pages
423–430.

Sandra K̈ubler, Erhard W. Hinrichs, and Wolfgang Maier.
2006. Is it really that difficult to parse German?
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, pages 111–
119, Sydney, Australia, July. Association for Compu-
tational Linguistics.

Sandra K̈ubler. 2008. The PaGe 2008 shared task on
parsing German. InProceedings of the Workshop on
Parsing German, pages 55–63. Association for Com-
putational Linguistics.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus. 2006.
Parsing the Arabic treebank: Analysis and improve-
ments. InProceedings of TLT.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InInternational
Joint Conference on Artificial Intelligence, pages
1420–1425, Montreal.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic treebank:

Building a large-scale annotated Arabic corpus. In
Proceedings of NEMLAR International Conference on
Arabic Language Resources and Tools.

Mohamed Maamouri, Ann Bies, and Seth Kulick. 2008.
Enhanced annotation and parsing of the Arabic tree-
bank. InProceedings of INFOS.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InProceedings of the 33rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 276–283, Cambridge, MA.

Wolfgang Maier. 2010. Direct parsing of discontin-
uous constituents in german. InProceedings of the
NAACL/HLT Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL 2010), Los An-
geles, CA.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

Yuval Marton, Nizar Habash, and Owen Rambow. 2010.
Improving Arabic dependency parsing with lexical and
inflectional morphological features. InProceedings of
the NAACL/HLT Workshop on Statistical Parsing of
Morphologically Rich Languages (SPMRL 2010), Los
Angeles, CA.

Ryan T. McDonald and Fernando C. N. Pereira. 2006.
Online learning of approximate dependency parsing
algorithms. InProc. of EACL’06.

Ryan T. McDonald, Koby Crammer, and Fernando C. N.
Pereira. 2005. Online large-margin training of depen-
dency parsers. InProc. of ACL’05, Ann Arbor, USA.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Marianne Mithun. 1992. Is basic word order universal?
In Doris L. Payne, editor,Pragmatics of Word Order
Flexibility. John Benjamins, Amsterdam.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. InProceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL), Ann Arbor, MI.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007a. The CoNLL 2007 shared task on depen-
dency parsing. InProceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL 2007, pages 915–932,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007b. The CoNLL 2007 shared task on dependency
parsing. InProceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 915–932.

11

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülşen Eryǐgit, Sandra K̈ubler, Svetoslav Marinov,
and Erwin Marsi. 2007c. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.

Joakim Nivre. 2009. Non-projective dependency parsing
in expected linear time. InProceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InHuman Language Tech-
nologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguis-
tics; Proceedings of the Main Conference.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of the 21st In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

Ines Rehbein and Josef van Genabith. 2007. Treebank
annotation schemes and parser evaluation for German.
In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), Prague, Czech Republic.

Geoffrey Sampson and Anna Babarczy. 2003. A test of
the leaf-ancestor metric for parse accuracy.Natural
Language Engineering, 9(04):365–380.

Natalie Schluter and Josef van Genabith. 2007. Prepar-
ing, restructuring, and augmenting a French Treebank:
Lexicalised parsers or coherent treebanks? InProc. of
PACLING 07, Melbourne, Australia.

Djamé Seddah, Marie Candito, and Benoit Crabbé. 2009.
Cross parser evaluation and tagset variation: A French
Treebank study. InProceedings of the 11th Interna-
tion Conference on Parsing Technologies (IWPT’09),
pages 150–161, Paris, France, October. Association
for Computational Linguistics.

Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu,
Josef van Genabith, and Marie Candito. 2010.
Lemmatization and statistical lexicalized parsing of
morphologically-rich languages. InProceedings of the
NAACL/HLT Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL 2010), Los An-
geles, CA.

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and
Hans Uszkoreit. 1998. A linguistically interpreted
corpus of German newspaper texts. InESSLLI
Workshop on Recent Advances in Corpus Annotation,
Saarbr̈ucken, Germany.

Reut Tsarfaty and Khalil Sima’an. 2007. Three-
dimensional parametrization for parsing morphologi-
cally rich languages. InProceedings of the 10th Inter-
national Conference on Parsing Technologies (IWPT),
pages 156–167.

Reut Tsarfaty and Khalil Sima’an. 2008. Relational-
Realizational parsing. InProceedings of the 22nd In-
ternational Conference on Computational Linguistics,
pages 889–896.

Reut Tsarfaty and Khalil Sima’an. 2010. Model-
ing morphosyntactic agreement in constituency-based
parsing of Modern Hebrew. InProceedings of the
NAACL/HLT Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL 2010), Los An-
geles, CA.

Yannick Versley and Ines Rehbein. 2009. Scalable dis-
criminative parsing for german. InProceedings of the
11th International Conference on Parsing Technolo-
gies (IWPT’09), pages 134–137, Paris, France, Octo-
ber. Association for Computational Linguistics.

12

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 13–21,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving Arabic Dependency Parsing

with Lexical and Inflectional Morphological Features

Yuval Marton, Nizar Habash and Owen Rambow
Center for Computational Learning Systems (CCLS)

Columbia University
{ymarton,habash,rambow}@ccls.columbia.edu

Abstract

We explore the contribution of different lexi-

cal and inflectional morphological features to

dependency parsing of Arabic, a morpholog-

ically rich language. We experiment with all

leading POS tagsets for Arabic, and introduce

a few new sets. We show that training the

parser using a simple regular expressive ex-

tension of an impoverished POS tagset with

high prediction accuracy does better than us-

ing a highly informative POS tagset with only

medium prediction accuracy, although the lat-

ter performs best on gold input. Using con-

trolled experiments, we find that definiteness

(or determiner presence), the so-called phi-

features (person, number, gender), and undi-

acritzed lemma are most helpful for Arabic

parsing on predicted input, while case and

state are most helpful on gold.

1 Introduction

Parsers need to learn the syntax of the modeled lan-

guage, in order to project structure on newly seen

sentences. Parsing model design aims to come up

with features that best help parsers to learn the syn-

tax and choose among different parses. One aspect

of syntax, which is often not explicitly modeled in

parsing, involves morphological constraints on syn-

tactic structure, such as agreement. In this paper, we

explore the role of morphological features in pars-

ing Modern Standard Arabic (MSA). For MSA, the

space of possible morphological features is fairly

large. We determine which morphological features

help and why, and we determine the upper bound for

their contribution to parsing quality.

We first present the corpus we use (§2), then rel-

evant Arabic linguistic facts (§3); we survey related

work (§4), describe our experiments (§5), and con-

clude with analysis of parsing error types (§6).

2 Corpus

We use the Columbia Arabic Treebank (CATiB)

(Habash and Roth, 2009). Specifically, we use the

portion converted from part 3 of the Penn Arabic

Treebank (PATB) (Maamouri et al., 2004) to the

CATiB format, which enriches the CATiB depen-

dency trees with full PATB morphological informa-

tion. CATiB’s dependency representation is based

on traditional Arabic grammar and emphasizes syn-

tactic case relations. It has a reduced POS tagset

(with six tags only), but a standard set of eight

dependency relations: SBJ and OBJ for subject

and (direct or indirect) object, respectively, (whether

they appear pre- or post-verbally); IDF for the idafa

(possessive) relation; MOD for most other modifica-

tions; and other less common relations that we will

not discuss here. For more information, see (Habash

and Roth, 2009). The CATiB treebank uses the word

segmentation of the PATB.1 It splits off several cat-

egories of orthographic clitics, but not the definite

article È@ Al. In all of the experiments reported in

this paper, we use the gold segmentation. An exam-

ple CATiB dependency tree is shown in Figure 1.2

3 Relevant Linguistic Concepts

Morphemes: At a shallow level, Arabic words can

be described in terms of their morphemes. In ad-

dition to concatenative prefixes and suffixes, Ara-

1Tokenization involves further decisions on the segmented

token forms, such as spelling normalization.
2All Arabic transliterations are presented in the HSB

transliteration scheme (Habash et al., 2007).

13

Figure 1: CATiB.
�éJ

	J£ñË@ �éJ.

�JºÖÏ @ ú

	̄ �éJ
»

	
YË@ I.

�KA¾Ë@ �ék. ð 	P ÉÒª�K

tςml zwj~ AlkAtb Alðky~ fy Almktb~ AlwTny~ ‘The writer’s

smart wife works at the national library.’ (Annotation example)

VRB

ÉÒª�K tςml

‘works’

SBJ

NOM
�ék. ð 	P zwj~
‘wife’

IDF

NOM

I.
�KA¾Ë@ AlkAtb
‘the-writer’

MOD

NOM
�éJ
»

	
YË@ Alðky~

‘smart’

MOD

PRT

ú

	̄
fy

‘in’

OBJ

NOM
�éJ.
�JºÖÏ @ Almktb~

‘library’

MOD

NOM
�éJ

	J£ñË@ AlwTny~

‘national’

bic has templatic morphemes called root and pat-

tern. For example, the word
	àñJ.

�KA¾K
 yu+kAtib+uwn
‘they correspond’ has one prefix and one suffix, in

addition to a stem composed of the root H.
�H¼ k-t-b

‘writing related’ and the pattern 1A2i3. 3

Lexeme and Features: At a deeper level, Arabic

words can be described in terms of sets of inflec-

tional and lexical morphological features. We first

discuss lexical features. The set of word forms that

only vary inflectionally among each other is called

the lexeme. A lemma is a particular word form used

to represent, or cite, the lexeme word set. For ex-

ample, verb lemmas are third person masculine sin-

gular perfective. We explore using both diacritized

lemma, and undiacritized lemma (lmm). Just as the

lemma abstracts over inflectional morphology, the

root abstracts over both inflectional and derivational

morphology and thus provides a deeper level of lex-

ical abstraction than the lemma. The pattern feature

is the pattern of the lemma of the lexeme, not of the

word form.

The inflectional morphological features4 define

the dimensions of Arabic inflectional morphology,

or the space of variations of a particular word.

PATB-tokenized words vary along nine dimensions:

3The digits in the pattern correspond to the positions root

radicals are inserted.
4The inflectional features we use in this paper are form-

based (illusory) as opposed to functional features (Smrž, 2007).

We plan to work with functional features in the future.

GENDER and NUMBER (for nominals and verbs);

PERSON, ASPECT, VOICE and MOOD (for verbs);

and CASE, STATE, and the attached definite article

proclitic DET (for nominals). The inflectional fea-

tures abstract away from the specifics of morpheme

forms, since they can affect more than one mor-

pheme in Arabic. For example, changing the value

of the aspect feature in the example above from im-

perfective to perfective yields the word form @ñJ.
�KA¿

kAtab+uwA ‘they corresponded’, which differs in

terms of prefix, suffix and pattern.

Inflectional features interact with syntax in two

ways. First, there are agreement features: two

words in a sentence which are in a specific syn-

tactic configuration have the same value for a spe-

cific set of features. In MSA, we have subject-

verb agreement on PERSON, GENDER, and NUMBER

(but NUMBER only if the subject precedes the verb),

and we have noun-adjective agreement in PERSON,

NUMBER, GENDER, and DET.5 Second, morphol-

ogy can show a specific syntactic configuration on

a single word. In MSA, we have CASE and STATE

marking. Different types of dependents have differ-

ent CASE; for example, verbal subjects are always

marked NOMINATIVE. CASE and STATE are rarely

explicitly manifested in undiacritized MSA.

Lexical features do not participate in syntactic

constraints on structure as inflectional features do.

Instead, bilexical dependencies are used in parsing

to model semantic relations which often are the only

way to disambiguate among different possible syn-

tactic structures; lexical features provide a way of

reducing data sparseness through lexical abstraction.

We compare the effect on parsing of different sub-

sets of lexical and inflectional features. Our hypoth-

esis is that the inflectional features involved in agree-

ment and the lexical features help parsing.

The core POS tagsets: Words also have associ-

ated part-of-speech (POS) tags, e.g., “verb”, which

further abstract over morphologically and syntac-

tically similar lexemes. Traditional Arabic gram-

mars often describe a very general three-way dis-

tinction into verbs, nominals and particles. In com-

parison, the tagset of the Buckwalter Morphologi-

cal Analyzer (Buckwalter, 2004) used in the PATB

has a core POS set of 44 tags (before morphologi-

5We do not explicitly address here agreement phenomena

that require more complex morpho-syntactic modeling. These

include adjectival modifiers of irrational (non-human) plural

nominals, and pre-nominal number modifiers.

14

cal extension). Henceforth, we refer to this tagset

as CORE44. Cross-linguistically, a core set con-

taining around 12 tags is often assumed, including:

noun, proper noun, verb, adjective, adverb, preposi-

tion, particles, connectives, and punctuation. Hence-

forth, we reduce CORE44 to such a tagset, and dub

it CORE12. The CATIB6 tagset can be viewed as

a further reduction, with the exception that CATIB6

contains a passive voice tag; however, it constitutes

only 0.5% of the tags in the training.

Extended POS tagsets: The notion of “POS

tagset” in natural language processing usually does

not refer to a core set. Instead, the Penn English

Treebank (PTB) uses a set of 46 tags, including not

only the core POS, but also the complete set of mor-

phological features (this tagset is still fairly small

since English is morphologically impoverished). In

modern standard Arabic (MSA), the corresponding

type of tagset (core POS extended with a complete

description of morphology) would contain upwards

of 2,000 tags, many of which are extremely rare (in

our training corpus of about 300,000 words, we en-

counter only 430 of such POS tags with complete

morphology). Therefore, researchers have proposed

tagsets for MSA whose size is similar to that of the

English PTB tagset, as this has proven to be a use-

ful size computationally. These tagsets are hybrids

in the sense that they are neither simply the core

POS, nor the complete morphological tagset, but in-

stead they choose certain morphological features to

include along with the core POS tag.

The following are the various tagsets we compare

in this paper: (a) the core POS tagsets CORE44 and

the newly introduced CORE12; (b) CATiB treebank

tagset (CATIB6) (Habash and Roth, 2009); and its

newly introduced extension, CATIBEX, by greedy

regular expressions indicating particular morphemes

such as the prefix È@ Al+ or the suffix
	àð +wn.6

(c) the PATB full tagset (BW), size ≈2000+ (Buck-

walter, 2004); and two extensions of the PATB re-

duced tagset (PENN POS, a.k.a. RTS, size 24), both

outperforming it: (d) Kulick et al. (2006)’s tagset

(KULICK), size ≈43, one of whose most impor-

tant extensions is the marking of the definite arti-

cle clitic, and (e) Diab and BenAjiba (2010)’s EX-

TENDED RTS tagset (ERTS), which marks gender,

number and definiteness, size ≈134; Besides using

morphological information to extend POS tagsets,

6Inspired by a similar extension in Habash and Roth (2009).

we explore using it in separate features in parsing

models. Following this exploration, we also extend

CORE12, producing (f) CORE12EX (see Section 5

for details).

4 Related Work

Much work has been done on the use of morpho-

logical features for parsing of morphologically rich

languages. Collins et al. (1999) report that an op-

timal tagset for parsing Czech consists of a basic

POS tag plus a CASE feature (when applicable).

This tagset (size 58) outperforms the basic Czech

POS tagset (size 13) and the complete tagset (size

≈3000+). They also report that the use of gender,

number and person features did not yield any im-

provements. We get similar results for CASE in the

gold experimental setting but not when using pre-

dicted POS tags (POS tagger output). This may be

a result of CASE tagging having a lower error rate

in Czech (5.0%) (Hajič and Vidová-Hladká, 1998)

compared to Arabic (≈14.0%, see Table 3). Simi-

larly, Cowan and Collins (2005) report that the use

of a subset of Spanish morphological features (num-

ber for adjectives, determiners, nouns, pronouns,

and verbs; and mode for verbs) outperforms other

combinations. Our approach is comparable to their

work in terms of its systematic exploration of the

space of morphological features. We also find that

the number feature helps for Arabic. Looking at He-

brew, a Semitic language related to Arabic, Tsarfaty

and Sima’an (2007) report that extending POS and

phrase structure tags with definiteness information

helps unlexicalized PCFG parsing.

As for work on Arabic, results have been reported

on PATB (Kulick et al., 2006; Diab, 2007), the

Prague Dependency Treebank (PADT) (Buchholz

and Marsi, 2006; Nivre, 2008) and the Columbia

Arabic Treebank (CATiB) (Habash and Roth, 2009).

Besides the work we describe in §3, Nivre (2008)

reports experiments on Arabic parsing using his

MaltParser (Nivre et al., 2007), trained on the PADT.

His results are not directly comparable to ours be-

cause of the different treebanks representations and

tokenization used, even though all our experiments

reported here were performed using the MaltParser.

Our results agree with previous published work on

Arabic and Hebrew in that marking the definite ar-

ticle is helpful for parsing. However, we go beyond

previous work in that we also extend this morpho-

logically enhanced feature set to include additional

15

lexical and inflectional morphological features. Pre-

vious work with MaltParser in Russian, Turkish and

Hindi showed gains with case but not with agree-

ment features (Nivre et al., 2008; Eryigit et al., 2008;

Nivre, 2009). Our work is the first to show gains

using agreement in MaltParser and in Arabic depen-

dency parsing.

5 Experiments

5.1 Experimental Space

We examined a large space of settings including the

following: (a) the contribution of POS tagsets to the

parsing quality, as a function of the amount of in-

formation encoded in the tagset; (b) parsing perfor-

mance on gold vs. predicted POS and morphologi-

cal feature values for all models; (c) prediction accu-

racy of each POS tagset and morphological feature;

(d) the contribution of numerous morphological fea-

tures in a controlled fashion; and (e) the contribution

of certain feature and POS tagset combinations. All

results are reported mainly in terms of labeled at-

tachment accuracy (parent word and the dependency

relation to it). Unlabeled attachment accuracy and

label accuracy are also given, space permitting.

5.2 Parser

For all experiments reported here we used the syn-

tactic dependency parser MaltParser v1.3 (Nivre,

2003; Nivre, 2008; Kübler et al., 2009) – a

transition-based parser with an input buffer and a

stack, using SVM classifiers to predict the next

state in the parse derivation. All experiments were

done using the Nivre "eager" algorithm.7 We

trained the parser on the training portion of PATB

part 3 (Maamouri et al., 2004). We used the same

split as in Zitouni et al. (2006) for dev/test, and kept

the test unseen during training.

There are five default attributes, in the MaltParser

terminology, for each token in the text: word ID

(ordinal position in the sentence), word form, POS

7Nivre (2008) reports that non-projective and pseudo-

projective algorithms outperform the "eager" projective algo-

rithm in MaltParser; however, our training data did not contain

any non-projective dependencies, so there was no point in us-

ing these algorithms. The Nivre "standard" algorithm is also

reported to do better on Arabic, but in a preliminary experimen-

tation, it did slightly worse than the "eager” one. This could

be due to high percentage of right branching (left headed struc-

tures) in our Arabic training set, an observation already noted

in Nivre (2008).

tag, head (parent word ID), and deprel (the depen-

dency relation between the current word and its par-

ent). There are default MaltParser features (in the

machine learning sense),8 which are the values of

functions over these attributes, serving as input to

the MaltParser internal classifiers. The most com-

monly used feature functions are the top of the in-

put buffer (next word to process, denoted buf[0]), or

top of the stack (denoted stk[0]); following items on

buffer or stack are also accessible (buf[1], buf[2],

stk[1], etc.). Hence MaltParser features are de-

fined as POS tag at top of the stack, word form at

top of the buffer, etc. Kübler et al. (2009) de-

scribe a “typical” MaltParser model configuration

of attributes and features.9 Starting with it, in

a series of initial controlled experiments, we set-

tled on using buf[0], buf[1], stk[0], stk[1] for the

wordform, and buf[0], buf[1], buf[2], buf[3], stk[0],

stk[1], stk[2] for the POS tag. For features of all

new MaltParser-attributes (discussed later), we used

buf[0] and stk[0]. We did not change the features

for the deprel. This new MaltParser configuration

resulted in gains of 0.3-1.1% in labeled attachment

accuracy (depending on the POS tagset) over the

default MaltParser configuration. We also exper-

imented with using normalized word forms (Alif

Maqsura conversion to Ya, and hamza removal from

each Alif) as is common in parsing and statistical

machine translation literature. This resulted in a

small decrease in performance (0.1-0.2% in labeled

attachment accuracy). We settled on using the non-

normalized word form. All experiments reported be-

low were conducted using this new configuration.

5.3 Parsing quality as a function of POS tag

richness

We turn first to the contribution of POS information

to parsing quality, as a function of the amount of in-

formation encoded in the POS tagset. A first rough

estimation for the amount of information is the ac-

tual tagset size, as it appears in the training data.

For this purpose we compared POS tagsets based

on, or closely inspired by, previously published

work. These sets are typically morphologically-

enriched (marking the existence of a determiner in

the word, person, gender, number, etc.). The num-

8The terms “feature” and “attribute” are over loaded in the

literature. We use them in the linguistic sense, unless specifi-

cally noted otherwise, e.g., “MaltParser feature(s)”.
9It is slightly different from the default configuration.

16

ber of tag types occurring in the training data fol-

low each tagset in parentheses: BW (430 tags), ERTS

(134 tags), KULICK (32 tags), and the smallest POS

tagset published: CATIB6 (6 tags). In optimal con-

ditions (using gold POS tags), the richest tagset

(BW) is indeed the best performer (84.02%), and the

poorest (CATIB6) is the worst (81.04%). Mid-size

tagsets are in the high 82%, with the notable ex-

ception of KULICK, which does better than ERTS,

in spite of having 1/4 the tagset size; moreover, it is

the best performer in unlabeled attachment accuracy

(85.98%), in spite of being less than tenth the size of

BW. Our extended mid-size tagset, CATIBEX, was a

mid-level performer as expected.

In order to control the level of morphological and

lexical information in the POS tagset, we used the

above-mentioned additional tagsets: CORE44 (40

tags), and CORE12 (12 tags). Both were also

mid-size mid-level performers (in spite of contain-

ing no morphological extension), with CORE12 do-

ing slightly better. See Table 1 columns 2-4.

5.4 Predicted POS tags

So far we discussed optimal (gold) conditions. But

in practice, POS tags are annotated by automatic tag-

gers, so parsers get predicted POS tags as input, as

opposed to gold (human-annotated) tags. The more

informative the tagset, the less accurate the tag pre-

diction might be, so the effect on overall parsing

quality is unclear. Therefore, we repeated the exper-

iments above with POS tags predicted by the Mor-

phological Analysis and Disambiguation for Arabic

(MADA) toolkit (Habash and Rambow, 2005). See

Table 1, columns 5-7. It turned out that BW, the

best gold performer, with lowest POS prediction ac-

curacy (81.8%), suffered the biggest drop (11.38%)

and was the worst performer with predicted tags.

The simplest tagset, CATIB6, and its extension, CAT-

IBEX, benefited from the highest POS prediction ac-

curacy (97.7%), and their performance suffered the

least. CATIBEX was the best performer with pre-

dicted POS tags. Performance drop and POS pre-

diction accuracy are given in columns 8 and 9, re-

spectively. Next, we augmented the parsing models

with inflectional and lexical morphological features.

5.5 Inflectional features

Experimenting with inflectional morphological fea-

tures is especially important in Arabic parsing, since

Arabic is morphologically rich. In order to further

explore the contribution of inflectional and lexical

morphological information in a controlled manner,

we focused on the best performing core POS tagset,

CORE12 as baseline; using three different setups, we

added nine morphological features, extracted from

MADA: DET, PERSON, ASPECT, VOICE, MOOD,

GENDER, NUMBER, STATE, and CASE. In setup

All , we augmented the baseline model with all nine

MADA features (as nine additional MaltParser at-

tributes); in setup Sep , we augmented the baseline

model with each of the MADA features, one at a

time, separately; and in setup Greedy , we com-

bined them in a greedy heuristic (since the entire

feature space is too vast to exhaust): starting with

the most gainful feature from Sep, adding the next

most gainful feature, keeping it as additional Malt-

Parser attribute if it helped, or discarding it other-

wise, and repeating this heuristics through the least

gainful feature. We also augmented the same base-

line CORE12 model with a manually constructed list

of surface affixes (e.g., Al+, +wn, ~) as additional

MaltParser attributes (LINGNGRAMS). This list was

also in the base of the CATIBEX extension; it is lin-

guistically informed, yet represents a simple (albeit

shallow) alternative to morphological analysis. Re-

sults are given in Table 2.

Somewhat surprisingly, setup All hurts perfor-

mance on the predicted input. This can be explained

if one examines the prediction accuracy of each fea-

ture (Table 3). Features which are not predicted

with very high accuracy, such as CASE (86.3%),

can dominate the negative contribution, even though

they are principle top contributors in optimal (gold)

conditions (see discussion below). The determiner

feature (DET), followed by the STATE (construct

state, idafa) feature, were top individual contribu-

tors in setup Sep. Adding DET and all the so-called

phi-features (PERSON, NUMBER, GENDER) in the

Greedy setup, yielded 1.43% gain over the CORE12

baseline. Adding LINGNGRAMS yielded a 1.19%

gain over the CORE12 baseline.

We repeated the same setups (All, Sep, and

Greedy) with gold POS tags, to examine the contri-

bution of the morphological features in optimal con-

ditions. Here CASE, followed by STATE and DET,

were the top contributors. Performance of CASE is

the notable difference from the predicted conditions

above. Surprisingly, only CASE and STATE helped in

the Greedy setup, although one might expect that the

phi features help too. (See lower half of Table 2).

17

Table 1: Parsing performance with each POS tagset, on gold and predicted input. labeled = labeled attachment accuracy (depen-

dency + relation). unlabeled = unlabeled attachment accuracy (dependency only). label acc = relation label prediction accuracy.

labeled diff = difference between labeled attachment accuracy on gold and predicted input. POS acc = POS tag prediction accuracy.

tagset
gold predicted gold-pred. POS tagset

labeled unlabled label acc. labeled unlabled label acc. labeled diff. acc. size

CATIB6 81.04 83.66 92.59 78.31 82.03 90.55 -2.73 97.7 6

CATIBEX 82.52 84.97 93.40 79.74 83.30 91.44 -2.78 97.7 44

CORE12 82.92 85.40 93.52 78.68 82.48 90.63 -4.24 96.3 12

CORE44 82.71 85.17 93.28 78.39 82.16 90.36 -4.32 96.1 40

ERTS 82.97 85.23 93.76 78.93 82.56 90.96 -4.04 95.5 134

KULICK 83.60 85.98 94.01 79.39 83.15 91.14 -4.21 95.7 32

BW 84.02 85.77 94.83 72.64 77.91 86.46 -11.38 81.8 430

Table 2: CORE12 POS tagset with morphological features. Left half: Using predicted POS tags. In it: Top part: Adding all

nine features to CORE12. Second part: Adding each feature separately, comparing difference from CORE12+madafeats, predicted

(second part). Third part: Greedily adding best features from third part, predicted; difference from previous successful greedy step.

Bottom part: Surface affixes (leading and trailing character n-grams). Right half: Left half repeated with gold tags.

set predicted POS and features: gold POS and features:

-up CORE12+. . . labeled diff. unlabeled CORE12+. . . labeled diff. unlabeled

A
ll (baseline repeated) 78.68 – 82.48 (baseline repeated) 82.92 – 85.40

+madafeats 77.91 -0.77 82.14 +madafeats 85.15 2.23 86.61

S
ep

+DET 79.82 1.14 83.18 +CASE 84.61 1.69 86.30

+STATE 79.34 0.66 82.85 +STATE 84.15 1.23 86.38

+GENDER 78.75 0.07 82.35 +DET 83.96 1.04 86.21

+PERSON 78.74 0.06 82.45 +NUMBER 83.08 0.16 85.50

+NUMBER 78.66 -0.02 82.39 +PERSON 83.07 0.15 85.41

+VOICE 78.64 -0.04 82.41 +VOICE 83.05 0.13 85.42

+ASPECT 78.60 -0.08 82.39 +MOOD 83.05 0.13 85.47

+MOOD 78.54 -0.14 82.35 +ASPECT 83.01 0.09 85.43

+CASE 75.81 -2.87 80.24 +GENDER 82.96 0.04 85.24

G
re

ed
y

+DET+STATE 79.42 -0.40 82.84 +CASE+STATE 85.37 0.76 86.88

+DET+GENDER 79.90 0.08 83.20 +CASE+STATE+DET 85.18 -0.19 86.66

+DET+GENDER+PERSON 79.94 0.04 83.21 +CASE+STATE+NUMBER 85.36 -0.01 86.87

+DET+PHI 80.11 0.17 83.29 +CASE+STATE+PERSON 85.27 -0.10 86.76

+DET+PHI+VOICE 79.96 -0.15 83.18 +CASE+STATE+VOICE 85.25 -0.12 86.76

+DET+PHI+ASPECT 80.01 -0.10 83.20 +CASE+STATE+MOOD 85.23 -0.14 86.72

+DET+PHI+MOOD 80.03 -0.08 83.21 +CASE+STATE+ASPECT 85.23 -0.14 86.78

— +CASE+STATE+GENDER 85.26 -0.11 86.75

+NGRAMSLING 79.87 1.19 83.21 +NGRAMSLING 84.02 1.10 86.16

5.6 Lexical features

Next, we experimented with adding morpholog-

ical features involving semantic abstraction to

some degree: the diacritized LEMMA (abstracting

away from inflectional information, and indicat-

ing active/passive voice due to diacritization in-

formation), the undiacritized lemma (LMM), the

ROOT (further abstraction indicating “core” pred-

icate or action), and the PATTERN (a generally

complementary abstraction, often indicating cau-

sation and reflexiveness). We experimented with

the same setups as above: All, Sep, and Greedy.

Adding all four features yielded a minor gain in

setup All. LMM was the best single contributor

(1.05%), closely followed by ROOT (1.03%) in Sep.

CORE12+LMM+ROOT+LEMMA was the best greedy

combination (79.05%) in setup Greedy. See Table 4.

5.7 Putting it all together

We further explored whether morphological data

should be added to an Arabic parsing model as

stand-alone machine learning features, or should

they be used to enhance and extend a POS tagset.

We created a new POS tagset, CORE12EX, size

81(see bottom of Table 3), by extending the CORE12

tagset with the features that most improved the

18

CORE12 baseline: DET and the phi features. But

CORE12EX did worse than its non-extended (but

feature-enhanced) counterpart, CORE12+DET+PHI.

Another variant, CORE12EX+DET+PHI, which

used both the extended tagset and the additional

DET and phi features, did not improve over

CORE12+DET+PHI either.

Following the results in Table 2, we added

the affix features NGRAMSLING (which proved

to help the CORE12 baseline) to the best aug-

mented CORE12+DET+PHI model, dubbing the new

model CORE12+DET+PHI+NGRAMSLING, but per-

formance dropped here too. We greedily augmented

CORE12+DET+PHI with lexical features, and found

that the undiacritzed lemma (LMM) improved per-

formance on predicted input (80.23%). In order to

test whether these findings hold with other tagsets,

we added the winning features (DET+PHI, with and

without LMM) to the best POS tagset in predicted

conditions, CATIBEX. Both variants yielded gains,

with CATIBEX+DET+PHI+LMM achieving 80.45%

accuracy, the best result on predicted input.

5.8 Validating Results on Unseen Test Set

Once experiments on the development set (PATB3-

DEV) were done, we ran the best performing mod-

els on a previously unseen test set – the test split of

part 3 of the PATB (PATB3-TEST). Table 6 shows

that the same trends held on this set too, with even

greater relative gains, up to 1.77% absolute gains.

Table 3: Feature prediction accuracy and set sizes. * = The set

includes a "N/A" value.

feature acc set size

normalized word form (A,Y) 99.3 29737

non-normalized word form 98.9 29980

NGRAMSLING preffix 100.0 8

NGRAMSLING suffix 100.0 20

DET 99.6 3*

PERSON 99.1 4*

ASPECT 99.1 5*

VOICE 98.9 4*

MOOD 98.6 5*

GENDER 99.3 3*

NUMBER 99.5 4*

STATE 95.6 4*

CASE 86.3 5*

ROOT 98.4 9646

PATTERN 97.0 338

LEMMA (diacritized) 96.7 16837

LMM (undiacritized lemma) 98.3 15305

CORE12EX 96.0 81

Table 4: Lexical morpho-semantic features. Top part: Adding

each feature separately; difference from CORE12, predicted.

Bottom part: Greedily adding best features from previous part,

predicted; difference from previous successful greedy step.

POS tagset labeled diff. unlab. label

A
ll

CORE12 (repeated) 78.68 – 82.48 90.63

CORE12+LMM+ROOT

+LEMMA+PATTERN

78.85 0.17 82.46 90.82

S
ep

CORE12+lmm 78.96 1.05 82.54 90.80

CORE12+ROOT 78.94 1.03 82.64 90.72

CORE12+LEMMA 78.80 0.89 82.42 90.71

CORE12+PATTERN 78.59 0.68 82.39 90.60

G
re

ed
y

CORE12+LMM+ROOT 79.04 0.08 82.63 90.86

CORE12+LMM+ROOT

+LEMMA

79.05 0.01 82.63 90.87

CORE12+LMM+ROOT

+PATTERN

78.93 -0.11 82.58 90.82

Table 6: Results on PATB3-TEST for models which performed

best on PATB3-DEV – predicted input.

POS tagset labeled diff. unlab. label

CORE12 77.29 – 81.04 90.05

CORE12+DET+PHI 78.57 1.28 81.66 91.09

CORE12+DET+PHI+LMM 79.06 1.77 82.07 91.37

6 Error Analysis

For selected feature sets, we look at the overall er-

ror reduction with respect to the CORE12 baseline,

and see what dependency relations particularly profit

from that feature combination: What dependencies

achieve error reductions greater than the average er-

ror reduction for that feature set over the whole cor-

pus. We investigate dependencies by labels, and for

MOD we also investigate by the POS label of the de-

pendent node (so MOD-P means a preposition node

attached to a governing node using a MOD arc).

DET: As expected, it particularly helps IDF and

MOD-N. The error reduction for IDF is 19.3%!

STATE: Contrary to naïve expectations, STATE

does not help IDF, but instead increases error by

9.4%. This is presumably because the feature does

not actually predict construct state except when con-

struct state is marked explicitly, but this is rare.

DET+PHI: The phi features are the only subject-

verb agreement features, and they are additional

agreement features (in addition to definiteness) for

noun-noun modification. Indeed, relative to just

adding DET, we see the strongest increases in these

two dependencies, with an additional average in-

19

Table 5: Putting it all together

POS tagset inp.qual. labeled diff. unlabeled label Acc.

CORE12+DET+PHI (repeated) predicted 80.11 0.17 83.29 91.82

CORE12+DET+PHI gold 84.20 -0.95 86.23 94.49

CORE12EX predicted 78.89 -1.22 82.38 91.17

CORE12EX gold 83.06 0.14 85.26 93.80

CORE12EX+DET+PHI predicted 79.19 -0.92 82.52 91.39

CORE12+DET+PHI+NGRAMSLING predicted 79.77 -0.34 83.03 91.66

CORE12+DET+PHI+LMM predicted 80.23 0.12 83.34 91.94

CORE12+DET+PHI+LMM+ROOT predicted 80.10 -0.13 83.25 91.84

CORE12+DET+PHI+LMM+PATTERN predicted 80.03 -0.20 83.15 91.77

CATIBEX+DET+PHI predicted 80.00 0.26 83.29 91.81

CATIBEX+DET+PHI+LMM predicted 80.45 0.71 83.65 92.03

crease for IDF (presumably because certain N-N

modifications are rejected in favor of IDFs). All

other dependencies remain at the same level as with

only DET.

LMM, ROOT, LEMMA: These features abstract

over the word form and thus allow generalizations in

bilexical dependecies, which in parsing stand in for

semantic modeling. The strongest boost from these

features comes from MOD-N and MOD-P, which

is as expected since these dependencies are highly

ambiguous, and MOD-P is never helped by the mor-

phological features.

DET+PHI+LMM: This feature combination yields

gains on all main dependency types (SBJ, OBJ,

IDF, MOD-N, MOD-P, MOD-V). But the contri-

bution from the inflectional and lexical features are

unfortunately not additive. We also compare the im-

provement contributed just by LMM as compared to

DET and PHI. This improvement is quite small, but

we see that MOD-N does not improve (in fact, it

gets worse – presumably because there are too many

features), while MOD-P (which is not helped by the

morphological features) does improve. Oddly, OBJ

also improves, for which we have no explanation.

When we turn to our best-performing configura-

tion, CATIBEX with the added DET, phi features

(PERSON, NUMBER, GENDER), and LMM, we see

that this configuration improves over CORE12 with

the same features for two dependency types only:

SBJ and MOD-N These are exactly the two types

for which agreement features are useful, and both

the features DET+PHI and the CATIBEX POS tagset

represent information for agreement. The question

arises why this information is not redundant. We

speculate that the fact that we are learning differ-

ent classifiers for different POS tags helps Malt-

Parser learn attachment decisions which are specific

to types of dependent node morphology.

In summary, our best performing configuration

yields an error reduction of 8.3% over the core POS

tag (CORE12). SBJ errors are reduced by 13.3%,

IDF errors by 17.7%, and MOD-N errors by 14.9%.

Error reduction for OBJ, MOD-P, and MOD-V are

all less than 4%. We note that the remaining MOD-

P errors make up 6.2% of all dependency relations,

roughly one third of remaining errors.

7 Conclusions and Future Work

We explored the contribution of different inflec-

tional and lexical features to dependency parsing of

Arabic, under gold and predicted POS conditions.

While more informative features (e.g., richer POS

tags) yield better parsing quality in gold conditions,

they are hard to predict, and as such they might not

contribute to – and even hurt – the parsing quality

under predicted conditions. We find that definiteness

(DET), phi-features (PERSON, NUMBER, GENDER),

and undiacritzed lemma (LMM) are most helpful for

Arabic parsing on predicted input, while CASE and

STATE are most helpful on gold.

In the future we plan to improve CASE prediction

accuracy; produce high accuracy supertag features,

modeling active and passive valency; and use other

parsers (e.g., McDonald and Pereira, 2006).

Acknowledgments

This work was supported by the DARPAGALE program,

contract HR0011-08-C-0110. We thank Joakim Nivre

for his useful remarks, and Ryan Roth for his help with

CATiB conversion and MADA.

20

References

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-

X shared task on multilingual dependency parsing.

In Proceedings of Computational Natural Language

Learning (CoNLL), pages 149–164.

Timothy A. Buckwalter. 2004. Buckwalter Arabic Mor-

phological Analyzer Version 2.0. Linguistic Data

Consortium, University of Pennsylvania, 2002. LDC

Cat alog No.: LDC2004L02, ISBN 1-58563-324-0.

Michael Collins, Jan Hajic, Lance Ramshaw, and

Christoph Tillmann. 1999. A statistical parser for

czech. In Proceedings of the 37th Annual Meeting

of the the Association for Computational Linguistics

(ACL), College Park, Maryland, USA, June.

Brooke Cowan and Michael Collins. 2005. Morphology

and reranking for the statistical parsing of spanish. In

Proceedings of Human Language Technology (HLT)

and the Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 795–802.

Mona Diab and Yassine BenAjiba. 2010. From raw text

to base phrase chunks: The new generation of AMIRA

Tools for the processing of Modern Standard Arabic.

In (to appear). Spring LNCS, Special Jubilee edition.

Mona Diab. 2007. Towards an optimal pos tag set for

modern standard arabic processing. In Proceedings

of Recent Advances in Natural Language Processing

(RANLP), Borovets, Bulgaria.

Gülsen Eryigit, Joakim Nivre, and Kemal Oflazer. 2008.

Dependency parsing of turkish. Computational Lin-

guistics, 34(3):357–389.

Nizar Habash and Owen Rambow. 2005. Arabic Tok-

enization, Part-of-Speech Tagging and Morphological

Disambiguation in One Fell Swoop. In Proceedings

of the 43rd Annual Meeting of the the Association for

Computational Linguistics (ACL), Ann Arbor, Michi-

gan, June.

Nizar Habash and Ryan Roth. 2009. Catib: The

columbia arabic treebank. In Proceedings of the ACL-

IJCNLP 2009 Conference Short Papers, pages 221–

224, Suntec, Singapore, August.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.

2007. On Arabic Transliteration. In A. van den Bosch

and A. Soudi, editors, Arabic Computational Mor-

phology: Knowledge-based and Empirical Methods.

Springer.

Jan Hajič and Barbora Vidová-Hladká. 1998. Tag-

ging Inflective Languages: Prediction of Morpholog-

ical Categories for a Rich, Structured Tagset. In Pro-

ceedings of the International Conference on Com-

putational Linguistics (COLING)- the Association for

Computational Linguistics (ACL), pages 483–490.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.

2009. Dependency Parsing. Synthesis Lectures on

Human Language Technologies. Morgan and Claypool

Publishers.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006.

Parsing the Arabic Treebank: Analysis and improve-

ments. In Proceedings of the Treebanks and Linguis-

tic Theories Conference, pages 31–42, Prague, Czech

Republic.

Mohamed Maamouri, Ann Bies, Timothy A. Buckwalter,

andWigdanMekki. 2004. The Penn Arabic Treebank:

Building a Large-Scale Annotated Arabic Corpus. In

Proceedings of the NEMLAR Conference on Arabic

Language Resources and Tools, pages 102–109, Cairo,

Egypt.

Ryan McDonald and Fernando Pereira. 2006. On-

line learning of approximate dependency parsing al-

gorithms. In Proceedings of the 11th Conference of

the the European Chapter of the Association for Com-

putational Linguistics (EACL).

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,

Gulsen Eryigit, Sandra Kubler, Svetoslav Marinov,

and Erwin Marsi. 2007. MaltParser: A language-

independent system for data-driven dependency pars-

ing. Natural Language Engineering, 13(2):95–135.

Joakim Nivre, Igor M. Boguslavsky, and Leonid K.

Iomdin. 2008. Parsing the SynTagRus Treebank of

Russian. In Proceedings of the 22nd International

Conference on Computational Linguistics (COLING),

pages 641–648.

Joakim Nivre. 2003. An efficient algorithm for pro-

jective dependency parsing. In Proceedings of the

8th International Conference on Parsing Technologies

(IWPT), pages 149–160, Nancy, France.

Joakim Nivre. 2008. Algorithms for Deterministic Incre-

mental Dependency Parsing. Computational Linguis-

tics, 34(4).

Joakim Nivre. 2009. Parsing Indian languages with

MaltParser. In Proceedings of the ICON09 NLP Tools

Contest: Indian Language Dependency Parsing, pages

12–18.

Otakar Smrž. 2007. Functional Arabic Morphology. For-

mal System and Implementation. Ph.D. thesis, Charles

University, Prague.

Reut Tsarfaty and Khalil Sima’an. 2007. Three-

dimensional parametrization for parsing morphologi-

cally rich languages. In Proceedings of the 10th Inter-

national Conference on Parsing Technologies (IWPT),

pages 156–167, Morristown, NJ, USA.

Imed Zitouni, Jeffrey S. Sorensen, and Ruhi Sarikaya.

2006. Maximum Entropy Based Restoration of Ara-

bic Diacritics. In Proceedings of the 21st International

Conference on Computational Linguistics (COLING)

and the 44th Annual Meeting of the the Association

for Computational Linguistics (ACL), pages 577–584,

Sydney, Australia.

21

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 22–30,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Two methods to incorporate local morphosyntactic features in Hindi de-

pendency parsing

Bharat Ram Ambati, Samar Husain, Sambhav Jain, Dipti Misra Sharma

and Rajeev Sangal
Language Technologies Research Centre, IIIT-Hyderabad, India - 500032.

{ambati,samar}@research.iiit.ac.in, sambhav-

jain@students.iiit.ac.in,{dipti,sangal}@mail.iiit.ac.in

Abstract

In this paper we explore two strategies to in-

corporate local morphosyntactic features in

Hindi dependency parsing. These features are

obtained using a shallow parser. We first ex-

plore which information provided by the shal-

low parser is most beneficial and show that

local morphosyntactic features in the form of

chunk type, head/non-head information,

chunk boundary information, distance to the

end of the chunk and suffix concatenation are

very crucial in Hindi dependency parsing. We

then investigate the best way to incorporate

this information during dependency parsing.

Further, we compare the results of various ex-

periments based on various criterions and do

some error analysis. All the experiments were

done with two data-driven parsers, MaltParser

and MSTParser, on a part of multi-layered and

multi-representational Hindi Treebank which

is under development. This paper is also the

first attempt at complete sentence level pars-

ing for Hindi.

1 Introduction

The dependency parsing community has since a

few years shown considerable interest in parsing

morphologically rich languages with flexible word

order. This is partly due to the increasing availabil-

ity of dependency treebanks for such languages,

but it is also motivated by the observation that the

performance obtained for these languages have not

been very high (Nivre et al., 2007a). Attempts at

handling various non-configurational aspects in

these languages have pointed towards shortcom-

ings in traditional parsing methodologies (Tsarfaty

and Sima'an, 2008; Eryigit et al., 2008; Seddah et

al., 2009; Husain et al., 2009; Gadde et al., 2010).

Among other things, it has been pointed out that

the use of language specific features may play a

crucial role in improving the overall parsing per-

formance. Different languages tend to encode syn-

tactically relevant information in different ways,

and it has been hypothesized that the integration of

morphological and syntactic information could be

a key to better accuracy. However, it has also been

noted that incorporating these language specific

features in parsing is not always straightforward

and many intuitive features do not always work in

expected ways.

In this paper we explore various strategies to in-

corporate local morphosyntactic features in Hindi

dependency parsing. These features are obtained

using a shallow parser. We conducted experiments

with two data-driven parsers, MaltParser (Nivre et

al., 2007b) and MSTParser (McDonald et al.,

2006). We first explore which information pro-

vided by the shallow parser is most beneficial and

show that local morphosyntactic features in the

form of chunk type, head/non-head information,

chunk boundary information, distance to the end of

the chunk and suffix concatenation are very crucial

in Hindi dependency parsing. We then investigate

the best way to incorporate this information during

dependency parsing. All the experiments were

done on a part of multi-layered and multi-

representational Hindi Treebank (Bhatt et al.,

2009)
1
.

The shallow parser performs three tasks, (a) it

gives the POS tags for each lexical item, (b) pro-

vides morphological features for each lexical item,

and (c) performs chunking. A chunk is a minimal

(non-recursive) phrase consisting of correlated,

inseparable words/entities, such that the intra-

chunk dependencies are not distorted (Bharati et

1 This Treebank is still under development. There are currently

27k tokens with complete sentence level annotation.

22

al., 2006). Together, a group of lexical items with

some POS tag and morphological features within a

chunk can be utilized to automatically compute

local morphosyntactic information. For example,

such information can represent the postposi-

tion/case-marking in the case of noun chunks, or it

may represent the tense, aspect and modality

(TAM) information in the case of verb chunks. In

the experiments conducted for this paper such local

information is automatically computed and incor-

porated as a feature to the head of a chunk. In gen-

eral, local morphosyntactic features correspond to

all the parsing relevant local linguistic features that

can be utilized using the notion of chunk. Previous-

ly, there have been some attempts at using chunk

information in dependency parsing. Attardi and

Dell’Orletta (2008) used chunking information in

parsing English. They got an increase of 0.35% in

labeled attachment accuracy and 0.47% in unla-

beled attachment accuracy over the state-of-the-art

dependency parser.

Among the three components (a-c, above), the

parsing accuracy obtained using the POS feature is

taken as baseline. We follow this by experiments

where we explore how each of morph and chunk

features help in improving dependency parsing

accuracy. In particular, we find that local morpho-

syntactic features are the most crucial. These expe-

riments are discussed in section 2. In section 3 we

will then see an alternative way to incorporate the

best features obtained in section 2. In all the pars-

ing experiments discussed in section 2 and 3, at

each step we explore all possible features and ex-

tract the best set of features. Best features of one

experiment are used when we go to the next set of

experiments. For example, when we explore the

effect of chunk information, all the relevant morph

information from previous set of experiments is

taken into account.

This paper is also the first attempt at complete

sentence level parsing for Hindi. Due to the availa-

bility of dependency treebank for Hindi (Begum et

al., 2008), there have been some previous attempts

at Hindi data-driven dependency parsing (Bharati

et al., 2008; Mannem et al., 2009; Husain et al.,

2009). Recently in ICON-09 NLP Tools Contest

(Husain, 2009; and the references therein), rule-

based, constraint based, statistical and hybrid ap-

proaches were explored for dependency parsing.

Previously, constraint based approaches to Indian

language (IL) dependency parsing have also been

explored (Bharati et al., 1993, 1995, 2009b,

2009c). All these attempts, however, were finding

inter-chunk dependency relations, given gold-

standard POS and chunk tags. Unlike these pre-

vious parsers, the dependencies in this work are

between lexical items, i.e. the dependency tree is

complete.

The paper is arranged as follows, in section 2

and 3, we discuss the parsing experiments. In sec-

tion 4, we describe the data and parser settings.

Section 5 gives the results and discusses some re-

lated issues. General discussion and possible future

work is mentioned in section 6. We conclude the

paper in section 7.

2 Getting the best linguistic features

As mentioned earlier, a shallow parser consists of

three main components, (a) POS tagger, (b) mor-

phological analyzer and (c) chunker. In this section

we systematically explore what is the effect of

each of these components. We’ll see in section 2.3

that the best features of a-c can be used to compute

local morphosyntactic features that, as the results

show, are extremely useful.

2.1 Using POS as feature (PaF):

In this experiment we only use the POS tag infor-

mation of individual words during dependency

parsing. First a raw sentence is POS-tagged. This

POS-tagged sentence is then given to a parser to

predict the dependency relations. Figure 1, shows

the steps involved in this approach for (1).

(1) raama ne eka seba khaayaa

 ‘Ram’ ERG ‘one’ ‘apple’ ‘ate’

 ‘Ram ate an apple’

Figure 1: Dependency parsing using only POS informa-

tion from a shallow parser.

23

In (1) above, ‘NN’, ‘PSP’, ‘QC’, ‘NN’ and ‘VM’

are the POS tags2 for raama, ne, eka, seba and

khaayaa respectively. This information is provided

as a feature to the parser. The result of this experi-

ment forms our baseline accuracy.

2.2 Using Morph as feature (MaF):

In addition to POS information, in this experiment

we also use the morph information for each token.

This morphological information is provided as a

feature to the parser. Morph has the following in-

formation

· Root: Root form of the word

· Category: Course grained POS

· Gender: Masculine/Feminine/Neuter

· Number: Singular/Plural

· Person: First/Second/Third person

· Case: Oblique/Direct case

· Suffix: Suffix of the word

Take raama in (1), its morph information com-

prises of root = ‘raama’, category = ‘noun’ gender

= ‘masculine’, number = ‘singular’, person =

‘third’, case = ‘direct’, suffix = ‘0’. Similarly,

khaayaa (‘ate’) has the following morph informa-

tion. root = ‘khaa’, category = ‘verb’ gender =

‘masculine’, numer = ‘singular’, person = ‘third’,

case = ‘direct’, suffix = ‘yaa’.

Through a series of experiments, the most cru-

cial morph features were selected. Root, case and

suffix turn out to be the most important features.

Results are discussed in section 5.

2.3 Using local morphosyntax as feature

(LMSaF)

Along with POS and the most useful morph fea-

tures (root, case and suffix), in this experiment we

also use local morphosyntactic features that reflect

various chunk level information. These features

are:

· Type of the chunk

· Head/non-head of the chunk

2 NN: Common noun, PSP: Post position, QC: Cardinal, VM:

Verb. A list of complete POS tags can be found here:

http://ltrc.iiit.ac.in/MachineTrans/research/tb/POS-Tag-

List.pdf. The POS/chunk tag scheme followed in the Treebank

is described in Bharati et al. (2006).

· Chunk boundary information

· Distance to the end of the chunk

· Suffix concatenation

In example 1 (see section 2.1), there are two

noun chunks and one verb chunk. raama and seba

are the heads of the noun chunks. khaayaa is the

head of the verb chunk. We follow standard IOB
3

notation for chunk boundary. raama, eka and

khaayaa are at the beginning (B) of their respective

chunks. ne and seba are inside (I) their respective

chunks. raama is at distance 1 from the end of the

chunk and ne is at a distance 0 from the end of the

chunk.

Once we have a chunk and morph feature like

suffix, we can perform suffix concatenation auto-

matically. A group of lexical items with some POS

tags and suffix information within a chunk can be

utilized to automatically compute this feature. This

feature can, for example, represent the postposi-

tion/case-marking in the case of noun chunk, or it

may represent the tense, aspect and modality

(TAM) information in the case of verb chunks.

Note that, this feature becomes part of the lexical

item that is the head of a chunk. Take (2) as a case

in point:

(2) [NP raama/NNP ne/PSP] [NP seba/NN]

 ‘Ram’ ERG ‘apple’

 [VGF khaa/VM liyaa/VAUX]

 ‘eat’ ‘PRFT’

 ‘Ram ate an apple’

The suffix concatenation feature for khaa, which

is the head of the VGF chunk, will be ‘0+yaa’ and

is formed by concatenating the suffix of the main

verb with that of its auxiliary. Similarly, the suffix

concatenation feature for raama, which is head of

the NP chunk, will be ‘0+ne’. This feature turns

out to be very important. This is because in Hindi

(and many other Indian languages) there is a direct

correlation between the TAM markers and the case

that appears on some nominals (Bharati et al.,

1995). In (2), for example, khaa liyaa together

gives the past perfective aspect for the verb khaa-
naa ‘to eat’. Since, Hindi is split ergative, the sub-

ject of the transitive verb takes an ergative case

marker when the verb is past perfective. Similar

3
 Inside, Outside, Beginning of the chunk.

24

correlation between the case markers and TAM

exist in many other cases.

3 An alternative approach to use best fea-

tures: A 2-stage setup (2stage)

So far we have been using various information

such as POS, chunk, etc. as features. Rather than

using them as features and doing parsing at one go,

we can alternatively follow a 2-stage setup. In par-

ticular, we divide the task of parsing into:

· Intra-chunk dependency parsing

· Inter-chunk dependency parsing

We still use POS, best morphological features

(case, suffix, root) information as regular features

during parsing. But unlike LMSaF mentioned in

section 2.3, where we gave local morphosyntactic

information as a feature, we divided the task of

parsing into sub-tasks. A similar approach was also

proposed by Bharati et al. (2009c). During intra-

chunk dependency parsing, we try to find the de-

pendency relations of the words within a chunk.

Following which, chunk heads of each chunk with-

in a sentence are extracted. On these chunk heads

we run an inter-chunk dependency parser. For each

chunk head, in addition to POS tag, useful morpho-

logical features, any useful intra-chunk information

in the form of lexical item, suffix concatenation,

dependency relation are also given as a feature.

Figure 2: Dependency parsing using chunk information:

2-stage approach.

Figure 2 shows the steps involved in this ap-

proach for (1). There are two noun chunks and one

verb chunk in this sentence. raama and seba are

the heads of the noun chunks. khaaya is the head

of the verb chunk. The intra-chunk parser attaches

ne to raama and eka to seba with dependency la-

bels ‘lwg__psp’ and ‘nmod__adj’
4
 respectively.

Heads of each chunk along with its POS, morpho-

logical features, local morphosyntactic features and

intra-chunk features are extracted and given to in-

ter-chunk parser. Using this information the inter-

chunk dependency parser marks the dependency

relations between chunk heads. khaaya becomes

the root of the dependency tree. raama and seba

are attached to khaaya with dependency labels ‘k1’

and ‘k2’
5
respectively.

4 Experimental Setup

In this section we describe the data and the parser

settings used for our experiments.

4.1 Data

For our experiments we took 1228 dependency

annotated sentences (27k tokens), which have

complete sentence level annotation from the new

multi-layered and multi-representational Hindi

Treebank (Bhatt et al., 2009). This treebank is still

under development. Average length of these sen-

tences is 22 tokens/sentence and 10

chunks/sentence. We divided the data into two

sets, 1000 sentences for training and 228 sentences

for testing.

4.2 Parsers and settings

All experiments were performed using two data-

driven parsers, MaltParser
6
 (Nivre et al., 2007b),

and MSTParser
7
 (McDonald et al., 2006).

4 nmod__adj is an intra-chunk label for quantifier-noun mod-

ification. lwg__psp is the label for post-position marker. De-

tails of the labels can be seen in the intra-chunk guidelines

http://ltrc.iiit.ac.in/MachineTrans/research/tb/IntraChunk-

Dependency-Annotation-Guidelines.pdf
5 k1 (karta) and k2 (karma) are syntactico-semantic labels

which have some properties of both grammatical roles and

thematic roles. k1 behaves similar to subject and agent. k2

behaves similar to object and patient (Bharati et al., 1995;

Vaidya et al., 2009). For complete tagset, see (Bharati et al.,

2009).
6 Malt Version 1.3.1
7 MST Version 0.4b

25

 Malt MST+MaxEnt

Cross-validation Test-set Cross-validation Test-set

UAS LAS LS UAS LAS LS UAS LAS LS UAS LAS LS

PaF 89.4 78.2 80.5 90.4 80.1 82.4 86.3 75.1 77.9 87.9 77.0 79.3

MaF 89.6 80.5 83.1 90.4 81.7 84.1 89.1 79.2 82.5 90.0 80.9 83.9

LMSaF 91.5 82.7 84.7 91.8 84.0 86.2 90.8 79.8 82.0 92.0 81.8 83.8

2stage 91.8 83.3 85.3 92.4 84.4 86.3 92.1 82.2 84.3 92.7 84.0 86.2

Table 1: Results of all the four approaches using gold-standard shallow parser information.

Malt is a classifier based shift/reduce parser. It

provides option for six parsing algorithms, namely,

arc-eager, arc-standard, convington projective, co-

vington non-projective, stack projective, stack ea-

ger and stack lazy. The parser also provides option

for libsvm and liblinear learning model. It uses

graph transformation to handle non-projective trees

(Nivre and Nilsson, 2005). MST uses Chu-Liu-

Edmonds (Chu and Liu, 1965; Edmonds, 1967)

Maximum Spanning Tree algorithm for non-

projective parsing and Eisner's algorithm for pro-

jective parsing (Eisner, 1996). It uses online large

margin learning as the learning algorithm (McDo-

nald et al., 2005). In this paper, we use MST only

for unlabeled dependency tree and use a separate

maximum entropy model
8
 (MaxEnt) for labeling.

Various combination of features such as node, its

parent, siblings and children were tried out before

arriving at the best results.

As the training data size is small we did 5-fold

cross validation on the training data for tuning the

parameters of the parsers and for feature selection.

Best settings obtained using cross-validated data

are applied on test set. We present the results both

on cross validated data and on test data.

For the Malt Parser, arc-eager algorithm gave

better performance over others in all the approach-

es. Libsvm consistently gave better performance

over liblinear in all the experiments. For SVM set-

tings, we tried out different combinations of best

SVM settings of the same parser on different lan-

guages in CoNLL-2007 shared task (Hall et al.,

2007) and applied the best settings. For feature

model, apart from trying best feature settings of the

same parser on different languages in CoNLL-

2007 shared task (Hall et al., 2007), we also tried

out different combinations of linguistically intui-

tive features and applied the best feature model.

The best feature model is same as the feature mod-

el used in Ambati et al. (2009a), which is the best

8 http://maxent.sourceforge.net/

performing system in the ICON-2009 NLP Tools

Contest (Husain, 2009).

For the MSTParser, non-projective algorithm,

order=2 and training-k=5 gave best results in all

the approaches. For the MaxEnt, apart from some

general useful features, we experimented consider-

ing different combinations of features of node, par-

ent, siblings, and children of the node.

5 Results and Analysis

All the experiments discussed in section 2 and 3

were performed considering both gold-standard

shallow parser information and automatic shallow

parser
9
 information. Automatic shallow parser uses

a rule based system for morph analysis, a

CRF+TBL based POS-tagger and chunker. The

tagger and chunker are 93% and 87% accurate re-

spectively. These accuracies are obtained after us-

ing the approach of PVS and Gali, (2007) on larger

training data. In addition, while using automatic

shallow parser information to get the results, we

also explored using both gold-standard and auto-

matic information during training. As expected,

using automatic shallow parser information for

training gave better performance than using gold

while training.

Table 1 and Table 2 shows the results of the four

experiments using gold-standard and automatic

shallow parser information respectively. We eva-

luated our experiments based on unlabeled attach-

ment score (UAS), labeled attachment score (LAS)

and labeled score (LS) (Nivre et al., 2007a). Best

LAS on test data is 84.4% (with 2stage) and 75.4%

(with LMSaF) using gold and automatic shallow

parser information respectively. These results are

obtained using MaltParser. In the following sub-

section we discuss the results based on different

criterion.

9 http://ltrc.iiit.ac.in/analyzer/hindi/

26

 Malt MST+MaxEnt

Cross-validation Test-set Cross-validation Test-set

UAS LAS LS UAS LAS LS UAS LAS LS UAS LAS LS

PaF 82.2 69.3 73.4 84.6 72.9 76.5 79.4 66.5 70.7 81.6 69.4 73.1

MaF 82.5 71.6 76.1 84.0 73.6 77.6 82.3 70.4 75.4 83.4 72.7 77.3

LMSaF 83.2 73.0 77.0 85.5 75.4 78.9 82.6 71.3 76.1 85.0 73.4 77.3

2stage 79.0 69.5 75.6 79.6 71.1 76.8 78.8 66.6 72.6 80.1 69.7 75.4

Table 2: Results of all the four experiments using automatic shallow parser information.

POS tags provide very basic linguistic informa-

tion in the form of broad grained categories. The

best LAS for PaF while using gold and automatic

tagger were 80.1% and 72.9% respectively. The

morph information in the form of case, suffix and

root information proved to be the most important

features. But surprisingly, gender, number and per-

son features didn’t help. Agreement patterns in

Hindi are not straightforward. For example, the

verb agrees with k2 if the k1 has a post-position; it

may also sometimes take the default features. In a

passive sentence, the verb agrees only with k2. The

agreement problem worsens when there is coordi-

nation or when there is a complex verb. It is un-

derstandable then that the parser is unable to learn

the selective agreement pattern which needs to be

followed.

LMSaF on the other hand encode richer infor-

mation and capture some local linguistic patterns.

The first four features in LMSaF (chunk type,

chunk boundary, head/non-head of chunk and dis-

tance to the end of chunk) were found to be useful

consistently. The fifth feature, in the form of suffix

concatenation, gave us the biggest jump, and cap-

tures the correlation between the TAM markers of

the verbs and the case markers on the nominals.

5.1 Feature comparison: PaF, MaF vs.

LMSaF

Dependency labels can be classified as two types

based on their nature, namely, inter-chunk depen-

dency labels and intra-chunk labels. Inter-chunk

dependency labels are syntacto-semantic in nature.

Whereas intra-chunk dependency labels are purely

syntactic in nature.

Figure 3, shows the f-measure for top six inter-

chunk and intra-chunk dependency labels for PaF,

MaF, and LMSaF using Maltparser on test data

using automatic shallow parser information. The

first six labels (k1, k2, pof, r6, ccof, and k7p) are

the top six inter-chunk labels and the next six la-

bels (lwg__psp, lwg__aux, lwg__cont, rsym,

nmod__adj, and pof__cn) are the top six intra-

chunk labels. First six labels (inter-chunk) corres-

pond to 28.41% and next six labels (intra-chunk)

correspond to 48.81% of the total labels in the test

data. The figure shows that with POS information

alone, f-measure for top four intra-chunk labels

reached more than 90% accuracy. The accuracy

increases marginally with the addition of morph

and local morphosytactic features. The results cor-

roborates with our intuition that intra-chunk de-

pendencies are mostly syntactic. For example,

consider an intra-chunk label ‘lwg__psp’. This is

the label for postposition marker. A post-position

marker succeeding a noun is attached to that noun

with the label ‘lwg__psp’. POS tag for post-

position marker is PSP. So, if a NN (common

noun) or a NNP (proper noun) is followed by a

PSP (post-position marker), then the PSP will be

attached to the preceding NN/NNP with the de-

pendency label ‘lwg_psp’. As a result, providing

POS information itself gave an f-measure of 98.3%

for ‘lwg_psp’. With morph and local morphosy-

tactic features, this got increased to 98.4%. How-

ever, f-measure for some labels like ‘nmod__adj’

is around 80% only. ‘nmod__adj’ is the label for

adjective-noun, quantifier-noun modifications.

Low accuracy for these labels is mainly due to two

reasons. One is POS tag errors. And the other is

attachment errors due to genuine ambiguities such

as compounding.

For inter-chunk labels (first six columns in the

figure 3), there is considerable improvement in the

f-measure using morph and local morphosytactic

features. As mentioned, local morphosyntactic fea-

tures provide local linguistic information. For ex-

ample, consider the case of verbs. At POS level,

there are only two tags ‘VM’ and ‘VAUX’ for

main verbs and auxiliary verbs respectively (Bha-

rati et al., 2006). Information about finite/non-

finiteness is not present in the POS tag. But, at

chunk level there are four different chunk tags for

27

30

40

50

60

70

80

90

100

k1 k2 pof r6 ccof k7p lwg__psp lwg__vaux lwg__cont rsym nmod__adj pof__cn

PaF

MaF

LMaF

Figure 3: F-measure of top 6, inter-chunk and intra-chunk labels for PaF, MaF and LMSaF approaches using Malt-

parser on test data using automatic shallow parser information.

verbs, namely VGF, VGNF, VGINF and VGNN.

They are respectively, finite, non-finite, infinitival

and gerundial chunk tags. The difference in the

verbal chunk tag is a good cue for helping the

parser in identifying different syntactic behavior of

these verbs. Moreover, a finite verb can become

the root of the sentence, whereas a non-finite or

infinitival verb can’t. Thus, providing chunk in-

formation also helped in improving the correct

identification of the root of the sentence.

Similar to Prague Treebank (Hajicova, 1998),

coordinating conjuncts are heads in the treebank

that we use. The relation between a conjunct and

its children is shown using ‘ccof’ label. A coordi-

nating conjuct takes children of similar type only.

For example, a coordinating conjuct can have two

finite verbs or two non-finite verbs as its children,

but not a finite verb and a non-finite verb. Such

instances are also handled more effectively if

chunk information is incorporated. The largest in-

crease in performance, however, was due to the

‘suffix concatenation’ feature. Significant im-

provement in the core inter-chunk dependency la-

bels (such as k1, k2, k4, etc.) due to this feature is

the main reason for the overall improvement in the

parsing accuracy. As mentioned earlier, this is be-

cause this feature captures the correlation between

the TAM markers of the verbs and the case mark-

ers on the nominals.

5.2 Approach comparison: LMSaF vs. 2stage

Both LMSaF and 2stage use chunk information. In

LMSaF, chunk information is given as a feature

whereas in 2stage, sentence parsing is divided into

intra-chunk and inter-chunk parsing. Both the ap-

proaches have their pros and cons. In LMSaF as

everything is done in a single stage there is much

richer context to learn from. In 2stage, we can pro-

vide features specific to each stage which can’t be

done in a single stage approach (McDonald et al.,

2006). But in 2stage, as we are dividing the task,

accuracy of the division and the error propagation

might pose a problem. This is reflected in the re-

sults where the 2-stage performs better than the

single stage while using gold standard information,

but lags behind considerably when the features are

automatically computed.

During intra-chunk parsing in the 2stage setup,

we tried out using both a rule-based approach and

a statistical approach (using MaltParser). The rule

based system performed slightly better (0.1%

LAS) than statistical when gold chunks are consi-

dered. But, with automatic chunks, the statistical

approach outperformed rule-based system with a

difference of 7% in LAS. This is not surprising

because, the rules used are very robust and mostly

based on POS and chunk information. Due to er-

rors induced by the automatic POS tagger and

chunker, the rule-based system couldn’t perform

well. Consider a small example chunk given be-

low.

 ((NP

 meraa ‘my’ PRP

 bhaaii ‘brother’ NN

))

As per the Hindi chunking guidelines (Bharati et

al., 2006), meraa and bhaaii should be in two sepa-

rate chunks. And as per Hindi dependency annota-

tion guidelines (Bharati et al., 2009), meraa is

attached to bhaaii with a dependency label ‘r6’
10

.

When the chunker wrongly chunks them in a single

10‘r6’ is the dependency label for genitive relation.

28

chunk, intra-chunk parser will assign the depen-

dency relation for meraa. Rule based system can

never assign ‘r6’ relation to meraa as it is an inter-

chunk label and the rules used cannot handle such

cases. But in a statistical system, if we train the

parser using automatic chunks instead of gold

chunks, the system can potentially assign ‘r6’ la-

bel.

5.3 Parser comparison: MST vs. Malt

In all the experiments, results of MaltParser are

consistently better than MST+MaxEnt. We know

that Maltparser is good at short distance labeling

and MST is good at long distance labeling (McDo-

nald and Nivre, 2007). The root of the sentence is

better identified by MSTParser than MaltParser.

Our results also confirm this. MST+MaxEnt and

Malt could identify the root of the sentence with an

f-measure of 89.7% and 72.3% respectively. Pres-

ence of more short distance labels helped Malt to

outperform MST. Figure 5, shows the f-measure

relative to dependency length for both the parsers

on test data using automatic shallow parser infor-

mation for LMSaF.

30

40

50

60

70

80

90

100

0 5 10 15+

Dependency Length

f-
m

e
a

su
re

Malt
MST+MaxEnt

Figure 5: Dependency arc f-measure relative to depen-

dency length.

6 Discussion and Future Work

We systematically explored the effect of various

linguistic features in Hindi dependency parsing.

Results show that POS, case, suffix, root, along

with local morphosyntactic features help depen-

dency parsing. We then described 2 methods to

incorporate such features during the parsing

process. These methods can be thought as different

paradigms of modularity. For practical reasons (i.e.

given the POS tagger/chunker accuracies), it is

wiser to use this information as features rather than

dividing the task into two stages.

As mentioned earlier, this is the first attempt at

complete sentence level parsing for Hindi. So, we

cannot compare our results with previous attempts

at Hindi dependency parsing, due to, (a) The data

used here is different and (b) we produce complete

sentence parses rather than chunk level parses.

As mentioned in section 5.1, accuracies of intra-

chunk dependencies are very high compared to

inter-chunk dependencies. Inter-chunk dependen-

cies are syntacto-semantic in nature. The parser

depends on surface syntactic cues to identify such

relations. But syntactic information alone is always

not sufficient, either due to unavailability or due to

ambiguity. In such cases, providing some semantic

information can help in improving the inter-chunk

dependency accuracy. There have been attempts at

using minimal semantic information in dependency

parsing for Hindi (Bharati et al., 2008). Recently,

Ambati et al. (2009b) used six semantic features

namely, human, non-human, in-animate, time,

place, and abstract for Hindi dependency parsing.

Using gold-standard semantic features, they

showed considerable improvement in the core in-

ter-chunk dependency accuracy. Some attempts at

using clause information in dependency parsing for

Hindi (Gadde et al., 2010) have also been made.

These attempts were at inter-chunk dependency

parsing using gold-standard POS tags and chunks.

We plan to see their effect in complete sentence

parsing using automatic shallow parser information

also.

7 Conclusion

In this paper we explored two strategies to incorpo-

rate local morphosyntactic features in Hindi de-

pendency parsing. These features were obtained

using a shallow parser. We first explored which

information provided by the shallow parser is use-

ful and showed that local morphosyntactic fea-

tures in the form of chunk type, head/non-head

info, chunk boundary info, distance to the end of

the chunk and suffix concatenation are very crucial

for Hindi dependency parsing. We then investi-

gated the best way to incorporate this information

during dependency parsing. Further, we compared

the results of various experiments based on various

criterions and did some error analysis. This paper

was also the first attempt at complete sentence lev-

el parsing for Hindi.

29

References

B. R. Ambati, P. Gadde, and K. Jindal. 2009a. Experi-

ments in Indian Language Dependency Parsing. In

Proc of the ICON09 NLP Tools Contest: Indian Lan-

guage Dependency Parsing, pp 32-37.

B. R. Ambati, P. Gade, C. GSK and S. Husain. 2009b.

Effect of Minimal Semantics on Dependency Pars-

ing. In Proc of RANLP09 student paper workshop.

G. Attardi and F. Dell’Orletta. 2008. Chunking and De-

pendency Parsing. In Proc of LREC Workshop on

Partial Parsing: Between Chunking and Deep Pars-
ing. Marrakech, Morocco.

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai, and

R. Sangal. 2008. Dependency annotation scheme for

Indian languages. In Proc of IJCNLP-2008.

A. Bharati, V. Chaitanya and R. Sangal. 1995. Natural
Language Processing: A Paninian Perspective, Pren-

tice-Hall of India, New Delhi.

A. Bharati, S. Husain, B. Ambati, S. Jain, D. Sharma,

and R. Sangal. 2008. Two semantic features make all

the difference in parsing accuracy. In Proc of ICON.

A. Bharati, R. Sangal, D. M. Sharma and L. Bai. 2006.

AnnCorra: Annotating Corpora Guidelines for POS

and Chunk Annotation for Indian Languages. Tech-
nical Report (TR-LTRC-31), LTRC, IIIT-Hyderabad.

A. Bharati, D. M. Sharma, S. Husain, L. Bai, R. Begam

and R. Sangal. 2009a. AnnCorra: TreeBanks for In-

dian Languages, Guidelines for Annotating Hindi

TreeBank.

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-

guidelines/DS-guidelines-ver2-28-05-09.pdf

A. Bharati, S. Husain, D. M. Sharma and R. Sangal.

2009b. Two stage constraint based hybrid approach

to free word order language dependency parsing. In

Proc. of IWPT.

A. Bharati, S. Husain, M. Vijay, K. Deepak, D. M.

Sharma and R. Sangal. 2009c. Constraint Based Hy-

brid Approach to Parsing Indian Languages. In Proc

of PACLIC 23. Hong Kong. 2009.

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D.

M. Sharma and F. Xia. 2009. Multi-Representational

and Multi-Layered Treebank for Hindi/Urdu. In

Proc. of the Third LAW at 47th ACL and 4th IJCNLP.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-

cence of a directed graph. Science Sinica, 14:1396–

1400.

J. Edmonds. 1967. Optimum branchings. Journal of

Research of the National Bureau of Standards,

71B:233–240.

J. Eisner. 1996. Three new probabilistic models for de-

pendency parsing: An exploration. In Proc of

COLING-96, pp. 340–345.
G. Eryigit, J. Nivre, and K. Oflazer. 2008. Dependency

Parsing of Turkish. Computational Linguistics 34(3),

357-389.

P. Gadde, K. Jindal, S. Husain, D. M. Sharma, and R.

Sangal. 2010. Improving Data Driven Dependency

Parsing using Clausal Information. In Proc of
NAACL-HLT 2010, Los Angeles, CA.

E. Hajicova. 1998. Prague Dependency Treebank: From

Analytic to Tectogrammatical Annotation. In Proc of

TSD’98.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M.

Nilsson and M. Saers. 2007. Single Malt or Blended?

A Study in Multilingual Parser Optimization. In Proc

of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007, 933—939.

S. Husain. 2009. Dependency Parsers for Indian Lan-

guages. In Proc of ICON09 NLP Tools Contest: In-

dian Language Dependency Parsing. Hyderabad,

India.

S. Husain, P. Gadde, B. Ambati, D. M. Sharma and R.

Sangal. 2009. A modular cascaded approach to com-

plete parsing. In Proc. of the COLIPS IALP.
P. Mannem, A. Abhilash and A. Bharati. 2009. LTAG-

spinal Treebank and Parser for Hindi. In Proc of In-

ternational Conference on NLP, Hyderabad. 2009.

R. McDonald, K. Crammer, and F. Pereira. 2005. On-

line large-margin training of dependency parsers. In

Proc of ACL. pp. 91–98.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-

lingual dependency analysis with a two-stage discri-

minative parser. In Proc of the Tenth (CoNLL-X), pp.

216–220.

R. McDonald and J. Nivre. 2007. Characterizing the

errors of data-driven dependency parsing models. In
Proc. of EMNLP-CoNLL.

J. Nivre, J. Hall, S. Kubler, R. McDonald, J. Nilsson, S.

Riedel and D. Yuret. 2007a. The CoNLL 2007

Shared Task on Dependency Parsing. In Proc of
EMNLP/CoNLL-2007.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E Marsi. 2007b. MaltParser:

A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,

13(2), 95-135.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-

dency parsing. In Proc. of ACL-2005, pp. 99–106.

Avinesh PVS and K. Gali. 2007. Part-Of-Speech Tag-

ging and Chunking Using Conditional Random

Fields and Transformation Based Learning. In Proc

of the SPSAL workshop during IJCAI '07.
D. Seddah, M. Candito and B. Crabbé. 2009. Cross

parser evaluation: a French Treebanks study. In Proc.

of IWPT, 150-161.

R. Tsarfaty and K. Sima'an. 2008. Relational-

Realizational Parsing. In Proc. of CoLing, 889-896.

A. Vaidya, S. Husain, P. Mannem, and D. M. Sharma.

2009. A karaka-based dependency annotation scheme

for English. In Proc. of CICLing, 41-52.

30

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 31–39,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Application of Different Techniques to Dependency Parsing of Basque

Kepa Bengoetxea Koldo Gojenola

IXA NLP Group IXA NLP Group

University of the Basque Country University of the Basque Country

Technical School of Engineering, Bilbao,

Plaza La Casilla 3, 48012, Bilbao

Technical School of Engineering, Bilbao,

Plaza La Casilla 3, 48012, Bilbao
kepa.bengoetxea@ehu.es koldo.gojenola@ehu.es

Abstract

We present a set of experiments on depend-

ency parsing of the Basque Dependency Tree-

bank (BDT). The present work has examined

several directions that try to explore the rich

set of morphosyntactic features in the BDT: i)

experimenting the impact of morphological

features, ii) application of dependency tree

transformations, iii) application of a two-stage

parsing scheme (stacking), and iv) combina-

tions of the individual experiments. All the

tests were conducted using MaltParser (Nivre

et al., 2007a), a freely available and state of

the art dependency parser generator.

1 Introduction

This paper presents several experiments performed

on dependency parsing of the Basque Dependency

Treebank (BDT, Aduriz et al., 2003). Basque can

be briefly described as a morphologically rich lan-

guage with free constituent order of the main sen-

tence elements with respect to the main verb.

This work has been developed in the context of

dependency parsing exemplified by the CoNLL

Shared Task on Dependency Parsing in years 2006

and 2007 (Nivre et al., 2007b), where several sys-

tems competed analyzing data from a typologically

varied range of 19 languages. The treebanks for all

languages were standardized using a previously

agreed CoNLL-X format (see Figure 1). An early

version of the BDT (BDT I) was one of the evalu-

ated treebanks, which will allow a comparison with

our results. One of the conclusions of the CoNLL

2007 workshop (Nivre et al., 2007a) was that there

is a class of languages, those that combine a rela-

tively free word order with a high degree of inflec-

tion, that obtained the worst scores. This asks for

the development of new methods and algorithms

that will help to reach the parsing performance of

the more studied languages, as English.

In this work, we will take the opportunity of

having a new fresh version of the BDT, (BDT II

henceforth), which is the result of an extension

(three times bigger than the original one), and its

redesign (see section 3.2). Using MaltParser, a

freely available and state of the art dependency

parser for all the experiments (Nivre et al., 2007a),

this paper will concentrate on the application of

different techniques to the task of parsing this new

treebank, with the objective of giving a snapshot

that can show the expected gains of each tech-

nique, together with some of their combinations.

Some of the techniques have already been evalu-

ated with other languages/treebanks or BDT I,

while others have been adapted or extended to deal

with specific aspects of the Basque language or the

Basque Treebank. We will test the following:

• Impact of rich morphology. Although many

systems performed feature engineering on the

BDT at CoNLL 2007, providing a strong

baseline, we will take a step further to im-

prove parsing accuracy taking into account the

effect of specific morphosyntactic features.

• Application of dependency-tree transforma-

tions. Nilsson et al. (2007) showed that they

can increase parsing accuracy across lan-

guages/treebanks. We have performed similar

experiments adapted to the specific properties

of Basque and the BDT.

• Several works have tested the effect of using a

two-stage parser (Nivre and McDonald, 2008;

Martins et al., 2008), where the second parser

takes advantage of features obtained by the

first one. Similarly, we will experiment the

31

addition of new features to the input of the

second-stage parser, in the form of morpho-

syntactic features propagated through the first

parser’s dependency tree and also as the addi-

tion of contextual features (such as category

or dependency relation of parent, grandparent,

and descendants).

• Combinations of the individual experiments.

The rest of the paper is organized as follows.

After presenting related work in section 2, section

3 describes the main resources used in this work.

Next, section 4 will examine the details of the dif-

ferent experiments to be performed, while section

5 will evaluate their results. Finally, the last section

outlines our main conclusions.

2 Related work

Until recently, many works on treebank parsing

have been mostly dedicated to languages with poor

morphology, as exemplified by the Penn English

Treebank. As the availability of treebanks for typo-

logically different languages has increased, there

has been a growing interest towards research on

extending the by now standard algorithms and

methods to the new languages and treebanks (Tsar-

faty et al., 2009). For example, Collins et al. (1999)

adapted Collins’ parser to Czech, a highly-

inflected language. Cowan and Collins (2005) ap-

ply the same parser to Spanish, concluding that the

inclusion of morphological information improves

the analyzer. Eryiğit et al. (2008) experiment the

use of several types of morphosyntactic informa-

tion in Turkish, showing how the richest the in-

formation improves precision. They also show that

using morphemes as the unit of analysis (instead of

words) gets better results, as a result of the aggluti-

native nature of Turkish, where each wordform

contains several morphemes that can be individu-

ally relevant for parsing. Goldberg and Tsarfaty

(2008) concluded that an integrated model of mor-

phological disambiguation and syntactic parsing in

Hebrew Treebank parsing improves the results of a

pipelined approach. This is in accord with our ex-

periment of dividing words into morphemes and

transforming the tree accordingly (see section 4.2).

Since the early times of treebank-based parsing

systems, a lot of effort has been devoted to aspects

of preprocessing trees in order to improve the re-

sults (Collins, 1999). When applied to dependency

parsing, several works (Nilsson et al., 2007; Ben-

goetxea and Gojenola, 2009a) have concentrated

on modifying the structure of the dependency tree,

changing its original shape. For example, Nilsson

et al. (2007) present the application of pseudopro-

jective, verbal group and coordination transforma-

tions to several languages/treebanks using

MaltParser, showing that they improve the results.

Another interesting research direction has exam-

ined the application of a two-stage parser, where

the second parser tries to improve upon the result

of a first parser. For example, Nivre and McDonald

(2008) present the combination of two state of the

art dependency parsers feeding each another,

showing that there is a significant improvement

over the simple parsers. This experiment can be

seen as an instance of stacked learning, which was

also tested on dependency parsing of several lan-

guages in (Martins et al., 2008) with significant

improvements over the base parser.

3 Resources

This section will describe the main resources that

have been used in the experiments. First, subsec-

Index Word Lemma Category Subcategory Features Head Dependency

1 etorri etorri V V _ 3 coord
2 dela izan AUXV AUXV REL:CMP|SUBJ:3S 1 auxmod
3 eta eta CONJ CONJ _ 6 ccomp_obj
4 joan joan V V _ 3 coord
5 dela izan AUXV AUXV REL:CMP|SUBJ:3S 4 auxmod
6 esan esan V V _ 0 ROOT
7 zien *edun AUXV AUXV SUBJ:3S|OBJ:3P 6 auxmod
8 mutilak mutil NOUN NOUN_C CASE:ERG|NUM:S 6 ncsubj
9 . . PUNT PUNT_PUNT _ 8 PUNC

Figure 1: Example of a BDT sentence in the CoNLL-X format

(V = main verb, AUXV = auxiliary verb, CONJ = conjunction, REL = subordinated clause, CMP = completive, ccomp_obj =

clausal complement object, ERG = ergative, SUBJ:3S: subject in 3rd person sing., OBJ:3P: object in 3rd person pl, coord =

coordination, auxmod = auxiliary, ncsubj = non-clausal subject, ncmod = non-clausal modifier).

32

tion 3.1 will describe the Basque Dependency

Treebank, which has increased its size from 55,469

tokens in its original version to more than 150,000,

while subsection 3.2 will present the main charac-

teristics of MaltParser, a state of the art and data-

driven dependency parser.

3.1 The Basque Dependency Treebank

Basque can be described as an agglutinative lan-

guage that presents a high power to generate in-

flected word-forms, with free constituent order of

sentence elements with respect to the main verb.

The BDT can be considered a pure dependency

treebank from its original design, due mainly to the

syntactic characteristics of Basque.

(1) Etorri dela eta joan dela esan zien mutilak

 come that-has and go that-has tell did boy-the

 The boy told them that he has come and gone

Figure 1 contains an example of a sentence (1),

annotated in the CoNLL-X format. The text is or-

ganized in eight tab-separated columns: word-

number, form, lemma, category, subcategory, mor-

phological features, and the dependency relation

(headword + dependency). The information in Fig-

ure 1 has been simplified due to space reasons, as

typically the Features column will contain many

morphosyntactic
1
 features (case, number, type of

subordinated sentence, …), which are relevant for

parsing. The first version of the Basque Depend-

ency Treebank contained 55,469 tokens forming

3,700 sentences (Aduriz et al., 2003). This tree-

bank was used as one of the evaluated treebanks in

the CoNLL 2007 Shared Task on Dependency

Parsing (Nivre et al., 2007b). Our work will make

use of the second version of the BDT (BDT II),

which is the consequence of a process of extension

and redesign of the original requirements:

• The new version contains 150,000 tokens

(11,225 sentences), a three-fold increase.

• The new design considered that all the de-

pendency arcs would connect sentence tokens.

In contrast, the original annotation contained

empty nodes, especially when dealing with el-

lipsis and some kinds of coordination. As a

result, the number of non-projective arcs di-

1 We will use the term morphosyntactic to name the set of

features attached to each word-form, which by the agglutina-

tive nature of Basque correspond to both morphology and

syntax.

minished from 2.9% in the original treebank

to 1.3% in the new version.

• The annotation follows a stand-off markup

approach, inspired on TEI-P4 (Artola et al.,

2005). There was a conversion process from a

set of interconnected XML files to the

CoNLL-X format of the present experiments.

Although the different characteristics and size of

the two treebank versions do not allow a strict

comparison, our preliminary experiments showed

that the results on both treebanks were similar re-

garding our main evaluation criterion (Labeled

Attachment Score, or LAS). In the rest of the paper

we will only use the new BDT II.

3.2 MaltParser

MaltParser (Nivre et al. 2007a) is a state of the art

dependency parser that has been successfully ap-

plied to typologically different languages and tree-

banks. While several variants of the base parser

have been implemented, we will use one of its

standard versions (MaltParser version 1.3). The

parser obtains deterministically a dependency tree

in linear-time in a single pass over the input using

two main data structures: a stack of partially ana-

lyzed items and the remaining input sequence. To

determine the best action at each parsing step, the

parser uses history-based feature models and dis-

criminative machine learning. In all the following

experiments, we will make use of a SVM classi-

fier. The specification of the configuration used for

learning can in principle include any kind of col-

umn in Figure 1 (such as word-form, lemma, cate-

gory, subcategory or morphological features),

together with a feature function. This means that a

learning model can be described as a series of

(column, function) pairs, where column represents

the name of a column in Figure 1, and function

makes reference to the parser’s main data struc-

tures. For example, the two pairs (Word, Stack[0]),

and (Word, Stack[1]) represent two features that

correspond to the word-forms on top and next to

top elements of the stack, respectively, while

(POSTAG, Input[0]) represents the POS category

of the first token in the remaining input sequence.

4 Experiments

The following subsections will present three types

of techniques that will be tested with the aim of

33

improving the results of the syntactic analyzer.

Subsection 4.1 presents the process of fine-tuning

the rich set of available morphosyntactic features.

Then, 4.2 will describe the application of three

types of tree transformations, while subsection 4.3

will examine the application of propagating syntac-

tic features through a first-stage dependency tree, a

process that can also be seen as an application of

stacked learning, as tested in (Nivre and McDon-

ald, 2008; Martins et al., 2008)

4.1 Feature engineering

The original CoNLL-X format uses 10 different

columns (see Figure 1
2
), grouping the full set of

morphosyntactic features in a single column. We

will experiment the effect of individual features,

following two steps:

• First, we tested the effect of incorporating

each individual lexical feature, concluding

that there were two features that individually

gave significant performance increases. They

were syntactic case, which is relevant for

marking a word’s syntactic function (or,

equivalently, the type of dependency relation),

and subordination type (REL henceforth).

This REL feature appears in verb-ending mor-

phemes that specify a type of subordinated

sentence, such as in relative, completive, or

indirect interrogative clauses. The feature is,

therefore, relevant for establishing the main

structure of a sentence, helping to delimit

main and subordinated clauses, and it is also

crucial for determining the dependency rela-

tion between the subordinated sentence and

the main verb (head).

• Then, we separated these features in two in-

dependent columns, grouping the remaining

features under the Features column. This way,

Maltparser’s learning specification can be

more fine-grained, in terms of three morpho-

syntactic feature sets (CASE, REL and the

rest, see Table 2).

This will allow us testing learning models with

different configurations for each column, instead

of treating the full set of features as a whole. So,

we will have the possibility of experimenting with

2 As a matter of fact, Figure 1 only shows 8 columns, although

the CoNLL-X format includes two additional columns for the

projective head (PHEAD) and projective dependency relation

(PDEPREL), which have not been used in our work.

richer contexts (that is, advancing the Stack and/or

Input
3
 functions for each feature).

4.2 Tree transformations

Tree transformations have long been applied with

the objective of improving parsing results (Collins,

1999; Nilsson et al., 2007). The general process

consists of the following steps:

• Apply tree transformations to the treebank

• Train the system on the modified treebank

• Apply the parser to the test set

• Apply the inverse transformations

• Evaluate the result on the original treebank

We will test three different tree transformations,

which had already been applied to the Treebank

(BDT I) (Bengoetxea and Gojenola, 2009a):

• Projectivization (TP). This is a language inde-

pendent transformation already tested in sev-

eral languages (Nivre and Nilsson, 2005).

This transformation is totally language inde-

pendent, and can be considered a standard

transformation. Its performance on the first

version of BDT had been already tested (Hall

et al., 2007), giving significant improvements

This is in accordance with BDT I having a

2.9% of non-projective arcs.

• Coordination (TC). The transformation on co-

ordinated sentences can be considered general

(Nilsson et al., 2007) but it is also language

dependent, as it depends on the specific con-

figurations present in each language, mainly

the set of coordination conjunctions and the

types of elements that can be coordinated, to-

gether with their morphosyntactic properties

(such as head initial or final). Coordination in

BDT (both versions) is annotated in the so

called Prague Style (PS, see Figure 2), where

the conjunction is taken as the head, and the

3 Maltparser allows a rich set of functions to be specified for

each column. In our experiments we mainly used the Stack

and Input functions, which allow the inspection of the contents

of the top elements of the Stack (Stack[0], Stack[1], …) or the

currently unanalyzed input sequence (Input[0], Input [1], …).

 C1 C2 S C3 C1 C2 S C3 C1 C2 S C3

(PS) (MS) (MS-sym)

Figure 2. Dependency structures for coordination.

34

conjuncts depend on it. Nilsson et al. (2007)

advocate the Mel´cuk style (MS) for parsing

Czech, taking the first conjunct as the head,

and creating a chain where each element de-

pends on the preceding one. Basque is a head

final language, where many important syntac-

tic features, like case or subordinating mor-

phemes are located at the end of constituents.

For that reason, Bengoetxea and Gojenola

(2009a) proposed MS-sym, a symmetric

variation of MS in which the coordinated

elements will be dependents of the last con-

junct (which will be the head, see Figure 2).

• Transformation of subordinated sentences

(TS). They are formed in Basque by attaching

the corresponding morphemes to the auxiliary

verbs. However, in BDT (I and II) the verbal

elements are organized around the main verb

(semantic head) while the syntactic head

corresponds to the subordination morpheme,

which appears usually attached to the

auxiliary. Its main consequence is that the

elements bearing the relevant information for

parsing are situated far in the tree with respect

to their head. In Figure 3, we see that the

morpheme –la, indicating a subordinated

completive sentence, appears down in the tree,

and this could affect the correct attachment to

the main verb (esan). Figure 4 shows the

effect of transforming the original tree in

Figure 3. The subordination morpheme (-la) is

separated from the auxiliary verb (da), and is

“promoted” as the syntactic head of the

subordinated sentence. New arcs are created

from the main verb (etorri) to the morpheme

(which is now the head), and also a new

dependency relation (SUB).

Overall, the projectivization transformation (TP)

is totally language-independent. TC (coordination)

can be considered in the middle, as it depends on

the general characteristics of the language. Finally,

the transformation of subordinated sentences (TS)

is specific to the treebank and intrinsecally linked

to the agglutinative nature of Basque. Bengoetxea

and Gojenola (2009a) also found that the order of

transformations can be relevant. Their best system,

after applying all the transformations, obtained a

76.80% LAS on BDT I (2.24% improvement over

a baseline of 74.52%) on the test set. We include

these already evaluated transformations in the pre-

sent work with two objectives in mind:

• We want to test its effect on BDT II, 3 times

larger than BDT I, and also with a lower

proportion of non-projective arcs (1.3%).

• We are also interested in testing its

combination with the rest of the techniques

(see subsections 4.1 and 4.3).

4.3 Two-stage parsing (stacking)

Bengoetxea and Gojenola (2009b) tested the effect

of propagating several morphosyntactic feature

values after a first parsing phase, as in classical

unification-based grammars, as a means of propa-

gating linguistic information through syntax trees.

They applied three types of feature propagation of

the morphological feature values: a) from auxiliary

verbs to the main verb (verb groups) b) propaga-

tion of case and number from post-modifiers to the

head noun (noun phrases) c) from the last conjunct

to the conjunction (coordination). This was done

mainly because Basque is head final, and relevant

features are located at the end of constituents.

Nivre and McDonald (2008) present an

application of stacked learning to dependency

parsing, in which a second predictor is trained to

improve the performance of the first. Martins et al.

(2008) specify the following steps:

• Split training data D into L partitions D
1
, ... ,

D
L
.

• Train L instances of the level 0 parser in the

following way: the l-th instance, g
l
, is trained

auxmod

ccomp_obj

Figure 4. Effect of applying the transformation on

subordinated sentences to the tree in Figure 3

(dotted lines represent the modified arcs).

Etorri da +la esan du

 come has+he that told did+he

 V AUXV+3S COMPL V AUXV

SUB auxmod

auxmod

ccomp_obj

auxmod

Figure 3. Dependency tree for the sentence Etorri

dela esan du (He told that he would come).

Etorri da+la esan du

 come has+he+that told did+he

 V AUXV+3S+COMPL V AUXV

35

on D
−l

 = D \ D
l
. Then use g

l
 to output

predictions for the (unseen) partition D
l
. At

the end, we have an augmented dataset D
*
 = D

+ new set of stacked/propagated features.

• Train the level 0 parser g on the original

training data D.

• Train the level 1 parser on the augmented

training data D
*
.

In our tests, it was enough with two partitions (L

= 2), as experiments with L > 2 did not give any

significant improvement. Figure 5 shows the types

of information that can be added to each target

element. The token X can take several kinds of

information from its children (A and B) or his par-

ent (H). The information that is propagated can

vary, including part of speech, morphosyntactic

features or the dependency relations between X

and its children/parent. We can roughly classify the

stacked features in two different sets:

• Linguistic features (feature passing), such as

case or number, which are propagated

applying linguistic principles, such as “the

syntactic case is propagated from the

dependents towards the head of NPs and

postpositional phrases”. The idea is to

propagate several morphosyntactic features

(case, number, …) from dependents to heads.

• Parser features. They will be based solely on

different dependency tree configurations (see

Figure 5), similarly to (Nivre and McDonald,

2008; Martins et al., 2008). Among them, we

will test the inclusion of several features

(dependency relation, category and

morphosyntactic features) from the following:

parent, grandparent, siblings, and children.

In the present work, we have devised the follow-

ing experiments:

• We will test the effect of propagating

linguistic features on the new BDT II. In

contrast to (Bengoetxea and Gojenola,

2009b), who used the enriched gold data as D
*

directly, we will test Martins et al.’s proposal,

in which the level 1 parser will be able to

learn on the errors of the level 0 parser.

• We will extend these experiments with the use

of different parser features (Nivre and

McDonald, 2008; Martins et al., 2008).

4.4 Combination

Finally, we will combine the different techniques.

An important point is to determine whether the

techniques are independent (and accumulative) or

it could also be that they can serve as alternative

treatments to deal with the same phenomena.

5 Evaluation

BDT I was used at the CoNLL 2007 Shared Task,

where many systems competed on it (Nivre et al.,

2007b). We will use Labeled Attachment Score

(LAS) as the evaluation measure: the percentage of

correct arcs (both dependency relation and head)

over all arcs, with respect to the gold standard. Ta-

ble 1 shows the best CoNLL 2007 results on BDT

I. The best system obtained a score of 76.94%,

combining six variants of MaltParser, and compet-

ing with 19 systems. Carreras (2007) and Titov and

Henderson (2007) obtained the second and third

positions, respectively. We consider the last two

lines in Table 1 as our baselines, which consist in

applying a single MaltParser version (Hall et al.,

2007), that obtained the fifth position at CoNLL

2007. Although Hall et al. (2007) applied the pro-

jectivization transformation (TP), we will not use it

in our baseline because we want to evaluate the

effect of multiple techniques over a base parser.

Although we could not use the subset of BDT II

corresponding to BDT I, we run
4
 a test with a set

of sentences the size of BDT I. As could be ex-

4 For space reasons, we do not specify details of the algorithm

and the parameters. These data can be obtained, together with

the BDT II data, from any of the authors.

 System LAS

Nivre et al. 2007b (MaltParser,

combined)

76.94%

Carreras, 2007 75.75%

Titov and Henderson, 2007 75.49%

C

o

N

L

L

07

Hall et al., 2007 (MaltParser

(single parser) + pseudoprojec-

tive transformation)

74.99%

BDT I

MaltParser (single parser) 74.52%

BDT I size 74.83% BDT II MaltParser (single

parser) Baseline 77.08%

Table 1. Top LAS scores for Basque dependency parsing.

d2

d1

d3

Figure 5. Stacked features. X can take several

features from its descendants (dependency arcs

d2 and d3) or his head (d1).

 A X B H

36

pected, the three-fold increase in the new treebank

gives a 2.35% improvement over BDT I.

For evaluation, we divided the treebank in three

sets, corresponding to training, development, and

test (80%, 10%, and 10%, respectively). All the

experiments were done on the development set,

leaving the best systems for the final test.

5.1 Single systems

Table 3 shows the results for the basic systems

employing each of the techniques advanced in Sec-

tion 4. As a first result, we see that a new step of

reengineering MaltParser’s learning configuration

was rewarding (see row 2 in Table 3), as morpho-

syntactic features were more finely specified with

respect to the most relevant features. Table 2 pre-

sents the baseline and the best learning model
5
. We

see that advancing the input lookahead for CASE

and REL gives an increase of 0.82 points.

Looking at the transformations (rows 3 to 7), the

new Treebank BDT II obtains results similar to

those described in (Bengoetxea and Gojenola,

2009a). As could be expected from the reduction

of non-projective arcs (from 2.9% to 1.3%), the

gains of TP are proportionally lower than in BDT I.

Also, we can observe that TS alone worsens the

baseline, but it gives the best results when com-

bined with the rest (rows 6 and 7). This can be ex-

plained because TS creates new non-projective

arcs, so it is effective only if TP is applied later.

The transformation on coordination (TC) alone

does not get better results, but when combined

with TP and TS gives the best results.

Applying feature propagation and stacking (see

rows 9-17), we can see that most of the individual

techniques (rows 9-14) give improvements over

the baseline. When combining what we defined as

5 This experiment was possible due to the fact that Malt-

Parser’s functionality was extended, allowing the specification

of new columns/features, as the first versions of MaltParser

only permitted a single column that included all the features.

linguistic features (those morphosyntactic features

propagated by the application of three linguistic

principles), we can see that their combination

seems accumulative (row 15). The parser features

also give a significant improvement individually

(rows 12-14), but, when combined either among

themselves (row 16) or with the linguistic features

(row 17), their effect does not seem to be additive.

5.2 Combined systems

After getting significant improvements on the indi-

vidual techniques and some of their combinations,

we took a further step to integrate different tech-

niques. An important aspect that must be taken into

account is that the combination is not trivial all the

times. For example, we have seen (section 5.1) that

combinations of the three kinds of tree transforma-

tions must be defined having in mind the possible

side-effects of any previous transformation. When

combining different techniques, care must be taken

to avoid any incompatibility. For that reason we

only tested some possibilities. Rows 18-21 show

some of the combined experiments. Combination

of feature optimization with the pseudoprojective

transformation yields an accumulative improve-

ment (row 18). However, the combination of all

the tree transformations with FO (row 19) does not

accumulate. This can be due to the fact that feature

optimization already cancelled the effect of the

transformation on coordination and subordinated

sentences, or otherwise it could also need a better

exploration of their interleaved effect. Finally, row

21 shows that feature optimization, the pseudopro-

jective transformation and feature propagation are

also accumulative, giving the best results. The rela-

tions among the rest of the transformations deserve

future examination, as the results do not allow us

to extract a precise conclusion.

6 Conclusions and future work

We studied several proposals for improving a base-

line system for parsing the Basque Treebank. All

the results were evaluated on the new version,

BDT II, three times larger than the previous one.

We have obtained the following main results:

• Using rich morphological features. We have

extended previous works, giving a finer

grained description of morphosyntactic

features on the learner’s configuration,

 Stack[0] Input[0] Input[1] Input[2]

1 Features + +

CASE + + +

REL + + + +

2

Features

(rest)

+ +

Table 2. Learning configurations for morphosyntactic fea-

tures (1 = best model for the whole set of features.

2 = best model when specializing features).

37

showing that it can significantly improve the

results. In particular, differentiating case and

the type of subordinated sentence gives the

best LAS increase (+0.82%).

• Tree transformations. We have replicated the

set of tree transformations that were tested in

the old treebank (Bengoetxea and Gojenola

2009a). Two of the transformations

(projectivization and coordination) can be

considered language independent, while the

treatment of subordination morphemes is

related to the morphological nature of Basque.

• Feature propagation. We have experimented

the effect of a stacked learning scheme. Some

of the stacked features were language-

independent, as in (Nivre and McDonald.

2008), but we have also applied a

generalization of the stacking mechanism to a

morphologically rich language, as some of the

stacked features are morphosyntactic features

(such as case and number) which were

propagated through a first stage dependency

tree by the application of linguistic principles

(noun phrases, verb groups and coordination).

• Combination of techniques. Although several

of the combined approaches are accumulative

with respect to the individual systems, some

others do not give a improvement over the

basic systems. A careful study must be

conducted to investigate whether the

approaches are exclusive or complementary.

For example, the transformation on

subordinated sentences and feature

propagation on verbal groups seem to be

attacking the same problem, i. e., the relations

between main and subordinated sentences. In

this respect, they can be viewed as alternative

approaches to dealing with these phenomena.

The results show that the application of these

techniques can give noticeable results, getting an

overall improvement of 1.90% (from 77.08% until

78.98%), which can be roughly comparable to the

effect of doubling the size of the treebank (see the

last two lines of Table 1).

Acknowledgements

This research was supported by the Department of

Industry of the Basque Government (IE09-262)

and the University of the Basque Country

(GIU09/19). Thanks to Joakim Nivre and his team

for their support using Maltparser and his fruitful

suggestion about the use of stacked features.

 Row System LAS

Baseline 1 77.08%

Feature optimization 2 FO *77.90% (+0.82)

3 TP **77.92% (+0.84)

4 TS 75.95% (-1.13)

5 TC 77.05% (-0.03)

6 TS + TP **78.41% (+1.33)

Transformations

7 TS + TC + TP **78.59% (+1.51)

9 SVG **77.68% (+0.60)

10 SNP 77.17% (+0.09)

11 SC 77.40% (+0.32)

12 SP *77.70% (+0.62)

13 SCH *77.80% (+0.72)

14 SGP 77.37% (+0.29)

15 SVG + SNP + SC **78.22% (+1.14)

16 SP + SCH **77.96% (+0.88)

Single

technique

Stacking

17 SVG + SNP + SC + SP + SCH **78.44% (+1.36)

 18 FO + TP **78.78% (+1.70)

 19 FO + TS + TC + TP **78.47% (+1.39)

 20 TP + SVG + SNP + SC **78.56% (+1.48)

Combination

 21 FO + TP + SVG + SNP + SC **78.98% (+1.90)

Table 3. Evaluation results.

(FO: feature optimization; TP TC TS: Pseudo-projective, Coordination and Subordinated sentence transformations;

SVG, SNP, SC: Stacking (feature passing) on Verb Groups, NPs and Coordination;

SP, SCH, SGP: Stacking (category, features and dependency) on Parent, CHildren and GrandParent;

*: statistically significant in McNemar's test, p < 0.005; **: statistically significant, p < 0.001)

38

References

Itziar Aduriz, Maria Jesus Aranzabe, Jose Maria Arrio-

la, Aitziber Atutxa, Arantza Diaz de Ilarraza, Aitzpea

Garmendia and Maite Oronoz. 2003. Construction of

a Basque dependency treebank. Treebanks and Lin-

guistic Theories.

Xabier Artola, Arantza Díaz de Ilarraza, Nerea Ezei-

za, Koldo Gojenola, Gorka Labaka, Aitor Sologais-

toa, Aitor Soroa. 2005. A framework for

representing and managing linguistic annotations

based on typed feature structures. Proceedings of the

International Conference on Recent Advances in

Natural Language Processing, RANLP 2005.

Kepa Bengoetxea and Koldo Gojenola. 2009a. Explor-

ing Treebank Transformations in Dependency Pars-

ing. Proceedings of the International Conference on

Recent Advances in Natural Language Processing,

RANLP’2009.

Kepa Bengoetxea and Koldo Gojenola. 2009b. Applica-

tion of feature propagation to dependency parsing.

Proceedings of the International Workshop on Pars-

ing Technologies (IWPT’2009).

Xavier Carreras. 2007. Experiments with a high-order

projective dependency parser. In Proceedings of the

CoNLL 2007 Shared Task (EMNLP-CoNLL).

Shay B. Cohen and Noah A. Smith. 2007. Joint Mor-

phological and Syntactic Disambiguation. In Pro-

ceedings of the CoNLL 2007 Shared Task.

Michael Collins, Jan Hajic, Lance Ramshaw and Chris-

toph Tillmann. 1999. A Statistical Parser for Czech.

Proceedings of ACL.

Michael Collins. 1999. Head-Driven Statistical Models

for Natural Language Parsing. PhD Dissertation,

University of Pennsylvania..

Brooke Cowan and Michael Collins. 2005. Morphology

and Reranking for the Statistical Parsing of Span-

ish. In Proceedings of EMNLP 2005.

Gülsen Eryiğit, Joakim Nivre and Kemal Oflazer. 2008.

Dependency Parsing of Turkish. Computational

Linguistics, Vol. 34 (3).

Yoav Goldberg and Reut Tsarfaty. 2008. A Single Gen-

erative Model for Joint Morphological Segmenta-

tion and Syntactic Parsing. Proceedings of ACL-

HLT 2008, Colombus, Ohio, USA.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryigit,

Beáta Megyesi, Mattias Nilsson and Markus Saers.

2007. Single Malt or Blended? A Study in Multilin-

gual Parser Optimization. Proceedings of the CoNLL

Shared Task EMNLP-CoNLL.

André F. T. Martins, Dipanjan Das, Noah A. Smith,

Eric P. Xing. 2008. Stacking Dependency Parsing.

Proceedings of EMNLP-2008.

Jens Nilsson, Joakim Nivre and Johan Hall. 2007. Gen-

eralizing Tree Transformations for Inductive De-

pendency Parsing. Proceedings of the 45th

Conference of the ACL.

Joakim Nivre. 2006. Inductive Dependency Parsing.

Springer.

Joakim Nivre, Johan Hall, Jens Nilsson, Chanev A.,

Gülsen Eryiğit, Sandra Kübler, Marinov S., and

Edwin Marsi. 2007a. MaltParser: A language-

independent system for data-driven dependency pars-

ing. Natural Language Engineering.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan

McDonald, Jens Nilsson, Sebastian Riedel and

Deniz Yuret. 2007b. The CoNLL 2007 Shared Task

on Dependency Parsing. Proceedings of EMNLP-

CoNLL.

Joakim Nivre and Ryan McDonald. 2008. Integrating

graph-based and transition-based dependency pars-

ers. Proceedings of ACL-2008.

Ivan Titov and James Henderson. 2007. Fast and robust

multilingual dependency parsing with a generative

latent variable model. In Proceedings of the CoNLL

2007 Shared Task (EMNLP-CoNLL).

Reut Tsarfaty, Khalil Sima’an, and Remko Scha. 2009.

An Alternative to Head-Driven Approaches for

Parsing a (Relatively) Free Word-Order Language.

Proceedings of EMNLP.

39

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 40–48,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Modeling Morphosyntactic Agreement
in Constituency-Based Parsing of Modern Hebrew

Reut Tsarfaty∗ and Khalil Sima’an
Institute for Logic, Language and Computation

University of Amsterdam
{r.tsarfaty,k.simaan}@uva.nl

Abstract

We show that naı̈ve modeling of morphosyn-
tactic agreement in a Constituency-Based
(CB) statistical parsing model is worse than
none, whereas a linguistically adequate way
of modeling inflectional morphology in CB
parsing leads to improved performance. In
particular, we show that an extension of the
Relational-Realizational (RR) model that in-
corporates agreement features is superior to
CB models that treat morphosyntax as state-
splits (SP), and that the RR model benefits
more from inflectional features. We focus on
parsing Hebrew and report the best result to
date, F184.13 for parsing off of gold-tagged
text, 5% error reduction from previous results.

1 Introduction

Agreement is defined by linguists as the system-
atic covariance of the grammatical properties of one
linguistic element to reflect the semantic or formal
properties of another (Corbett, 2001). Morpholog-
ically marked agreement features such as gender,
number and person are used to realize grammat-
ical relations between syntactic constituents, and
such patterns are abundantly found in (less- or) non-
configurational languages (Hale, 1983) where the
order of words is known to be (relatively) free.
Agreement features encompass information con-
cerning the functional relations between constituents
in the syntactic structure, but whether incorporat-
ing agreement features in a statistical parsing model
leads to improved performance has so far remained
an open question and saw contradictory results.

∗The first author is currently a researcher at the department
of Linguistics and Philology at Uppsala University.

Taking Semitic languages as an example, it was
shown that an SVM-based shallow parser (Gold-
berg et al., 2006) does not benefit from includ-
ing agreement features for NP chunking in Hebrew.
Phrase-structure based parsers for Arabic system-
atically discard morphological features from their
label-set and never parametrize agreement explic-
itly (Maamouri et al., 2008). Models based on deep
grammars such as CCG (Hockenmaier and Steed-
man, 2003) and HPSG (Miyao and Tsujii, 2008)
could in principle use inflectional morphology, but
they currently rely on functional information mainly.
For formalisms that do incorporate morphology,
generative models are may leak probability due to
unification failures (Abney, 1997). Even results
from dependency parsing remain inconclusive. It
was shown for dependency parsing that case, defi-
niteness and animacy features are useful to enhance
parsing (e.g., (Øvrelid and Nivre, 2007)), agreement
patterns are often excluded. When agreement fea-
tures were included as features in dependency parser
for Hebrew in (Goldberg and Elhadad, 2009) for He-
brew they obtained tiny-to-no improvement.

A question thus emerges whether there are any
benefits in explicitly incorporating morphosyntactic
agreement patterns into our models. This question is
a manifestation of a greater issue, namely, whether
it is beneficial to represent complex patterns of mor-
phology in the statistical parsing model, or whether
configurational information subsume the relevant
patterns, as it is commonly assumed in constituency-
based parsing. Here we claim that agreement fea-
tures are useful for statistical parsing provided that
they are represented and parametrized in a way that
reflects their linguistic substance; to express func-
tional information orthogonal to configuration.

40

We do so by extending the Relational-
Realizational (RR) model we presented in (Tsarfaty
and Sima’an, 2008) to explicitly encode agreement
features in its native representation (RR-AGR). In
the RR model, a joint distribution over grammatical
relations is firstly articulated in the projection phase.
The grammatical relations may be spelled out by
positioning them with respect to one another in the
configuration phase, through the use of morphology
in the realization phase, or both. This paper shows
that, for Hebrew, this RR-AGR strategy signifi-
cantly outperforms a constituency-based model that
treats agreement features as internally structured
non-terminal state-splits (SP-AGR). As we accumu-
late morphological features, the performance gap
between the RR and SP models becomes larger.

The best result we report for the RR-AGR model,
F184.13, is the best result reported for Hebrew to
date for parsing gold PoS-tagged segments, with
5% error reduction from previous results. This
result is also significantly higher than all parsing
results reported so far for Arabic, a Semitic lan-
guage with similar morphosyntactic phenomena.1

The RR approach is shown to be an adequate way
to model complex morphosyntactic patterns for im-
proving constituency-based parsing of a morpholog-
ically rich, free word order language. Because the
RR model is also proper and generative, it may also
embed as a language model to enhance more com-
plex NLP tasks, e.g., statistical Machine Translation.

2 The Data

The grammar of nonconfigurational languages al-
lows for freedom in word ordering and discontinu-
ities of syntactic constituents (Hale, 1983). Such
languages do not rely on configurational information
such as position and adjacency in marking grammat-
ical relations such as subject and object, but instead
they use word-level morphology. One way to encode
grammatical relations in the form of words is by us-
ing morphological case, that is, explicitly marking
an argument (e.g. nominative, accusative) with re-
spect to its grammatical function. In (Tsarfaty et
al., 2009) we showed that incorporating case indeed
leads to improved performance for constituency-
based, Relational-Realizational parsing of Hebrew.

1In (Maamouri et al., 2008), F178.1 for gold standard input.

A more involved way to morphologically encode
grammatical relations is by making explicit refer-
ence to the properties of multiple linguistic ele-
ments. This is the general pattern of agreement, i.e.,

“[A] systematic covariance between a se-
mantic or a formal property of one ele-
ment and a formal property of another.”
(Steele, adapted from (Corbett, 2001))

Describing agreement patterns involves explicit
reference to the following four components; the el-
ement which determines the agreement properties
is the Controller of the agreement, the element
whose properties are determined by agreement is
the Target, the syntactic environment in which the
agreement occurs is the Domain of agreement, and
the properties with respect to which they agree are
agreement Features (Corbett, 2001). Agreement is
an inherently asymmetrical relation. Combination
of features displayed by controllers has to be ac-
commodated by the inflectional features of the tar-
get, but there is no opposite requirement. Let us il-
lustrate the formal description of agreement through
Subject-Verb agreement familiar from English (1).

(1) a. Subject-Verb Agreement in English:
Controller: NP
Target: V
Domain: S
Features: number, person

b. Example:
i. They like the paper

ii. *They likes the paper

The agreement target (the verb) in English has a
rich enough inflectional paradigm that reflects the
person and number features inherent in controllers
— the nouns that realize subjects. (But nouns in En-
glish need not reflect, say, tense.) Had the subject
been an NP, e.g., the phrase “the committee”, the
agreement pattern would have had to be determined
by the features of the entire NP, and in English the
features of the phrase would be determined by the
lexical head “committee”. The controller of the
agreement (noun) does not coincide with the head of
the lexical dependency (the verb), which means that
the direction of morphological dependencies need
not coincide with that of lexical dependencies.

41

The Semitic Language Modern Hebrew Modern
Hebrew, (henceforth, Hebrew) is a Semitic language
with a flexible word order and rich morphological
structure. Hebrew nouns morphologically reflect
their inherent gender and number. Pronouns also
reflect person features. Hebrew verbs are inflected
to reflect gender, number, person and tense. Adjec-
tives are inflected to reflect the inherent properties of
nouns, and both nouns and adjectives are inflected
for definiteness. The Hebrew grammar uses this ar-
senal of properties to implement a wide variety of
agreement patterns realizing grammatical relations.

Agreement in Hebrew S Domains Hebrew man-
ifests different patterns of agreement in its S do-
main. Verbal predicates (the target) in matrix sen-
tences (the domain) agree with their nominal sub-
jects (the controller) on the agreement features gen-
der, number and person. This occurs regardless of
their configurational positions, as illustrated in (2b).

(2) a. Agreement in Verbal Sentences:
Controller: NP
Target: V
Domain: S
Features: number, person, gender

b. i. לדינה מתנה נתן דני
dani
Dani.3MS

natan
gave.3MS

matana
present

ledina
to-Dina

Dani gave a present to Dina (SVO)
ii. לדינה דני נתן מתנה

matana
present

natan
gave.3MS

dani
Dani.3MS

ledina
to-Dina

Dani gave a present to Dina (VI)

Subject-Predicate agreement relations are not
only independent of surface positions, but are also
orthogonal to the syntactic distributional type of
the constituent realizing the predicate. Semitic lan-
guages allow for predicates to be realized as an
NP, an ADJP or a PP clause (3b) lacking a verb
altogether. (In the Hebrew treebank, such pred-
icates are marked as PREDP). In all such cases,
agreement feature-bundles realized as pronominals,

which (Doron, 1986) calls Pron, are optionally
placed after the subject. The position of Pron el-
ement with respect to the subject and predicate is
fixed.2 The role of these Pron elements is to indicate
the argument-structure of a nominal sentence that is
not projected by a verb. In the Hebrew treebank they
are subsumed under predicative phrases (PREDPs).
If a PREDP head is of type NP or ADJP it must be
inflected to reflect the features of the subject con-
troller, as is illustrated in examples (3b-i)–(3b-ii).

(3) a. Agreement in Nominal Sentences:
Controller: NP
Target: Pron
Domain: S
Features: number, gender,person

b. i. ציירת (היא) דינה
dina
Dina.FS

(hi)
(Pron.3FS)

cayeret
painter.FS

Dina is a painter
ii. מוכשרת (היא) דינה

Dina
Dina.FS

(hi)
(Pron.3FS)

muchsheret
talented.FS

Dina is talented
iii. בבית (היא) דינה

Dina
Dina.FS

(hi)
(Pron.3FS)

babayit
in-the-house

Dina is at home
c. i. ציירת דינה (היא)* (hi)* dina cayeret

(Pron.3FS)* Dina.FS painter.FS

The pronominal features gender, number, person
are also a part the inflectional paradigm of the verb
היה (be), which is extended to include tense features.
These inflected elements are used as AUX which
function as co-heads together with the main (nom-
inal or verbal) predicate. AUX elements that take a
nominal predicate as in (4b) agree with their subject,
and so do auxiliaries that take a verbal complement,
e.g., the modal verb in (4c). The nominal predicate
in (4b) also agrees with the subject – and so does
the modal verb in (4c). Agreement of AUX with the

2Doron (1986) shows that these Pron elements can not be
considered the present tense supplements of AUX elements in
Hebrew since their position with respect to the subject and pred-
icate is fixed, whereas AUX can change position, see (4) below.

42

verbal or nominal predicates is again independent of
their surface positions.

(4) a. Subject-AUX Agreement in Hebrew:
Controller: NP
Target: AUX
Domain: S
Features: number, person, gender

b. i. ציירת בעבר היתה היא

hi
she.3FS

hayta
was.3FS

be’avar
in-past

cayeret
painter.FS

She was a painter in the past

ii. ציירת היא היתה בעבר

be’avar
in-past

hayta
was.3FS

hi
she.3FS

cayeret
painter.FS

She was a painter in the past”

c. i. להגיע אמורה היתה היא

hi
She.3FS

hayta
was.3FS

amura
supposed.FS

lehagi’a
to-arrive

She was supposed to arrive

ii. להגיע היתה אמורה היא

hi
She.3FS

amura
supposed.FS

hayta
was.3FS

lehagi’a
to-arrive

She was supposed to arrive

Agreement in Construct State Nouns Semitic
languages allow for the creation of noun compounds
by phonologically marking their lexical head and
adding a genitive complement. These constructions
are called Construct-State Nouns (CSN) (Danon,
2008) and an example of a CSN is provided in (5a).3

(5) a. הצייר בת

bat
child.FS.CSN

ha-cayar
Def-painter.MS

The painter’s daughter

3Also known as iDaFa constructions in Arabic.

In such cases, all the agreement features are taken
from the head of the CSN, the noun ‘daughter’ in (5).
Since CSNs may be embedded in other CSNs, the
constructions may be arbitrarily long. When short
or long, CSNs themselves may be modified by ad-
jectives that agree with the CSN as a whole. This
gives rise to multiple patterns of agreement within
a single complex CSN. Consider, for instance, the
modified CSN in (6a).

(6) a. המוכשרת הצייר בת
bat
child.FS.CSN

ha-cayar
Def-painter.MS

ha-muchsheret
Def-talented.FS

The talented daughter of the painter

The features Def, F, S of the adjective ‘talented’
agree with the inherent properties of the CSN head
‘child.FS’ and with the definiteness status of the em-
bedded genitive Def-painter. This phenomenon is
called by Danon (2008) definiteness-spreading, and
what is important about such spreading is to observe
that it is not always the case that all agreement fea-
tures of a phrase are contributed by its lexical head.4

Interim Summary The challenges of model-
ing agreement inside constituency-based statistical
models can be summarized as follows. The models
are required to assign probability mass to alternating
sequences of constituents while retaining equivalent
feature distributions that capture agreement. Agree-
ment is (i) orthogonal to the position of constituents
(ii), orthogonal to their distributional types, and (iii)
orthogonal to features’ distributions among domi-
nated subconstituents. Yet, from a functional point
of view their contribution is entirely systematic.

3 The Models

The strong version of the well-known Lexicalist
Hypothesis (LH) states that “syntactic rules cannot
make reference to any aspect of word internal struc-
ture” (Chomsky, 1970). Anderson (1982) argues
that syntactic processes operating within configura-
tional structures can often manipulate, or have ac-
cess to, formal and inherent properties of individ-
ual words. Anderson (1982) argues that a model

4Examples for non-overlapping contribution of features by
multiple dependencies can be found in (Guthmann et al., 2009).

43

that is well-equipped to capture such phenomena is
one that retains a relaxed version of the LH, that is,
one in which syntactic processes do not make refer-
ence to aspects of word-internal structure other than
morphologically marked inflectional features. What
kind of parsing model would allow us to implement
this relaxed version of the Lexicalist Hypothesis?

The Morphosyntatctic State-Splits (SP) Model
One way to maintain a relaxed version of the LH
in syntax is to assume a constituency-based rep-
resentation in which the morphological features of
words are percolated to the level of constituency
in which they are syntactically relevant. This ap-
proach is characteristic of feature-based grammars
(e.g., GPSG (Gazdar et al., 1985) and follow-up
studies). These grammars assume a feature geom-
etry that defines the internal structure of node labels
in phrase-structure trees.5

Category-label state-splits can reflect the different
morphosyntactic behavior of different non-terminals
of the same type. Using such supervised, linguis-
tically motivated, state-splits, based on the phrase-
level marking of morphological information is one
may build an efficient implementation of a PCFG-
based parsing model that takes into account mor-
phological features. State-split models were shown
to obtain state-of-the-art performance with little
computational effort. Supervised state-splits for
constituency-based unlexicalized parsing in (Klein
and Manning, 2003) in an accurate English parser.
For the pair of Hebrew sentences (2b), the morpho-
logical state-split context-free representation of the
domain S is as described at the top of figure 1.6

The Relational-Realizational (RR) Model A dif-
ferent way to implement a syntactic model that con-
form to the relaxed LH is by separating the inflec-
tional features of surface words from their grammat-
ical functions in the syntactic representation and let-

5While agreement patterns in feature-rich grammars give
rise to re-entrancies that break context-freeness, GPSG shows
that using feature-percolation we can get quite far in modeling
morphosyntactic dependencies and retaining context-freeness.

6Horizontal markovization à la (Klein and Manning, 2003)
would be self-defeating here. Markovization of constituents
conditions inflectional features on configurational positions,
which is inadequate for free word-order languages as Hebrew.
This is already conjectured in the PhD thesis of Collins, and it
is verified empirically for Hebrew in (Tsarfaty et al., 2009).

ting the model learn systematic form-function corre-
spondence patterns between them.

The Relational-Realizational (RR) model (Tsar-
faty and Sima’an, 2008) takes such a ‘separational-
ist’ approach which is constituent-based. Grammat-
ical relations are separated from their morphologi-
cal or syntactic means of realization, which are in
turn also distinguished. The easiest way to describe
the RR model is via a three-phase generative process
encompassing the projection, configuration and re-
alization phases. In the projection phase, a clause-
level syntactic category generates a Relational Net-
work (RN), i.e., a set of grammatical function-labels
representing the argument-structure of the clause. In
the configuration phase, linear ordering is generated
for the function-labels and optional realization slots
are reserved for elements such as punctuation, auxil-
iaries and adjuncts. The realization phase spells out
a rich morphosyntactic representation (MSR) — a
syntactic label plus morphological features — real-
izing each grammatical function and each of the re-
served slots. The process repeats as necessary until
MSRs of pre-terminals are mapped to lexical items.

In (Tsarfaty et al., 2009) we have shown that
the RR model makes beneficial use of morpholog-
ical patterns involving case marking, but did not
study the incorporation of inflectional agreement
features such as gender. Since agreement features
such as gender, number and case-related informa-
tion such accusativity, definiteness are determined
by non-overlapping subconstituents, it remains an
open question whether an addition of agreement fea-
tures into the model can be down in a linguistically
adequate and statistically sound way, and whether or
not they further improve performance.

We claim that the Relational-Realizational model
of (Tsarfaty et al., 2009) has all the necessary ingre-
dients to seamlessly migrate RR representations to
ones that encode agreement explicitely. In order to
explain how we do so let us recapitulate the empir-
ical facts. Agreement is an asymmetric relation de-
fined for a certain domain, in which the agreement
properties of a target co-vary with the inherent prop-
erties of the controller. Consider the two sentences
in (2b) in which the formal means to differentiate the
subject from the object is by the pattern of an agree-
ing predicate. The RR representations of the domain
S are given at the bottom of figure 1.

44

The agreement targets and agreement controllers
are easy to recognize; controllers are the syntac-
tic constituents that realize subjects, parametrized
as Prealization(V B|PRD@S), and targets are the
ones that realize predicates, parametrized as
Prealization(NP |SBJ@S). Now, if we take the
predicted labels of controllers and targets to in-
clude reference to inflectional features, we get
the following parameterization of the realization
parameters Prealization(V BFEATSi|PRD@S) and
Prealization(NP FEATSj|SBJ@S) with FEATSi,
FEATSj the inflectional features indicated in their
morphosyntactic representation. Now, we only need
to make sure that FEATSi, FEATSj indeed agree,
regardless of their position under S.

We do so by explicitly marking the domain
of agreement, the S category, with the features
of the syntactically most prominent participant in
the situation, the subject (this is where the non-
symmetrical nature of agreement comes into play).
The realization distributions take the following
forms Prealization(V BFEATSj|PRD@SFEATSi)
and Prealization(NP FEATSi|SBJ@SFEATSi). In
the former, NP FEATSi reflects the inherent fea-
tures of the SBJ and in the latter V BFEATSj re-
flects the agreement features of the PRD. Now, re-
gardless of word order, and regardless of the inter-
nal structure of NPs, the parameters capturing agree-
ment would be the same for examples (2b i-ii). The
only parameters that differ are the configuration pa-
rameters (boxed), reflecting word-order alternation.

For the sake of completeness we include here also
the SP vs. RR representation of S domains involv-
ing auxiliaries in figure 2. Here the sentences vary
only in the position of the AUX element relative to
the subject with which it agrees. Subjects, predi-
cates, and slots that have been reserved for AUX
elements, all reflect the same pattern of agreement
through their conditioning on the rich representa-
tion of the domain.7 More parameters that vary here
(boxed) are AUX placement and realization param-
eters. Since Pron elements endow PREDPs with
agreement features, agreement with verbless (nomi-
nal) predicates under S analogously follows.

7In Hebrew, even some adverbial modifiers reflect pat-
terns of agreement, e.g., עודני (literally, ”I am still”, glossed
‘still.1S’). This solution caters for all such patterns in which
non-obligatory elements exhibit agreement.

4 Experiments

We aim to examine whether the explicit incorpora-
tion of agreement features helps Hebrew parsing,
and if so, which of the two modeling strategies is
better for utilizing the disambiguation cues provided
by morphosyntactic agreement.

Data We use the Hebrew treebank v2.0 with the
extended annotation of (Guthmann et al., 2009),
which adds inflectional properties to non-terminal
categories such as NP and VP. We head-annotate
the corpus and systematically add the agreement fea-
tures of Domains throughout the treebank. We fur-
ther distinguish finite from non-finite verb forms,
and cliticized from non-cliticized nouns, as in
(Goldberg and Tsarfaty, 2008; Tsarfaty et al., 2009).
On top of the treebank labels SBJ subject, OBJ ob-
ject, COM complement and CNJ conjunction we
add PRD predicates and IC infinitival complements.

Procedure We devised a procedure to read-off
treebank grammars based on (i) GPSG-like, states-
plit context-free parameters (SP-AGR), and (ii) RR-
AGR parameters in which context-free rules capture
the projection, configuration and realization phases.
In each model the multiplication provides the prob-
ability of the generation. We use relative frequency
estimates and exhaustively parse gold pos-tagged in-
put8 using a general-purpose CKY parser. We use
the same data split as in (Goldberg and Tsarfaty,
2008; Tsarfaty et al., 2009) (training on sentences
501-6000 and parsing sentences 1-500) and we con-
vert all trees to the flat, coarse-grained, original tree-
bank representation for the purpose of evaluation.

Setup We experiment with bare constituent labels,
grand-parent decorated labels (gp), and labels deco-
rated with grand-parent and head-tag labels (gp,hd).
We use increasingly richer subsets of the {gender,
definiteness, accusativity} set.9

8This choice to parse gold-tagged sentences is meant to alle-
viate the differences in the model’s morphological disambigua-
tion capacity. We want to evaluate the contribution of morpho-
logical features for syntactic disambiguation, and if the models
will disambiguate the morphological analyses differently, the
syntactic analysis will be assigned to different yields and the
accuracy results would be strictly incomparable. But see (Gold-
berg and Tsarfaty, 2008) for a way to combine the two.

9We deliberately choose features that have non-overlapping
behavior, to see whether their contribution is accumulative.

45

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

SMS

NPMS-SBJ
dani
Dani

VPMS-PRD
natan
gave

NP-OBJ
matana
present

PP-COM
ledian
to-dina

SMS

NP-OBJ
matana
present

VPMS-PRD
natan
gave

NPMS-SBJ
dani
Dani

PP-COM
ledian
to-dina

P(NPMS-SBJ,VPMS-PRD,NP-OBJ,PP-COM | SMS) P(NP-OBJ,VPMS-PRD,NPMS-SBJ,PP-COM | SMS)

SMS

{SBJ,PRD,OBJ,COM}@SMS

SBJ@SMS

NPMS

dani
Dani

PRD@SMS

VPMS

natan
gave

OBJ@SMS

NP-OBJ
matana
present

COM@SMS

PP-COM
ledian
to-dina

SMS

{SBJ,PRD,OBJ,COM}@SMS

OBJ@SMS

NP-OBJ
matana
present

PRD@SMS

VPMS

natan
gave

SBJ@SMS

NPMS

dani
Dani

COM@SMS

PP-COM
ledian
to-dina

Pprojection({SBJ,PRD,OBJ,COM} | SMS) Pprojection({SBJ,PRD,OBJ,COM} | SMS)

Pconfiguration(S,P,O,C | {SBJ,PRD,OBJ,COM}@SMS) Pconfiguration(O,P,S,C | {SBJ,PRD,OBJ,COM}@SMS)

Prealization(NPMS | SBJ@SMS) Prealization(NPMS | SBJ@SMS)
Prealization(VBMS | PRD@SMS) Prealization(VBMS | PRD@SMS)
Prealization(NP | OBJ@ SMS) Prealization(NP | OBJ@ SMS)
Prealization(PP | COM@ SMS) Prealization(PP | COM@ SMS)

Figure 1: The SP-AGR (top) and RR-AGR representations of sentences (2b-i) (left) and (2b-ii).

SFS

NPFS-SBJ
hi

she

AUXFS
hayta
was

MDFS-PRD
amura

supposed

VPINF-COM
lehagia
to-arrive

SFS

NPFS-SBJ
hi

she

MDFS-PRD
amura

supposed

AUXFS
hayta
was

VPINF-COM
lehagia
to-arrive

P(NPFS-SBJ, AUXFS, PP, PREDPFS-PRD | SFS) P(PP, AUXFS, NPFS-SBJ, PREDPFS-PRD | SFS)

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

SBJ:PRD@SFS

AUXFS
hayta
was

PRD@S+FS

PP
amura

supposed

COM@SINF

PREDPFS
lehagia
to-arrive

SFS

{SBJ,PRD,COM}@SFS

SBJ@SFS

NPFS
hi

she

PRD@S+FS

PP
amura

supposed

PRD:COM@SFS

AUXFS
hayta
was

COM@SINF

PREDPFS
lehagia
to-arrive

Pprojection({SBJ,PRD,COM} | SFS) Pprojection({SBJ,PRD,COM} | SFS)

Pconfiguration(SBJ, SBJ:PRD, PRD, COM | {SBJ,PRD,COM}@SFS) Pconfiguration(SBJ, PRD, PRD:COM, COM | {SBJ,PRD,COM}@SFS)

Prealization(NPFS | SBJ@SFS) Prealization(NPFS | SBJ@SFS)
Prealization(AUXFS | SBJ:PRD@SFS) Prealization(AUXFS | PRD:COM@SFS)

Prealization(MDFS | PRD@SFS) Prealization(MDFS | PRD@SFS)
Prealization(VP | COM@SFS) Prealization(VP | COM@SFS)

Figure 2: The SP-AGR (top) and RR-AGR representation of sentences (4c-i) (left) and (4c-ii).

46

Model ∅ gender def+acc gender+def+acc

SP-AGR 79.77 79.55 80.13 80.26
(3942) (7594) (4980) (8933)

RR-AGR 80.23 81.09 81.48 82.64
(3292) (5686) (3772) (6516)

SP-AGR (gp) 83.06 82.18 79.53 80.89
(5914) (10765) (12700) (11028)

RR-AGR (gp) 83.49 83.70 83.66 84.13
(6688) (10063) (12383) (12497)

SP-AGR (gp,hd) 76.61 64.07 75.12 61.69
(10081) (16721) (11681) (18428)

RR-AGR (gp,hd) 83.40 81.19 83.33 80.45
(12497) (22979) (13828) (24934)

Table 1: F-score (#params) measure for all models on
the Hebrew treebank dev-set for Sentences Length < 40

5 Results and Discussion

Table 1 shows the standard F1 scores (and #param-
eters) for all models. Throughout, the RR-AGR
model outperforms the SP-AGR models that use the
same category set and the same morphological fea-
tures as state splits. For RR-AGR and RR-AGR (gp)
models, adding agreement features to case features
improves performance. The accumulative contribu-
tion is significant. For SP-AGR and SP-AGR (gp)
models, adding more features either remains at the
same level of performance or becomes detrimental.

Since the SP/RR-AGR and SP/RR-AGR (gp)
models are of comparable size for each feature-set,
it is unlikely that the differences in performance are
due to the lack of training data. A more reason-
able explanation if that the RR parameters repre-
sent functional generalizations orthogonal to config-
uration for which statistical evidence is more easily
found in the data. The robust realization distribu-
tions which cut across ordering alternatives can steer
the disambiguation in the right direction.

The RR-AGR (gp) +gen+def+acc model yields
the best result for parsing Hebrew to date (F1 84.13),
improving upon our best model in (Tsarfaty et al.,
2009) (F1 83.33, underlined) in a pos-tagged set-
ting. For this setting, Arabic parsing results are F1
78.1. Given the similar morphosyntactic phenomena
(agreement, MaSDaR, iDaFa) it would be interest-
ing to see if the model enhances parsing for Arabic.

For (gp,hd) models (a configuration which was
shown to give the best results in (Tsarfaty et al.,
2009)) there is a significant decrease in accuracy

with the gender feature, but there is a lesson to be
learned. Firstly, while the RR-AGR (gp,hd) model
shows moderate decrease with gender, the decrease
in performance of SP-AGR (gp,hd) for the same
feature-set is rather dramatic, which is consistent
with the observation that the RR model is less vul-
nerable to sparseness and that it makes better use of
the statistics of functional relations in the data.

Consulting the size of the different grammars, the
combination of RR-AGR (gp, hd) with gender fea-
tures indeed results in substantially larger grammars,
and it is possible that at this point we indeed need to
incorporate smoothing. At the same time there may
be an alternative explanation for the decreased per-
formance. It might be that the head-tag does not add
informative cues beyond the contribution of the fea-
tures which are spread inside the constituent, and are
already specified. This is a reasonable hypothesis
since gender in Hebrew always percolates through
the head as opposed to def/acc that percolate from
other forms. Incorporating head-tag in (Tsarfaty et
al., 2009) might have led to improvement only due
to the lack of agreement features which subsume
the relevant pattern. This suggests that incorporat-
ing all co-heads and functional elements that con-
tribute morphological features spread inside the con-
stituent, is more adequate for modeling morphosyn-
tax than focusing on the features of a single head.

6 Conclusion

We show that morphologically marked agreement
features can significantly improve parsing perfor-
mance if they are represented and parametrized in
a way that reflects their linguistic substance: relat-
ing form-and-function in a non-linear fashion. We
have so far dealt with the adequacy of representa-
tion and we plan to test whether more sophisticated
estimation (e.g., split-merge-smooth estimation as in
(Petrov et al., 2006)) can obtain further improve-
ments from the explicit representation of agreement.
At the same time, the state-of-the-art results we
present render the RR model promising for further
exploration with morphologically rich languages.

Acknowledgements The work of the first author
has been funded by NWO, grant 017.001.271. We
wish to thank Joakim Nivre and three anonymous
reviewers for helpful comments on earlier drafts.

47

References
Steven Abney. 1997. Stochastic attribute-value gram-

mars. Computational Linguistics, 23(4):597–618.
Stephen R. Anderson. 1982. Where’s morphology? Lin-

guistic Inquiry.
Noam Chomsky. 1970. Remarks on nominalization. In

R. Jacobs and P. Rosenbaum, editors, Reading in En-
glish Transformational Grammar. Waltham: Ginn.

Greville G. Corbett. 2001. Agreement: Terms and
boundaries. In SMG conference papers.

Gabi Danon. 2008. Definiteness spreading in the hebrew
construct-state. Lingua, 118(7):872–906.

Edit Doron. 1986. The pronominal “copula” as agree-
ment clitic. Syntax and Semantics, (19):313–332.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and
Ivan A. Sag. 1985. Generalised phrase structure
grammar. Blackwell, Oxford, England.

Yoav Goldberg and Michael Elhadad. 2009. Hebrew de-
pendency parsing: Initial results. In Proceedings of
IWPT.

Yoav Goldberg and Reut Tsarfaty. 2008. A single frame-
work for joint morphological segmentation and syn-
tactic parsing. In Proceedings of ACL.

Yoav Goldberg, Meni Adler, and Michael Elhadad. 2006.
Noun phrase chunking in hebrew: Influence of lex-
ical and morphological features. In Proceedings of
COLING-ACL.

Nomie Guthmann, Yuval Krymolowski, Adi Milea, and
Yoad Winter. 2009. Automatic annotation of morpho-
syntactic dependencies in a Modern Hebrew treebank.
In Frank Van Eynde, Anette Frank, Koenraad De
Smedt, and Gertjan van Noord, editors, Proceedings
of TLT.

Kenneth L. Hale. 1983. Warlpiri and the grammar of
non-configurational languages. Natural Language and
Linguistic Theory, 1(1).

Julia Hockenmaier and Mark Steedman. 2003. Parsing
with generative models of predicate-argument struc-
ture. In Proceedings of ACL.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL.

Mohamed Maamouri, Ann Bies, and Seth Kulick. 2008.
Enhanced annotation and parsing of the arabic tree-
bank. In Proceedings of INFOS.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Feature-forest
models for probabilistic hpsg parsing. Computational
Linguistics, 34(1):35–80.

Lilja Øvrelid and Joakim Nivre. 2007. Swedish depen-
dency parsing with rich linguistic features. In Pro-
ceeding of RANLP.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of ACL.

Reut Tsarfaty and Khalil Sima’an. 2008. Relational-
realizational parsing. In Proceedings of CoLing.

Reut Tsarfaty, Khalil Sima’an, and Remko Scha. 2009.
An alternative to head-driven approaches for parsing a
(relatively) free word order language. In Proceedings
of EMNLP.

48

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 49–57,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Factors Affecting the Accuracy of Korean Parsing

Tagyoung Chung, Matt Post and Daniel Gildea

Department of Computer Science

University of Rochester

Rochester, NY 14627

Abstract

We investigate parsing accuracy on the Ko-

rean Treebank 2.0 with a number of different

grammars. Comparisons among these gram-

mars and to their English counterparts suggest

different aspects of Korean that contribute to

parsing difficulty. Our results indicate that the

coarseness of the Treebank’s nonterminal set

is a even greater problem than in the English

Treebank. We also find that Korean’s rela-

tively free word order does not impact parsing

results as much as one might expect, but in

fact the prevalence of zero pronouns accounts

for a large portion of the difference between

Korean and English parsing scores.

1 Introduction

Korean is a head-final, agglutinative, and mor-

phologically productive language. The language

presents multiple challenges for syntactic pars-

ing. Like some other head-final languages such

as German, Japanese, and Hindi, Korean exhibits

long-distance scrambling (Rambow and Lee, 1994;

Kallmeyer and Yoon, 2004). Compound nouns are

formed freely (Park et al., 2004), and verbs have

well over 400 paradigmatic endings (Martin, 1992).

Korean Treebank 2.0 (LDC2006T09) (Han and

Ryu, 2005) is a subset of a Korean newswire corpus

(LDC2000T45) annotated with morphological and

syntactic information. The corpus contains roughly

5K sentences, 132K words, and 14K unique mor-

phemes. The syntactic bracketing rules are mostly

the same as the previous version of the treebank

(Han et al., 2001) and the phrase structure annota-

tion schemes used are very similar to the ones used

in Penn English treebank. The Korean Treebank is

constructed over text that has been morphologically

analyzed; not only is the text tokenized into mor-

phemes, but all allomorphs are neutralized.

To our knowledge, there have been only a few pa-

pers focusing on syntactic parsing of Korean. Herm-

jakob (2000) implemented a shift-reduce parser for

Korean trained on very limited (1K sentences) data,

and Sarkar and Han (2002) used an earlier version

of the Treebank to train a lexicalized tree adjoining

grammar. In this paper, we conduct a range of ex-

periments using the Korean Treebank 2.0 (hereafter,

KTB) as our training data and provide analyses that

reveal insights into parsing morphologically rich lan-

guages like Korean. We try to provide comparisons

with English parsing using parsers trained on a simi-

lar amount of data wherever applicable.

2 Difficulties parsing Korean

There are several challenges in parsing Korean com-

pared to languages like English. At the root of many

of these challenges is the fact that it is highly in-

flected and morphologically productive. Effective

morphological segmentation is essential to learning

grammar rules that can generalize beyond the train-

ing data by limiting the number of out-of-vocabulary

words. Fortunately, there are good techniques for do-

ing so. The sentences in KTB have been segmented

into basic morphological units.

Second, Korean is a pro-drop language: subjects

and objects are dropped wherever they are pragmati-

cally inferable, which is often possible given its rich

morphology. Zero pronouns are a remarkably fre-

quent phenomenon in general (Han, 2006), occuring

49

an average of 1.8 times per sentence in the KTB.

The standard approach in parsing English is to ig-

nore NULL elements entirely by removing them (and

recursively removing unary parents of empty nodes

in a bottom-up fashion). This is less of a problem in

English because these empty nodes are mostly trace

elements that denote constituent movement. In the

KTB, these elements are removed altogether and a

crucial cue to grammatical inference is often lost.

Later we will show the profound effect this has on

parsing accuracy.

Third, word order in Korean is relatively free.

This is also partly due to the richer morphology,

since morphemes (rather than word order) are used

to denote semantic roles of phrases. Consider the

following example:

㩕㨋 㜔㛽㦂㐳 㫾㧺 㩳㥽㖰 .

John-NOM Mary-DAT book-ACC give-PAST .

In the example, any permutation of the first three

words produces a perfectly acceptable sentence.

This freedom of word order could potentially result

in a large number of rules, which could complicate

analysis with new ambiguities. However, formal

written Korean generally conforms to a canonical

word order (SOV).

3 Initial experiments

There has been some work on Korean morphologi-

cal analysis showing that common statistical meth-

ods such as maximum entropy modeling and condi-

tional random fields perform quite well (Lee et al.,

2000; Sarkar and Han, 2002; Han and Palmer, 2004;

Lee and Rim, 2005). Most claim accuracy rate over

95%. In light of this, we focus on the parsing part of

the problem utilizing morphology analysis already

present in the data.

3.1 Setup

For our experiments we used all 5,010 sentences in

the Korean Treebank (KTB), which are already seg-

mented. Due to the small size of the corpus, we used

ten-fold cross validation for all of our experiments,

unless otherwise noted. Sentences were assigned to

folds in blocks of one (i.e., fold 1 contained sen-

tences 1, 11, 21, and so on.). Within each fold, 80%

of the data was assigned to training, 10% to devel-

opment, and 10% to testing. Each fold’s vocabulary

model F1 F1≤40 types tokens

Korean 52.78 56.55 6.6K 194K

English (§02–03) 71.06 72.26 5.5K 96K

English (§02–04) 72.20 73.29 7.5K 147K

English (§02–21) 71.61 72.74 23K 950K

Table 1: Parser scores for Treebank PCFGs in Korean

and English. For English, we vary the size of the training

data to provide a better point of comparison against Ko-

rean. Types and tokens denote vocabulary sizes (which

for Korean is the mean over the folds).

was set to all words occurring more than once in its

training data, with a handful of count one tokens re-

placing unknown words based on properties of the

word’s surface form (all Korean words were placed

in a single bin, and English words were binned fol-

lowing the rules of Petrov et al. (2006)). We report

scores on the development set.

We report parser accuracy scores using the stan-

dard F1 metric, which balances precision and recall

of the labeled constituents recovered by the parser:

2PR/(P + R). Throughout the paper, all evalua-

tion occurs against gold standard trees that contain

no NULL elements or nonterminal function tags or

annotations, which in some cases requires the re-

moval of those elements from parse trees output by

the parser.

3.2 Treebank grammars

We begin by presenting in Table 1 scores for the

standard Treebank grammar, obtained by reading a

standard context-free grammar from the trees in the

training data and setting rule probabilities to rela-

tive frequency (Charniak, 1996). For these initial

experiments, we follow standard practice in English

parsing and remove all (a) nonterminal function tags

and (b) NULL elements from the parse trees before

learning the grammar. For comparison purposes, we

present scores from parsing the Wall Street Journal

portion of the English Penn Treebank (PTB), using

both the standard training set and subsets of it cho-

sen to be similar in size to the KTB. All English

scores are tested on section 22.

There are two interesting results in this table.

First, Korean parsing accuracy is much lower than

English parsing accuracy, and second, the accuracy

difference does not appear to be due to a difference

in the size of the training data, since reducing the

50

size of the English training data did not affect accu-

racy scores very much.

Before attempting to explain this empirically, we

note that Rehbein and van Genabith (2007) demon-

strate that the F1 metric is biased towards parse trees

with a high ratio of nonterminals to terminals, be-

cause mistakes made by the parser have a smaller

effect on the overall evaluation score.1 They rec-

ommend that F1 not be used for comparing parsing

accuracy across different annotation schemes. The

nonterminal to terminal ratio in the KTB and PTB

are 0.40 and 0.45, respectively. It is a good idea to

keep this bias in mind, but we believe that this small

ratio difference is unlikely to account for the huge

gap in scores displayed in Table 1.

The gap in parsing accuracy is unsurprising in

light of the basic known difficulties parsing Korean,

summarized earlier in the paper. Here we observe a

number of features of the KTB that contribute to this

difficulty.

Sentence length On average, KTB sentences are

much longer than PTB sentences (23 words versus

48 words, respectively). Sentence-level F1 is in-

versely correlated with sentence length, and the rel-

atively larger drop in F1 score going from column 3

to 2 in Table 1 is partially accounted for by the fact

that column 3 represents 33% of the KTB sentences,

but 92% of the English sentences.

Flat annotation scheme The KTB makes rela-

tively frequent use of very flat and ambiguous rules.

For example, consider the extreme cases of rule am-

biguity in which the lefthand side nonterminal is

present three or more times on its righthand side.

There are only three instances of such “triple+-

recursive” NPs among the∼40K trees in the training

portion of the PTB, each occurring only once.

NP→ NP NP NP , CC NP

NP→ NP NP NP CC NP

NP→ NP NP NP NP .

The KTB is an eighth of the size of this, but has

fifteen instances of such NPs (listed here with their

frequencies):

1We thank one of our anonymous reviewers for bringing this

to our attention.

NP→ NP NP NP NP (6)

NP→ NP NP NP NP NP (3)

NP→ NP NP NP NP NP NP (2)

NP→ NP NP NP NP NP NP NP (2)

NP→ SLQ NP NP NP SRQ PAD (1)

NP→ SLQ NP NP NP NP SRQ PAN (1)

Similar rules are common for other nonterminals as

well. Generally, flatter rules are easier to parse with

because they contribute to parse trees with fewer

nodes (and thus fewer independent decision points).

However, the presence of a single nonterminal on

both the left and righthand side of a rule means that

the annotation scheme is failing to capture distribu-

tional differences which must be present.

Nonterminal granularity This brings us to a final

point about the granularity of the nonterminals in the

KTB. After removing function tags, there are only

43 nonterminal symbols in the KTB (33 of them

preterminals), versus 72 English nonterminals (44

of them preterminals). Nonterminal granularity is

a well-studied problem in English parsing, and there

is a long, successful history of automatically refin-

ing English nonterminals to discover distributional

differences. In light of this success, we speculate

that the disparity in parsing performance might be

explained by this disparity in the number of nonter-

minals. In the next section, we provide evidence that

this is indeed the case.

4 Nonterminal granularity

There are many ways to refine the set of nontermi-

nals in a Treebank. A simple approach suggested

by Johnson (1998) is to simply annotate each node

with its parent’s label. The effect of this is to re-

fine the distribution of each nonterminal over se-

quences of children according to its position in the

sentence; for example, a VP beneath an SBAR node

will have a different distribution over children than a

VP beneath an S node. This simple technique alone

produces a large improvement in English Treebank

parsing. Klein and Manning (2003) expanded this

idea with a series of experiments wherein they manu-

ally refined nonterminals to different degrees, which

resulted in parsing accuracy rivaling that of bilexi-

calized parsing models of the time. More recently,

Petrov et al. (2006) refined techniques originally

proposed by Matsuzaki et al. (2005) and Prescher

51

SBJ subject with nominative case marker

OBJ complement with accusative case marker

COMP complement with adverbial postposition

ADV NP that function as adverbial phrase

VOC noun with vocative case maker

LV NP coupled with “light” verb construction

Table 2: Function tags in the Korean treebank

model F1 F1≤40

Korean

coarse 52.78 56.55

w/ function tags 56.18 60.21

English (small)

coarse 72.20 73.29

w/ function tags 70.50 71.78

English (standard)

coarse 71.61 72.74

w/ function tags 72.82 74.05

Table 3: Parser scores for Treebank PCFGs in Korean

and English with and without function tags. The small

English results were produced by training on §02–04.

(2005) for automatically learning latent annotations,

resulting in state of the art parsing performance with

cubic-time parsing algorithms.

We begin this section by conducting some sim-

ple experiments with the existing function tags, and

then apply the latent annotation learning procedures

of Petrov et al. (2006) to the KTB.

4.1 Function tags

The KTB has function tags that mark grammatical

functions of NP and S nodes (Han et al., 2001),

which we list all of them in Table 2. These function

tags are principally grammatical markers. As men-

tioned above, the parsing scores for both English

and Korean presented in Table 1 were produced with

grammars stripped of their function tags. This is

standard practice in English, where the existing tags

are known not to help very much. Table 3 presents

results of parsing with grammars with nonterminals

that retain these function tags (we include results

from Section 3 for comparison). Note that evalua-

tion is done against the unannotated gold standard

parse trees by removing the function tags after pars-

ing with them.

The results for Korean are quite pronounced:

we see a nearly seven-point improvement when re-

taining the existing tags. This very strongly sug-

gests that the KTB nonterminals are too coarse

when stripped of their function tags, and raises the

question of whether further improvement might be

gained from latent annotations.

The English scores allow us to make another point.

Retaining the provided function tags results in a

solid performance increase with the standard train-

ing corpus, but actually hurts performance when

training on the small dataset. Note clearly that this

does not suggest that parsing performance with the

grammar from the small English data could not be

improved with latent annotations (indeed, we will

show that they can), but only that the given annota-

tions do not help improve parsing accuracy. Taking

the Korean and English accuracy results from this ta-

ble together provides another piece of evidence that

the Korean nonterminal set is too coarse.

4.2 Latent annotations

We applied the latent annotation learning procedures

of Petrov et al.2 to refine the nonterminals in the

KTB. The trainer learns refinements over the coarse

version of the KTB (with function tags removed). In

this experiment, rather than doing 10-fold cross vali-

dation, we split the KTB into training, development,

and test sets that roughly match the 80/10/10 splits

of the folds:

section file IDs

training 302000 to 316999

development 317000 to 317999

testing 320000 to 320999

This procedure results in grammars which can then

be used to parse new sentences. Table 4 displays the

parsing accuracy results for parsing with the gram-

mar (after smoothing) at the end of each split-merge-

smooth cycle.3 The scores in this table show that,

just as with the PTB, nonterminal refinement makes

a huge difference in parser performance.

Again with the caveat that direct comparison of

parsing scores across annotation schemes must be

taken loosely, we note that the KTB parsing accu-

racy is still about 10 points lower than the best ac-

2
http://code.google.com/p/berkeleyparser/

3As described in Petrov et al. (2006), to score a parse tree

produced with a refined grammar, we can either take the Viterbi

derivation or approximate a sum over derivations before project-

ing back to the coarse tree for scoring.

52

Viterbi max-sum

cycle F1 F1≤40 F1 F1≤40

1 56.93 61.11 61.04 64.23

2 63.82 67.94 66.31 68.90

3 69.86 72.83 72.85 75.63

4 74.36 77.15 77.18 78.18

5 78.07 80.09 79.93 82.04

6 78.91 81.55 80.85 82.75

Table 4: Parsing accuracy on Korean test data from the

grammars output by the Berkeley state-splitting grammar

trainer. For comparison, parsing all sentences of §22 in

the PTB with the same trainer scored 89.58 (max-sum

parsing with five cycles) with the standard training corpus

and 85.21 when trained on §2–4.

curacy scores produced in parsing the PTB which,

in our experiments, were 89.58 (using max-sum to

parse all sentences with the grammar obtained after

five cycles of training).

An obvious suspect for the difference in parsing

accuracy with latent grammars between English and

Korean is the difference in training set sizes. This

turns out not to be the case. We learned latent anno-

tations on sections 2–4 of the PTB and again tested

on section 22. The accuracy scores on the test set

peak at 85.21 (max-sum, all sentences, five cycles of

training). This is about five points lower than the En-

glish grammar trained on sections 2–21, but is still

over four points higher than the KTB results.

In the next section, we turn to one of the theoret-

ical difficulties with Korean parsing with which we

began the paper.

5 NULL elements

Both the PTB and KTB include many NULL ele-

ments. For English, these elements are traces de-

noting constituent movement. In the KTB, there

are many more kinds of NULL elements, in includ-

ing trace markers, zero pronouns, relative clause re-

duction, verb deletions, verb ellipsis, and other un-

known categories. Standard practice in English pars-

ing is to remove NULL elements in order to avoid

the complexity of parsing with ǫ-productions. How-
ever, another approach to parsing that avoids such

productions is to retain the NULL elements when

reading the grammar; at test time, the parser is given

sentences that contain markers denoting the empty

elements. To evaluate, we remove these elements

model F1 F1≤40 tokens

English (standard training corpus)

coarse 71.61 72.74 950K

w/ function tags 72.82 74.05 950K

w/ NULLs 73.29 74.38 1,014K

Korean

w/ verb ellipses 52.85 56.52 3,200

w/ traces 55.88 59.42 3,868

w/ r.c. markers 56.74 59.87 3,794

w/ zero pronouns 57.56 61.17 4,101

latent (5) w/ NULLs 89.56 91.03 22,437

Table 5: Parser scores for Treebank PCFGs in English

and Korean with NULL elements. Tokens denotes the

number of words in the test data. The latent grammar

was trained for five iterations.

from the resulting parse trees output by the parser

and compare against the stripped-down gold stan-

dard used in previous sections, in order to provide

a fair point of comparison.

Parsing in this manner helps us to answer the ques-

tion of how much easier or more difficult parsing

would be if the NULL elements were present. In

this section, we present results from a variety of ex-

periments parsing will NULL tokens in this manner.

These results can be seen in Table 5. The first ob-

servation from this table is that in English, retaining

NULL elements makes a few points difference.

The first four rows of the KTB portion of Table 5

contains results with retaining different classes of

NULL elements, one at a time, according to the man-

ner described above. Restoring deleted pronouns

and relative clause markers has the largest effect,

suggesting that the absence of these optional ele-

ments removes key cues needed for parsing.

In order to provide a more complete picture of

the effect of empty elements, we train the Berkeley

latent annotation system on a version of the KTB

in which all empty elements are retained. The fi-

nal row of Table 5 contains the score obtained when

evaluating parse trees produced from parsing with

the grammar after the fifth iteration (after which per-

formance began to fall). With the empty elements,

we have achieved accuracy scores that are on par

with the best accuracy scores obtained parsing the

English Treebank.

53

6 Tree substitution grammars

We have shown that coarse labels and the prevalence

of NULL elements in Korean both contribute to pars-

ing difficulty. We now turn to grammar formalisms

that allow us to work with larger fragments of parse

trees than the height-one rules of standard context-

free grammars. Tree substitution grammars (TSGs)

have been shown to improve upon the standard En-

glish Treebank grammar (Bod, 2001) in parser ac-

curacy, and more recently, techniques for inferring

TSG subtrees in a Bayesian framework have enabled

learning more efficiently representable grammars,

permitting some interesting analysis (O’Donnell et

al., 2009; Cohn et al., 2009; Post and Gildea, 2009).

In this section, we try parsing the KTB with TSGs.

We experiment with different methods of learning

TSGs to see whether they can reveal any insights

into the difficulties parsing Korean.

6.1 Head rules

TSGs present some difficulties in learning and rep-

resentation, but a simple extraction heuristic called

a spinal grammar has been shown to be very use-

ful (Chiang, 2000; Sangati and Zuidema, 2009; Post

and Gildea, 2009). Spinal subtrees are extracted

from a parse tree by using a set of head rules to

maximally project each lexical item (a word or mor-

pheme). Each node in the parse tree having a differ-

ent head from its parent becomes the root of a new

subtree, which induces a spinal TSG derivation in

the parse tree (see Figure 1). A probabilistic gram-

mar is derived by taking counts from these trees,

smoothing them with counts of all depth-one rules

from the same training set, and setting rule probabil-

ities to relative frequency.

This heuristic requires a set of head rules, which

we present in Table 6. As an evaluation of our rules,

we list in Table 7 the accuracy results for parsing

with spinal grammars extracted using the head rules

we developed as well as with two head rule heuris-

tics (head-left and head-right). As a point of compar-

ison, we provide the same results for English, using

the standard Magerman/Collins head rules for En-

glish (Magerman, 1995; Collins, 1997). Function

tags were retained for Korean but not for English.

We observe a number of things from Table 7.

First, the relative performance of the head-left and

NT RC rule

S SFN second rightmost child

VV EFN rightmost XSV

VX EFN rightmost VJ or CO

ADJP EFN rightmost VJ

CV EFN rightmost VV

LV EFN rightmost VV

NP EFN rightmost CO

VJ EFN rightmost XSV or XSJ

VP EFN rightmost VX, XSV, or VV

⋆ ⋆ rightmost child

Table 6: Head rules for the Korean Treebank. NT is the

nonterminal whose head is being determined, RC identi-

fies the label of its rightmost child. The default is to take

the rightmost child as the head.

head-right spinal grammars between English and

Korean capture the linguistic fact that English is pre-

dominantly head-first and Korean is predominantly

head-final. In fact, head-finalness in Korean was so

strong that our head rules consist of only a handful

of exceptions to it. The default rule makes heads

of postpositions (case and information clitics) such

as dative case marker and topic marker. It is these

words that often have dependencies with words in

the rest of the sentence. The exceptions concern

predicates that occur in the sentence-final position.

As an example, predicates in Korean are composed

of several morphemes, the final one of which indi-

cates the mood of the sentence. However, this mor-

pheme often does not require any inflection to re-

flect long-distance agreement with the rest of the

sentence. Therefore, we choose the morpheme that

would be considered the root of the phrase, which

in Korean is the verbalization/adjectivization suf-

fix, verb, adjective, auxiliary predicate, and copula

(XSV, XSJ, VV, VJ, VX, CO). These items often in-

clude the information about valency of the predicate.

Second, in both languages, finer-grained specifi-

cation of head rules results in performance above

that of the heuristics (and in particular, the head-

left heuristic for English and head-right heuristic for

Korean). The relative improvements in the two lan-

guages are in line with each other: significant, but

not nearly as large as the difference between the

head-left and head-right heuristics.

Finally, we note that the test results together sug-

gest that parsing with spinal grammars may be a

54

(a) TOP

S

NP-SBJ

NPR

㣙㧗㭐

NNC

㞇㡐

PAU

㧹

VP

NP-ADV

DAN

㒔

NNC

㘏

VP

VV

NNC

㲩㑌

XSV

㖾㖾㖾㲠㲠㲠

EPF

㥽

EFN

㖰

SFN

.

(b) S

NP-SBJ

NPR

㣙㧗㭐

NNC PAU

VP SFN

(c) S

NP-SBJ VP SFN

.

Figure 1: (a) A KTB parse tree; the bold nodes denote the top-level spinal subtree using our head selection rules. (b)

The top-level spinal subtree using the head-left and (c) head-right extraction heuristics. A gloss of the sentence is

Doctor Schwartz was fired afterward.

model F1 F1≤40 size

Korean

spinal (head left) 59.49 63.33 49K

spinal (head right) 66.05 69.96 29K

spinal (head rules) 66.28 70.61 29K

English

spinal (head left) 77.92 78.94 158K

spinal (head right) 72.73 74.09 172K

spinal (head rules) 78.82 79.79 189K

Table 7: Spinal grammar scores on the KTB and on PTB

section 22.

good evaluation of a set of head selection rules.

6.2 Induced tree substitution grammars

Recent work in applying nonparametric machine

learning techniques to TSG induction has shown that

the resulting grammars improve upon standard En-

glish treebank grammars (O’Donnell et al., 2009;

Cohn et al., 2009; Post and Gildea, 2009). These

techniques use a Dirichlet Process prior over the sub-

tree rewrites of each nonterminal (Ferguson, 1973);

this defines a model of subtree generation that pro-

duces new subtrees in proportion to the number of

times they have previously been generated. Infer-

ence under this model takes a treebank and uses

Gibbs sampling to determine how to deconstruct a

parse tree into a single TSG derivation. In this sec-

tion, we apply these techniques to Korean.

This TSG induction requires one to specify a base

measure, which assigns probabilities to subtrees be-

ing generated for the first time in the model. One

base measure employed in previous work scored a

subtree by multiplying together the probabilities of

the height-one rules inside the subtree with a ge-

ometric distribution on the number of such rules.

Since Korean is considered to be a free word-order

language, we modified this base measure to treat the

children of a height-one rule as a multiset (instead of

a sequence). This has the effect of producing equiva-

lence classes among the sets of children of each non-

terminal, concentrating the mass on these classes in-

stead of spreading it across their different instantia-

tions.

To build the sampled grammars, we initialized the

samplers from the best spinal grammar derivations

and ran them for 100 iterations (once again, func-

tion tags were retained). We then took the state of

the training data at every tenth iteration, smoothed

together with the height-one rules from the standard

Treebank. The best score on the development data

for a sampled grammar was 68.93 (all sentences)

and 73.29 (sentences with forty or fewer words):

well above the standard Treebank scores from ear-

lier sections and above the spinal heuristics, but well

below the scores produced by the latent annotation

learning procedures (a result that is consistent with

English).

This performance increase reflects the results for

English demonstrated in the above works. We see a

large performance increase above the baseline Tree-

bank grammar, and a few points above the best

spinal grammar. One nice feature of these induced

TSGs is that the rules learned lend themselves to

analysis, which we turn to next.

6.3 Word order

In addition to the base measure mentioned above,

we also experimented with the standard base mea-

55

NP

NPR NNC

㨆㧙

NNU NNX

㜼

Figure 2: Example of a long distance dependency learned

by TSG induction.

sure proposed by Cohn et al. and Post & Gildea, that

treats the children of a nonterminal as a sequence.

The grammars produced sampling under a model

with this base measure were not substantively differ-

ent from those of the unordered base measure. A par-

tial explanation for this is that although Korean does

permit a significant amount of reordering relative to

English, the sentences in the KTB come from writ-

ten newswire text, where word order is more stan-

dardized. Korean sentences are characterized as hav-

ing a subject-object-verb (SOV) word order. There

is some flexibility; OSV, in particular, is common

in spoken Korean. In formal writing, though, SOV

word order is overwhelmingly preferred. We see this

reflected in the KTB, where SOV sentences are 63.5

times more numerous that OSV among sentences

that have explicitly marked both the subject and the

object. However, word order is not completely fixed

even in the formal writing. NP-ADV is most likely

to occur right before the VP it modifies, but can be

moved earlier. For example,

S→ NP-SBJ NP-ADV VP

is 2.4 times more frequent than the alternative with

the order of the NPs reversed.

Furthermore, the notion of free(er) word order

does not apply to all constituents. An example is

nonterminals directly above preterminals. A Korean

verb may have up to seven affixes; however, they al-

ways agglutinate in a fixed order.

6.4 Long distance dependencies

The TSG inference procedure can be thought of

as discovering structural collocations in parse trees.

The model prefers subtrees that are common in the

data set and that comprise highly probable height-

one rules. The parsing accuracy of these grammars

is well below state of the art, but the grammars are

smaller, and the subtrees learned can help us analyze

the parse structure of the Treebank. One particular

class of subtree is one that includes multiple lexical

items with intervening nonterminals, which repre-

sent long distance dependencies that commonly co-

occur. In Korean, a certain class of nouns must ac-

company a particular class of measure word (a mor-

pheme) when counting the noun. In the example

shown in Figure 2, (NNC 㨆㧙) (members of as-

sembly) is followed by NNU, which expands to in-

dicate ordinal, cardinal, and numeral nouns; NNU is

in turn followed by (NNX㜼), the politeness neutral

measure word for counting people.

7 Summary & future work

In this paper, we addressed several difficult aspects

of parsing Korean and showed that good parsing ac-

curacy for Korean can be achieved despite the small

size of the corpus.

Analysis of different parsing results from differ-

ent grammatical formalisms yielded a number of

useful observations. We found, for example, that the

set of nonterminals in the KTB is not differentiated

enough for accurate parsing; however, parsing accu-

racy improves substantially from latent annotations

and state-splitting techniques that have been devel-

oped with English as a testbed. We found that freer

word order may not be as important as might have

been thought from basic a priori linguistic knowl-

edge of Korean.

The prevalence of NULL elements in Korean is

perhaps the most interesting difficulty in develop-

ing good parsing approaches for Korean; this is

a key difference from English parsing that to our

knowledge is not addressed by any available tech-

niques. One potential approach is a special an-

notation of parents with deleted nodes in order to

avoid conflating rewrite distributions. For example,

S → VP is the most common rule in the Korean

treebank after stripping away empty elements; how-

ever, this is a result of condensing the rule S→ (NP-

SBJ *pro*) VP and S→VP, which presumably have

different distributions. Another approach would be

to attempt automatic recovery of empty elements as

a pre-processing step.

Acknowledgments We thank the anonymous re-

viewers for their helpful comments. This work

was supported by NSF grants IIS-0546554 and ITR-

0428020.

56

References

Rens Bod. 2001. What is the minimal set of fragments

that achieves maximal parse accuracy? In Proc. ACL,

Toulouse, France, July.

Eugene Charniak. 1996. Tree-bank grammars. In Proc.

of the National Conference on Artificial Intelligence,

pages 1031–1036.

David Chiang. 2000. Statistical parsing with an

automatically-extracted tree adjoining grammar. In

Proc. ACL, Hong Kong.

Trevor Cohn, Sharon Goldwater, and Phil Blunsom.

2009. Inducing compact but accurate tree-substitution

grammars. In Proc. NAACL.

Michael Collins. 1997. Three penerative, lexicalised

models for statistical parsing. In Proc. ACL/EACL.

Thomas S. Ferguson. 1973. A Bayesian analysis of

some nonparametric problems. Annals of Mathemat-

ical Statistics, 1(2):209–230.

Chung-Hye Han and Martha Palmer. 2004. A mor-

phological tagger for Korean: Statistical tagging com-

bined with corpus-based morphological rule applica-

tion. Machine Translation, 18(4):275–297.

Na-Rae Han and Shijong Ryu. 2005. Guidelines for

Penn Korean Treebank version 2.0. Technical report,

IRCS, University of Pennsylvania.

Chung-hye Han, Na-Rae Han, and Eon-Suk Ko. 2001.

Bracketing guidelines for Penn Korean Treebank.

Technical report, IRCS, University of Pennsylvania.

Na-Rae Han. 2006. Korean zero pronouns: analysis and

resolution. Ph.D. thesis, University of Pennsylvania,

Philadelphia, PA, USA.

Ulf Hermjakob. 2000. Rapid parser development: a ma-

chine learning approach for Korean. In Proc. NAACL,

pages 118–123, May.

Mark Johnson. 1998. PCFGmodels of linguistic tree rep-

resentations. Computational Linguistics, 24(4):613–

632.

Laura Kallmeyer and SinWon Yoon. 2004. Tree-local

MCTAG with shared nodes: Word order variation in

German and Korean. In Proc. TAG+7, Vancouver,

May.

Dan Klein and Chris Manning. 2003. Accurate unlexi-

calized parsing. In Proc. ACL.

Do-Gil Lee and Hae-Chang Rim. 2005. Probabilistic

models for Korean morphological analysis. In Com-

panion to the Proceedings of the International Joint

Conference on Natural Language Processing, pages

197–202.

Sang-zoo Lee, Jun-ichi Tsujii, and Hae-Chang Rim.

2000. Hidden markov model-based Korean part-of-

speech tagging considering high agglutinativity, word-

spacing, and lexical correlativity. In Proc. ACL.

David M. Magerman. 1995. Statistical decision-tree

models for parsing. In Proc. ACL.

Samuel E. Martin. 1992. Reference Grammar of Korean:

A Complete Guide to the Grammar and History of the

Korean Language. Tuttle Publishing.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.

2005. Probabilistic CFG with latent annotations. In

Proc. ACL, Ann Arbor, Michigan.

Timothy J. O’Donnell, Noah D. Goodman, and Joshua B.

Tenenbaum. 2009. Fragment grammar: Exploring

reuse in hierarchical generative processes. Technical

report, MIT.

Seong-Bae Park, Jeong-Ho Chang, and Byoung-Tak

Zhang. 2004. Korean compound noun decomposition

using syllabic information only. In Computational

Linguistics and Intelligent Text Processing (CICLing),

pages 146–157.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan

Klein. 2006. Learning accurate, compact, and inter-

pretable tree annotation. In Proc. COLING/ACL, Syd-

ney, Australia, July.

Matt Post and Daniel Gildea. 2009. Bayesian learning of

a tree substitution grammar. In Proc. ACL, Singapore,

Singapore, August.

Detlef Prescher. 2005. Inducing head-driven PCFGs

with latent heads: Refining a tree-bank grammar for

parsing. Machine Learning: ECML 2005, pages 292–

304.

Owen Rambow and Young-Suk Lee. 1994. Word order

variation and tree-adjoining grammar. Computational

Intelligence, 10:386–400.

Ines Rehbein and Josef van Genabith. 2007. Eval-

uating evaluation measures. In Proceedings of the

16th Nordic Conference of Computational Linguistics

(NODALIDA).

Federico Sangati and Willem Zuidema. 2009. Unsuper-

vised methods for head assignments. In Proc. EACL.

Anoop Sarkar and Chung-hye Han. 2002. Statistical

morphological tagging and parsing of Korean with an

LTAG grammar. In Proc. TAG+6.

57

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 58–66,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Direct Parsing of Discontinuous Constituents in German

Wolfgang Maier
SFB 833, University of Tübingen

Nauklerstr. 35
72074 Tübingen, Germany

wmaier@sfs.uni-tuebingen.de

Abstract

Discontinuities occur especially frequently in
languages with a relatively free word order,
such as German. Generally, due to the long-
distance dependencies they induce, they lie
beyond the expressivity of Probabilistic CFG,
i.e., they cannot be directly reconstructed by
a PCFG parser. In this paper, we use a
parser for Probabilistic Linear Context-Free
Rewriting Systems (PLCFRS), a formalism
with high expressivity, to directly parse the
German NeGra and TIGER treebanks. In both
treebanks, discontinuities are annotated with
crossing branches. Based on an evaluation us-
ing different metrics, we show that an output
quality can be achieved which is comparable
to the output quality of PCFG-based systems.

1 Introduction

Languages with a rather free word order, like Ger-
man, display discontinuous constituents particularly
frequently. In (1), the discontinuity is caused by an
extraposed relative clause.

(1) wieder
again

treffen
match

alle
all

Attribute
attributes

zu,
VPART

die
which

auch
also

sonst
otherwise

immer
always

passen
fit

‘Again, the same attributes as always apply.’

Another language with a rather free word order is
Bulgarian. In (2), the discontinuity is caused by top-
icalization.

(2) Himikali1

Pens1
az
I

kupuvam
buy

samo
only

evtini
expensive

t1
t1

‘As for pens, I only buy expensive ones.’

In most constituency treebanks, sentence annota-
tion is restricted to having the shape of trees with-
out crossing branches, and the non-local dependen-
cies induced by the discontinuities are modeled by
an additional mechanism. In the Penn Treebank
(PTB) (Marcus et al., 1994), e.g., this mechanism
is a combination of special labels and empty nodes,
establishing implicit additional edges. In the Ger-
man TüBa-D/Z (Telljohann et al., 2006), additional
edges are established by a combination of topolog-
ical field annotation and special edge labels. As an
example, Fig. 1 shows a tree from TüBa-D/Z with
the annotation of (1). Note here the edge label ON-
MOD on the relative clause which indicates that the
subject of the sentence (alle Attribute) is modified.

Figure 1: A tree from TüBa-D/Z

However, in a few other treebanks, such as the
German NeGra and TIGER treebanks (Skut et al.,
1997; Brants et al., 2002), crossing branches are al-
lowed. This way, all dependents of a long-distance
dependency can be grouped under a single node.

58

Fig. 2 shows a tree from NeGra with the annotation
of (3).

(3) Noch
Yet

nie
never

habe
have

ich
I

so
so

viel
much

gewählt
chosen

‘Never have I had that much choice.’

Note the direct annotation of the discontinuous VP.

Noch

ADV

nie

ADV

habe

VAFIN

1.Sg.Pres.Ind

ich

PPER

1.Sg.*.Nom

so

ADV

viel

ADV

gewählt

VVPP

.

$.

MO HD

AVP

MO HD

AVP

MO MO HD

VP

OCHD SB

S

Figure 2: A tree from NeGra

Since in general, the annotation mechanisms for
non-local dependencies lie beyond the expressivity
of Context-Free Grammar, non-local information is
inaccessible for PCFG parsing and therefore gener-
ally discarded. In NeGra/TIGER annotation, e.g.,
tree transformation algorithms are applied before
parsing in order to resolve the crossing branches.
See, e.g., Kübler et al. (2008) and Boyd (2007) for
details. If one wants to avoid the loss of annotation
information which is implied with such transforma-
tions, one possibility is to use a probabilistic parser
for a formalism which is more expressive than CFG.

In this paper, we tackle the question if qualita-
tively good results can be achieved when parsing
German with such a parser. Concretely, we use a
parser for Probabilistic Linear Context-Free Rewrit-
ing Systems (PLCFRS) (Kallmeyer and Maier,
2010). LCFRS (Vijay-Shanker et al., 1987) are a
natural extension of CFG in which a single non-
terminal node can dominate more than one contin-
uous span of terminals. We can directly interpret
NeGra-style trees as its derivation structures, i.e., we
can extract grammars without making further lin-
guistic assumptions (Maier and Lichte, 2009) (see
Sect. 2.3), as it is necessary for other formalisms
such as Probabilistic Tree Adjoining Grammars
(Chiang, 2003). Since the non-local dependencies
are immediately accessible in NeGra and TIGER,
we choose these treebanks as our data source. In
order to judge parser output quality, we use four dif-
ferent evaluation types. We use an EVALB-style

measure, adapted for LCFRS, in order to compare
our parser to previous work on parsing German tree-
banks. In order to address the known shortcomings
of EVALB, we perform an additional evaluation us-
ing the tree distance metric of Zhang and Shasha
(1989), which works independently of the fact if
there are crossing branches in the trees or not, and a
dependency evaluation (Lin, 1995), which has also
be applied before in the context of parsing German
(Kübler et al., 2008). Last, we evaluate certain diffi-
cult phenomena by hand on TePaCoC (Kübler et al.,
2008), a set of sentences hand-picked from TIGER.
The evaluations show that with a PLCFRS parser,
competitive results can be achieved.

The remainder of the article is structured as fol-
lows. In Sect. 2, we present the formalism, the
parser, and how we obtain our grammars. In
Sect. 3, we discuss the evaluation methods we em-
ploy. Sect. 4 contains our experimental results.
Sect. 5 is dedicated to related work. Sect. 6 con-
tains the conclusion and presents some possible fu-
ture work.

2 A Parser for PLCFRS

2.1 Probabilistic Linear Context-Free
Rewriting Systems

LCFRS are an extension of CFG where the non-
terminals can span not only single strings but, in-
stead, tuples of strings. We will notate LCFRS with
the syntax ofsimple Range Concatenation Gram-
mars (SRCG) (Boullier, 1998), a formalism that is
equivalent to LCFRS.

A LCFRS (Vijay-Shanker et al., 1987) is a tuple
G = (N,T, V, P, S) where

a) N is a finite set of non-terminals with a func-
tion dim: N → N that determines thefan-out
of eachA ∈ N ;

b) T andV are disjoint finite sets of terminals and
variables;

c) S ∈ N is the start symbol withdim(S) = 1;

d) P is a finite set of rewriting rules

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

59

for m ≥ 0 whereA,A1, . . . , Am ∈ N , X(i)
j ∈ V

for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Ai) andαi ∈ (T ∪
V)∗ for 1 ≤ i ≤ dim(A). For all r ∈ P , it holds
that every variableX occurring inr occurs exactly
once in the left-hand side (LHS) and exactly once in
the right-hand side (RHS).

The fan-out of an LCFRSG is the maximal fan-
out of all non-terminals inG. Furthermore, the RHS
length of a rewriting rulesr ∈ P is called therank
of r and the maximal rank of all rules inP is called
the rank of G. An LCFRS is calledordered if for
everyr ∈ P and every RHS non-terminalA in r and
each pairX1, X2 of arguments ofA in the RHS of
r, X1 precedesX2 in the RHS iffX1 precedesX2

in the LHS.

Borrowed from SRCG, we specify the language
of an LCFRS based on the notion of ranges. For
some input wordw = w1 · · ·wn, a range is a pair
〈i, j〉 of integers with0 ≤ i ≤ n denoting the sub-
stringwi+1 · · ·wj. Note that a range denotesε iff
i = j. Only consecutive ranges can be concatenated
into new ranges. We can replace the variables and
terminals of the rewriting rules with ranges. E.g.,
A(〈g, h〉) → B(〈g + 1, h − 1〉) is a replacement of
the clauseA(aX1b) → B(X1) if the input wordw is
such thatwg+1 = a andwh = b. A rewriting rule in
which all elements of all arguments have been con-
sistently replaced by ranges is called aninstantiated
rule. A derivation is built by successively rewriting
the LHSs of instantiated rules with its RHSs. The
languageL(G) of some LCFRSG consists of all
wordsw = w1 · · ·wn for which it holds that there is
a rule with the start symbol on the LHS which can
be instantiated to〈0, n〉 and rewritten toε.

A probabilistic LCFRS (PLCFRS) is a tu-
ple 〈N,T, V, P, S, p〉 such that〈N,T, V, P, S〉 is a
LCFRS andp : P → [0..1] a function such that for
all A ∈ N : Σ

A(~x)→~Φ∈P
p(A(~x) → ~Φ) = 1. There

are possibly other ways to extend LCFRS with prob-
abilities. This definition is supported by the fact that
probabilistic MCFGs1 have been defined in the same
way (Kato et al., 2006).

1MCFGs are equivalent to LCFRSs and SRCGs (Boullier,
1998).

Scan:
0 : [A, 〈〈i, i+ 1〉〉]

A POS tag ofwi+1

Unary:
in : [B, ~ρ]

in+ |log(p)| : [A, ~ρ]
p : A(~ρ) → B(~ρ) ∈ P

Binary:
inB : [B, ~ρB], inC : [C, ~ρC]
inB + inC + log(p) : [A, ~ρA]

wherep : A(~ρA) → B(~ρB)C(~ρC) is an instantiated rule.
Goal: [S, 〈〈0, n〉〉]

Figure 3: Weighted CYK deduction system

2.2 A CYK Parser for PLCFRS

We use the parser of Kallmeyer and Maier (2010).
It is a probabilistic CYK parser (Seki et al., 1991),
using the technique of weighted deductive parsing
(Nederhof, 2003). While for symbolic parsing, other
elaborate algorithms exist (Kallmeyer and Maier,
2009), for probabilistic parsing, CYK is a natural
choice.

It is assumed for the parser that our LCFRSs are
of rank2 and do not contain rules where some of the
LHS components areε. Both assumptions can be
made without loss of generality since every LCFRS
can be binarized (Gómez-Rodrı́guez et al., 2009)
andε-components on LHS of rules can be removed
(Boullier, 1998). We make the assumption that POS
tagging is done before parsing. The POS tags are
special non-terminals of fan-out1. Consequently,
the rules are either of the formA(a) → ε whereA
is a POS tag anda ∈ T or of the formA(~α) → B(~x)
orA(~α) → B(~x)C(~y) where~α ∈ (V +)dim(A), i.e.,
only the rules for POS tags contain terminals in their
LHSs.

The parser items have the form[A, ~ρ], with A ∈
N and~ρ a vector of ranges characterizing all com-
ponents of the span ofA. We specify the set
of weighted parse items via the deduction rules in
Fig. 3.

Parsing time can be reduced by reordering the
agenda during parsing such that those items are pro-
cessed first which lead to a complete parse more
quickly than others (Klein and Manning, 2003a).
The parser uses for this purpose an admissible, but
not monotonic estimate calledLR estimate. It gives
(relative to a sentence length) an estimate of the out-
side probability of some non-terminalA with a span
of a certain length (the sum of the lengths of all the

60

components of the span), a certain number of ter-
minals to the left of the first and to the right of the
last component and a certain number of terminals
gaps in between the components of theA span, i.e.,
filling the gaps. A discussion of other estimates is
presented at length in Kallmeyer and Maier (2010).

2.3 LCFRS for Modeling Discontinuities

We use the algorithm from Maier and Søgaard
(2008) to extract LCFRS rules from our data sets.
For all nonterminalsA0 with the childrenA1 · · ·Am

(i.e., for all non-terminals which are not pretermi-
nals), we create a clauseψ0 → ψ1 · · ·ψm with ψi,
0 ≤ i ≤ m, labeledAi. The arguments of each
ψi, 1 ≤ i ≤ m, are single variables, one for each
of the continuous yield part dominated by the node
Ai. The arguments ofψ0 are concatenations of these
variables that describe how the discontinuous parts
of the yield ofA0 are obtained from the yields of its
daughters. For all preterminalsA dominating some
terminala, we extract a productionA(a) → ε. Since
by definition, a label is associated with a certain
fan-out, we distinguish the labels by correspond-
ing subscripts. Note that this extraction algorithm
yields only ordered LCFRS. Furthermore, note that
for trees without crossing branches, this algorithm
yields a PLCFRS with fan-out 1, i.e., a PCFG.

As mentioned before, the advantage of using
LCFRS is that grammar extraction is straight-
forward and that no separate assumptions must be
made. Note that unlike, e.g., Range Concatenation
Grammar (RCG) (Boullier, 1998), LCFRS cannot
model re-entrancies, i.e., nodes with more than one
incoming edge. While those do not occur in NeGra-
style annotation, some of the annotation in the PTB,
e.g., the annotation for right node raising, can be in-
terpreted as re-entrancies. This topic is left for fu-
ture work. See Maier and Lichte (2009) for further
details, especially on how treebank properties relate
to properties of extracted grammars.

Before parsing, we binarize our grammar. We first
mark the head daughters of all non-terminal nodes
using Collins-style head rules based on the NeGra
rules of the Stanford Parser (Klein and Manning,
2003b) and the reorder the RHSs of all LCFRS rules
such that sequence of elements to the right of the
head daughter is reversed and moved to the begin-
ning of the RHS. From this point, the binarization

works like the transformation into Chomsky Normal
Form for CFGs. For each rule with an RHS of length
≥ 3, we introduce a new non-terminal which cov-
ers the RHS without the first element and continue
successively from left to right. The rightmost new
rule, which covers the head daughter, is binarized to
unary.

We markovize the grammar as in the CFG case.
To the new symbols introduced during the binariza-
tion, a variable number of symbols from the vertical
and horizontal context of the original rule is added.
Following the literature, we call the respective quan-
tities v andh. As an example, Fig. 4 shows the out-
put for the production for the VP in the left tree in
Fig. 2.

After extraction and head marking:
VP2(X1,X2X3)→ AVP1(X1) AVP1(X2) VVPP1’(X3)

After binarization and markovization withv = 1, h = 2:
VP2(X1,X2)→ AVP1(X1) @-VP2v-AVP1h-VVPP1h(X2)
@-VP2v-AVP1h-VVPP1h(X1X2)
→ AVP1(X1) @-VP2v-VVPP1h(X2)
@-VP2v-VVPP1h(X1)→ VVPP1(X1)
After binarization and markovization withv = 2, h = 1:
VP2(X1,X2)→ AVP1(X1) @-VP2v-S2v-AVP1h(X2)
@-VP2v-S2v-AVP1h(X1X2)
→ AVP1(X1) @-VP2v-S2v-VVPP1h(X2)
@-VP2v-S2v-VVPP1h(X1)→ VVPP1(X1)

Figure 4: Grammar extraction and binarization example

The probabilities are then computed based on the
number of occurrences of rules in the transformed
treebank, using a Maximum Likelihood estimator.

3 Evaluation methods

We assess the quality of our parser output using dif-
ferent methods.

The first is anEVALB-style metric (henceforth
EVALB), i.e., we compare phrase boundaries. In
spite of its shortcomings (Rehbein and van Gen-
abith, 2007), it allows us to compare to previ-
ous work on parsing NeGra. In the context of
LCFRS, we compare sets of tuples of the form
[A, (i1l , i

1
r), . . . , (i

k
l , i

k
r)], whereA is a non-terminal

in some derivation tree withdim(A) = k and each
(iml , i

m
r), 1 ≤ m ≤ k, is a tuple of indices denot-

ing a continuous sequence of terminals dominated
byA. One set is obtained from the parser output, and

61

B<

B C

B t3 B >B t4

t1 t2 z t1 t2 z

x y x y

Figure 5: TDIST example

one from the corresponding treebank trees. Using
these tuple sets, we compute labeled and unlabeled
recall (LR/UR), precision (LP/UP), and theF1 mea-
sure (LF1/UF1) in the usual way. Note that ifk = 1,
our metric is identical to its PCFG version.

EVALB does not necessarily reflect parser output
quality (Rehbein and van Genabith, 2007; Emms,
2008; Kübler et al., 2008). One of its major prob-
lems is that attachment errors are penalized too
hard. As the second evaluation method, we there-
fore choose thetree-distance measure (henceforth
TDIST) (Zhang and Shasha, 1989), which levitates
this problem. It has been proposed for parser evalu-
ation by Emms (2008). TDIST is an ideal candidate
for evaluation of the output of a PLCFRS, since it the
fact if trees have crossing branches or not is not rel-
evant to it. Two treesτk andτA are compared on the
basis ofT -mappings from τk to τA. A T -mapping
is a partial mappingσ of nodes ofτk to nodes ofτA
where all node mappings preserve left-to-right or-
der and ancestry. Within the mappings, node inser-
tion, node deletion, and label swap operations are
identified, represented resp. by the setsI, D and
S. Furthermore, we consider the setM represent-
ing the matched (i.e., unchanged) nodes. The cost of
a T -mapping is the total number of operations, i.e.
|I|+ |D|+ |S|. Thetree distance between two trees
τK and τA is the cost of the cheapestT -mapping.
Fig. 5, borrowed from Emms, shows an example for
a T -mapping. Inserted nodes are prefixed with>,
deleted nodes are suffixed with<, and nodes with
swapped labels are linked with arrows. Since in to-
tal, four operations are involved, to thisT -mapping,
a cost of 4 is assigned. For more details, especially
on algorithms which compute TDIST, refer to Bille
(2005). In order to convert the tree distance measure
into a similarity measure like EVALB, we use the
macro-averaged Dice and Jaccard normalizations as
defined by Emms. LetτK andτA be two trees with

|τK | and|τA| nodes, respectively. For aT -mapping
σ from τK to τA with the setsD, I, S andM, we
compute them as follows.

dice(σ) = 1−
|D|+ |I|+ |S|

|τK |+ |τA|

jaccard (σ) = 1−
|D|+ |I|+ |S|

|D|+ |I|+ |S|+ |M|

where, in order to achieve macro-averaging, we sum
the numerators and denominators over all tree pairs
before dividing. See Emms (2008) for further de-
tails.

The third method isdependency evaluation
(henceforthDEP), as described by Lin (1995). It
consists of comparing dependency graphs extracted
from the gold data and from the parser output. The
dependency extraction algorithm as given by Lin
does also not rely on trees to be free of crossing
branches. It only relies on a method to identify the
head of each phrase. We use our own implementa-
tion of the algorithm which is described in Sect. 4
of Lin (1995), combined with the head finding algo-
rithm of the parser. Dependency evaluation abstracts
away from another bias of EVALB. Concretely, it
does not prefer trees with a high node/token ratio,
since two dependency graphs to be compared neces-
sarily have the same number of (terminal) nodes. In
the context of parsing German, this evaluation has
been employed previously by Kübler et al. (2008).

Last, we evaluate onTePaCoC (Testing
Parser Performance on Complex Grammatical
Constructions), a set of particularly difficult sen-
tences hand-picked from TIGER (Kübler et al.,
2008).

4 Experiments

Our data sources are the German NeGra (Skut et
al., 1997) and TIGER (Brants et al., 2002) tree-
banks. In a preprocessing step, following common
practice, we attach all punctuation to nodes within
the tree, since it is not included in the NeGra an-
notation. In a first pass, using heuristics, we at-
tach all nodes to the in each case highest available
phrasal node such that ideally, we do not introduce
new crossing branches. In a second pass, paren-
theses and quotation marks are preferably attached
to the same node. Grammatical function labels are

62

discarded. After this preprocessing step, we create
a separate version of the data set, in which we re-
solve the crossing branches in the trees, using the
common approach of re-attaching nodes to higher
constituents. We use the first 90% of our data sets
for training and the remaining 10% for testing. Due
to memory limitations, we restrict ourselves to sen-
tences of a maximal length of 30 words. Our TIGER
data sets (TIGER and T-CF) have 31,568 sentences
of an average length of 14.81, splitted into 31,568
sentences for training and 3,508 sentences for test-
ing. Our NeGra data sets (NeGra and N-CF) have
18,335 sentences, splitted into 16,501 sentences for
training and 1,834 sentences for testing.

We parse the data sets described above with acti-
vated LR estimate. For all our experiments, we use
the markovization settingsv = 2 andh = 1, which
have proven to be successful in previous work on
parsing NeGra (Rafferty and Manning, 2008). We
provide the parser with the gold tagging. Fig. 6
shows the average parsing times for all data sets on
an AMD Opteron node with 8GB of RAM (pure
Java implementation), Tab. 1 shows the percentage
of parsed sentences.

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25

tim
e

in
 s

ec
. (

lo
g

sc
al

e)

Sentence length

NeGra
TIGER

N-CF
T-CF

Figure 6: Parsing times

NeGra TIGER N-CF T-CF
total 1834 3508 1834 3508
parsed 1779

(97.0%)
3462
(98.7%)

1804
(98.4%)

3462
(98.7%)

Table 1: Parsed sentences

4.1 Evaluation Using EVALB

Tab. 2 shows the evaluation of the parser output us-
ing EVALB, as described in the previous section.
We report labeled and unlabeled precision, recall
andF1 measure.

LP LR LF1 UP UR UF1

NeGra 72.39 70.68 71.52 76.01 74.22 75.10
TIGER 74.97 71.95 73.43 78.58 75.42 76.97

N-CF 74.85 73.26 74.04 78.11 76.45 77.28
T-CF 77.51 73.73 75.57 80.59 76.66 78.57

Table 2: EVALB results

Not surprisingly, reconstructing discontinuities is
hard. Therefore, when parsing without crossing
branches, the results are slightly better. In order to
see the influence of discontinuous structures during
parsing on the underlying phrase structure, we re-
solve the crossing branches in the parser output of
NeGra and TIGER and compare it to the respective
gold test data of N-CF and T-CF. Tab. 3 shows the
results.

LP LR LF1 UP UR UF1

NeGra 72.75 71.04 71.89 76.38 74.58 75.47
TIGER 75.28 72.25 73.74 78.81 75.64 77.20

Table 3: EVALB results (resolved crossing branches)

The results deteriorate slightly in comparison
with N-CF and T-CF, however, they are slightly
higher than for than for NeGra and TIGER. This
is due to the fact that during the transformation,
some errors in the LCFRS parses get “corrected”:
Wrongly attached phrasal nodes are re-attached to
unique higher positions in the trees.

In order to give a point of comparison with previ-
ous work on parsing TIGER and NeGra, in Tab. 4,
we report some of the results from the literature. All
of them were obtained using PCFG parsers: Kübler
(2005) (Tab. 1, plain PCFG for NeGra), Kübler et al.
(2008) (Tab. 3, plain PCFG and Stanford parser with
markovizationv = 2 andh = 1 for TIGER), and
Petrov and Klein (2007) (Tab. 1, Berkeley parser, la-
tent variables). We include the results for N-CF and
T-CF.

Our results are slightly better than for the plain
PCFG models. We would expect the result for T-
CF to be closer to the corresponding result for the
Stanford parser, since we are using a comparable

63

plain this work markov. latent
NeGra 69.94 74.04 – 80.1

TIGER 74.00 75.57 77.30 –

Table 4: PCFG parsing of NeGra, LabeledF1

model. This difference is mostly likely due to losses
induced by the LR estimate. All items to which the
estimate assigns an outside log probability estimate
of −∞ get blocked and are not put on the agenda.
This blocking has an extremely beneficial effect on
parser speed. However, it is paid by a worse recall,
as experiments with smaller data sets have shown.
A complete discussion of the effects of estimates, as
well as a discussion of other possible optimizations,
is presented in Kallmeyer and Maier (2010).

Recall finally that LCFRS parses are more infor-
mative than PCFG parses – a lower score for LCFRS
EVALB than for PCFG EVALB does not necessarily
mean that the PCFG parse is “better”.

4.2 Evaluation Using Tree Distance

Tab. 5 shows the results of evaluating with TDIST,
excluding unparsed sentences. We report thedice

and jaccard normalizations, as well as a summary
of the distribution of the tree distances between gold
trees and trees from the parser output (see Sect. 3).

tree distance distrib.
dice jaccard 0 ≤ 3 ≥ 10

NeGra 88.86 79.79 31.65 53.77 15.08
TIGER 89.47 80.84 29.87 56.78 18.18

N-CF 92.50 85.99 33.43 61.92 6.71
T-CF 92.70 86.46 31.80 63.81 4.56

Table 5: Tree distance evaluation

Again, we can observe that parsing LCFRS is
harder than parsing PCFG. As for EVALB, the re-
sults for TIGER are slightly higher than the ones for
NeGra. The distribution of the tree distances shows
that about a third of all sentences receive a com-
pletely correct parse. More than a half, resp. a third
of all parser output trees require≤ 3 operations to be
mapped to the corresponding gold tree, and a only a
small percentage requires≥ 10 operations.

To our knowledge, TDIST has not been used to
evaluate parser output for NeGra and TIGER. How-
ever, Emms (2008) reports results for the PTB using
different parsers. Collins’ Model 1 (Collins, 1999),

e.g., lies at 93.62 (Dice) and 87.87 (Jaccard). For
the Berkeley Parser (Petrov and Klein, 2007), 94.72
and 89.87 is reported. We see that our results lie in
them same range. However, Jaccard scores are lower
since this normalization punishes a higher number
of edit operations more severely than Dice. In or-
der to meaningfully interpret which treebank prop-
erties are responsible for the fact that between the
gold trees and the trees from the parser, the German
data requires more tree edit operations than the En-
glish data, a TDIST evaluation of the output of an
off-the-shelf PCFG parser would be necessary. This
is left for future work.

4.3 Dependency Evaluation

For the dependency evaluation, we extract depen-
dency graphs from both the gold data and the test
data and compare the unlabeled accuracy. Tab. 6
shows the results. We report unlabeled attachment
score (UAS).

UAS
NeGra 76.50

TIGER 77.84
N-CF 77.52
T-CF 78.67

Table 6: Dependency evaluation

The dependency results are consistent with the
previous results in as much as the scores for PCFG
parsing are again higher. The dependency re-
sults reported in Kübler et al. (2008) however are
much higher (85.6 UAS for the markovized Stan-
ford parser). While a part of the losses can again
be attributed to the LR estimate, another reason lies
undoubtedly in the different dependency conversion
method which we employ, and in further treebank
transformations which Kübler et al. perform. In or-
der to get a more fine grained result, in future work,
we will consider graph modifications as proposed by
Lin (1995) as well as including annotation-specific
information from NeGra/TIGER in our conversion
procedure.

4.4 TePaCoC

The TePaCoC data set (Kübler et al., 2008) provides
100 hand-picked sentences from TIGER which con-
tain constructions that are especially difficult to

64

parse. Out of these 100 sentences, we only consider
69. The remaining 31 sentences are either longer
than 30 words or not included in the TIGER 2003
release (Kübler et al. use the 2005 release). The
data is partitioned in groups of sentences with extra-
posed relative clauses (ERC), forward conjunction
reduction (FCR), noun PP attachment (PPN), verb
PP attachment (PPV), subject gap with finite/fronted
verbs (SGF) and coordination of unlike constituents
(CUC). Tab. 7 shows the EVALB results for the (dis-
continuous) TePaCoC. We parse these sentences us-
ing the same training set as before with all TePaCoC
sentences removed.

LP LR LF1 UP UR UF1

ERC 59.34 61.36 60.34 64.84 67.05 65.92
FCR 78.03 76.70 77.36 82.66 81.25 81.95
PPN 72.15 72.15 72.15 75.95 75.95 75.95
PPV 73.33 73.33 73.33 76.66 76.66 76.66
CUC 58.76 57.58 58.16 69.07 67.68 68.37
SGF 82.67 81.05 81.85 85.33 83.66 84.49

all 72.27 71.83 72.05 77.26 76.78 77.02

Table 7: EVALB scores for TePaCoC

While we cannot compare our results directly
with the PCFG results (using grammatical function
labels) of Kübler et al., their results nevertheless give
an orientation.

We take a closer look at all sentence groups. Our
result for ERC is more than 15 points worse than
the result of Kübler et al. The relative clause itself
is mostly recognized as a sentence (though not ex-
plicitly marked as a relative clause, since we do not
consider grammatical functions). However, it is al-
most consistently attached too high (on the VP or
on clause level). While this is correct for Kübler et
al., with crossing branches, it treated as an error and
punished especially hard by EVALB. FCR is parsed
mostly well and with comparable results to Kübler
et al. There are too few sentences to make a strong
claim about PP attachment. However, in both PPN
and PPV flat phrases seem to be preferred, which
has as a consequence that in PPN, PPs are attached
too high and in PPV too low. Our output confirms
the claim of Kübler et al.’s that unlike coordinations
is the most difficult of all TePaCoC phenomena. The
conjuncts themselves are correctly identified in most
cases, however then coordinated at the wrong level.
SGF is parsed best. Kübler et al. report for this group

only 78.6 labeled F1 for the Stanford Parser. Our
overall results are slightly worse than the results of
Kübler et al., but show less variance.

To sum up, not surprisingly, getting the right at-
tachment positions seems to be hard for LCFRS,
too. Additionally, with crossing branches, the out-
put is rated worse, since some attachments are not
present anymore without crossing branches. Since
especially for the relative clauses, attachment posi-
tions are in fact a matter of discussion from a syntac-
tic point of view, we will consider in future studies
to selectively resolve some of the crossing branches,
e.g., by attaching relative clauses to higher positions.

5 Related Work

The use of formalisms with a high expressivity has
been explored before (Plaehn, 2004; Levy, 2005).
To our knowledge, Plaehn is the only one to re-
port evaluation results. He uses the formalism of
Discontinuous Phrase Structure Grammar (DPSG).
Limiting the sentence length to 15, he obtains 73.16
labeled F1 on NeGra. Evaluating all sentences of
our NeGra data with a length of up to 15 words re-
sults, however, in 81.27 labeled F1. For a compari-
son between DPSG and LCFRS, refer to Maier and
Søgaard (2008).

6 Conclusion and Future Work

We have investigated the possibility of using Prob-
abilistic Linear Context-Free Rewriting Systems for
direct parsing of discontinuous constituents. Conse-
quently, we have applied a PLCFRS parser on the
German NeGra and TIGER treebanks. Our evalu-
ation, which used different metrics, showed that a
PLCFRS parser can achieve competitive results.

In future work, all of the presented evaluation
methods will be investigated to greater detail. In
order to do this, we will parse our data sets with
current state-of-the-art systems. Especially a more
elaborate dependency conversion should enable a
more informative comparison between the output of
PCFG parsers and the output of the PLCFRS parser.
Last, since an algorithm is available which extracts
LCFRSs from dependency structures (Kuhlmann
and Satta, 2009), the parser is instantly ready for
parsing them. We are currently performing the cor-
responding experiments.

65

References

Philip Bille. 2005. A survey on tree edit distance and
related problems.Theoretical Computer Science, 337.

Pierre Boullier. 1998. A Proposal for a Natural Lan-
guage Processing Syntactic Backbone. Technical Re-
port 3342, INRIA.

Adriane Boyd. 2007. Discontinuity revisited: An im-
proved conversion to context-free representations. In
The Linguistic Annotation Workshop at ACL 2007.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER Tree-
bank. In Proceedings of Treebanks and Linguistic
Theories.

David Chiang. 2003. Statistical parsing with an automat-
ically extracted Tree Adjoining Grammar. InData-
Oriented Parsing. CSLI Publications.

Michael Collins. 1999.Head-driven statistical models
for natural language parsing. Ph.D. thesis, University
of Pennsylvania.

Martin Emms. 2008. Tree Distance and some other vari-
ants of Evalb. InProceedings of LREC 08.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann, Giorgio
Satta, and David Weir. 2009. Optimal reduction of
rule length in linear context-free rewriting systems. In
Proceedings of NAACL-HLT.

Laura Kallmeyer and Wolfgang Maier. 2009. An in-
cremental earley parser for simple range concatenation
grammar. InProceedings of IWPT 09.

Laura Kallmeyer and Wolfgang Maier. 2010. Data-
driven parsing with probabilistic linear context-free
rewriting systems. Unpublished Manuscript.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2006.
RNA pseudoknotted structure prediction using
stochastic multiple context-free grammar. IPSJ
Digital Courier, 2.

Dan Klein and Christopher D. Manning. 2003a. A* Pars-
ing: Fast Exact Viterbi Parse Selection. InProceed-
ings of NAACL-HLT.

Dan Klein and Christopher D. Manning. 2003b. Fast
exact inference with a factored model for natural lan-
guage parsing. InIn Advances in Neural Information
Processing Systems 15 (NIPS). MIT Press.

Sandra Kübler, Wolfgang Maier, Ines Rehbein, and Yan-
nick Versley. 2008. How to compare treebanks. In
Proceedings of LREC 08.

Sandra Kübler. 2005. How do treebank annotation
schemes influence parsing results? Or how not to com-
pare apples and oranges. InProceedings of RANLP
2005.

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of EACL.

Roger Levy. 2005. Probabilistic Models of Word Or-
der and Syntactic Discontinuity. Ph.D. thesis, Stan-
ford University.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InProceedings of
IJCAI 95.

Wolfgang Maier and Timm Lichte. 2009. Characterizing
discontinuity in constituent treebanks. InProceedings
of Formal Grammar 2009.

Wolfgang Maier and Anders Søgaard. 2008. Treebanks
and mild context-sensitivity. InProceedings of Formal
Grammar 2008.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn Tree-
bank: Annotating predicate argument structure. In
Proceedings of HLT.

Mark-Jan Nederhof. 2003. Weighted Deductive Parsing
and Knuth’s Algorithm. Computational Linguistics,
29(1).

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InProceedings of HLT-
NAACL 2007.

Oliver Plaehn. 2004. Computing the most probable parse
for a discontinuous phrase-structure grammar. InNew
developments in parsing technology. Kluwer.

Anna Rafferty and Christopher D. Manning. 2008. Pars-
ing three German treebanks: Lexicalized and unlexi-
calized baselines. InProceedings of the Workshop on
Parsing German at ACL 2008.

Ines Rehbein and Josef van Genabith. 2007. Evaluating
evaluation measures. InProceedings of NODALIDA
2007.

Hiroyuki Seki, Takahashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars.Theoretical Computer Science, 88(2).

Wojciech Skut, Brigitte Krenn, Thorten Brants, and Hans
Uszkoreit. 1997. An annotation scheme for free word
order languages. InProceedings of ANLP.

Heike Telljohann, Erhard Hinrichs, Sandra Kübler, and
Heike Zinsmeister. 2006. Stylebook for the Tübingen
Treebank of Written German (TüBa-D/Z). Technis-
cher Bericht, Universität Tübingen.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions produced
by various grammatical formalisms. InProceedings of
ACL.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast
algorithms for the editing distance between trees and
related problems.SIAM Journal of Computing, 18.

66

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 67–75,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Handling Unknown Words in Statistical Latent-Variable Par sing Models for
Arabic, English and French

Mohammed Attia, Jennifer Foster, Deirdre Hogan, Joseph Le Roux, Lamia Tounsi,
Josef van Genabith∗

National Centre for Language Technology
School of Computing, Dublin City University

{mattia,jfoster,dhogan,jleroux,ltounsi,josef }@computing.dcu.ie

Abstract

This paper presents a study of the impact
of using simple and complex morphological
clues to improve the classification of rare and
unknown words for parsing. We compare
this approach to a language-independent tech-
nique often used in parsers which is based
solely on word frequencies. This study is ap-
plied to three languages that exhibit different
levels of morphological expressiveness: Ara-
bic, French and English. We integrate infor-
mation about Arabic affixes and morphotac-
tics into a PCFG-LA parser and obtain state-
of-the-art accuracy. We also show that these
morphological clues can be learnt automati-
cally from an annotated corpus.

1 Introduction

For a parser to do a reasonable job of analysing free
text, it must have a strategy for assigning part-of-
speech tags to words which are not in its lexicon.
This problem, also known as the problem of un-
known words, has received relatively little attention
in the vast literature on Wall-Street-Journal (WSJ)
statistical parsing. This is likely due to the fact that
the proportion of unknown words in the standard
English test set, Section 23 of the WSJ section of
Penn Treebank, is quite small. The problem mani-
fests itself when the text to be analysed comes from
a different domain to the text upon which the parser
has been trained, when the treebank upon which the
parser has been trained is limited in size and when

∗Author names are listed in alphabetical order. For further
correspondence, contact L. Tounsi, D. Hogan or J. Foster.

the language to be parsed is heavily inflected. We
concentrate on the latter case, and examine the prob-
lem of unknown words for two languages which lie
on opposite ends of the spectrum of morphologi-
cal expressiveness and for one language which lies
somewhere in between: Arabic, English and French.

In our experiments we use a Berkeley-style latent-
variable PCFG parser and we contrast two tech-
niques for handling unknown words within the gen-
erative parsing model: one in which no language-
specific information is employed and one in which
morphological clues (or signatures) are exploited.
We find that the improvement accrued from look-
ing at a word’s morphology is greater for Arabic
and French than for English. The morphological
clues we use for English are taken directly from the
Berkeley parser (Petrov et al., 2006) and those for
French from recent work on French statistical pars-
ing with the Berkeley parser (Crabbé and Candito,
2008; Candito et al., 2009). For Arabic, we present
our own set of heuristics to extract these signatures
and demonstrate a statistically significant improve-
ment of 3.25% over the baseline model which does
not employ morphological information.

We next try to establish to what extent these clues
can be learnt automatically by extracting affixes
from the words in the training data and ranking these
using information gain. We show that this automatic
method performs quite well for all three languages.

The paper is organised as follows: In Section 2
we describe latent variable PCFG parsing models.
This is followed in Section 3 by a description of our
three datasets, including statistics on the extent of
the unknown word problem in each. In Section 4, we

67

present results on applying a version of the parser
which uses a simple, language-agnostic, unknown-
word handling technique to our three languages. In
Section 5, we show how this technique is extended
to include morphological information and present
parsing results for English and French. In Section 6,
we describe the Arabic morphological system and
explain how we used heuristic rules to cluster words
into word-classes or signatures. We present parsing
results for the version of the parser which uses this
information. In Section 7, we describe our attempts
to automatically determine the signatures for a lan-
guage and present parsing results for the three lan-
guages. Finally, in Section 8, we discuss how this
work might be fruitfully extended.

2 Latent Variable PCFG Parsing

Johnson (1998) showed that refining treebank cate-
gories with parent information leads to more accu-
rate grammars. This was followed by a collection of
linguistically motivated propositions for manual or
semi-automatic modifications of categories in tree-
banks (Klein and Manning, 2003). In PCFG-LAs,
first introduced by Matsuzakiet al. (2005), the re-
fined categories are learnt from the treebank us-
ing unsupervised techniques. Each base category
– and this includes part-of-speech tags – is aug-
mented with an annotation that refines its distribu-
tional properties.

Following Petrovet al. (2006) latent annotations
and probabilities for the associated rules are learnt
incrementally following an iterative process consist-
ing of the repetition of three steps.

1. Split each annotation of each symbol inton

(usually 2) new annotations and create rules
with the new annotated symbols. Estimate1 the
probabilities of the newly created rules.

2. Evaluate the impact of the newly created anno-
tations and discard the least useful ones. Re-
estimate probabilities with the new set of anno-
tations.

3. Smooth the probabilities to prevent overfitting.

We use our own parser which trains a PCFG-LA us-
ing the above procedure and parses using the max-

1Estimation of the parameters is performed by running Ex-
pectation/Maximisation on the training corpus.

rule parsing algorithm (Petrov et al., 2006; Petrov
and Klein, 2007). PCFG-LA parsing is relatively
language-independent but has been shown to be very
effective on several languages (Petrov, 2009). For
our experiments, we set the number of iterations to
be 5 and we test on sentences less than or equal to
40 words in length. All our experiments, apart from
the final one, are carried out on the development sets
of our three languages.

3 The Datasets

Arabic We use the the Penn Arabic Treebank
(ATB) (Bies and Maamouri, 2003; Maamouri and
Bies., 2004). The ATB describes written Modern
Standard Arabic newswire and follows the style and
guidelines of the English Penn-II treebank. We use
the part-of-speech tagset defined by Bikel and Bies
(Bikel, 2004). We employ the usual treebank split
(80% training, 10% development and 10% test).

English We use the Wall Street Journal section of
the Penn-II Treebank (Marcus et al., 1994). We train
our parser on sections 2-21 and use section 22 con-
catenated with section 24 as our development set.
Final testing is carried out on Section 23.

French We use the French Treebank (Abeillé et
al., 2003) and divide it into 80% for training, 10%
for development and 10% for final results. We fol-
low the methodology defined by Crabbé and Can-
dito (2008): compound words are merged and the
tagset consists of base categories augmented with
morphological information in some cases2.

Table 1 gives basic unknown word statistics for
our three datasets. We calculate the proportion of
words in our development sets which are unknown
or rare (specified by the cutoff value) in the corre-
sponding training set. To control for training set
size, we also provide statistics when the English
training set is reduced to the size of the Arabic and
French training sets and when the Arabic training set
is reduced to the size of the French training set. In an
ideal world where training set sizes are the same for
all languages, the problem of unknown words will
be greatest for Arabic and smallest for English. It is

2This is called the CC tagset: base categories with verbal
moods and extraction features

68

language cutoff #train #dev #unk %unk language #train #dev #unk %unk
Arabic 0 594,683 70,188 3794 5.40 Reduced English 597,999 72,970 2627 3.60

- 1 - - 6023 8.58 (Arabic Size) - - 3849 5.27
- 5 - - 11,347 16.17 - - - 6700 9.18
- 10 - - 15,035 21.42 - - - 9083 12.45

English 0 950,028 72,970 2062 2.83 Reduced Arabic 266,132 70,188 7027 10.01
- 1 - - 2983 4.09 (French Size) - - 10,208 14.54
- 5 - - 5306 7.27 - - - 16,977 24.19
- 10 - - 7230 9.91 - - - 21,434 30.54

French 0 268,842 35,374 2116 5.98 Reduced English 265,464 72,970 4188 5.74
- 1 - - 3136 8.89 (French Size) - - 5894 8.08
- 5 - - 5697 16.11 - - - 10,105 13.85
- 10 - - 7584 21.44 - - - 13,053 17.89

Table 1: Basic Unknown Word Statistics for Arabic, French and English

reasonable to assume that the levels of inflectional
richness have a role to play in these differences.

4 A Simple Lexical Probability Model

The simplest method for handling unknown words
within a generative probabilistic parsing/tagging
model is to reserve a proportion of the lexical rule
probability mass for such cases. This is done by
mapping rare words in the training data to a spe-
cial UNKNOWNterminal symbol and estimating rule
probabilities in the usual way. We illustrate the pro-
cess with the toy unannotated PCFG in Figures 1
and 2. The lexical rules in Fig. 1 are the original
rules and the ones in Fig. 2 are the result of apply-
ing the rare-word-to-unknown-symbol transforma-
tion. Given the input sentenceThe shares recovered,
the wordrecovered is mapped to theUNKNOWNto-
ken and the three edges corresponding to the rules
NNS → UNKNOWN, V BD → UNKNOWNand
JJ → UNKNOWNare added to the chart at this posi-
tion. The disadvantage of this simple approach is ob-
vious: all unknown words are treated equally and the
tag whose probability distribution is most dominated
by rare words in the training will be deemed the
most likely (JJ for this example), regardless of the
characteristics of the individual word. Apart from
its ease of implementation, its main advantage is its
language-independence - it can be used off-the-shelf
for any language for which a PCFG is available.3

One parameter along which the simple lexical

3Our simple lexical model is equivalent to the Berkeley sim-
pleLexicon option.

probability model can vary is the threshold used to
decide whether a word in the training data is rare or
“unknown”. When the threshold is set ton, a word
in the training data is considered to be unknown if it
occursn or fewer times. We experiment with three
thresholds: 1, 5 and 10. The result of this experi-
ment for our three languages is shown in Table 2.

The general trend we see in Table 2 is that the
number of training set words considered to be un-
known should be minimized. For all three lan-
guages, the worst performing grammar is the one
obtained when the threshold is increased to 10. This
result is not unexpected. With this simple lexical
probability model, there is a trade-off between ob-
taining good guesses for words which do not occur
in the training data and obtaining reliable statistics
for words which do. The greater the proportion of
the probability mass that we reserve for the unknown
word section of the grammar, the more performance
suffers on the known yet rare words since these are
the words which are mapped to theUNKNOWNsym-
bol. For example, assume the wordrestructuring oc-
curs 10 times in the training data, always tagged as
aVBG. If the unknown threshold is less than ten and
if the word occurs in the sentence to be parsed, a
VBG edge will be added to the chart at this word’s
position with the probability 10/#VBG. If, however,
the threshold is set to 10, the word (in the training set
and the input sentence) will be mapped toUNKNOWN
and more possibilities will be explored (an edge for
eachTAG → UNKNOWNrule in the grammar). We
can see from Table 1 that at threshold 10, one fifth

69

VBD -> fell 50/153
VBD -> reoriented 2/153
VBD -> went 100/153
VBD -> latched 1/153
NNS -> photofinishers 1/201
NNS -> shares 200/201
JJ -> financial 20/24
JJ -> centrist 4/24
DT -> the 170/170

Figure 1: The original toy PCFG

VBD -> fell 50/153
VBD -> UNKNOWN 3/153
VBD -> went 100/153
NNS -> UNKNOWN 1/201
NNS -> shares 200/201
JJ -> financial 20/24
JJ -> UNKNOWN 4/24
DT -> the 170/170

Figure 2: Rare→ UNKNOWN

VBD -> fell 50/153
VBD -> UNK-ed 3/153
VBD -> went 100/153
NNS -> UNK-s 1/201
NNS -> shares 200/201
JJ -> financial 20/24
JJ -> UNK-ist 4/24
DT -> the 170/170

Figure 3: Rare → UN-
KNOWN+SIGNATURE

Unknown Threshold Recall Precision F-Score Tagging Accuracy
Arabic

1 78.60 80.49 79.53 94.03
5 77.17 79.81 78.47 91.16
10 75.32 78.69 76.97 89.06

English
1 89.20 89.73 89.47 95.60
5 88.91 89.74 89.33 94.66
10 88.00 88.97 88.48 93.61

French
1 83.60 84.17 83.88 94.90
5 82.31 83.10 82.70 92.99
10 80.87 82.05 81.45 91.56

Table 2: Varying the Unknown Threshold with the Simple Lexical Probability Model

of the words in the Arabic and French development
sets are unknown, and this is reflected in the drop in
parsing performance at these thresholds.

5 Making use of Morphology

Unknown words are not all the same. We exploit this
fact by examining the effect on parsing accuracy of
clustering rare training set words using cues from
the word’s morphological structure. Affixes have
been shown to be useful in part-of-speech tagging
(Schmid, 1994; Tseng et al., 2005) and have been
used in the Charniak (Charniak, 2000), Stanford
(Klein and Manning, 2003) and Berkeley (Petrov et
al., 2006) parsers. In this section, we contrast the
effect on parsing accuracy of making use of such in-
formation for our three languages of interest.
Returning to our toy English example in Figures 1
and 2, and given the input sentenceThe shares re-
covered, we would like to use the fact that the un-

known word recovered ends with the past tense
suffix -ed to boost the probability of the lexical
rule V BD → UNKNOWN. If we specialise the
UNKNOWNterminal using information from English
morphology, we can do just that, resulting in the
grammar in Figure 3. Now the wordrecovered is
mapped to the symbolUNK-ed and the only edge
which is added to the chart at this position is the one
corresponding to the ruleV BD → UNK-ed.

For our English experiments we use the unknown
word classes (orsignatures) which are used in the
Berkeley parser. A signature indicates whether a
words contains a digit or a hyphen, if a word starts
with a capital letter or ends with one of the following
English suffixes (both derivational and inflectional):
-s, -ed, -ing, -ion, -er, -est, -ly, -ity, -y and-al.

For our French experiments we employ the same
signature list as Crabbé and Candito (2008), which
itself was adapted from Arun and Keller (2005).
This list consists of (a) conjugation suffixes of regu-

70

lar verbs for common tenses (eg.-ons, -ez, -ent. . .)
and (b) derivational suffixes for nouns, adverbs and
adjectives (eg.-tion, -ment, -able. . .).

The result of employing signature information
for French and English is shown in Table 3. Be-
side each f-score the absolute improvement over the
UNKNOWNbaseline (Table 2) is given. For both
languages there is an improvement at all unknown
thresholds. The improvement for English is statis-
tically significant at unknown thresholds 1 and 10.4

The improvement is more marked for French and is
statistically significant at all levels.

In the next section, we experiment with signature
lists for Arabic.5

6 Arabic Signatures

In order to use morphological clues for Arabic we
go further than just looking at suffixes. We exploit
all the richness of the morphology of this language
which can be expressed through morphotactics.

6.1 Handling Arabic Morphotactics

Morphotactics refers to the way morphemes com-
bine together to form words (Beesley, 1998; Beesley
and Karttunen, 2003). Generally speaking, morpho-
tactics can be concatenative, with morphemes either
prefixed or suffixed to stems, or non-concatenative,
with stems undergoing internal alternations to con-
vey morphosyntactic information. Arabic is consid-
ered a typical example of a language that employs
non-concatenative morphotactics.

Arabic words are traditionally classified into three
types: verbs, nouns and particles. Adjectives take
almost all the morphological forms of, and share the
same templatic structures with, nouns. Adjectives,
for example, can be definite, and are inflected for
case, number and gender.

There are a number of indicators that tell us
whether the word is a verb or a noun. Among

4Statistical significance was determined using the strati-
fied shuffling method. The software used to perform the test
was downloaded fromhttp://www.cis.upenn.edu/

˜ dbikel/software.html .
5An inspection of the Berkeley Arabic grammar (available

at http://code.google.com/p/berkeleyparser/
downloads/list) shows that no Arabic-specific signatures
were employed. The Stanford parser uses 9 signatures for Ara-
bic, designed for use with unvocalised text. An immediate fu-
ture goal is to test this signature list with our parser.

these indicators are prefixes, suffixes and word tem-
plates. A template (Beesley and Karttunen, 2003) is
a kind of vocalization mould in which a word fits. In
derivational morphology Arabic words are formed
through the amalgamation of two tiers, namely, root
and template. A root is a sequence of three (rarely
two or four) consonants which are called radicals,
and the template is a pattern of vowels, or a com-
bination of consonants and vowels, with slots into
which the radicals of the root are inserted.

For the purpose of detection we use the reverse
of this information. Given that we have a word, we
try to extract the stem, by removing prefixes and suf-
fixes, and match the word against a number of verbal
and nominal templates. We found that most Ara-
bic templatic structures are in complementary dis-
tribution, i.e. they are either restricted to nominal
or verbal usage, and with simple regular expression
matching we can decide whether a word form is a
noun or a verb.

6.2 Noun Indicators

In order to detect that a word form is a noun (or ad-
jective), we employ heuristic rules related to Arabic
prefixes/suffixes and if none of these rules apply we
attempt to match the word against templatic struc-
tures. Using this methodology, we are able to detect
95% of ATB nouns.6

We define a list of 42 noun templates which are
used to indicate active/passive participle nouns, ver-
bal nouns, nouns of instrument and broken plural
nouns (see Table 4 for some examples). Note that
templates ending with taa marboutah “ap” or start-
ing with meem madmoumah “mu” are not consid-
ered since they are covered by our suffix/prefix rules,
which are as follows:
1- The definite article prefixË � or in Buckwalter
transliteration “Al”.
2- The tanween suffix

��,��, �� or “N”, “F”, “K”, “AF”.
3- The feminine plural suffix�HA, or “+At”.
4- The taa marboutah ending

�è or “ap” whether as a

6The heuristics we developed are designed to work on dia-
critized texts. Although diacritics are generally ignoredin mod-
ern writing, the issue of restoring diacritics has been satisfac-
torily addressed by different researchers. For example, Nelken
and Shieber (2005) presented an algorithm for restoring diacrit-
ics to undiacritized MSA texts with an accuracy of over 90%
and Habasahet al. (2009) reported on a freely-available toolkit
(MADA-TOKAN) an accuracy of over 96%.

71

Unknown Threshold Recall Precision F-Score Tagging Accuracy
Arabic

1 80.67 82.19 *81.42 (+ 1.89) 96.32
5 80.66 82.81 *81.72 (+ 3.25) 95.15
10 79.86 82.49 *81.15 (+ 4.18) 94.38

English
1 ***89.64 89.95 89.79(+ 0.32) 96.44
5 89.16 89.80 89.48 (+ 0.15) 96.32
10 89.14 89.78 **89.46 (+ 0.98) 96.21

French
1 85.15 85.77 *85.46 (+ 1.58) 96.13
5 84.08 84.80 *84.44 (+ 1.74) 95.54
10 84.21 84.78 *84.49 (+ 3.04) 94.68

Table 3: Baseline Signatures for Arabic, French and English
statistically significant with *:p < 10

−4, **: p < 10
−3, ***: p < 0.004,

Template Name Regular Specification
Arabic Buckwalter ExpressionÈA �ª 	®� 	K �� {inofiEAl {ino.i.A. verbal noun (masdar)ÈA �ª 	®Ó� mifoEAl mi.o.A. noun instrumentÉª� 	®��J��Ó musotafoEil musota.o.i. noun participleÉJ
«� A �	® �Ó mafAEiyl ma.A.iy. noun pluralÉ �ª 	®��J��� {isotafoEal {isota.o.a. verbÉ«� ñ�	̄

fuwEil .uw.i. verb passive

Table 4: Sample Arabic Templatic Structures for Nouns and Verbs

feminine marker suffix or part of the word.
5- The genitive case marking kasrah��, or “+i”.
6- Words of length of at least five characters ending
with doubled yaa�ø
 or “y˜ ”.
7- Words of length of at least six characters ending
with alif mamdoudah and hamzahZ � or “A ’ ”.
8- Words of length of at least seven characters start-
ing with meem madmoumah

�Ó or “mu”.

6.3 Verb Indicators

In the same way, we define a list of 16 templates and
we combine them with heuristic rules related to Ara-
bic prefixes/suffixes to detect whether a word form
is exclusively a verb. The prefix/suffix heuristics are
as follows:
9-The plural marker suffix� �ð or “uwA” indicates a
verb.
10- The prefixes �H ,ø
 , 	à , �
� , �� or “sa”, “>a”,
“>u”, “na”, “nu”, “ya”, “yu”, “ta”, “tu” indicate im-

prefective verb.
The verbal templates are less in number than the
noun templates yet they are no less effective in de-
tecting the word class (see Table 4 for examples).
Using these heuristics we are able to detect 85% of
ATB verbs.

6.4 Arabic Signatures

We map the 72 noun/verb classes that are identi-
fied using our hand-crafted heuristics into sets of
signatures of varying sizes: 4, 6, 14, 21, 25, 28
and 72. The very coarse-grained set considers just
4 signaturesUNK-noun , UNK-verb , UNK-num,
andUNKand the most fine-grained set of 72 signa-
tures associates one signature per heuristic. In ad-
dition, we have evaluated the effect of reordering
rules and templates and also the effect of collating
all signatures satisfying an unknown word. The re-
sults of using these various signatures sets in parsing

72

UNK
NUM NOUN VERB
digits (see section 6.2) (see section 6.3)

Al definiteness tashkil At suffix ap suffix imperfect
rule 1 rules 2 and 5 rule 3 rule 4 rule 10

y˜ suffix A’ suffix mu prefix verbal noun templates suffixes
rule 6 rule 7 rule 8 3 groupings dual/plural suffixes

plural templates participle active templates participle passivetemplates instrument templates passivetemplates
4 groupings

other templates verbal templates
5 groupings

Table 6: Arabic signatures

Cutoff 1 5 10
4 80.78 80.71 80.09
6 81.14 81.16 81.06
14 80.88 81.45 81.19
14 reorder 81.39 81.01 80.81
21 81.38 81.55 81.35
21 reorder 81.20 81.13 80.58
21 collect 80.94 80.56 79.63
25 81.18 81.25 81.26
28 81.42 81.72 (+ 3.25) 81.15
72 79.64 78.87 77.58

Table 5: Baseline Signatures for Arabic

our Arabic development set are presented in Table 5.
We achieve our best labeled bracketing f-score using
28 signatures with an unknown threshold of five. In
fact we get an improvement of 3.25% over using no
signatures at all (see Table 2). Table 3 describes in
more detail the scores obtained using the 28 signa-
tures present in Table 6. Apart from the set contain-
ing 72 signatures, all of the baseline signature sets in
Table 5 yield a statistically significant improvement
over the genericUNKNOWNresults (p < 10

−4).

7 Using Information Gain to Determine
Signatures

It is clear that dividing theUNKNOWNterminal into
more fine-grained categories based on morpholog-
ical information helps parsing for our three lan-
guages. In this section we explore whether useful
morphological clues can be learnt automatically. If
they can, it means that a latent-variable PCFG parser
can be adapted to any language without knowledge
of the language in question since the only language-
specific component in such a parser is the unknown-
signature specification.

In a nutshell, we extract affix features from train-

ing set words7 and then use information gain to rank
these features in terms of their predictive power in a
POS-tagging task. The features deemed most dis-
criminative are then used as signatures, replacing
our baseline signatures described in Sections 5 and
6. We are not going as far as actual POS-tagging,
but rather seeing whether the affixes that make good
features for a part-of-speech tagger also make good
unknown word signatures.

We experiment with English and French suffixes
of length 1-3 and Arabic prefixes and suffixes of var-
ious lengths as well as stem prefixes and suffixes of
length 2, 4 and 6. For each of our languages we
experiment with several information gain thresholds
on our development sets and we fix on an English
signature list containing 24 suffixes, a French list
containing 48 suffixes and an Arabic list containing
38 prefixes and suffixes.

Our development set results are presented in Ta-
ble 7. For all three languages, the information gain
signatures perform at a comparable level to the base-
line hand-crafted signatures (Table 3). For each
of the three unknown-word handling techniques, no
signature (UNKNOWN), hand-crafted signatures and
information gain signatures, we select the best un-
known threshold for each language’s development
set and apply these grammars to our test sets. The
f-scores are presented in Table 8, along with the up-
per bounds obtained by parsing with these grammars
in gold-tag mode. For French, the effect of tagging
accuracy on overall parse accuracy is striking. The
improvements that we get from using morphological
signatures are greatest for Arabic8 and smallest for

7We omit all function words and high frequency words be-
cause we are interested in the behaviour of words which are
likely to be similar to rare words.

8Bikel’s parser trained on the same Arabic data and tested
on the same input achieves an f-score of 76.50%. We trained
a 5-split-merge-iteration Berkeley grammar and parsed with the

73

Unknown Threshold Recall Precision F-Score Tagging Accuracy
Arabic IG

1 80.10 82.15 *81.11 (+ 1.58) 96.53
5 80.03 82.49 *81.32 (+ 2.85) 95.30
10 80.17 82.40 *81.27 (+ 4.3) 94.66

English IG
1 89.38 89.87 89.63 (+ 0.16) 96.45
5 89.54 90.22 *** 89.88 (+ 0.55) 96.41
10 89.22 90.05 *89.63 (+ 1.15) 96.19

French IG
1 84.78 85.36 *85.07 (+ 1.19) 96.17
5 84.63 85.24 **84.93 (+ 2.23) 95.30
10 84.18 84.80 *84.49 (+ 3.09) 94.68

Table 7: Information Gain Signature Results
statistically significant with *:p < 10

−4, **: p < 2 · 10
−4, ***: p < 0.005

Language No Sig Baseline Sig IG Sig
Arabic 78.34 *81.59 *81.33

Arabic Gold Tag 81.46 82.43 81.90
English 89.48 89.65 89.77

English Gold Tag 89.94 90.10 90.23
French 83.74 *85.77 **85.55

French Gold Tag 88.82 88.41 88.86
statistically significant with *:p < 10

−4, **: p < 10
−3

Table 8: F-Scores on Test Sets

English. The results for the information gain signa-
tures are promising and warrant further exploration.

8 Conclusion

We experiment with two unknown-word-handling
techniques in a statistical generative parsing model,
applying them to Arabic, French and English. One
technique is language-agnostic and the other makes
use of some morphological information (signatures)
in assigning part-of-speech tags to unknown words.
The performance differences from the two tech-
niques are smallest for English, the language with
the sparsest morphology of the three and the small-
est proportion of unknown words in its development
set. As a result of carrying out these experiments,
we have developed a list of Arabic signatures which
can be used with any statistical parser which does

Berkeley parser, achieving an f-score of 75.28%. We trainedthe
Berkeley parser with the-treebank SINGLEFILE option so that
English signatures were not employed.

its own tagging. We also present results which show
that signatures can be learnt automatically.

Our experiments have been carried out using gold
tokens. Tokenisation is an issue particularly for Ara-
bic, but also for French (since the treebank contains
merged compounds) and to a much lesser extent for
English (unedited text with missing apostrophes). It
is important that the experiments in this paper are re-
peated on untokenised text using automatic tokeni-
sation methods (e.g. MADA-TOKAN).

The performance improvements that we demon-
strate for Arabic unknown-word handling are obvi-
ously just the tip of the iceberg in terms of what can
be done to improve performance on a morpholog-
ically rich language. The simple generative lexical
probability model we use can be improved by adopt-
ing a more sophisticated approach in which known
and unknown word counts are combined when esti-
mating lexical rule probabilities for rare words (see
Huang and Harper (2009) and the Berkeley sophis-
ticatedLexicon training option). Further work will
also include making use of a lexical resource exter-
nal to the treebank (Goldberg et al., 2009; Habash,
2008) and investigating clustering techniques to re-
duce data sparseness (Candito and Crabbé, 2009).

Acknowledgements

This research is funded by Enterprise Ireland
(CFTD/07/229 and PC/09/037) and the Irish Re-
search Council for Science Engineering and Tech-
nology (IRCSET). We thank Marie Candito and our
three reviewers for their very helpful suggestions.

74

References

Anne Abeillé, Lionel Clément, and François Toussenel,
2003. Treebanks: Building and Using Parsed
Corpora, chapter Building a Treebank for French.
Kluwer, Dordrecht.

Abhishek Arun and Frank Keller. 2005. Lexicalization
in crosslinguistic probabilistic parsing: The case of
French. InACL. The Association for Computer Lin-
guistics.

Kenneth R. Beesley and Lauri Karttunen. 2003.Finite
State Morphology. CSLI studies in computational lin-
guistics.

Kenneth R. Beesley. 1998. Arabic morphology using
only finite-state operations. InThe Workshop on Com-
putational Approaches to Semitic Languages.

Ann Bies and Mohammed Maamouri. 2003. Penn Ara-
bic Treebank guidelines. Technical Report TB-1-28-
03.

Dan Bikel. 2004.On the Parameter Space of Generative
Lexicalized Parsing Models. Ph.D. thesis, University
of Pennslyvania.

Marie Candito and Benoit Crabbé. 2009. Improving gen-
erative statistical parsing with semi-supervised word
clustering. InProceedings of IWPT’09.

Marie Candito, Benoı̂t Crabbé, and Djamé Seddah. 2009.
On statistical parsing of French with supervised and
semi-supervised strategies. InProceedings of the
EACL 2009 Workshop on Computational Linguis-
tic Aspects of Grammatical Inference, pages 49–57,
Athens, Greece, March.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the Annual Meeting of the
North American Association for Computational Lin-
guistics (NAACL-00), pages 132–139, Seattle, Wash-
ington.

Benoı̂t Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. InActes
de TALN.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set
mapping, and EM-HMM-based lexical probabilities.
In EACL, pages 327–335. The Association for Com-
puter Linguistics.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
Mada+tokan: A toolkit for Arabic tokenization, di-
acritization, morphological disambiguation, pos tag-
ging, stemming and lemmatization. InProceedings of
the 2nd International Conference on Arabic Language
Resources and Tools (MEDAR).

Nizar Habash. 2008. Four techniques for online handling
of out-of-vocabulary words in arabic-english statistical

machine translation. InProceedings of Association for
Computational Linguistics, pages 57–60.

Zhongqiang Huang and Mary Harper. 2009. Self-
training pcfg grammars with latent annotations across
languages. InProceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing,
Singapore, August.

Mark Johnson. 1998. PCFG models of linguis-
tic tree representations.Computational Linguistics,
24(4):613–632.

Dan Klein and Chris Manning. 2003. Accurate unlex-
icalised parsing. InProceedings of the 41st Annual
Meeting of the ACL.

Mohammed Maamouri and Ann Bies. 2004. Developing
an Arabic Treebank: Methods, guidelines, procedures,
and tools. InWorkshop on Computational Approaches
to Arabic Script-based Languages, COLING.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn Tree-
bank: Annotating predicate argument structure. In
Proceedings of the 1994 ARPA Speech and Natural
Language Workshop, pages 114–119, Princeton, New
Jersey.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of the 43rd Annual Meeting of the ACL,
pages 75–82, Ann Arbor, June.

Rani Nelken and Stuart M. Shieber. 2005. Arabic dia-
critization using weighted finite-state transducers. In
ACL-05 Workshop on Computational Approaches to
Semitic Languages.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InProceedings of HLT-
NAACL, Rochester, NY, April.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact and inter-
pretable tree annotation. InProceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th Annual Meeting of the ACL, Sydney,
Australia, July.

Slav Petrov. 2009.Coarse-to-Fine Natural Language
Processing. Ph.D. thesis, University of California at
Berkeley, Berkeley, CA, USA.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. InProceedings of the In-
ternational Conference on New Methods in Language
Processing (NeMLaP-1), pages 44–49.

Huihsin Tseng, Daniel Jurafsky, and Christopher Man-
ning. 2005. Morphological features help POS tagging
of unknown words across language varieties. InPro-
ceedings of the Fourth SIGHAN Workshop on Chinese
Language Processing.

75

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 76–84,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Parsing word clusters

Marie Candito ⋆ and Djamé Seddah⋆⋄

⋆ Alpage (Université Paris 7/INRIA), 30 rue du château des rentiers 75013 Paris, France
⋄ Université Paris-Sorbonne, 28, rue Serpente, 75006 Paris,France

Abstract

We present and discuss experiments in sta-
tistical parsing of French, where terminal
forms used during training and parsing are
replaced by more general symbols, particu-
larly clusters of words obtained through un-
supervised linear clustering. We build on the
work of Candito and Crabbé (2009) who pro-
posed to use clusters built over slightly coars-
ened French inflected forms. We investigate
the alternative method of building clusters
over lemma/part-of-speech pairs, using a raw
corpus automatically tagged and lemmatized.
We find that both methods lead to compara-
ble improvement over the baseline (we ob-
tainF1=86.20% andF1=86.21% respectively,
compared to a baseline ofF1=84.10%). Yet,
when we replace gold lemma/POS pairs with
their corresponding cluster, we obtain an up-
per bound (F1=87.80) that suggests room for
improvement for this technique, should tag-
ging/lemmatisation performance increase for
French.
We also analyze the improvement in perfor-
mance for both techniques with respect to
word frequency. We find that replacing word
forms with clusters improves attachment per-
formance for words that are originally either
unknown or low-frequency, since these words
are replaced by cluster symbols that tend to
have higher frequencies. Furthermore, clus-
tering also helps significantly for medium to
high frequency words, suggesting that training
on word clusters leads to better probability es-
timates for these words.

1 Introduction

Statistical parsing techniques have dramatically im-
proved over the last 15 years, yet lexical data sparse-

ness remains a critical problem. And the richer the
morphology of a language, the sparser the treebank-
driven lexicons will be for that language.

Koo et al. (2008) have proposed to use word clus-
ters as features to improve graph-based statistical
dependency parsing for English and Czech. Their
clusters are obtained using unsupervised clustering,
which makes it possible to use a raw corpus con-
taining several million words. Candito and Crabbé
(2009) applied clustering to generative constituency
parsing for French. They use adesinflectionstep that
removes some inflection marks from word forms and
then replaces them with word clusters, resulting in
a significant improvement in parsing performance.
Clustering words seems useful as a way of address-
ing the lexical data sparseness problem, since counts
on clusters are more reliable and lead to better prob-
ability estimates. Clustering also appears to address
the mismatch of vocabularies between the original
treebank and any external, potentially out-of-domain
corpus: clusters operate as an intermediary between
words from the treebank and words from the exter-
nal corpus used to compute clusters. Furthermore,
parsing word clusters instead of word forms aug-
ments the known vocabulary.

However, depending on the clustering method,
clusters are either not very reliable or are available
only for very frequent words. In order to parse word
clusters one needs to determine which word clusters
are reliable enough to be beneficial, so the tuning
of parameters such as cluster granularity and cluster
reliability becomes very important.

The aim of this paper is to give an in-depth study
of the "parsing word clusters" technique. In particu-
lar, starting from the Candito and Crabbé (2009) ex-
periments, we investigate the use of clustering lem-

76

mas instead ofdesinflectedforms. We also pro-
vide an analysis of the performance gains obtained
with respect to word frequency (frequent words, rare
words, unknown words).

In the next section, we describe the French tree-
bank used as the basis for all of our experiments.
We describe in section 3 the statistical parser used
for training and testing. We then describe the desin-
flection process used prior to unsupervised cluster-
ing (section 4), and the Brown algorithm we use for
unsupervised clustering (section). We describe our
experiments and results in section 6, and provide a
discussion in section 7. We then point out some re-
lated work and conclude in section 9.

2 French Treebank

For our experiments, we used the French Tree-
bank (Abeillé et al., 2003), which contains 12531
sentences, 350931 tokens, from the newspaper
Le Monde. We used the treebank instantiation
(hereafter FTB-UC) as first described in (Candito
and Crabbé, 2009), where :
(i) the rich original annotation containing morpho-
logical and functional information is mapped to a
simpler phrase-structure treebank with a tagset of
28 part-of-speech tags, and no functional annotation
(ii) some compounds with regular syntax are broken
down into phrases containing several simple words
(iii) the remaining sequences annotated as com-
pound words in the FTB are merged into a single
token, whose components are separated with an
underscore

For all experiments in this paper (tagging and
parsing) we used the same partition of the treebank
as these authors : first 10% for test, next 10% for
dev and the rest for training1.

3 Berkeley Parser

We report here experiments using the Berkeley
PCFG parser with latent annotations (Petrov et al.,
2006), hereafter BKY , which is a constituent parser
that has been proven to perform well for French
(Crabbé and Candito, 2008; Seddah et al., 2009),

1More precisely the partition is : first 1235 sentences for
test, next 1235 sentences for development, and remaining 9881
sentences for training.

though a little lower than a combination of a tagger
plus the dependency-based MST parser (Candito et
al., 2010). Though PCFG-style parsers operate on
too narrow a domain of locality, splitting symbols
according to structural and/or lexical properties is
known to help parsing (Klein and Manning., 2003).
Following (Matsuzaki et al., 2005), the BKY algo-
rithm uses EM to estimate probabilities on symbols
that are automatically augmented with latent anno-
tations, a process which can be viewed as symbol
splitting. It iteratively evaluates each such split and
merges back the less beneficial ones. Crabbé and
Candito (2008) show that some of the information
carried by the latent annotations is lexical, since re-
placing words by their gold part-of-speech tag leads
to worse results than the corresponding perfect tag-
ging test, with words unchanged. This is a clear in-
dication that lexical distinctions are used, and perco-
late up the parse tree via the latent annotations.

We now describe how the BKY software handles
rare and unknown words, as this is pertinent to our
discussion in section 6.P (w|tag) is calculated us-
ing Bayes’ rule, asP (tag|w)P (w)/P (tag). Rel-
ative frequency estimates are used for words that
are sufficiently frequent. For rare words (appear-
ing less than 10 times in our settings),P (tag|w)
is smoothed using the proportion of tokens in the
second half of the training set that were not seen in
the first half, and that have this tag. For unknown
words, words signatures are used: these are word
classes determined by information such as the word
suffix, whether the word is capitalized, whether it
contains digits, etc. P (w|tag) is estimated with
P (signature(w)|tag), and is also smoothed in the
same way rare words are.

4 Morphological clustering

A first approach to word clustering is to cluster
forms on a morphological basis. In the case of
a relatively morphologically rich language such as
French, this is an obvious way to reduce lexical
sparseness caused by inflection.

(Candito and Crabbé, 2009) proposed the use of
a desinflectionmethod, without resorting to part-of-
speech tagging. We propose an alternate method
here, which uses lemmas and part-of-speech tags
that are output by a tagger/lemmatizer. Because

77

counts on lemmas are more reliable, clustering
over lemmas presumably produces clusters that are
more reliable than those produced by clustering over
desinflected forms. However, this approach does
create a constraint in which automatically tagged
and lemmatized text is required as input to the
parser, leading to the introduction of tagging errors.

Both morphological clustering methods make use
of the Lefff lexicon (Sagot, 2010). Before we de-
scribe these two methods, we briefly give basic in-
formation on French inflectional morphology and on
the Lefff.

4.1 French inflection and the Lefff lexicon

French nouns appear in singular and plural forms,
and have an intrinsic gender. The number and gen-
der of a noun determines the number and gender of
determiners, adjectives, past participles that depend
on it. Hence in the general case, past participles and
adjectives have four different forms. The major in-
flectional variation appears for finite verbs that vary
for tense, mood, person and number. A regular verb
may correspond to more than 60 inflected forms if
all tenses and mood are included. In practice, some
forms occur very rarely, because some tense/mood
pairs are rare, and further, in the case of newspa-
per text for instance, the first and second persons are
also rare. So for instance in the FTB-UC, there are
33 different forms for the highly frequent verb and
auxiliary avoir (to have), that appears 4557 times.
The medium frequency verbdonner(to give) occurs
155 times, under 15 different forms. In the whole
treebank, there are 27130 unique word forms, corre-
sponding to 17570 lemmas.

The Lefff is a freely available rich morphologi-
cal and syntactic French lexicon (Sagot, 2010). It
contains110, 477 lemmas (simple and compounds)
and536, 375 inflected forms. The coverage on the
FTB-UC is high : around96% of the tokens, and
80, 1% of the types are present in the Lefff (leaving
out punctuation and numeric tokens, and ignoring
case differences).

4.2 Desinflection

The aim of the desinflection step is to reduce lex-
ical data sparseness caused by inflection, without
hurting parsability and without committing oneself
as far as lexical ambiguity is concerned. The idea

is to leave unchanged the parser’s task in disam-
biguating part-of-speech tags. In that case, mor-
phological clustering using lemmas is not an option,
since lemma assignment presupposes POS disam-
biguation. Furthermore, useful information such as
verb mood (which is needed to capture, for instance,
that infinitive verbs have no overt subject or that par-
ticipial clauses are sentence modifiers) is discarded
during lemmatization, though it is encoded in the
FTB with different projections for finite verbs (pro-
jecting sentences) versus non finite verbs (projecting
VPpart or VPinf).

The intuition of Candito and Crabbé (2009) is
that other inflectional markers in French (gender and
number for determiners, adjectives, pronouns and
nouns, or tense and person for verbs) are not crucial
for inferring the correct phrase-structure projection
for a given word. Consequently, they proposed to
achieve morphological clustering bydesinflection,
namely by removing unneeded inflectional markers,
identified using the Lefff. This lexicon-based tech-
nique can be viewed as an intermediate method be-
tween stemming and lemmatization.

The desinflection process is as follows: for a to-
ken t to desinflect, if it is known in the lexicon,
then for each inflected lexical entryle of t, try to
get a corresponding singular entry. If correspond-
ing singular entries exist for all suchle and all have
the same form, then replacet by the correspond-
ing form. For instance forwt=entrées(ambigu-
ous betweenentrancesandentered, fem, plural), the
two lexical entries are[entrées/N/fem/plu]and[en-
trées/V/fem/plu/part/past]2, each have a correspond-
ing singular lexical entry, with formentrée.

The same process is used to map feminine forms
to corresponding masculine forms. This allows one
to changemangée(eaten, fem, sing) intomangé
(eaten, masc, sing). But for the formentrée, am-
biguous between N and Vpastpart entries, only the
participle has a corresponding masculine entry (with
form entré). In that case, in order to preserve the
original part-of-speech ambiguity,entréeis not re-
placed byentré. Finite verb forms, when unambigu-
ous with other parts-of-speech, are mapped to sec-
ond person plural present indicative corresponding
forms. This choice was made in order to avoid cre-

2This is just an example and not the real Lefff format.

78

Dev set Overall Overall (-punct) Unseen (4.8)
POS acc 97.38 96.99 91.95

Lemma acc 98.20 97.93 92.52
Joint acc 96.35 95.81 87.16
Test set Overall Overall (-punct) Unseen (4.62)

POS acc 97.68 97.34 90.52
Lemma acc 98.36 98.12 91.54

Joint acc 96.74 96.26 85.28

Table 1: MORFETTE performance on the FTB-UC dev
and test sets (with and without punctuation)

ating ambiguity: the second person plural forms end
with a very typical-ezsuffix, and the resulting form
is very unlikely ambiguous. For the first token of a
sentence, if it is unknown in the lexicon, the algo-
rithm tries to desinflect the corresponding lowercase
form.

This desinflection process reduces the number
of distinct tokens in the FTB-UC training set from
24110 to 18052.

4.3 Part-of-speech tagging and lemmatization

In order to assign morphological tags and lemmas to
words we use a variation of the MORFETTE model
described in (Chrupała et al., 2008). It is a se-
quence labeling model which combines the predic-
tions of two classification models (one for morpho-
logical tagging and one for lemmatization) at decod-
ing time, using a beam search.
While (Chrupała et al., 2008) use Maximum Entropy
training to learnPM andPL, we use the MORFETTE

models described in (Seddah et al., 2010), that are
trained using the Averaged Sequence Perceptron al-
gorithm (Freund and Schapire, 1999). The two clas-
sification models incorporate additional features cal-
culated using the Lefff lexicon.

Table 1 shows detailed results on dev set and
test set of the FTB-UC, when MORFETTE is trained
on the FTB-UC training set. To the best of our
knowledge the parts-of-speech tagging performance
is state-of-the-art for French3 and the lemmatization
performance has no comparable results.

5 Unsupervised clustering

3A pure MAXENT based tagger is described in (Denis and
Sagot, 2009), that also uses the Lefff, under the form of features
for the known categories of a word in the lexicon. The authors
report 97.70% of accuracy and 90.01% for unseen data.

We use the Brown et al. (1992) hard clustering al-
gorithm, which has proven useful for various NLP
tasks such as dependency parsing (Koo et al., 2008)
and named entity recognition (Liang, 2005). The al-
gorithm to obtain C clusters is as follows: each of
the C most frequent tokens of the corpus is assigned
its own distinct cluster. For the(C + 1)th most fre-
quent token, create a(C + 1)th cluster. Then for
each pair among theC + 1 resulting clusters, merge
the pair that minimizes the loss in the likelihood of
the corpus, according to a bigram language model
defined on the clusters. Repeat this operation for the
(C + 2)th most frequent token, etc. The result is a
hard clustering of words in the corpus intoC distinct
clusters, though the process can be continued to fur-
ther merge pairs of clusters among theC clusters,
ending with a single cluster for the entire vocabu-
lary. A binary tree hierarchy of merges for theC
clusters can be obtained by tracing the merging pro-
cess, with each cluster identified by its path within
this binary tree. Clusters can thus be used at various
levels of granularity.

6 Experiments and results

6.1 Clustering

For the Brown clustering algorithm, we used Percy
Liang’s code4, run on theL’Est Républicaincorpus,
a 125 million word journalistic corpus, freely avail-
able at CNRTL5. The corpus was first tokenized and
segmented into sentences. For compound words,
the 240 most frequent compounds of the FTB-UC

were systematically recognized as one token. We
tried out the two alternate morphological clustering
processes described in section 4 as a preprocessing
step before the unsupervised clustering algorithm
was run on theL’Est Républicaincorpus :
(i) word forms were replaced by corresponding
desinflected form
(ii) word forms were replaced by a concatenation
of the part-of-speech tag and lemma obtained with
MORFETTE6.

4http://www.eecs.berkeley.edu/ pliang/software
5http://www.cnrtl.fr/corpus/estrepublicain
6Because these experiments were first run with a version

of Morfette that was not yet optimized for lemmatization, we
chose to overide the MORFETTElemma when the Lefff lemma
is available for a given form and part-of-speech tag pair sup-
plied by Morfette. Morfette’s current results (version 0.3.1) in

79

Name Terminal symbols Vocabulary size Terminal symbols
in training set in training set in dev/test sets

BASELINE wf 24110 wf
DFL Desinflected wf 18052 Desinflected wf
DFL+CLUST>X Cluster1(desinflected wf) 1773 (X = 200) Cluster1(desinflected wf)
GOLDCATLEMMA Gold POS+lemma 18654 Gold POS+lemma
AUTOCATLEMMA Gold POS+lemma 18654 Automatic POS+lemma
GOLDCATLEMMA +CLUST>X Cluster2(gold POS+lemma) 1298 (X = 200) Cluster2(gold POS+lemma)
AUTOCATLEMMA +CLUST>X Cluster2(gold POS+lemma) 1298 (X = 200) Cluster2(automatic POS+lemma)

Table 2: Types of terminal symbols used for training and parsing

In the first case we obtain clusters of desinflected
forms, whereas in the second case we obtain clusters
of tag+lemma pairs. Note that lemmas alone could
be used, but as noted earlier, important syntactic
information would be lost, particularly for verb
mood. We did try using clusters of lemmas, coupled
with a few suffixes to record the verb mood, but this
resulted in more or less the same performance as
clusters of tag+lemma pairs.

6.2 Berkeley parser settings

For BKY we used Slav Petrov’s code, adapted for
French by Crabbé and Candito (2008) by modify-
ing the suffixes used to classify unknown words. We
use the partition between training, development and
test sets introduced in section 2. Note though that
the BKY algorithm itself uses two sets of sentences
at training: a learning set and a smaller validation
set for tuning model hyperparameters. In all experi-
ments in this paper, we used 2% of the training set as
as a validation set, and 98% as a learning set. This
differs from (Candito and Crabbé, 2009), where the
dev set was used as a validation set.

6.3 Experiments

We then tested several settings differing only in the
terminal symbols used in the training set, and in the
dev and test sets. We list these settings in table 2. For
the settings involving unsupervised linear clustering:

DFL +CLUST>X: Each desinflected formdf is re-
placed byCluster1(df) : if df occurred more than
X times in theL’Est Républicaincorpus, it is re-
placed by its cluster id, otherwise, a special clus-
ter UNKC is used. Further, a _c suffix is added if

lemmatization renders this step obsolete.

the desinflected form starts with a capital letter, and
additional features are appended, capturing whether
the form is all digits, ends withant, or r, or ez(cf.
this is the ending of the desinflected forms of unam-
biguous finite verbs). (Candito and Crabbé, 2009)
showed that these additional features are needed be-
cause clusters are noisy: linear context clustering
sometimes groups together items that belong to dif-
ferent parts-of-speech.

GOLD CAT L EMMA +CLUST>X: The terminal
form used is the gold part-of-speech concatenated
to the cluster id of the gold POS+lemma, or UNKC
if that pair did not occur more than X times in the
L’Est Républicaincorpus.

AUTOCAT L EMMA +CLUST>X: For the
training set, the same setting as GOLD-
CATLEMMA +CLUST>X is used. But for the
dev and test sets, predicted parts-of-speech and
lemmas are used, as output by the MORFETTE tag-
ger/lemmatizer: the terminal form is the predicted
part-of-speech concatenated with the cluster id of
the predicted POS+lemma, or UNKC if that pair
was not frequent enough.

For the CLUST>X experiments, we report results
with X = 200. We have found empirically that
varyingX between 20 and 700 has very little effect
on performance gains, both for clustering of desin-
flected forms and clustering of tag+lemma pairs.
Also, all results are with a maximum number of
clusters set to 1000, and we found that limiting the
number of clusters (by taking only a prefix of the
cluster bit string) degrades results.

6.4 Evaluation metrics

We evaluate parsing performance using labeled F-
Measure (combining labeled precision and labeled

80

DEV SET

TERMINAL SYMBOLS F1<40 F1 UAS Tagging Acc.
BASELINE 86.06 83.81 89.23 96.44
DFL 86.65 84.67 (+0.86) 89.86 96.52
DFL+CLUST>200 87.57 85.53(+1.72) 90.68 96.47
AUTOCATLEMMA 86.77 84.52 (+0.71) 89.97 96.25
AUTOCATLEMMA +CLUST>200 87.53 85.19(+1.38) 90.39 96.78
GOLDCATLEMMA 87.74 85.53 (+1.72) 91.42 98.49
GOLDCATLEMMA +CLUST>200 88.83 86.52 (+2.71) 92.11 99.46

TEST SET

TERMINAL SYMBOLS F1<40 F1 UAS Tagging Acc.
BASELINE 86.16 84.10 89.57 96.97
DFL 87.13 85.07 (+0.93) 90.45 97.08
DFL+CLUST>200 88.22 86.21(+2.11) 90.96 96.98
AUTOCATLEMMA 86.85 84.83 (+0.73) 90.30 96.58
AUTOCATLEMMA +CLUST>200 87.99 86.20(+2.10) 91.22 97.11
GOLDCATLEMMA 88.16 85.90 (+1.80) 91.52 98.54
GOLDCATLEMMA +CLUST>200 89.93 87.80 (+3.70) 92.83 99.41

Table 3: Parsing performance on the dev set/test set when training and parsing make use of clustered terminal symbols.
F1<40 is the F-Measure combining labeled precision and labeled recall for sentences of less than 40 words. All other
metrics are for all sentences of the dev set/test set. UAS = Unlabeled attachement score of converted constituency
trees into surface dependency trees. All metrics ignore punctuation tokens.

recall) both for sentences of less than 40 words, and
for all sentences7. We also use the unlabeled attach-
ment score (UAS), obtained when converting the
constituency trees output by the BKY parsers into
surface dependency trees, using the conversion pro-
cedure and software of (Candito et al., 2010)8. Punc-
tuation tokens are ignored in all metrics.

7 Discussion

Results are shown in table 3. Our hope was that us-
ing lemmatization would improve overall accuracy
of unsupervised clustering, hence leading to better
parsing performance. However, results using both
methods are comparable.

7Note that often for statistical constituent parsing results are
given for sentences of less than 40 words, whereas for depen-
dency parsing, there is no such limitation. The experiment DFL

and DFL+CLUST>200 are reproduced from the previous work
(Candito and Crabbé, 2009). More precisely, this previous work
reportsF1 = 88.29 on the test set, but for sentences≤ 40

words, for a DFL+CLUST>20 experiment, and as previously
mentioned, the dev set was used as validation set for the BKY

algorithm. We report nowF1 = 88.22 for the same less-than-
40-words sentences, leaving dev set unused at training time.

8The conversion uses head propagation rules to find the head
on the right-hand side of the CFG rules, first proposed for En-
glish in (Magerman, 1995). Hence the process is highly sensi-
tive to part-of-speech tags.

Table 3 shows that both morphological clustering
techniques (DFL and AUTOCATLEMMA) slightly
improve performance (+0.97 and+0.73 F1 over the
baseline for the test set)9. In the case of AUTO-
CATLEMMA , morphological ambiguity is totally ab-
sent in training set: each terminal symbol is the gold
POS+lemma pair, and hence appears with a unique
part-of-speech in the whole training set. But at pars-
ing time, the terminal symbols are the POS+lemma
pairs predicted by MORFETTE, which are wrong for
approximately 3% of the tokens. So when com-
paring the impact on parsing of the two morpho-
logical clustering techniques, it seems that the ad-
vantage of lemmatization (a sounder morphological
clustering compared to the desinflection process) is
counterbalanced by tagging errors that lead to wrong
POS+lemma pairs. Indeed, it can be verified that

9We have computed p-values for pairs of results, us-
ing Dan Bikel’s statistical significance tester for evalb out-
put (http://www.cis.upenn.edu/ dbikel/software.html).All ex-
periments have a p-value< 0.05 both for recall and preci-
sion when compared to the baseline. The differences between
DFL and AUTOCATLEMMA , and between DFL+CLUST>200
and AUTOCATLEMMA +CLUST>200 are not statistically sig-
nificant (p − value > 0.2). The gain obtained by adding
the unsupervised clustering is clearly significant (p − value >

0.005), both when comparing AUTOCATLEMMA and AUTO-
CATLEMMA +CLUST>200, and DFL and DFL+CLUST>200.

81

BASELINE DFL+CLUST>200 AUTOCATLEMMA +CLUST>200
FREQUENCY RANGE #tokens in dev set UAS Tagging UAS Tagging UAS Tagging
in original training set

any 31733 (100%) 89.23 96.43 90.68 96.45 90.39 96.78
0 (original unseen) 1892 (5.96%) 84.78 82.56 88.79 89.22 88.64 91.17

0 < x ≤ 5 3376 (10.64%) 86.49 94.52 88.68 93.13 88.33 95.41
5 < x ≤ 10 1906 (6.01%) 90.35 96.59 91.50 95.02 91.55 96.12
10 < x ≤ 20 2248 (7.08%) 89.55 96.71 91.37 95.42 90.57 95.91
20 < x ≤ 50 3395 (10.70%) 91.87 96.35 92.40 95.96 91.72 95.94

x ≥ 50 18916 (59.61%) 89.53 98.12 90.75 (+1.22) 98.12 90.56 (+1.03) 97.91

Table 4: Tagging accuracy and UAS scores for words in the dev set, grouped by ranges of frequencies in theoriginal
training set.

when parsing the gold POS+lemma pairs (the non
realistic GOLDCATLEMMA setting10), performance
is greatly improved (+1.80 F1 over the baseline).

Replacing morphological clusters by their corre-
sponding unsupervised clusters leads to a further im-
provement, both forF1 score and for UAS. But here
again, using desinflection or tagging+lemmatisation
leads to more or less the same improvement. But
while the former method is unlikely improvable, the
latter method might reveal more effective if the per-
formance of the tagging/lemmatisation phase im-
proves. The GOLDCATLEMMA +CLUST>200 ex-
periment gives the upper bound performance : it
leads to a+3.70F1 increase over the baseline, for
the test set. In that case, the terminal symbols are
made of the perfect POS plus the cluster of the per-
fect POS+lemma pair. Very few such terminal sym-
bols are unseen in training set, and all are unam-
biguous with respect to part-of-speech (hence the
99.46% tagging accuracy).

In order to better understand the causes of im-
provement, we have broken down the tagging accu-
racy scores and the UAS scores according to various
ranges of word frequencies. For word forms in the
dev set that occur x timesin the original training
set, for x in a certain range, we look at how many
are correctly tagged by the parsers, and how many
receive the correct head when constituents are con-
verted into surface dependencies.

The results are shown in table 4. Unseen words
and rare words are much better handled (about+4
points for UAS for unseen words, and+2 points

10The GOLDCATLEMMA experiment leads to high tagging
accuracy, though not perfect, because of POS+lemma pairs
present in dev/test sets but missing in the training set.

for forms appearing less than 5 times). This is
simply obtained because the majority of original
rare or unknowns are replaced by terminal symbols
(either a cluster id or the UNKC token, plus suf-
fixes) that are shared by many forms in the tree-
bank, leading to higher counts. This can be veri-
fied by analyzing tagging accuracies and UAS scores
for various frequency ranges for themodifiedtermi-
nal symbols : the symbols that replace the word
forms in the training set for DFL+CLUST>X and
AUTOCATLEMMA +CLUST>X experiments. This
is shown in table 5. It can be seen that the major-
ity of the tokens have now high-frequency. For in-
stance for the DFL+CLUST>200 experiment, there
are only 0.09% terminal symbols in the dev set that
are unseen in training set, and92.62% appear more
than 50 times. The parsers do not perform very
well on low-frequency modified terminal symbols,
but they are so few that it has little impact on the
overall performance.

Hence, in our parsing word clusters experiments,
there are almost no real unseen anymore, there are
only terminal symbols made of a cluster id or UNKC
(plus suffixes). More precisely, for instance about
30% of the original unseen in the dev set, are re-
placed by a UNKC* symbol, which means that 70%
are replaced by a cluster-based symbol and are thus
“connected” to the known vocabulary.

Interestingly, the improvement in performance is
also evident for words with high frequency in the
original treebank: for the forms appearing more
than 50 times in the original training set, the UAS
increases by+1.22 with DFL+CLUST>200 and
+1.03 with AUTOCATLEMMA +CLUST>200 (table
4). This means that despite any imperfections in the

82

DFL+CLUST>200 AUTOCATLEMMA +CLUST>200
FREQUENCY RANGE percentage UAS Tagging percentage UAS Tagging
in modified training set of dev set of dev set

any 100 90.68 96.45 100 90.39 96.78
0 (effective unseen) 0.09 86.21 58.62 0.08 84.00 40.00

0 < x ≤ 5 0.45 88.19 86.81 0.32 70.30 70.30
5 < x ≤ 10 0.64 90.69 91.18 0.37 92.24 79.31
10 < x ≤ 20 1.31 90.12 94.22 0.87 89.53 88.09
20 < x ≤ 50 4.88 88.64 92.19 3.30 86.44 92.65

x ≥ 50 92.62 90.81 96.83 95.07 90.60 97.21
replaced by UNKC* 8.58 90.64 88.10 8.73 89.67 90.07

Table 5: Tagging accuracy and UAS scores for modified terminal symbols in the dev set, grouped by ranges of fre-
quencies in the modified training sets. The “replaced by UNKC*” line corresponds to the case where the desinflected
form or the POS+lemma pair does not appear more than 200 timesin theL’est Républicaincorpus.

unsupervised Brown clustering, which uses very lo-
cal information, the higher counts lead to better es-
timates even for high-frequency words.

8 Related work

We have already cited the previous work of Koo et
al. (2008) which has directly inspired ours. Sagae
and Gordon (2009) explores the use of syntactic
clustering to improve transition-based dependency
parsing for English : using an available 30 mil-
lion word corpus parsed with a constituency parser,
words are represented as vectors of paths within the
obtained constituency parses. Words are then clus-
tered using a similarity metric between vectors of
syntactic paths. The clusters are used as features to
help a transition-based dependency parser. Note that
the word representation for clustering is more com-
plex (paths in parse trees), thus these authors have
to cluster a smaller vocabulary : the top 5000 most
frequent words are clustered.

Agirre et al. (2008) use the same approach of re-
placing words by more general symbols, but these
symbols are semantic classes. They test various
methods to assign semantic classes (gold seman-
tic class, most-frequent sense in sense-tagged data,
or a fully unsupervised sense tagger). Though the
method is very appealing, the reported improvement
in parsing is rather small, especially for the fully un-
supervised method.

Versley and Rehbein (2009) cluster words accord-
ing to linear context features, and use the clusters
as features to boost discriminative German parsing
for unknown words. Another approach to augment

the known vocabulary for a generative probabilistic
parser is the one pursued in (Goldberg et al., 2009).
Within a plain PCFG, the lexical probabilities for
words that are rare or absent in the treebank are
taken from an external lexical probability distribu-
tion, estimated using a lexicon and the Baulm-Welch
training of an HMM tagger. This is proven useful to
better parse Hebrew.

9 Conclusion and future work

We have provided a thorough study of the results
of parsing word clusters for French. We showed
that the clustering improves performance both for
unseen and rare words and for medium- to high-
frequency words. For French, preprocessing words
with desinflection or with tagging+lemmatisation
lead to comparable results. However, the method
using POS tagging is expected to yield higher per-
formance should a better tagger become available in
the future.

One avenue for further improvement is to use a
clustering technique that makes explicit use of syn-
tactic or semantic similarity, instead of simple linear
context sharing. While the Brown clustering algo-
rithm can be run on large raw corpus, it uses ex-
tremely local information (bigrams). The resulting
clusters are thus necessarily noisy, and semantic or
syntactic clustering would certainly be more appro-
priate. Since resource-based semantic clustering is
difficult for French due to a lack of resources, clus-
tering based on distributional syntactic similarity is
a worthwhile technique to investigate in the future.

83

Acknowledgments

This work was supported by the ANR Sequoia
(ANR-08-EMER-013). We are grateful to our
anonymous reviewers for their comments and to
Grzegorz Chrupala for helping us with Morfette.

References

Anne Abeillé, Lionel Clément, and François Toussenel,
2003. Building a Treebank for French. Kluwer, Dor-
drecht.

Eneko Agirre, Timothy Baldwin, and David Martinez.
2008. Improving parsing and PP attachment perfor-
mance with sense information. InProceedings of
ACL-08: HLT, pages 317–325, Columbus, Ohio, June.
Association for Computational Linguistics.

Peter F. Brown, Vincent J. Della, Peter V. Desouza, Jen-
nifer C. Lai, and Robert L. Mercer. 1992. Class-based
n-gram models of natural language.Computational
linguistics, 18(4):467–479.

Marie Candito and Benoît Crabbé. 2009. Im-
proving generative statistical parsing with semi-
supervised word clustering. InProceedings of the
11th International Conference on Parsing Technolo-
gies (IWPT’09), pages 138–141, Paris, France, Octo-
ber. Association for Computational Linguistics.

Marie Candito, Benoit Crabbé, and Pascal Denis. 2010.
Statistical french dependency parsing : Treebank
conversion and first results. InProceedings of
LREC’2010, Valletta, Malta.

Grzegorz Chrupała, Georgiana Dinu, and Josef van Gen-
abith. 2008. Learning morphology with morfette. In
In Proceedings of LREC 2008, Marrakech, Morocco.
ELDA/ELRA.

Benoit Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. InActes
de la 15ème Conférence sur le Traitement Automatique
des Langues Naturelles (TALN’08), pages 45–54, Avi-
gnon, France.

Pascal Denis and Benoît Sagot. 2009. Coupling an anno-
tated corpus and a morphosyntactic lexicon for state-
of-the-art pos tagging with less human effort. InProc.
of PACLIC, Hong Kong, China.

Yoav Freund and Robert E. Schapire. 1999. Large mar-
gin classification using the perceptron algorithm.Ma-
chine learning, 37(3):277–296.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set
mapping, and EM-HMM-based lexical probabilities.
In Proc. of EACL-09, pages 327–335, Athens, Greece.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. InProceedings of the 41st
Meeting of the Association for Computational Linguis-
tics.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. InPro-
ceedings of ACL-08, pages 595–603, Columbus, USA.

Percy Liang. 2005. Semi-supervised learning for natural
language. InMIT Master’s thesis, Cambridge, USA.

D.M. Magerman. 1995. Statistical decision-tree mod-
els for parsing. InProc. of ACL’95, pages 276–283,
Morristown, NJ, USA.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic cfg with latent annotations. In
Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 75–
82.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProc. of ACL-06, Sydney,
Australia.

Kenji Sagae and Andrew S. Gordon. 2009. Clustering
words by syntactic similarity improves dependency
parsing of predicate-argument structures. InProceed-
ings of the 11th International Conference on Pars-
ing Technologies (IWPT’09), pages 192–201, Paris,
France, October. Association for Computational Lin-
guistics.

Benoît Sagot. 2010. The Lefff, a freely available
and large-coverage morphological and syntactic lexi-
con for french. InProceedings of LREC’10, Valetta,
Malta.

Djamé Seddah, Marie Candito, and Benoit Crabbé. 2009.
Cross parser evaluation and tagset variation: A French
Treebank study. InProceedings of the 11th Interna-
tion Conference on Parsing Technologies (IWPT’09),
pages 150–161, Paris, France, October. Association
for Computational Linguistics.

Djamé Seddah, Grzegorz Chrupała, Ozlem Cetinoglu,
Josef van Genabith, and Marie Candito. 2010.
Lemmatization and statistical lexicalized parsing of
morphologically-rich languages. InProceedings of the
NAACL/HLT Workshop on Statistical Parsing of Mor-
phologically Rich Languages (SPMRL 2010), Los An-
geles, CA.

Yannick Versley and Ines Rehbein. 2009. Scalable dis-
criminative parsing for german. InProceedings of the
11th International Conference on Parsing Technolo-
gies (IWPT’09), pages 134–137, Paris, France, Octo-
ber. Association for Computational Linguistics.

84

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 85–93,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Lemmatization and Lexicalized Statistical Parsing of Morphologically Rich
Languages: the Case of French

Djamé Seddah
Alpage Inria & Univ. Paris-Sorbonne

Paris, France

Grzegorz Chrupała
Spoken Language System, Saarland Univ.

Saarbrücken, Germany

Özlem Çetinŏglu and Josef van Genabith
NCLT & CNGL, Dublin City Univ.

Dublin, Ireland

Marie Candito
Alpage Inria & Univ. Paris 7

Paris, France

Abstract

This paper shows that training a lexicalized
parser on a lemmatized morphologically-rich
treebank such as the French Treebank slightly
improves parsing results. We also show that
lemmatizing a similar in size subset of the En-
glish Penn Treebank has almost no effect on
parsing performance with gold lemmas and
leads to a small drop of performance when au-
tomatically assigned lemmas and POS tags are
used. This highlights two facts: (i) lemmati-
zation helps to reduce lexicon data-sparseness
issues for French, (ii) it also makes the pars-
ing process sensitive to correct assignment of
POS tags to unknown words.

1 Introduction

Large parse-annotated corpora have led to an explo-
sion of interest in statistical parsing methods, includ-
ing the development of highly successful models for
parsing English using the Wall Street Journal Penn
Treebank (PTB, (Marcus et al., 1994)). Over the
last 10 years, parsing performance on the PTB has
hit a performance plateau of 90-92% f-score using
the PARSEVAL evaluation metric. When adapted to
other language/treebank pairs (such as German, He-
brew, Arabic, Italian or French), to date these mod-
els have performed much worse.

A number of arguments have been advanced
to explain this performance gap, including limited
amounts of training data, differences in treebank an-
notation schemes, inadequacies of evaluation met-
rics, linguistic factors such as the degree of word or-
der variation, the amount of morphological informa-
tion available to the parser as well as the effects of
syncretism prevalent in many morphologically rich
languages.

Even though none of these arguments in isola-
tion can account for the systematic performance gap,
a pattern is beginning to emerge: morphologically
rich languages tend to be susceptible to parsing per-
formance degradation.

Except for a residual clitic case system, French
does not have explicit case marking, yet its mor-
phology is considerably richer than that of English,
and French is therefore a candidate to serve as an
instance of a morphologically rich language (MRL)
that requires specific treatment to achieve reasonable
parsing performance.

Interestingly, French also exhibits a limited
amount of word order variation occurring at dif-
ferent syntactic levels including (i) the word level
(e.g. pre or post nominal adjective, pre or post ver-
bal adverbs); (ii) phrase level (e.g. possible alterna-
tions between post verbal NPs and PPs). In order
to avoid discontinuous constituents as well as traces
and coindexations, treebanks for this language, such
as the French Treebank (FTB, (Abeillé et al., 2003))
or the Modified French Treebank (MFT, (Schluter
and van Genabith, 2007)), propose a flat annota-
tion scheme with a non-configurational distinction
between adjunct and arguments.

Finally, the extraction of treebank grammars from
the French treebanks, which contain less than a third
of the annotated data as compared to PTB, is subject
to many data sparseness issues that contribute to a
performance ceiling, preventing the statistical pars-
ing of French to reach the same level of performance
as for PTB-trained parsers (Candito et al., 2009).

This data sparseness bottleneck can be summa-
rized as a problem of optimizing a parsing model
along two axes: the grammar and the lexicon. In
both cases, the goal is either to get a more compact
grammar at the rule level or to obtain a consider-

85

ably less sparse lexicon. So far, both approaches
have been tested for French using different means
and with different degrees of success.

To obtain better grammars, Schluter and van Gen-
abith (2007) extracted a subset of an early release
of the FTB and carried out extensive restructuring,
extensions and corrections (referred to as the Modi-
fied French Treebank MFT) to support grammar ac-
quisition for PCFG-based LFG Parsing (Cahill et
al., 2004) while Crabbé and Candito (2008) slightly
modified the original FTB POS tagset to optimize
the grammar with latent annotations extracted by the
Berkeley parser (BKY , (Petrov et al., 2006)).

Moreover, research oriented towards adapting
more complex parsing models to French showed
that lexicalized models such as Collins’ model 2
(Collins, 1999) can be tuned to cope effectively with
the flatness of the annotation scheme in the FTB,
with the Charniak model (Charniak, 2000) perform-
ing particularly well, but outperformed by the BKY

parser on French data (Seddah et al., 2009).
Focusing on the lexicon, experiments have been

carried out to study the impact of different forms of
word clustering on the BKY parser trained on the
FTB. Candito et al. (2009) showed that using gold
lemmatization provides a significant increase in per-
formance. Obviously, less sparse lexical data which
retains critical pieces of information can only help a
model to perform better. This was shown in (Candito
and Crabbé, 2009) where distributional word clus-
ters were acquired from a 125 million words corpus
and combined with inflectional suffixes extracted
from the training data. Training the BKY parser
with 1000 clusters boosts its performance to the cur-
rent state-of-the-art with a PARSEVAL F1 score of
88.28% (baseline was 86.29 %).

We performed the same experiment using the
CHARNIAK parser and recorded only a small im-
provement (from 84.96% to 85.51%). Given the
fact that lexical information is crucial for lexicalized
parsers in the form of bilexical dependencies, this
result raises the question whether this kind of clus-
tering is in fact too drastic for lexicalized parsers as
it may give rise to head-to-head dependencies which
are too coarse. To answer this question, in this paper
we explore the impact of lemmatization, as a (rather
limited) constrained form of clustering, on a state-
of-the-art lexicalized parser (CHARNIAK). In order

to evaluate the influence of lemmatization on this
parser (which is known to be highly tuned for En-
glish) we carry out experiments on both the FTB and
on a lemmatized version of the PTB. We used gold
lemmatization when available and an automatic sta-
tistical morphological analyzer (Chrupała, 2010) to
provide more realistic parsing results.
The idea is to verify whether lemmatization will help
to reduce data sparseness issues due to the French
rich morphology and to see if this process, when
applied to English will harm the performance of a
parser optimized for the limited morphology of En-
glish.
Our results show that the key issue is the way un-
seen tokens (lemmas or words) are handled by the
CHARNIAK parser. Indeed, using pure lemma is
equally suboptimal for both languages. On the other
hand, feeding the parser with both lemma and part-
of-speech slightly enhances parsing performance for
French.

We first describe our data sets in Section 2, intro-
duce our data driven morphology process in Section
3, then present experiments in Section 4. We dis-
cuss our results in Section 5 and compare them with
related research in Section 6 before concluding and
outlining further research.

2 Corpus

THE FRENCH TREEBANK is the first annotated and
manually corrected treebank for French. The data is
annotated with labeled constituent trees augmented
with morphological annotations and functional an-
notations of verbal dependents. Its key properties,
compared with the PTB, are the following :

Size: The FTB consists of 350,931 tokens and
12,351 sentences, that is less than a third of the size
of PTB. The average length of a sentence is 28.41
tokens. By contrast, the average sentence length in
the Wall Street Journal section of the PTB is 25.4
tokens.

A Flat Annotation Scheme:Both the FTB and the
PTB are annotated with constituent trees. However,
the annotation scheme is flatter in the FTB. For in-
stance, there are no VPs for finite verbs and only one
sentential level for clauses or sentences whether or
not they are introduced by a complementizer. Only
theverbal nucleus(VN) is annotated and comprises

86

the verb, its clitics, auxiliaries, adverbs and nega-
tion.

Inflection: French morphology is richer than En-
glish and leads to increased data sparseness for sta-
tistical parsing. There are 24,098 lexical types in
the FTB, with an average of 16 tokens occurring for
each type.

Compounds:Compounds are explicitly annotated
and very frequent in the treebank: 14.52% of to-
kens are part of a compound. Following Candito
and Crabbé (2009), we use a variation of the tree-
bank where compounds with regular syntactic pat-
terns have been expanded. We refer to this instance
as FTB-UC.

Lemmatization:Lemmas are included in the tree-
bank’s morphological annotations and denote an ab-
straction over a group of inflected forms. As there
is no distinction between semantically ambiguous
lexemes at the word form level, polysemic homo-
graphs with common inflections are associated with
the same lemma (Abeillé et al., 2003). Thus, except
for some very rare cases, a pair consisting of a word
form and its part-of-speech unambiguously maps to
the same lemma.

2.1 Lemmatizing the Penn Treebank

Unlike the FTB, the PTB does not have gold lem-
mas provided within the treebank. We use the finite
state morphological analyzer which comes within
the English ParGram Grammar (Butt et al., 1999) for
lemmatization. For open class words (nouns, verbs,
adjectives, adverbs) the word form is sent to the mor-
phological analyzer. The English ParGram morpho-
logical analyzer outputs all possible analyses of the
word form. The associated gold POS from the PTB

is used to disambiguate the result. The same process
is applied to closed class words where the word form
is different from the lemma (e.g. ’ll for will). For the
remaining parts of speech the word form is assigned
to the lemma.

Since gold lemmas are not available for the PTB,
a large-scale automatic evaluation of the lemmatizer
is not possible. Instead, we conducted two manual
evaluations. First, we randomly extracted 5 sam-
ples of 200 <POS,word> pairs from Section 23 of
the PTB. Each data set is fed into the lemmatiza-
tion script, and the output is manually checked. For
the 5x200 <POS,word> sets the number of incorrect

lemmas is 1, 3, 2, 0, and 2. The variance is small
indicating that the results are fairly stable. For the
second evaluation, we extracted each unseen word
from Section 23 and manually checked the accuracy
of the lemmatization. Of the total of 1802 unseen
words, 394 words are associated with an incorrect
lemma (331 unique) and only 8 with an incorrect
<POS,lemma> pair (5 unique). For an overall un-
seen word percentage of 3.22%, the lemma accu-
racy is 77.70%. If we assume that all seen words
are correctly lemmatized, overall accuracy would be
99.28%.

2.2 Treebank properties

In order to evaluate the influence of lemmatization
on comparable corpora, we extracted a random sub-
set of the PTB with properties comparable to the
FTB-UC (mainly with respect to CFG size and num-
ber of tokens). We call this PTB subset S.PTB. Ta-
ble 1 presents a summary of some relevant features
of those treebanks.

FTBUC S.PTB PTB
of tokens 350,931 350,992 1,152,305
of sentences 12,351 13,811 45,293
average length 28,41 25.41 25.44
CFG size 607,162 638,955 2,097,757
unique CFG rules 43,413 46,783 91,027
unique word forms 27,130 26,536 47,678
unique lemmas 17,570 20,226 36,316
ratio words/lemma 1.544 1.311 1.312

Table 1: French and Penn Treebanks properties

Table 1 shows that the average number of word
forms associated with a lemma (i.e. the lemma ratio)
is higher in the FTB-UC (1.54 words/lemma) than in
the PTB (1.31). Even though the PTB ratio is lower,
it is still large enough to suggest that even the limited
English morphology should be taken into account
when aiming at reducing lexicon sparseness.

Trying to learn French and English morphology
in a data driven fashion in order to predict lemma
from word forms is the subject of the next section.

3 Morphology learning

In order to assign morphological tags and lemmas
to words we use the MORFETTE model (Chrupała,
2010), which is a variation of the approach described
in (Chrupała et al., 2008).

87

MORFETTE is a sequence labeling model which
combines the predictions of two classification mod-
els (one for morphological tagging and one for
lemmatization) at decoding time, using beam search.

3.1 Overview of the Morfette model

The morphological classes correspond simply to the
(fine-grained) POS tags. Lemma classes are edit
scripts computed from training data: they specify
which string manipulations (such as character dele-
tions and insertions) need to be performed in order
to transform the input string (word form) into the
corresponding output string (lemma).

The best sequence of lemmas and morphological
tags for input sentencex is defined as:

(̂l, m̂) = arg max
(l,m)

P (l,m|x)

The joint probability is decomposed as follows:

P (l0...li,m0...mi|x) =PL(li|mi,x)PM (mi|x)

× P (m0...mi−1, l0...li−1|x)

wherePL(li|mi,x) is the probability of lemma class
l at position i according to the lemma classifier,
PM (mi|x) is the probability of the tagm at posi-
tion i according to the morphological tag classifier,
andx is the sequence of words to label.

While Chrupała et al. (2008) use Maximum En-
tropy training to learnPM and PL, here we learn
them using Averaged Perceptron algorithm due to
Freund and Schapire (1999). It is a much simpler
algorithm which in many scenarios (including ours)
performs as well as or better than MaxEnt.

We also use the general Edit Tree instantiation of
the edit script as developed in (Chrupała, 2008). We
find the longest common substring (LCS) between
the formw and the lemmaw′. The portions of the
string in the word form before (prefix) and after (suf-
fix) the LCS need to be modified in some way, while
the LCS (stem) stays the same. If there is no LCS,
then we simply record that we need to replacew

with w′ . As for the modifications to the prefix and
the suffix, we apply the same procedure recursively:
we try to find the LCS between the prefix ofw and
the prefix ofw′. If we find one, we recurse; if we do
not, we record the replacement; we do the same for
the suffix.

3.2 Data Set

We trained MORFETTEon the standard splits of the
FTB with the first 10% as test set, the next 10% for
the development set and the remaining for training
(i.e. 1235/1235/9881 sentences). Lemmas and part-
of-speech tags are given by the treebank annotation
scheme.

As pointed out in section 2.1, PTB’s lemmas have
been automatically generated by a deterministic pro-
cess, and only a random subset of them have been
manually checked. For the remainder of this paper,
we treat them as gold, regardless of the errors in-
duced by our PTB lemmatizer.

The S.PTB follows the same split as the FTB-UC,
first 10% for test, next 10% for dev and the last 80%
for training (i.e. 1380/1381/11050 sentences).

MORFETTE can optionally use a morphological
lexicon to extract features. For French, we used the
extended version of Lefff (Sagot et al., 2006) and for
English, the lexicon used in the Penn XTAG project
(Doran et al., 1994). We reduced the granularity of
the XTAG tag set, keeping only the bare categories.
Both lexicons contain around 225 thousands word
form entries.

3.3 Performance on French and English

Table 2 presents results of MORFETTEapplied to the
development and test sets of our treebanks. Part-of-
speech tagging performance for French is state-of-
the-art on the FTB-UC, with an accuracy of 97.68%,
on the FTB-UC test set, only 0.02 points (absolute)
below the MaxEnt POS tagger of Denis and Sagot
(2009). Comparing MORFETTE’s tagging perfor-
mance for English is a bit more challenging as we
only trained on one third of the full PTB and evalu-
ated on approximately one section, whereas results
reported in the literature are usually based on train-
ing on sections 02-18 and evaluating on either sec-
tions 19-21 or 22-24. For this setting, state-of-the-
art POS accuracy for PTB tagging is around 97.33%.
On our PTB sample, MORFETTE achieves 96.36%
for all words and 89.64 for unseen words.
Comparing the lemmatization performance for both
languages on the same kind of data is even more dif-
ficult as we are not aware of any data driven lem-
matizer on the same data. However, with an overall
accuracy above 98% for the FTB-UC (91.5% for un-

88

seen words) and above 99% for the S.PTB (95% for
unseen words), lemmatization performs well enough
to properly evaluate parsing on lemmatized data.

FTBUC S.PTB
DEV All Unk. (4.8) All Unk. (4.67)

POS acc 97.38 91.95 96.36 88.90
Lemma acc 98.20 92.52 99.11 95.51

Joint acc 96.35 87.16 96.26 87.05
TEST All Unk. (4.62) All Unk. (5.04)

POS acc 97.68 90.52 96.53 89.64
Lemma acc 98.36 91.54 99.13 95.72

Joint acc 96.74 85.28 96.45 88.49

Table 2: POS tagging and lemmatization performance on
the FTB and on the S.PTB

4 Parsing Experiments

In this section, we present the results of two sets
of experiments to evaluate the impact of lemmatiza-
tion on the lexicalized statistical parsing of two lan-
guages, one morphologically rich (French), but with
none of its morphological features exploited by the
CHARNIAK parser, the other (English) being quite
the opposite, with the parser developed mainly for
this language and PTB annotated data. We show that
lemmatization results in increased performance for
French, while doing the same for English penalizes
parser performance.

4.1 Experimental Protocol

Data The data sets described in section 3.2 are used
throughout. The version of the CHARNIAK parser
(Charniak, 2000) was released in August 2005 and
recently adapted to French (Seddah et al., 2009).
Metrics We report results on sentences of length
less than 40 words, with three evaluation met-
rics: the classical PARSEVAL Labeled bracketsF1

score, POS tagging accuracy (excluding punctua-
tion tags) and the Leaf Ancestor metric (Sampson
and Babarczy, 2003) which is believed to be some-
what more neutral with respect to the treebank an-
notation scheme than PARSEVAL (Rehbein and van
Genabith, 2007).
Treebank tag setsOur experiments involve the in-
clusion of POS tags directly in tokens. We briefly
describe our treebank tag sets below.

• FTB-UC TAG SET: “ CC” This is the tag set de-
veloped by (Crabbé and Candito, 2008) (Table

4), known to provide the best parsing perfor-
mance for French (Seddah et al., 2009). Like in
the FTB, preterminals are the main categories,
but they are also augmented with a WH flag
for A, ADV, PRO and with the mood for verbs
(there are 6 moods). No information is propa-
gated to non-terminal symbols.

ADJ ADJWH ADV ADVWH CC CLO CLR CLS CS DET
DETWH ET I NC NPP P P+D P+PRO PONCT PREF PRO
PROREL PROWH V VIMP VINF VPP VPR VS

Table 4:CC tag set

• THE PTB TAG SET This tag set is described
at length in (Marcus et al., 1994) and contains
supplementary morphological information (e.g.
number) over and above what is represented in
theCC tag set for French. Note that some infor-
mation is marked at the morphological level in
English (superlative, “the greatest (JJS)”) and
not in French (“ le plus (ADV) grand (ADJ)”).

CC CD DT EX FW IN JJ JJR JJS LS MD NN NNP NNPS
NNS PDT POS PRP PRP$ RB RBR RBS RP SYM TO UH
VB VBD VBG VBN VBP VBZ WDT WP WP$ WRB

Table 5: PTB tag set

4.2 Cross token variation and parsing impact

From the source treebanks, we produce 5 versions
of tokens: tokens are generated as either simple
POS tag, gold lemma, gold lemma+gold POS, word
form, and word form+gold POS. The token versions
successively add more morphological information.
Parsing results are presented in Table 3.

Varying the token form The results show that
having no lexical information at all (POS-only) re-
sults in a small drop of PARSEVAL performance for
French compared to parsing lemmas, while the cor-
responding Leaf Ancestor score is actually higher.
For English having no lexical information at all
leads to a drop of 2 points in PARSEVAL . Theso-
called impoverished morphology of English appears
to bring enough morphological information to raise
tagging performance to 95.92% (from POS-only to
word-only).

For French the corresponding gain is only 2 points
of POS tagging accuracy. Moreover, between these

89

Tokens
POS-only

lemma-only
word-only

(1) lemma-POS
(1)word-POS

French Treebank UC
F1 score Pos acc. leaf-Anc.

84.48 100 93.97
84.77 94.23 93.76
84.96 96.26 94.08

86.83(1) 98.79 94.65
86.13(2) 98.4 94.46

Sampled Penn Treebank
F1 score Pos acc. leaf-Anc.

85.62 100 94.02
87.69 89.22 94.92
88.64 95.92 95.10

89.59(3) 99.97 95.41
89.53(4) 99.96 95.38

Table 3: Parsing performance on the FTB-UC and the S.PTB with tokens variations using gold lemmas and gold POS.
(p-value(1) & (2) = 0.007; p-value(3) & (4) = 0.146. All other configurations are statistically significant.)

two tokens variations, POS-only and word-only,
parsing results gain only half a point in PARSEVAL

and almost nothing in leaf Ancestor.
Thus, it seems that encoding more morphology

(i.e. including word forms) in the tokens does not
lead to much improvement for parsing French as op-
posed to English. The reduction in data sparseness
due to the use of lemmas alone is thus not sufficient
to counterbalance the lack of morphological infor-
mation.

However, the large gap between POS tagging
accuracy seen between lemma-only and word-only
for English indicates that the parser makes use of
this information to provide at least reasonable POS
guesses.

For French, only 0.2 points are gained for PAR-
SEVAL results between lemma-only to word-only,
while POS accuracy benefits a bit more from includ-
ing richer morphological information.

This raises the question whether the FTB-UC pro-
vides enough data to make its richer morphology in-
formative enough for a parsing model.

Suffixing tokens with POS tags It is only when
gold POS are added to the lemmas that one can see
the advantage of a reduced lexicon for French. In-
deed, performance peaks for this setting (lemma-
POS). The situation is not as clear for English, where
performance is almost identical when gold POS are
added to lemmas or words. POS Tagging is nearly
perfect, thus a performance ceiling is reached. The
very small differences between those two configura-
tions (most noticeable with the Leaf Ancestor score
of 95.41 vs. 95.38) indicates that the reduced lemma
lexicon is actually of some limited use but its impact
is negligible compared to perfect tagging.

While the lemma+POS setting clearly boosts per-
formance for parsing the FTB, the situation is less

clear for English. Indeed, the lemma+POS and the
word+POS gold variations give almost the same re-
sults. The fact that the POS tagging accuracy is close
to 100% in this mode shows that the key parameter
for optimum parsing performance in this experiment
is the ability to guess POS for unknown words well.

In fact, the CHARNIAK parser uses a two letter
suffix context for its tagging model, and when gold
POS are suffixed to any type of token (being lemma
or word form), the PTB POS tagset is used as a sub-
stitute for lack of morphology.

It should also be noted that the FTB-UC tag set
does include some discriminative features (such as
PART, INF and so on) but those are expressed by
more than two letters, and therefore a two letter
suffix tag cannot really be useful to discriminate
a richer morphology. For example, in the PTB,
the suffix BZ, as in VBZ, always refers to a verb,
whereas the FTB pos tag suffix PP, as in NPP
(Proper Noun) is also found in POS labels such as
VPP (past participle verb).

4.3 Realistic Setup: Using Morfette to help
parsing

Having shown that parsing French benefits from a
reduced lexicon is not enough as results imply that a
key factor is POS tag guessing. We therefore test our
hypothesis in a more realistic set up. We use MOR-
FETTE to lemmatize and tag raw words (instead of
the “gold” lemma-based approach described above),
and the resulting corpus is then parsed using the cor-
responding training set.
In order to be consistent with PARSEVAL POS eval-
uation, which does not take punctuation POS into
account, we provide a summary of MORFETTE’s
performance for such a configuration in (Table 6).

Results shown in Table 7 confirm our initial hy-

90

POS acc Lemma acc Joint acc
FTB-UC 97.34 98.12 96.26
S.PTB 96.15 99.04 96.07

Table 6: PARSEVAL Pos tagging accuracy of treebanks
test set

pothesis for French. Indeed, parsing performance
peaks with a setup involving automatically gener-
ated lemma and POS pairs, even though the differ-
ence with raw words+auto POS is not statistically
significant for the PARSEVAL F1 metric1. Note that
parser POS accuracy does not follow this pattern. It
is unclear exactly why this is the case. We specu-
late that the parser is helped by the reduced lexicon
but that performance suffers when a <lemma,POS>
pair has been incorrectly assigned by MORFETTE,
leading to an increase in unseen tokens. This is con-
firmed by parsing the same lemma but with gold
POS. In that case, parsing performance does not suf-
fer too much from CHARNIAK ’s POS guessing on
unseen data.

For the S.PTB, results clearly show that both the
automatic <lemma,POS> and <word,POS> config-
urations lead to very similar results (yet statistically
significant with aF1 p-value = 0.027); having the
same POS accuracy indicates that most of the work
is done at the level of POS guessing for unseen
tokens, and in this respect the CHARNIAK parser
clearly takes advantage of the information included
in the PTB tag set.

F1 score Pos acc. leaf-Anc.
S.PTB

auto lemma only 87.11 89.82 94.71
auto lemma+auto pos (a) 88.15 96.21 94.85

word +auto pos(b) 88.28 96.21 94.88
F1 p-value: (a) and (b) 0.027

auto lemma+gold pos 89.51 99.96 95,36

FTB-UC

auto lemma only 83.92 92.98 93.53
auto lemma+auto pos(c) 85.06 96.04 94.14

word +auto pos (d) 84.99 96.47 94.09
F1 p-value: (c) and (d) 0.247
auto lemma+gold pos 86.39 97.35 94.68

Table 7: Realistic evaluation of parsing performance

1Statistical significance is computed using Dan Bikel’s
stratified shuffling implementation:www.cis.upenn.edu/
~dbikel/software.html.

5 Discussion

When we started this work, we wanted to explore
the benefit of lemmatization as a means to reduce
data sparseness issues underlying statistical lexical-
ized parsing of small treebanks for morphologically
rich languages, such as the FTB. We showed that
the expected benefit of lemmatization, a less sparse
lexicon, was in fact hidden by the absence of inflec-
tional information, as required by e.g. the CHAR-
NIAK parser to provide good POS guesses for un-
seen words. Even the inclusion of POS tags gen-
erated by a state-of-the-art tagger (MORFETTE) did
not lead to much improvement compared to a parser
run in a regular bare word set up.

An unexpected effect is that the POS accuracy
of the parser trained on the French data does not
reach the same level of performance as our tag-
ger (96.47% for <word, auto POS> vs. 97.34% for
MORFETTE). Of course, extending the CHARNIAK

tagging model to cope with lemmatized input should
be enough, because its POS guessing model builds
on features such as capitalization, hyphenation and
a two-letter suffix (Charniak, 2000). Those features
are not present in our current lemmatized input and
thus cannot be properly estimated.

CHARNIAK also uses the probability that a given
POS is realized by a previously unobserved word.
If any part of a <lemma,POS> pair is incorrect, the
number of unseen words in the test set would be
higher than the one estimated from the training set,
which only contained correct lemmas and POS tags
in our setting. This would lead to unsatisfying POS
accuracy. This inadequate behavior of the unknown
word tagging model may be responsible for the POS
accuracy result for <auto lemma> (cf. Table 7, lines
<auto lemma only> for both treebanks).

We believe that this performance degradation (or
in this case the somewhat less than expected im-
provement in parsing results) calls for the inclusion
of all available lexical information in the parsing
model. For example, nothing prevents a parsing
model to condition the generation of a head upon
a lemma, while the probability to generate a POS
would depend on both morphological features and
(potentially) the supplied POS.

91

6 Related Work

A fair amount of recent research in parsing morpho-
logically rich languages has focused on coping with
unknowns words and more generally with the small
and limited lexicons acquired from treebanks. For
instance, Goldberg et al. (2009) augment the lex-
icon for a generative parsing model by including
lexical probabilities coming from an external lexi-
con. These are estimated using an HMM tagger with
Baum-Welch training. This method leads to a sig-
nificant increase of parsing performance over pre-
viously reported results for Modern Hebrew. Our
method is more stratified: external lexical resources
are included as features for MORFETTE and there-
fore are not directly seen by the parser besides gen-
erated lemma and POS.

For parsing German, Versley and Rehbein (2009)
cluster words according to linear context features.
The clusters are then integrated as features to boost a
discriminative parsing model to cope with unknown
words. Interestingly, they also include all possible
information: valence information, extracted from a
lexicon, is added to verbs and preterminal nodes are
annotated with case/number. This leads their dis-
criminative model to state-of-the-art results for pars-
ing German.

Concerning French, Candito and Crabbé (2009)
present the results of different clustering methods
applied to the parsing of FTB with the BKY parser.
They applied an unsupervised clustering algorithm
on the 125 millions words “Est Republicain” corpus
to get a reduced lexicon of 1000 clusters which they
then augmented with various features such as capi-
talization and suffixes. Their method is the best cur-
rent approach for the probabilistic parsing of French
with a F1 score (<=40) of 88.29% on the standard
test set. We run the CHARNIAK parser on their clus-
terized corpus. Table 8 summarizes the current state-
of-the-art for lexicalized parsing on the FTB-UC.2

Clearly, the approach consisting in extending clus-
ters with features and suffixes seems to improve
CHARNIAK ’s performance more than our method.

2For this comparison, we also trained the CHARNIAK parser
on adisinflectedvariation of the FTB-UC. Disinflectionis a de-
terministic, lexicon based process, standing between stemming
and lemmatization, which preserves POS assignment ambigui-
ties (Candito and Crabbé, 2009).

In that case, the lexicon is drastically reduced, as
well as the amount of out of vocabulary words
(OOVs). Nevertheless, the relatively low POS ac-
curacy, with only 36 OOVs, for this configuration
confirms that POS guessing is the current bottleneck
if a process of reducing the lexicon increases POS
assignment ambiguities.

tokens F1 Pos acc % of OOVs
raw word (a) 84.96 96.26 4.89

auto <lemma,pos> (b) 85.06 96.04 6.47
disinflected (c) 85.45 96.51 3.59

cluster+caps+suffixes (d) 85.51 96.89 0.10

Table 8: CHARNIAK parser performance summary on the
FTB-UC test set(36340 tokens). Compared to (a), allF1 re-
sults, but (b), are statistically significant (p-values < 0.05), dif-
ferences between (c) & (d), (b) & (c) and (b) & (d) are not
(p-values are resp. 0.12, 0.41 and 0.11). Note that the (b) &
(d) p-value for all sentences is of 0.034, correlating thus the
observed gap in parsing performance between these two con-
figuration.

7 Conclusion

We showed that while lemmatization can be of
some benefit to reduce lexicon size and remedy data
sparseness for a MRL such as French, the key factor
that drives parsing performance for the CHARNIAK

parser is the amount of unseen words resulting from
the generation of <lemma,POS> pairs for the FTB-
UC. For a sample of the English PTB, morphologi-
cal analysis did not produce any significant improve-
ment.
Finally, even if this architecture has the potential to
help out-of-domain parsing, adding morphological
analysis on top of an existing highly tuned statisti-
cal parsing system can result in suboptimal perfor-
mance. Thus, in future we will investigate tighter
integration of the morphological features with the
parsing model.

Acknowledgments

D. Seddah and M. Candito were supported by the ANR
Sequoia (ANR-08-EMER-013); Ö. Çetinoğlu and J.
van Genabith by the Science Foundation Ireland (Grant
07/CE/I1142) as part of the Centre for Next Generation
Localisation at Dublin City University; G. Chrupała by
BMBF project NL-Search (contract 01IS08020B).

92

References

Anne Abeillé, Lionel Clément, and François Toussenel,
2003. Building a Treebank for French. Kluwer, Dor-
drecht.

Miriam Butt, María-Eugenia Niño, and Frédérique
Segond. 1999.A Grammar Writer’s Cookbook. CSLI
Publications, Stanford, CA.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef
van Genabith, and Andy Way. 2004. Long-Distance
Dependency Resolution in Automatically Acquired
Wide-Coverage PCFG-Based LFG Approximations.
In Proceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics, pages 320–
327, Barcelona, Spain.

Marie Candito and Benoît Crabbé. 2009. Im-
proving generative statistical parsing with semi-
supervised word clustering. InProceedings of the
11th International Conference on Parsing Technolo-
gies (IWPT’09), pages 138–141, Paris, France, Octo-
ber. Association for Computational Linguistics.

Marie Candito, Benoit Crabbé, and Djamé Seddah. 2009.
On statistical parsing of french with supervised and
semi-supervised strategies. InEACL 2009 Workshop
Grammatical inference for Computational Linguistics,
Athens, Greece.

Eugene Charniak. 2000. A maximum entropy inspired
parser. InProceedings of the First Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics (NAACL 2000), pages 132–
139, Seattle, WA.

Grzegorz Chrupała, Georgiana Dinu, and Josef van Gen-
abith. 2008. Learning morphology with morfette. In
In Proceedings of LREC 2008, Marrakech, Morocco.
ELDA/ELRA.

Grzegorz Chrupała. 2008.Towards a machine-learning
architecture for lexical functional grammar parsing.
Ph.D. thesis, Dublin City University.

Grzegorz Chrupała. 2010. Morfette: A tool for su-
pervised learning of morphology.http://sites.
google.com/site/morfetteweb/. Version
0.3.1.

Michael Collins. 1999.Head Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia.

Benoit Crabbé and Marie Candito. 2008. Expériences
d’analyse syntaxique statistique du français. InActes
de la 15ème Conférence sur le Traitement Automatique
des Langues Naturelles (TALN’08), pages 45–54, Avi-
gnon, France.

Pascal Denis and Benoît Sagot. 2009. Coupling an anno-
tated corpus and a morphosyntactic lexicon for state-
of-the-art pos tagging with less human effort. InProc.
of PACLIC, Hong Kong, China.

Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srini-
vas, and Martin Zaidel. 1994. Xtag system: A wide
coverage grammar for english. InProceedings of the
15th conference on Computational linguistics, pages
922–928, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Yoav Freund and Robert E. Schapire. 1999. Large mar-
gin classification using the perceptron algorithm.Ma-
chine learning, 37(3):277–296.

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael
Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set
mapping, and EM-HMM-based lexical probabilities.
In Proc. of EACL-09, pages 327–335, Athens, Greece.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn TreeBank.Computational
Linguistics, 19(2):313–330.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of the 21st In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, Sydney, Australia, July. Asso-
ciation for Computational Linguistics.

Ines Rehbein and Josef van Genabith. 2007. Treebank
annotation schemes and parser evaluation for german.
In Proceedings of the 2007 Joint Conference on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), Prague.

Benoit Sagot, Lionel Clément, Eric V. de La Clergerie,
and Pierre Boullier. 2006. The lefff 2 syntactic lexi-
con for french: Architecture, acquisition, use.Proc. of
LREC 06, Genoa, Italy.

Geoffrey Sampson and Anna Babarczy. 2003. A test of
the leaf-ancestor metric for parse accuracy.Natural
Language Engineering, 9(04):365–380.

Natalie Schluter and Josef van Genabith. 2007. Prepar-
ing, restructuring, and augmenting a French Treebank:
Lexicalised parsers or coherent treebanks? InProc. of
PACLING 07, Melbourne, Australia.

Djamé Seddah, Marie Candito, and Benoit Crabbé. 2009.
Cross parser evaluation and tagset variation: A French
Treebank study. InProceedings of the 11th Interna-
tion Conference on Parsing Technologies (IWPT’09),
pages 150–161, Paris, France, October. Association
for Computational Linguistics.

Yannick Versley and Ines Rehbein. 2009. Scalable dis-
criminative parsing for german. InProceedings of the
11th International Conference on Parsing Technolo-
gies (IWPT’09), pages 134–137, Paris, France, Octo-
ber. Association for Computational Linguistics.

93

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 94–102,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

On the Role of Morphosyntactic Features in Hindi Dependency Parsing

Bharat Ram Ambati*, Samar Husain*, Joakim Nivre† and Rajeev Sangal*

*Language Technologies Research Centre, IIIT-Hyderabad, India.

†Department of Linguistics and Philology, Uppsala University, Sweden.
{bharat,samar}@research.iiit.ac.in, joakim.nivre@lingfil.uu.se, san-

gal@mail.iiit.ac.in

Abstract

This paper analyzes the relative importance of

different linguistic features for data-driven

dependency parsing of Hindi, using a feature

pool derived from two state-of-the-art parsers.

The analysis shows that the greatest gain in

accuracy comes from the addition of morpho-

syntactic features related to case, tense, aspect

and modality. Combining features from the

two parsers, we achieve a labeled attachment

score of 76.5%, which is 2 percentage points

better than the previous state of the art. We fi-

nally provide a detailed error analysis and

suggest possible improvements to the parsing

scheme.

1 Introduction

The dependency parsing community has since a

few years shown considerable interest in parsing

morphologically rich languages with flexible word

order. This is partly due to the increasing availabil-

ity of dependency treebanks for such languages,

but it is also motivated by the observation that the

performance obtained for these languages has not

been very high (Nivre et al., 2007a). Attempts at

handling various non-configurational aspects in

these languages have pointed towards shortcom-

ings in traditional parsing methodologies (Tsarfaty

and Sima'an, 2008; Eryigit et al., 2008; Seddah et

al., 2009; Husain et al., 2009; Gadde et al., 2010).

Among other things, it has been pointed out that

the use of language specific features may play a

crucial role in improving the overall parsing per-

formance. Different languages tend to encode syn-

tactically relevant information in different ways,

and it has been hypothesized that the integration of

morphological and syntactic information could be

a key to better accuracy. However, it has also been

noted that incorporating these language specific

features in parsing is not always straightforward

and many intuitive features do not always work in

expected ways.

In this paper, we are concerned with Hindi, an

Indian language with moderately rich morphology

and relatively free word order. There have been

several previous attempts at parsing Hindi as well

as other Indian languages (Bharati et al., 1995,

Bharati et al., 2009b). Many techniques were tried

out recently at the ICON09 dependency parsing

tools contest (Husain, 2009). Both the best per-

forming system (Ambati et al., 2009a) and the sys-

tem in second place (Nivre, 2009b) used a

transition-based approach to dependency parsing,

as implemented in MaltParser (Nivre et al., 2007b).

Other data driven parsing efforts for Indian lan-

guages in the past have been Bharati et al. (2008),

Husain et al. (2009), Mannem et al. (2009b) and

Gadde et al. (2010).

In this paper, we continue to explore the transi-

tion-based approach to Hindi dependency parsing,

building on the state-of-the-art results of Ambati et

al. (2009a) and Nivre (2009b) and exploring the

common pool of features used by those systems.

Through a series of experiments we select features

incrementally to arrive at the best parser features.

The primary purpose of this investigation is to

study the role of different morphosyntactic features

in Hindi dependency parsing, but we also want to

improve the overall parsing accuracy. Our final

results are 76.5% labeled and 91.1% unlabeled at-

tachment score, improving previous results by 2

and 1 percent absolute, respectively. In addition to

this, we also provide an error analysis, isolating

specific linguistic phenomena and/or other factors

that impede the overall parsing performance, and

suggest possible remedies for these problems.

94

2 The Hindi Dependency Treebank

Hindi is a free word order language with SOV as

the default order. This can be seen in (1), where

(1a) shows the constituents in the default order,

and the remaining examples show some of the

word order variants of (1a).

(1) a. malaya ne sameer ko kitaba dii.

 Malay ERG Sameer DAT book gave

 “Malay gave the book to Sameer” (S-IO-DO-V)
1

 b. malaya ne kitaba sameer ko dii. (S-DO-IO-V)

 c. sameer ko malaya ne kitaba dii. (IO-S-DO-V)

 d. sameer ko kitaba malaya ne dii. (IO-DO-S-V)

 e. kitaba malaya ne sameer ko dii. (DO-S-IO-V)

 f. kitaba sameer ko malaya ne dii. (DO-IO-S-V)

Hindi also has a rich case marking system, al-

though case marking is not obligatory. For exam-

ple, in (1), while the subject and indirect object are

explicitly marked for the ergative (ERG) and da-

tive (DAT) cases, the direct object is unmarked for

the accusative.

The Hindi dependency treebank (Begum et al.,

2008) used for the experiment was released as part

of the ICON09 dependency parsing tools contest

(Husain, 2009). The dependency framework (Bha-

rati et al., 1995) used in the treebank is inspired by

Panini’s grammar of Sanskrit. The core labels,

called karakas, are syntactico-semantic relations

that identify the participant in the action denoted

by the verb. For example, in (1), ‘Malay’ is the

agent, ‘book’ is the theme, and ‘Sameer’ is the be-

neficiary in the activity of ‘give’. In the treebank,

these three labels are marked as k1, k2, and k4 re-

spectively. Note, however, that the notion of kara-
ka does not capture the ‘global’ semantics of

thematic roles; rather it captures the elements of

the ‘local semantics’ of a verb, while also taking

cues from the surface level morpho-syntactic in-

formation (Vaidya et al., 2009). The syntactic re-

lational cues (such as case markers) help identify

many of the karakas. In general, the highest availa-

ble karaka,
2
 if not case-marked, agrees with the

verb in an active sentence. In addition, the tense,

1 S=Subject; IO=Indirect Object; DO=Direct Object;

V=Verb; ERG=Ergative; DAT=Dative
2 These are the karta karaka (k1) and karma karaka (k2). k1

and k2 can be roughly translated as ‘agent’ and ‘theme’ re-

spectively. For a complete description of the tagset and the

dependency scheme, see Begum et al. (2008) and Bharati et al.

(2009a).

aspect and modality (TAM) marker can many a

times control the case markers that appear on k1.

For example, in (1) ‘Malay’ takes an ergative case

because of the past perfective TAM marker (that

appears as a suffix in this case) of the main verb

‘gave’. Many dependency relations other than ka-

rakas are purely syntactic. These include relations

such as noun modifier (nmod), verb modifier

(vmod), conjunct relation (ccof), etc.

Each sentence is manually chunked and then an-

notated for dependency relations. A chunk is a mi-

nimal, non-recursive structure consisting of

correlated groups of words (Bharati et al., 2006). A

node in a dependency tree represents a chunk head.

Each lexical item in a sentence is also annotated

with its part-of-speech (POS). For all the experi-

ments described in this paper we use gold POS and

chunk tags. Together, a group of lexical items with

some POS tags within a chunk can be utilized to

automatically compute coarse grained morphosyn-

tactic information. For example, such information

can represent the postposition/case-marking in the

case of noun chunks, or it may represent the TAM

information in the case of verb chunks. In the ex-

periments conducted for this paper this local in-

formation is automatically computed and

incorporated as a feature of the head of a chunk.

As we will see later, such information proves to be

extremely crucial during dependency parsing.

For all the experiments discussed in section 4,

the training and development data size was 1500

and 150 sentences respectively. The training and

development data consisted of ~22k and ~1.7k

words respectively. The test data consisted of 150

sentences (~1.6k words). The average sentence

length is 19.85.

3 Transition-Based Dependency Parsing

A transition-based dependency parser is built of

two essential components (Nivre, 2008):

· A transition system for mapping sentences to

dependency trees

· A classifier for predicting the next transition for

every possible system configuration

95

 PTAG CTAG FORM LEMMA DEPREL CTAM OTHERS

Stack: top 1 5 1 7 9

Input: next 1 5 1 7 9

Input: next+1 2 5 6 7

Input: next+2 2

Input: next+3 2

Stack: top-1 3

String: predecessor of top 3

Tree: head of top 4

Tree: leftmost dep of next 4 5 6

Tree: rightmost dep of top 8

Tree: left sibling of rightmost dep of top 8

Merge: PTAG of top and next 10

Merge: CTAM and DEPREL of top 10

Table 1. Feature pool based on selection from Ambati et al. (2009a) and Nivre (2009b).

Given these two components, dependency parsing

can be realized as deterministic search through the

transition system, guided by the classifier. With

this technique, parsing can be performed in linear

time for projective dependency trees. Like Ambati

et al. (2009a) and Nivre (2009b), we use MaltPars-

er, an open-source implementation of transition-

based dependency parsing with a variety of transi-

tion systems and customizable classifiers.
3

3.1 Transition System

Previous work has shown that the arc-eager projec-

tive transition system first described in Nivre

(2003) works well for Hindi (Ambati et al., 2009a;

Nivre, 2009b). A parser configuration in this sys-

tem contains a stack holding partially processed

tokens, an input buffer containing the remaining

tokens, and a set of arcs representing the partially

built dependency tree. There are four possible tran-

sitions (where top is the token on top of the stack

and next is the next token in the input buffer):

· Left-Arc(r): Add an arc labeled r from next to

top; pop the stack.

· Right-Arc(r): Add an arc labeled r from top to

next; push next onto the stack.

· Reduce: Pop the stack.

· Shift: Push next onto the stack.

Although this system can only derive projective

dependency trees, the fact that the trees are labeled

3 MaltParser is available at http://maltparser.org.

allows non-projective dependencies to be captured

using the pseudo-projective parsing technique pro-

posed in Nivre and Nilsson (2005).

3.2 Classifiers

Classifiers can be induced from treebank data us-

ing a wide variety of different machine learning

methods, but all experiments reported below use

support vector machines with a polynomial kernel,

as implemented in the LIBSVM package (Chang

and Lin, 2001) included in MaltParser. The task of

the classifier is to map a high-dimensional feature

vector representation of a parser configuration to

the optimal transition out of that configuration. The

features used in our experiments represent the fol-

lowing attributes of input tokens:

· PTAG: POS tag of chunk head.

· CTAG: Chunk tag.

· FORM: Word form of chunk head.

· LEMMA: Lemma of chunk head.

· DEPREL: Dependency relation of chunk.

· CTAM: Case and TAM markers of chunk.

The PTAG corresponds to the POS tag associated

with the head of the chunk, whereas the CTAG

represent the chunk tag. The FORM is the word

form of the chunk head, and the LEMMA is auto-

matically computed with the help of a morphologi-

cal analyzer. CTAM gives the local

morphosyntactic features such as case markers

(postpositions/suffixes) for nominals and TAM

markers for verbs (cf. Section 2).

96

The pool of features used in the experiments are

shown in Table 1, where rows denote tokens in a

parser configuration – defined relative to the stack,

the input buffer, the partially built dependency tree

and the input string – and columns correspond to

attributes. Each non-empty cell represents a fea-

ture, and features are numbered for easy reference.

4 Feature Selection Experiments

Starting from the union of the feature sets used by

Ambati et al. (2009a and by Nivre (2009b), we

first used 5-fold cross-validation on the combined

training and development sets from the ICON09

tools contest to select the pool of features depicted

in Table 1, keeping all features that had a positive

effect on both labeled and unlabeled accuracy. We

then grouped the features into 10 groups (indicated

by numbers 1–10 in Table 1) and reran the cross-

validation, incrementally adding different feature

groups in order to analyze their impact on parsing

accuracy. The result is shown in Figure 1.

30

36

42

48

54

60

66

72

78

84

90

Exp
1

Exp
2

Exp
3

Exp
4

Exp
5

Exp
6

Exp
7

Exp
8

Exp
9

Exp
10

UAS

LAS

Figure 1. UAS and LAS of experiments 1-10; 5-fold

cross-validation on training and development data of the

ICON09 tools contest.

Experiment 1: Experiment 1 uses a baseline

model with only four basic features: PTAG and

FORM of top and next. This results in a labeled

attachment score (LAS) of 41.7% and an unlabeled

attachment score (UAS) of 68.2%.

Experiments 2–3: In experiments 2 and 3, the

PTAG of contextual words of next and top are

added. Of all the contextual words, next+1,
next+2, next+3, top-1 and predecessor of top were

found to be useful.
4
 Adding these contextual fea-

tures gave a modest improvement to 45.7% LAS

and 72.7% UAS.

Experiment 4: In experiment 4, we used the

PTAG information of nodes in the partially built

tree, more specifically the syntactic head of top

and the leftmost dependent of next. Using these

features gave a large jump in accuracy to 52%

LAS and 76.8% UAS. This is because partial in-

formation is helpful in making future decisions.

For example, a coordinating conjunction can have

a node of any PTAG category as its child. But all

the children should be of same category. Knowing

the PTAG of one child therefore helps in identify-

ing other children as well.

Experiments 5–7: In experiments 5, 6 and 7,

we explored the usefulness of CTAG, FORM, and

LEMMA attributes. These features gave small in-

cremental improvements in accuracy; increasing

LAS to 56.4% and UAS to 78.5%. It is worth not-

ing in particular that the addition of LEMMA

attributes only had a marginal effect on accuracy,

given that it is generally believed that this type of

information should be beneficial for richly in-

flected languages.

Experiment 8: In experiment 8, the DEPREL of

nodes in the partially formed tree is used. The

rightmost child and the left sibling of the rightmost

child of top were found to be useful. This is be-

cause, if we know the dependency label of one of

the children, then the search space for other child-

ren gets reduced. For example, a verb cannot have

more than one k1 or k2. If we know that the parser

has assigned k1 to one of its children, then it

should use different labels for the other children.

The overall effect on parsing accuracy is neverthe-

less very marginal, bringing LAS to 56.5% and

UAS to 78.6%.

Experiment 9: In experiment 9, the CTAM

attribute of top and next is used. This gave by far

the greatest improvement in accuracy with a huge

jump of around 10% in LAS (to 66.3%) and

slightly less in UAS (to 84.7%). Recall that CTAM

consists of two important morphosyntactic fea-

tures, namely, case markers (as suffixes or postpo-

sitions) and TAM markers. These feature help

because (a) case markers are important surface

4 The predecessor of top is the word occurring immediately

before top in the input string, as opposed to top-1, which is the

word immediately below top in the current stack.

97

Figure 2. Precision and Recall of some important dependency labels.

cues that help identify various dependency rela-

tions, and (b) there exists a direct mapping be-

tween many TAM labels and the nominal case

markers because TAMs control the case markers of

some nominals. As expected, our experiments

show that the parsing decisions are certainly more

accurate after using these features. In particular, (a)

and (b) are incorporated easily in the parsing

process.

In a separate experiment we also added some

other morphological features such as gender, num-

ber and person for each node. Through these fea-

tures we expected to capture the agreement in

Hindi. The verb agrees in gender, number and per-

son with the highest available karaka. However,

incorporating these features did not improve pars-

ing accuracy and hence these features were not

used in the final setting. We will have more to say

about agreement in section 5.
Experiment 10: In experiment 10, finally, we

added conjoined features, where the conjunction of

POS of next and top and of CTAM and DEPREL

of top gave slight improvements. This is because a

child-parent pair type can only take certain labels.

For example, if the child is a noun and the parent is

a verb, then all the dependency labels reflecting

noun, adverb and adjective modifications are not

relevant. Similarly, as noted earlier, certain case-

TAM combinations demand a particular set of la-

bels only. This can be captured by the combination

tried in this experiment.

Experiment 10 gave the best results in the cross-

validation experiments. The settings from this ex-

periment were used to get the final performance on

the test data. Table 2 shows the final results along

with the results of the first and second best per-

forming systems in the ICON09 tools contest. We

see that our system achieved an improvement of 2

percentage points in LAS and 1 percentage point in

UAS over the previous state of the art reported in

Ambati et al. (2009a).

System LAS UAS

Ambati et al. (2009a) 74.5 90.1

Nivre (2009b) 73.4 89.8

Our system 76.5 91.1

Table 2. Final results on the test data from the ICON09

tools contest.

5 Error Analysis

In this section we provide a detailed error analysis

on the test data and suggest possible remedies for

problems noted. We note here that other than the

reasons mentioned in this section, small treebank

size could be another reason for low accuracy of

the parser. The training data used for the experi-

ments only had ~28.5k words. With recent work on

Hindi Treebanking (Bhatt et al., 2009) we expect

to get more annotated data in the near future.

Figure 2 shows the precision and recall of some

important dependency labels in the test data. The

labels in the treebank are syntacto-semantic in na-

ture. Morph-syntactic features such as case mark-

ers and/or TAM labels help in identifying these

labels correctly. But lack of nominal postpositions

can pose problems. Recall that many case mark-

ings in Hindi are optional. Also recall that the verb

agrees with the highest available karaka. Since

agreement features do not seem to help, if both k1

and k2 lack case markers, k1-k2 disambiguation

becomes difficult (considering that word order in-

formation cannot help in this disambiguation). In

the case of k1 and k2, error rates for instances that

lack post-position markers are 60.9% (14/23) and

65.8% (25/38), respectively.

98

 Correct Incorrect

 k1 k1s k2 pof k7p k7t k7 others

k1 184 5 3 8 3 1 3

k1s 12 6 1 6 1

k2 126 14 1 7 5 11

pof 54 1 8 4

k7p 54 3 7 1 2 3

k7t 27 3 3 3 1 10

k7 3 2 2 4

Table 3. Confusion matrix for important labels. The

diagonal under ‘Incorrect’ represents attachment errors.

Table 3 shows the confusion matrix for some

important labels in the test data. As the present

information available for disambiguation is not

sufficient, we can make use of some semantics to

resolve these ambiguities. Bharati et al. (2008) and

Ambati et al. (2009b) have shown that this ambi-

guity can be reduced using minimal semantics.

They used six semantic features: human, non-

human, in-animate, time, place and abstract. Using

these features they showed that k1-k2 and k7p-k7t

ambiguities can be resolved to a great extent. Of

course, automatically extracting these semantic

features is in itself a challenging task, although

Øvrelid (2008) has shown that animacy features

can be induced automatically from data.

In section 4 we mentioned that a separate expe-

riment explored the effectiveness of morphological

features like gender, number and person. Counter

to our intuitions, these features did not improve the

overall accuracy. Accuracies on cross-validated

data while using these features were less than the

best results with 66.2% LAS and 84.6% UAS.

Agreement patterns in Hindi are not straightfor-

ward. For example, the verb agrees with k2 if the

k1 has a post-position; it may also sometimes take

the default features. In a passive sentence, the verb

agrees only with k2. The agreement problem wor-

sens when there is coordination or when there is a

complex verb. It is understandable then that the

parser is unable to learn the selective agreement

pattern which needs to be followed. Similar prob-

lems with agreement features have also been noted

by Goldberg and Elhadad (2009).

In the following sections, we analyze the errors

due to different constructions and suggest possible

remedies.

5.1 Simple Sentences

A simple sentence is one that has only one main

verb. In these sentences, the root of the dependen-

cy tree is the main verb, which is easily identified

by the parser. The main problem is the correct

identification of the argument structure. Although

the attachments are mostly correct, the dependency

labels are error prone. Unlike in English and other

more configurational languages, one of the main

cues that help us identify the arguments is to be

found in the nominal postpositions. Also, as noted

earlier these postpositions are many times con-

trolled by the TAM labels that appear on the verb.

There are four major reasons for label errors in

simple sentences: (a) absence of postpositions, (b)

ambiguous postpositions, (c) ambiguous TAMs,

and (d) inability of the parser to exploit agreement

features. For example in (2), raama and phala are

arguments of the verb khaata. Neither of them has

any explicit case marker. This makes it difficult for

the parser to identify the correct label for these

nodes. In (3a) and (3b) the case marker se is ambi-

guous. It signifies ‘instrument’ in (3b) and ‘agent’

in (3a).

(2) raama phala khaata hai

 ‘Ram’ ‘fruit’ ‘eat’ ‘is’

 ‘Ram eats a fruit’

(3) a. raama se phala khaayaa nahi gaya

 ‘Ram’ INST ‘fruit’ ‘eat’ ’not’ ‘PAST’

 ‘Ram could not eat the fruit’

 b. raama chamach se phala khaata hai

 ‘Ram’ ‘spoon’ INST ‘fruit’ ‘eat’ ‘is’

 ‘Ram eats fruit with spoon’

5.2 Embedded Clauses

Two major types of embedded constructions in-

volve participles and relative clause constructions.

Participles in Hindi are identified through a set of

TAM markers. In the case of participle embed-

dings, a sentence will have more than one verb,

i.e., at least one participle and the matrix verb.

Both the matrix (finite) verb and the participle can

take their own arguments that can be identified via

the case-TAM mapping discussed earlier. Howev-

er, there are certain syntactic constraints that limit

the type of arguments a participle can take. There

99

are two sources of errors here: (a) argument shar-

ing, and (b) ambiguous attachment sites.

Some arguments such as place/time nominals

can be shared. Shared arguments are assigned to

only one verb in the dependency tree. So the task

of identifying the shared arguments, if any, and

attaching them to the correct parent is a complex

task. Note that the dependency labels can be identi-

fied based on the morphosyntactic features. The

task becomes more complex if there is more than

one participle in a sentence. 12 out of 130 in-

stances (9.23%) of shared arguments has an incor-

rect attachment.

Many participles are ambiguous and making the

correct attachment choice is difficult. Similar par-

ticiples, depending on the context, can behave as

adverbials and attach to a verb, or can behave as

adjectives and attach to a noun. Take (4) as a case

in point.

(4) maine daurte hue kutte ko dekhaa

 ‘I’-ERG (while) running dog ACC ‘saw’

In (4) based on how one interprets ‘daurte hue’,

one gets either the reading that ‘I saw a running

dog’ or that ‘I saw a dog while running’. In case of

the adjectival participle construction (VJJ), 2 out of

3 errors are due to wrong attachment.

5.3 Coordination

Coordination poses problems as it often gives rise

to long-distance dependencies. Moreover, the tree-

bank annotation treats the coordinating conjunction

as the head of the coordinated structure. Therefore,

a coordinating conjunction can potentially become

the root of the entire dependency tree. This is simi-

lar to Prague style dependency annotation (Hajico-

va, 1998). Coordinating conjunctions pose

additional problems in such a scenario as they can

appear as the child of different heads. A coordinat-

ing conjunction takes children of similar POS cat-

egory, but the parent of the conjunction depends on

the type of the children.

(5) a. raama aur shyaama ne khaana khaayaa

 ‘Ram’ ‘and’ ‘Shyam’ ‘ERG’ ‘food’ ‘ate’

 ‘Ram and Shyam ate the food.’

 b. raama ne khaanaa khaayaa aur paanii

 ‘Ram’ ‘ERG’ ‘food’ ‘ate’ ‘and’ ‘water’

 piyaa

 ‘drank’

 ‘Ram ate food and drank water.’

In (5a), raama and shyaama are children of the

coordinating conjunction aur, which gets attached

to the main verb khaayaa with the label k1. In ef-

fect, syntactically aur becomes the argument of the

main verb. In (5b), however, the verbs khaayaa

and piyaa are the children of aur. In this case, aur

becomes the root of the sentence. Identifying the

nature of the conjunction and its children becomes

a challenging task for the parser. Note that the

number of children that a coordinating conjunction

can take is not fixed either. The parser could iden-

tify the correct head of the conjunctions with an

accuracy of 75.7% and the correct children with an

accuracy of 85.7%.

The nature of the conjunction will also affect the

dependency relation it has with its head. For ex-

ample, if the children are nouns, then the conjunc-

tion behaves as a noun and can potentially be an

argument of a verb. By contrast, if the children are

finite verbs, then it behaves as a finite verb and can

become the root of the dependency tree. Unlike

nouns and verbs, however, conjunctions do not

have morphological features. So a child-to-head

feature percolation should help make a coordinat-

ing node more transparent. For example, in (5a) the

Ergative case ne is a strong cue for the dependency

label k1. If we copy this information from one of

its children (here shyaama) to the conjunct, then

the parser can possibly make use of this informa-

tion.

5.4 Complex Predicates

Complex predicates are formed by combining a

noun or an adjective with a verbalizer kar or ho.

For instance, in taariif karanaa ‘to praise’, taariif

‘praise’ is a noun and karanaa ‘to do’ is a verb.

Together they form the main verb. Complex predi-

cates are highly productive in Hindi. Combination

of the light verb and the noun/adjective is depen-

dent on not only syntax but also semantics and

therefore its automatic identification is not always

straightforward (Butt, 1995). A noun-verb com-

plex predicate in the treebank is linked via the de-

pendency label pof. The parser makes mistakes in

100

identifying pof or misclassifies other labels as pof.

In particular, the confusion is with k2 and k1s

which are object/theme and noun complements of

k1, respectively. These labels share similar contex-

tual features like the nominal element in the verb

complex. Table 3 includes the confusion matrix for

pof errors.

5.5 Non-Projectivity

As noted earlier, MaltParser’s arc-eager parsing

algorithm can be combined with the pseudo-

projective parsing techniques proposed in Nivre

and Nilsson (2005), which potentially helps in

identifying non-projective arcs. The Hindi treebank

has ~14% non-projective arcs (Mannem et al.,

2009a). In the test set, there were a total of 11 non-

projective arcs, but the parser did not find any of

them. This is consistent with earlier results show-

ing that pseudo-projective parsing has high preci-

sion but low recall, especially when the percentage

of non-projective relations is small (Nilsson et al,

2007).

Non-projectivity has proven to be one of the ma-

jor problems in dependency parsing, especially for

free word-order languages. In Hindi, the majority

of non-projective arcs are inter-clausal (Mannem et

al., 2009a), involving conjunctions and relative

clauses. There have been some attempts at han-

dling inter-clausal non-projectivity in Hindi. Hu-

sain et al. (2009) proposed a two-stage approach

that can handle some of the inter-clausal non-

projective structures.

5.6 Long-Distance Dependencies

Previous results on parsing other languages have

shown that MaltParser has lower accuracy on long-

distance dependencies. Our results confirm this.

Errors in the case of relative clauses and coordina-

tion can mainly be explained in this way. For ex-

ample, there are 8 instances of relative clauses in

the test data. The system could identify only 2 of

them correctly. These two are at a distance of 1

from its parent. For the remaining 6 instances the

distance to the parent of the relative clause ranges

from 4 to 12.

Figure 3 shows how parser performance de-

creases with increasing distance between the head

and the dependent. Recently, Husain et al. (2009)

have proposed a two-stage setup to parse inter-

clausal and intra-clausal dependencies separately.

They have shown that most long distance relations

are inter-clausal, and therefore, using such a clause

motivated parsing setup helps in maximizing both

short distance and long distance dependency accu-

racy. In a similar spirit, Gadde et al. (2010) showed

that using clausal features helps in identifying long

distance dependencies. They have shown that pro-

viding clause information in the form of clause

boundaries and clausal heads can help a parser

make better predictions about long distance depen-

dencies.

0

20

40

60

80

100

0 2 4 6 8 10 12

Dependency Length
D

e
p

e
n

d
e

n
c

y
 P

re
c

is
io

n

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Dependency Length

D
e

p
e

n
d

e
n

c
y

 R
e

c
a

ll

Figure 3. Dependency arc precision/recall relative to

dependency length, where the length of a dependency

from wi to wj is |i-j| and roots are assumed to have dis-

tance 0 to their head.

6 Conclusion

In this paper we have analyzed the importance of

different linguistic features in data-driven parsing

of Hindi and at the same time improved the state of

the art. Our main finding is that the combination of

case markers on nominals with TAM markers on

verbs is crucially important for syntactic disambig-

uation, while the inclusion of features such as per-

son, number gender that help in agreement has not

yet resulted in any improvement. We have also

presented a detailed error analysis and discussed

possible techniques targeting different error

classes. We plan to use these techniques to im-

prove our results in the near future.

101

References

B. R. Ambati, P. Gadde, and K. Jindal. 2009a. Experi-

ments in Indian Language Dependency Parsing.

Proc. of ICON09 NLP Tools Contest: Indian Lan-

guage Dependency Parsing, 32-37.

B. R. Ambati, P. Gade, C. GSK and S. Husain. 2009b.

Effect of Minimal Semantics on Dependency Pars-

ing. Proc. of RANLP Student Research Workshop.

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai, and

R. Sangal. 2008. Dependency annotation scheme for

Indian languages. Proc. of IJCNLP.

A. Bharati, V. Chaitanya and R. Sangal. 1995. Natural
Language Processing: A Paninian Perspective, Pren-

tice-Hall of India, New Delhi.

A. Bharati, S. Husain, B. Ambati, S. Jain, D. Sharma,

and R. Sangal. 2008. Two semantic features make all

the difference in parsing accuracy. Proc. of ICON.

A. Bharati, R. Sangal, D. M. Sharma and L. Bai. 2006.

AnnCorra: Annotating Corpora Guidelines for POS

and Chunk Annotation for Indian Languages. Tech-
nical Report (TR-LTRC-31), LTRC, IIIT-Hyderabad.

A. Bharati, D. M. Sharma, S. Husain, L. Bai, R. Begam

and R. Sangal. 2009a. AnnCorra: TreeBanks for In-

dian Languages, Guidelines for Annotating Hindi

TreeBank.

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-

guidelines/DS-guidelines-ver2-28-05-09.pdf

A. Bharati, S. Husain, D. M. Sharma and R. Sangal.

2009b. Two stage constraint based hybrid approach

to free word order language dependency parsing. In

Proc. of IWPT.

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D.

M. Sharma and F. Xia. 2009. Multi-Representational

and Multi-Layered Treebank for Hindi/Urdu. Proc.

of the Third LAW at ACL-IJCNLP, 186-189.

M. Butt. 1995. The Structure of Complex Predicates in
Urdu. CSLI Publications.

G. Eryigit, J. Nivre, and K. Oflazer. 2008. Dependency

Parsing of Turkish. Computational Linguistics 34(3),

357-389.

P. Gadde, K. Jindal, S. Husain, D. M. Sharma, and R.

Sangal. 2010. Improving Data Driven Dependency

Parsing using Clausal Information. Proc. of NAACL-

HLT.

Y. Goldberg and M. Elhadad. 2009. Hebrew Dependen-

cy Parsing: Initial Results. Proc. of IWPT, 129-133.

E. Hajicova. 1998. Prague Dependency Treebank: From

Analytic to Tectogrammatical Annotation. Proc. of

TSD.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M.

Nilsson and M. Saers. 2007. Single Malt or Blended?

A Study in Multilingual Parser Optimization. Proc.

of EMNLP-CoNLL, 933-939.

S. Husain. 2009. Dependency Parsers for Indian Lan-

guages. Proc. of ICON09 NLP Tools Contest: Indian
Language Dependency Parsing.

S. Husain, P. Gadde, B. Ambati, D. M. Sharma and R.

Sangal. 2009. A modular cascaded approach to com-

plete parsing. Proc. of the COLIPS International
Conference on Asian Language Processing.

P. Mannem, H. Chaudhry, and A. Bharati. 2009a. In-

sights into non-projectivity in Hindi. Proc. of ACL-

IJCNLP Student Research Workshop.
P. Mannem, A. Abhilash and A. Bharati. 2009b. LTAG-

spinal Treebank and Parser for Hindi. Proceedings of

International Conference on NLP, Hyderabad. 2009.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multi-

lingual dependency analysis with a two-stage discri-

minative parser. Proc. of CoNLL, 216-220.

R. McDonald and J. Nivre. 2007. Characterizing the

errors of data-driven dependency parsing models.
Proc. of EMNLP-CoNLL, 122-131.

I. A. Mel'Cuk. 1988. Dependency Syntax: Theory and

Practice, State University Press of New York.

J. Nilsson, J. Nivre and J. Hall. 2007. Generalizing Tree

Transformations for Inductive Dependency Parsing.

Proc. of ACL, 968-975.

J. Nivre. 2008. Algorithms for Deterministic Incremen-

tal Dependency Parsing. Computational Linguistics

34(4), 513-553.

J. Nivre and R. McDonald. 2008. Integrating graph-

based and transition-based dependency parsers. In

Proceedings of ACL-HLT, pp. 950-958.

J. Nivre. 2009a. Non-Projective Dependency Parsing in

Expected Linear Time. Proc. of ACL-IJCNLP, 351-

359.

J. Nivre. 2009b. Parsing Indian Languages with Malt-

Parser. Proc. of ICON09 NLP Tools Contest: Indian

Language Dependency Parsing, 12-18.

J. Nivre, J. Hall, S. Kubler, R. McDonald, J. Nilsson, S.

Riedel and D. Yuret. 2007a. The CoNLL 2007

Shared Task on Dependency Parsing. Proc. of

EMNLP/CoNLL, 915-932.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E Marsi. 2007b. MaltParser:
A language-independent system for data-driven de-

pendency parsing. NLE, 13(2), 95-135.

L. Øvrelid. 2008. Argument Differentiation. Soft con-

straints and data-driven models. PhD Thesis, Uni-

versity of Gothenburg.

D. Seddah, M. Candito and B. Crabbé. 2009. Cross

parser evaluation: a French Treebanks study. Proc. of

IWPT, 150-161.

R. Tsarfaty and K. Sima'an. 2008. Relational-

Realizational Parsing. Proc. of CoLing, 889-896.

A. Vaidya, S. Husain, P. Mannem, and D. M. Sharma.

2009. A karaka-based dependency annotation scheme

for English. Proc. of CICLing, 41-52.

102

Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 103–107,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Easy First Dependency Parsing of Modern Hebrew

Yoav Goldberg∗ and Michael Elhadad
Ben Gurion University of the Negev

Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel

{yoavg|elhadad}@cs.bgu.ac.il

Abstract

We investigate the performance of an easy-
first, non-directional dependency parser on the
Hebrew Dependency treebank. We show that
with a basic feature set the greedy parser’s ac-
curacy is on a par with that of a first-order
globally optimized MST parser. The addition
of morphological-agreement feature improves
the parsing accuracy, making it on-par with a
second-order globally optimized MST parser.
The improvement due to the morphological
agreement information is persistent both when
gold-standard and automatically-induced mor-
phological information is used.

1 Introduction

Data-driven Dependency Parsing algorithms are
broadly categorized into two approaches (Kübler et
al., 2009). Transition based parsers traverse the
sentence from left to right1 using greedy, local in-
ference. Graph based parsers use global inference
and seek a tree structure maximizing some scoring
function defined over trees. This scoring function
is usually decomposed over tree edges, or pairs of
such edges. In recent work (Goldberg and Elhadad,
2010), we proposed another dependency parsing ap-
proach: Easy First, Non-Directional dependency

∗Supported by the Lynn and William Frankel Center for
Computer Sciences, Ben Gurion University

1Strictly speaking, the traversal order is from start to end.
This distinction is important when discussing Hebrew parsing,
as the Hebrew language is written from right-to-left. We keep
the left-to-right terminology throughout this paper, as this is the
common terminology. However, “left” and “right” should be
interpreted as “start” and “end” respectively. Similarly, “a token
to the left” should be interpreted as “the previous token”.

parsing. Like transition based methods, the easy-
first method adopts a local, greedy policy. How-
ever, it abandons the strict left-to-right processing
order, replacing it with an alternative order, which
attempts to make easier attachments decisions prior
to harder ones. The model was applied to English
dependency parsing. It was shown to be more accu-
rate than MALTPARSER, a state-of-the-art transition
based parser (Nivre et al., 2006), and near the perfor-
mance of the first-order MSTPARSER, a graph based
parser which decomposes its score over tree edges
(McDonald et al., 2005), while being more efficient.

The easy-first parser works by making easier de-
cisions before harder ones. Each decision can be
conditioned by structures created by previous deci-
sions, allowing harder decisions to be based on rel-
atively rich syntactic structure. This is in contrast to
the globally optimized parsers, which cannot utilize
such rich syntactic structures. It was hypothesized
in (Goldberg and Elhadad, 2010) that this rich con-
ditioning can be especially beneficial in situations
where informative structural information is avail-
able, such as in morphologically rich languages.

In this paper, we investigate the non-directional
easy-first parser performance on Modern Hebrew, a
semitic language with rich morphology, relatively
free constituent order, and a small treebank com-
pared to English. We are interested in two main
questions: (a) how well does the non-directional
parser perform on Hebrew data? and (b) can the
parser make effective use of morphological features,
such as agreement?

In (Goldberg and Elhadad, 2009), we describe
a newly created Hebrew dependency treebank, and

103

report results on parsing this corpus with both
MALTPARSER and first- and second- order vari-
ants of MSTPARSER. We find that the second-
order MSTPARSER outperforms the first order MST-
PARSER, which in turn outperforms the transition
based MALTPARSER. In addition, adding mor-
phological information to the default configurations
of these parsers does not improve parsing accu-
racy. Interestingly, when using automatically in-
duced (rather than gold-standard) morphological in-
formation, the transition based MALTPARSER’s ac-
curacy improves with the addition of the morpho-
logical information, while the scores of both glob-
ally optimized parsers drop with the addition of the
morphological information.

Our experiments in this paper show that the ac-
curacy of the non-directional parser on the same
dataset outperforms the first-order MSTPARSER.
With the addition of morphological agreement fea-
tures, the parser accuracy improves even further, and
is on-par with the performance of the second-order
MSTPARSER. The improvement due to the morpho-
logical information persists also when automatically
induced morphological information is used.

2 Modern Hebrew

Some aspects that make Hebrew challenging from a
language-processing perspective are:

Affixation Common prepositions, conjunctions
and articles are prefixed to the following word, and
pronominal elements often appear as suffixes. The
segmentation of prefixes and suffixes is often am-
biguous and must be determined in a specific context
only. In term of dependency parsing, this means that
the dependency relations occur not between space-
delimited tokens, but instead between sub-token el-
ements which we’ll refer to as segments. Further-
more, mistakes in the underlying token segmenta-
tions are sure to be reflected in the parsing accuracy.

Relatively free constituent order The ordering of
constituents inside a phrase is relatively free. This
is most notably apparent in the verbal phrases and
sentential levels. In particular, while most sentences
follow an SVO order, OVS and VSO configurations
are also possible. Verbal arguments can appear be-
fore or after the verb, and in many ordering. For

example, the message “went from Israel to Thai-
land” can be expressed as “went to Thailand from
Israel”, “to Thailand went from Israel”, “from Israel
went to Thailand”, “from Israel to Thailand went”
and “to Thailand from Israel went”. This results in
long and flat VP and S structures and a fair amount
of sparsity, which suggests that a dependency repre-
sentations might be more suitable to Hebrew than a
constituency one.

NP Structure and Construct State While con-
stituents order may vary, NP internal structure is
rigid. A special morphological marker (Construct
State) is used to mark noun compounds as well as
similar phenomena. This marker, while ambiguous,
is essential for analyzing NP internal structure.

Case Marking definite direct objects are marked.
The case marker in this case is the function word z`
appearing before the direct object.2

Rich templatic morphology Hebrew has a very
productive morphological structure, which is based
on a root+template system. The productive mor-
phology results in many distinct word forms and
a high out-of-vocabulary rate which makes it hard
to reliably estimate lexical parameters from anno-
tated corpora. The root+template system (combined
with the unvocalized writing system) makes it hard
to guess the morphological analyses of an unknown
word based on its prefix and suffix, as usually done
in other languages.

Unvocalized writing system Most vowels are not
marked in everyday Hebrew text, which results in a
very high level of lexical and morphological ambi-
guity. Some tokens can admit as many as 15 distinct
readings, and the average number of possible mor-
phological analyses per token in Hebrew text is 2.7,
compared to 1.4 in English (Adler, 2007).

Agreement Hebrew grammar forces morpholog-
ical agreement between Adjectives and Nouns
(which should agree in Gender and Number and def-
initeness), and between Subjects and Verbs (which
should agree in Gender and Number).

2The orthographic form z` is ambiguous. It can also stand
for the noun “shovel” and the pronoun “you”(2nd,fem,sing).

104

3 Easy First Non Directional Parsing

Easy-First Non Directional parsing is a greedy
search procedure. It works with a list of partial
structures, pi, . . . , pk, which is initialized with the
n words of the sentence. Each structure is a head
token which is not yet assigned a parent, but may
have dependants attached to it. At each stage of the
parsing algorithm, two neighbouring partial struc-
tures, (pi, pi+1) are chosen, and one of them be-
comes the parent of the other. The new dependant is
then removed from the list of partial structures. Pars-
ing proceeds until only one partial structure, corre-
sponding to the root of the sentence, is left. The
choice of which neighbouring structures to attach is
based on a scoring function. This scoring function
is learned from data, and attempts to attach more
confident attachments before less confident ones.
The scoring function makes use of features. These
features can be extracted from any pre-built struc-
tures. In practice, the features are defined on pre-
built structures which are around the proposed at-
tachment point. For complete details about training,
features and implementation, refer to (Goldberg and
Elhadad, 2010).

4 Experiments

We follow the setup of (Goldberg and Elhadad,
2009).

Data We use the Hebrew dependency treebank de-
scribed in (Goldberg and Elhadad, 2009). We use
Sections 2-12 (sentences 484-5724) as our training
set, and report results on parsing the development
set, Section 1 (sentences 0-483). As in (Goldberg
and Elhadad, 2009), we do not evaluate on the test
set in this work.

The data in the treebank is segmented and POS-
tagged. Both the parsing models were trained on
the gold-standard segmented and tagged data. When
evaluating the parsing models, we perform two sets
of evaluations. The first one is an oracle experi-
ment, assuming gold segmentation and tagging is
available. The second one is a real-world experi-
ment, in which we segment and POS-tag the test-
set sentences using the morphological disambigua-
tor described in (Adler, 2007; Goldberg et al., 2008)
prior to parsing.

Parsers and parsing models We use our freely
available implementation3 of the non-directional
parser.

Evaluation Measure We evaluate the resulting
parses in terms of unlabeled accuracy – the percent
of correctly identified (child,parent) pairs4. To be
precise, we calculate:

number of correctly identified pairs

number of pairs in gold parse

For the oracle case in which the gold-standard to-
ken segmentation is available for the parser, this is
the same as the traditional unlabeled-accuracy eval-
uation metric. However, in the real-word setting in
which the token segmentation is done automatically,
the yields of the gold-standard and the automatic
parse may differ, and one needs to decide how to
handle the cases in which one or more elements in
the identified (child,parent) pair are not present in
the gold-standard parse. Our evaluation metric pe-
nalizes these cases by regarding them as mistakes.

5 Results
Base Feature Set On the first set of experiments,
we used the English feature set which was used in
(Goldberg and Elhadad, 2010). Our only modifica-
tion to the feature set for Hebrew was not to lex-
icalize prepositions (we found it to work somewhat
better due to the smaller treebank size, and Hebrew’s
rather productive preposition system).

Results of parsing the development set are sum-
marized in Table 1. For comparison, we list the per-
formance of the MALT and MST parsers on the same
data, as reported in (Goldberg and Elhadad, 2009).

The case marker z`, as well as the morpholog-
ically marked construct nouns, are covered by all
feature models. z` is a distinct lexical element in a
predictable position, and all four parsers utilize such
function word information. Construct nouns are dif-
ferentiated from non-construct nouns already at the
POS tagset level.

All models suffer from the absence of gold
POS/morphological information. The easy-first
non-directional parser with the basic feature set

3http://www.cs.bgu.ac.il/∼yoavg/software/nondirparser/
4All the results are macro averaged.

105

(NONDIR) outperforms the transition based MALT-
PARSER in all cases. It also outperforms the first or-
der MST1 model when gold POS/morphology infor-
mation is available, and has nearly identical perfor-
mance to MST1 when automatically induced POS/-
morphology information is used.

Additional Morphology Features Error inspec-
tion reveals that most errors are semantic in nature,
and involve coordination, PP-attachment or main-
verb hierarchy. However, some small class of er-
rors reflected morphological disagreement between
nouns and adjectives. These errors were either in-
side a simple NP, or, in some cases, could affect rel-
ative clause attachments. We were thus motivated to
add specific features encoding morphological agree-
ment to try and avoid this class of errors.

Our features are targeted specifically at capturing
noun-adjective morphological agreement.5 When
attempting to score the attachment of two neigh-
bouring structures in the list, pi and pi+1, we in-
spect the pairs (pi, pi+1), (pi, pi+2), (pi−1, pi+1),
(pi−2, pi), (pi+1, pi+2). For each such pair, in case
it is made of a noun and an adjective, we add two
features: a binary feature indicating presence or ab-
sence of gender agreement, and another binary fea-
ture for number agreement.

The last row in Table 1 (NONDIR+MORPH)
presents the parser accuracy with the addition of
these agreement features. Agreement contributes
to the accuracy of the parser, making it as accu-
rate as the second-order MST2. Interestingly, the
non-directional model benefits from the agreement
features also when automatically induced POS/mor-
phology information is used (going from 75.5% to
76.2%). This is in contrast to the MST parsers,
where the morphological features hurt the parser
when non-gold morphology is used (75.6 to 73.9
for MST1 and 76.4 to 74.6 for MST2). This can
be attributed to either the agreement specific na-
ture of the morphological features added to the non-
directional parser, or to the easy-first order of the
non-directional parser, and to the fact the morpho-
logical features are defined only over structurally
close heads at each stage of the parsing process.

5This is in contrast to the morphological features used in
out-of-the-box MST and MALT parsers, which are much more
general.

Gold Morph/POS Auto Morph/POS
MALT 80.3 72.9
MALT+MORPH 80.7 73.4
MST1 83.6 75.6
MST1+MORPH 83.6 73.9
MST2 84.3 76.4
MST2+MORPH 84.4 74.6
NONDIR 83.8 75.5
NONDIR+MORPH 84.2 76.2

Table 1: Unlabeled dependency accuracy of the various
parsing models.

6 Discussion
We have verified that easy-first, non-directional de-
pendency parsing methodology of (Goldberg and El-
hadad, 2010) is successful for parsing Hebrew, a
semitic language with rich morphology and a small
treebank. We further verified that the model can
make effective use of morphological agreement fea-
tures, both when gold-standard and automatically in-
duced morphological information is provided. With
the addition of the morphological agreement fea-
tures, the non-directional model is as effective as a
second-order globally optimized MST model, while
being much more efficient, and easier to extend with
additional structural features.

While we get adequate parsing results for Hebrew
when gold-standard POS/morphology/segmentation
information is used, the parsing performance in
the realistic setting, in which gold POS/morpholo-
gy/segmentation information is not available, is still
low. We strongly believe that parsing and morpho-
logical disambiguation should be done jointly, or
at least interact with each other. This is the main
future direction for dependency parsing of Modern
Hebrew.

References

Meni Adler. 2007. Hebrew Morphological Disambigua-
tion: An Unsupervised Stochastic Word-based Ap-
proach. Ph.D. thesis, Ben-Gurion University of the
Negev, Beer-Sheva, Israel.

Yoav Goldberg and Michael Elhadad. 2009. Hebrew De-
pendency Parsing: Initial Results. In Proc. of IWPT.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proc. of NAACL.

Yoav Goldberg, Meni Adler, and Michael Elhadad. 2008.

106

EM Can find pretty good HMM POS-Taggers (when
given a good start). In Proc. of ACL.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool
Publishers.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proc of ACL.

Joakim Nivre, Johan Hall, and Jens Nillson. 2006. Malt-
Parser: A data-driven parser-generator for dependency
parsing. In Proc. of LREC.

107

Author Index

Ambati, Bharat Ram, 22, 94
Attia, Mohammed, 67

Bengoetxea, Kepa, 31

Candito, Marie, 1, 76, 85
Cetinoglu, Ozlem, 85
Chrupała, Grzegorz, 85
Chung, Tagyoung, 49

Elhadad, Michael, 103

Foster, Jennifer, 1, 67

Gildea, Daniel, 49
Gojenola, Koldo, 31
Goldberg, Yoav, 1, 103

Habash, Nizar, 13
Hogan, Deirdre, 67
Husain, Samar, 22, 94

Jain, Sambhav, 22

Kuebler, Sandra, 1

Le Roux, Joseph, 67

Maier, Wolfgang, 58
Marton, Yuval, 13

Nivre, Joakim, 94

Post, Matt, 49

Rambow, Owen, 13
Rehbein, Ines, 1

Sangal, Rajeev, 22, 94
Seddah, Djamé, 1, 76, 85
Sharma, Dipti Misra, 22
Sima’an, Khalil, 40

Tounsi, Lamia, 1, 67
Tsarfaty, Reut, 1, 40

van Genabith, Josef, 67, 85
Versley, Yannick, 1

109

	Workshop Program
	Statistical Parsing of Morphologically Rich Languages (SPMRL) What, How and Whither
	Improving Arabic Dependency Parsing with Lexical and Inflectional Morphological Features
	Two Methods to Incorporate 'Local Morphosyntactic' Features in Hindi Dependency Parsing
	Application of Different Techniques to Dependency Parsing of Basque
	Modeling Morphosyntactic Agreement in Constituency-Based Parsing of Modern Hebrew
	Factors Affecting the Accuracy of Korean Parsing
	Direct Parsing of Discontinuous Constituents in German
	Handling Unknown Words in Statistical Latent-Variable Parsing Models for Arabic, English and French
	Parsing Word Clusters
	Lemmatization and Lexicalized Statistical Parsing of Morphologically-Rich Languages: the Case of French
	On the Role of Morphosyntactic Features in Hindi Dependency Parsing
	Easy-First Dependency Parsing of Modern Hebrew

