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Abstract

Spoken dialogue systems typically do not

manage the communication channel, instead

using fixed values for such features as the

amplitude and speaking rate. Yet, the qual-

ity of a dialogue can be compromised if the

user has difficulty understanding the system.

In this proof-of-concept research, we explore

using reinforcement learning (RL) to create

policies that manage the communication chan-

nel to meet the needs of diverse users. To-

wards this end, we first formalize a prelimi-

nary communication channel model, in which

users provide explicit feedback regarding is-

sues with the communication channel, and the

system implicitly alters its amplitude to ac-

commodate the user’s optimal volume. Sec-

ond, we explore whether RL is an appropri-

ate tool for creating communication channel

management strategies, comparing two differ-

ent hand-crafted policies to policies trained

using both a dialogue-length and a novel an-

noyance cost. The learned policies performed

better than hand-crafted policies, with those

trained using the annoyance cost learning an

equitable tradeoff between users with differ-

ing needs and also learning to balance finding

a user’s optimal amplitude against dialogue-

length. These results suggest that RL can be

used to create effective communication chan-

nel management policies for diverse users.

Index Terms: communication channel, spoken di-

alogue systems, reinforcement learning, amplitude,

diverse users

1 Introduction

Both Spoken Dialog Systems (SDS) and Assistive

Technology (AT) tend to have a narrow focus, sup-

porting only a subset of the population. SDS typ-

ically aim to support the “average man”, ignoring

wide variations in potential users’ ability to hear and

understand the system. AT aims to support peo-

ple with a recognized disability, but doesn’t sup-

port those whose impairment is not severe enough

to warrant the available devices or services, or those

who are unaware or have not acknowledged that they

need assistance. However, SDS should be able to

meet the needs of users whose abilities fall within,

and between, the extremes of severly impaired and

perfectly abled.

When aiming to support users with widely differ-

ing abilities, the cause of a user’s difficulty is less

important than adapting the communication channel

in a manner that aids understanding. For example,

speech that is presented more loudly and slowly can

help a hearing-impaired elderly person understand

the system, and can also help a person with no hear-

ing loss who is driving in a noisy car. Although one

user’s difficulty is due to impairment and the other

due to an adverse environment, a similar adaptation

may be appropriate to both.

During human-human communication, speakers

manage the communication channel; implicitly al-

tering their manner of speech to increase the likeli-

hood of being understood while concurrently econo-

mizing effort (Lindblom, 1990). In addition to these

implicit actions, speakers also make statements re-

ferring to breakdowns in the communication chan-
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nel, explicitly pointing out potential problems or

corrections, (e.g. ”Could you please speak up?”)

(Jurafsky et al., 1997).

As for human-computer dialogue, SDS are prone

to misrecognition of users’ spoken utterances. Much

research has focused on developing techniques for

overcoming or avoiding system misunderstandings.

Yet, as the quality of automatic speech recognition

improves and SDS are deployed to diverse popula-

tions and in varied environments, systems will need

to better attend to possible human misunderstand-

ings. Future SDS will need to manage the commu-

nication channel, in addition to managing the task,

to aid in avoiding these misunderstandings.

Researchers have explored the use of reinforce-

ment learning (RL) to create dialogue policies that

balance and optimize measures of task success (e.g.,

see (Scheffler and Young, 2002; Levin et al., 2000;

Henderson et al., 2008; Walker, 2000)). Along these

lines, RL is potentially well suited to creating poli-

cies for the subtask of managing the communica-

tion channel, as it can learn to adapt to the user

while continuing the dialogue. In doing so, RL may

choose actions that appear costly at the time, but lead

to better overall dialogues.

Our long term goal is to learn how to manage the

communication channel along with the task, moving

away from just “what” to say and also focusing on

“how” to say it. For this proof-of-concept, our goals

are twofold: 1) to formalize a communication chan-

nel model that encompasses diverse users, initially

focusing just on explicit user actions and implicit

system actions, and 2) to determine whether RL is

an appropriate tool for learning an effective commu-

nication channel management strategy for diverse

users. To explore the above issues, we use a simple

communication channel model in which the system

needs to determine and maintain an amplitude level

that is pleasant and effective for users with differ-

ing amplitude preferences and needs. As our goal

includes decreasing the amount of potentially an-

noying utterances (i.e., those in which the system’s

amplitude setting is in discord with the user’s op-

timal amplitude), we introduce a user-centric cost

metric, which we have termed annoyance cost. We

then compare hand-crafted policies against policies

trained using both annoyance and more traditional

dialogue-length cost components.

2 Related Work

2.1 How People Manage the Channel

When conversing, speakers implicitly adjust fea-

tures of their speech (e.g., speaking rate, loudness)

to maintain the communication channel. For ex-

ample, speakers produce Lombard speech when in

noisy conditions, produce clear speech to better ac-

commodate a hard of hearing listener, and alter their

speech to more closely resemble the interlocutor’s

(Junqua, 1993; Lindblom, 1990). These changes in-

crease the intelligibility of the speech, thus helping

to maintain the communication channel (Payton et

al., 1994). Research has also shown that speakers

adjust their speaking style when addressing a com-

puter; exhibiting the same speech adaptations seen

during human-human communication (Bell et al.,

2003; Lunsford et al., 2006).

In addition to altering their speech implicitly,

speakers also explicitly point out communication

channel problems (Jurafsky et al., 1997). Exam-

ples include; requesting a change in speaking rate or

amplitude (“Could you please speak up?”), explain-

ing sources of communication channel interference

(“Oh, that noise is the coffee grinder.”), or asking

their interlocutor to repeat an utterance (“What was

that?”). These explicit utterances identify some is-

sue with the communication channel that must be

remedied before continuing the dialogue. In re-

sponse, interlocutors will rewind to a previous point

in the dialogue and alter their speech to ensure they

are understood. This approach, of adapting ones

speech in response to a communication problem, oc-

curs even when conversing with a computer (Stent et

al., 2008).

Both implicit speech alterations and explicit ut-

terances regarding the communication channel of-

ten address issues of amplitude. This is to be

expected, as speaking at an appropriate amplitude

is critical to maintaining an effective communica-

tion channel, with sub-optimal amplitude affecting

listeners’ understanding and performance (Baldwin

and Struckman-Johnson, 2002). In addition, Bald-

win (2001) found that audible, but lowered, ampli-

tude can negatively affect both younger and older

subjects’ reaction time and ability to respond cor-

rectly while multitasking, and that elderly listeners

are likely to need higher amplitudes than younger
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listeners to maintain similar performance. Just as

low amplitude can be difficult to understand, high

amplitude can be annoying, and, in the extreme,

cause pain.

2.2 How Systems Manage the Channel

Towards improving listener understanding in a po-

tentially noisy environment, Martinson and Brock

(2007) take advantage of the mobility and sensory

capabilities of a robot. To determine the best course

of action, the robot maintains a noise map of the en-

vironment, measuring the environmental noise prior

to each TTS utterance. The robot then rotates to-

ward the listener, changes location, alters its am-

plitude, or pauses until the noise abates. A similar

technique, useful for remote listeners who may be

in a noisy environment or using a noisy communica-

tion medium, could analyze the signal-to-noise ratio

to ascertain the noise level in the listener’s environ-

ment. Although these techniques may be useful for

adjusting amplitude to compensate for noise in the

listener’s environment, they do not address speech

alterations needed to accommodate users with dif-

ferent hearing abilities or preferences.

Given the need to adapt to individual users, it

seems reasonable that users themselves would sim-

ply adjust volume on their local device. However,

there are issues with this approach. First, man-

ual adjustment of the volume would prove problem-

atic when the user’s hands and eyes are busy, such

as when driving a car. Second, during an ongo-

ing dialogue speakers tend to minimize pauses, re-

sponding quickly when given the turn (Sacks et al.,

1974). Stopping to alter the amplitude could re-

sult in longer than natural pauses, which systems

often respond to with increasingly lengthy ‘time-

out’ responses (Kotelly, 2003), or repeating the same

prompt endlessly (Villing et al., 2008). Third, al-

though we focus on amplitude adaptations in this

paper, amplitude is only one aspect of the commu-

nication channel. A fully functional communication

channel management solution would also incorpo-

rate adaptations of features such as speaking rate,

pausing, pitch range, emphasis, etc. This extended

set of features, because of their number and interac-

tion between them, do not readily lend themselves

to listener manipulation.

3 Reinforcement Learning

RL has been used to create dialogue strategies that

specify what action to perform in each possible

system state so that a minimum dialogue cost is

achieved (Walker, 2000; Levin et al., 2000). To ac-

complish this, RL starts with a policy, namely what

action to perform in each state. It then uses this pol-

icy, with some exploration, to estimate the cost of

getting from each state with each possible action to

the final state. As more simulations are run, RL re-

fines its estimates and its current policy. RL will

converge to an optimal solution as long as assump-

tions about costs and state transitions are met. RL is

particularly well suited for learning dialogue strate-

gies as it will balance opposing goals (e.g., minimiz-

ing excessive confirmations vs. ensuring accurate

information).

RL has been applied to a number of dialogue

scenarios. For form-filling dialogues, in which the

user provides parameters for a database query, re-

searchers have used RL to decide what order to use

when prompting for the parameters and to decrease

resource costs such as database access (Levin et al.,

2000; Scheffler and Young, 2002). System misun-

derstanding caused by speech recognition errors has

also been modeled to determine whether, and how,

the system should confirm information (Scheffler

and Young, 2002). However, there is no known work

on using RL to manage the communication channel

so as to avoid user misunderstanding.

User Simulation: To train a dialogue strategy us-

ing RL, some method must be chosen to emulate

realistic user responses to system actions. Training

with actual users is generally considered untenable

since RL can require millions of runs. As such, re-

searchers create simulated users that mimic the re-

sponses of real users. The approach employed to

create these users varies between researchers; rang-

ing from simulations that employ only real user data

(Henderson et al., 2008), to those that model users

with probabilistic simulations based on known re-

alistic user behaviors (Levin et al., 2000). Ai et

al. suggest that less realistic user simulations that al-

low RL to explore more of the dialogue state space

may perform as well or better than simulations that

statistically recreate realistic user behavior (Ai et al.,

2007). For this proof-of-concept work, we employ a
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hand-crafted user simulation that allows full explo-

ration of the state space.

Costs: Although it is agreed that RL is a viable

approach to creating optimal dialogue policies, there

remains much debate as to what cost functions result

in the most useful policies. Typically, these costs in-

clude a measure of efficiency (e.g., number of turns)

and a measure of solution quality (e.g., the user suc-

cessfully completed the transaction) (Scheffler and

Young, 2002; Levin et al., 2000). For manag-

ing the communication channel, it is unclear how

the cost function should be structured. In this work

we compare two cost components, a more traditional

dialogue-length cost versus a novel annoyance cost,

to determine which best supports the creation of use-

ful policies.

4 Communication Channel Model

Based on the literature reviewed in Section 2.1, we

devised a preliminary model that captures essential

elements of how users manage the communication

channel. For now, we only include explicit user ac-

tions, in which users directly address issues with

the communication channel, as noted by Jurafsky

et al. (1997). In addition, the users modeled are

both consistent and amenable; they provide feed-

back every time the system’s utterances are too loud

or too soft, and abandon the interaction only when

the system persists in presenting utterances outside

the user’s tolerance (either ten utterances that are too

loud or ten that are too soft).

For this work, we wish to create policies that treat

all users equitably. That is, we do not want to train

polices that give preferential treatment to a subset of

users simply because they are more common. To ac-

complish this, we use a flat rather than normal distri-

bution of users within the simulation, with both the

optimal amplitude and the tolerance range randomly

generated for each user. To represent users with dif-

fering amplitude needs, simulated users are modeled

to have an optimal amplitude between 2 and 8, and

a tolerance range of 1, 3 or 5. For example, a user

may have a optimal amplitude of 4, but be able to

tolerate an amplitude between 2 and 6.

When interacting with the computer, the user re-

sponds with: (a) the answer to the system’s query if

the amplitude is within their tolerance range; (b) too

soft (TS) if below their range; or (c) too loud (TL)

if the amplitude is above their tolerance range. As

a simplifying assumption, TS and TL represent any

user responses that address communication channel

issues related to amplitude. For example, the user

response “Pardon me?” would be represented by TS

and “There’s no need to shout!” by TL. With this

user model, the user only responds to the domain

task when the system employs an amplitude setting

within the user’s tolerance range.

For the system, we need to ensure that the sys-

tem’s amplitude range can accommodate any user-

tolerable amplitude. For this reason, the system’s

amplitude can vary between 0 and 10, and is ini-

tially set to 5 prior to each dialogue. In addition to

performing domain actions, the system specifies the

amount the amplitude should change: -2, -1, +0, +1,

+2. Each system communication to the user consists

of both a domain action and the system’s amplitude

change. Thus, the system manages the communica-

tion channel using only implicit actions. If the user

responds with TS or TL, the system will then restate

what it just said, perhaps altering the amplitude prior

to re-addressing the user.

5 Hand-crafted Policies

To help in determining whether RL is an appropriate

tool for learning communication channel manage-

ment strategies, we designed two hand-crafted poli-

cies for comparison. The first handcrafted policy,

termed no-complaints, finds a tolerable amplitude

as quickly as possible, then holds that amplitude for

the remainder of the dialogue. As such, this policy

only changes the amplitude in response to explicit

complaints from the user. Specifically, the policy in-

creases the amplitude by 2 after a TS response, and

drops it by 2 after a TL. If altering the amplitude by

2 would cause the system to return to a setting al-

ready identified as too soft or too loud, the system

uses an amplitude change of 1.

The second policy, termed find-optimal, searches

for the user’s optimal amplitude, then maintains that

amplitude for the remainder of the dialogue. For

this policy, the system first increases the amplitude

by 1 until the user responds with TL (potentially in

response to the system’s first utterance), then de-

creases the amplitude by 1 until the user either re-
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sponds with TS or the optimal amplitude is clearly

identified based on the previous feedback. An am-

plitude change of 2 is used only when both the op-

timal amplitude is obvious and a change of 2 will

bring the amplitude setting to the optimal ampli-

tude.

6 RL and System Encoding

To learn communication channel management poli-

cies we use RL with system and user actions spec-

ified using Information State Update rules (Hender-

son et al., 2008). Following Heeman (2007), we en-

code commonsense preconditions rather than trying

to learn them, and only use a subset of the informa-

tion state for RL.

Domain Task: We use a domain task that requires

the user to supply 9 pieces of information, excluding

user feedback relating to the communication chan-

nel. The system has a deterministic way of selecting

its actions, thus no learning is needed for the domain

task.

State Variables: For RL, each state is represented

by two variables; AmpHistory and Progress. Am-

pHistory models the user by tracking all previ-

ous user feedback. In addition, it tracks the cur-

rent amplitude setting. The string contains one

slot for each potential amplitude setting (0 through

10), with the current setting contained within “[]”.

Thus, at the beginning of each interaction, the string

is “-----[-]-----”, where “-” represents no

known data. Each time the user responds, the string

is updated to reflect which amplitude settings are too

soft (“<”), too loud (“>”), or within the user’s toler-

ance (“O”). When the user responds with TL/TS,

the system also updates all settings above/below the

current setting. The Progress variable is required

to satisfy the Markov property needed for RL. This

variable counts the number of successful informa-

tion exchanges (i.e., the user did not respond with

TS or TL). As the domain task requires 9 pieces of

information, the Progress variable ranged from 1 to

9.

Costs: Our user model only allows up to 10 utter-

ances that are too soft or too loud. If the cutoff is

reached, the domain task has not been completed, so

a solution quality cost of 100 is incurred. Cutting

off dialogues in this way has the additional benefit

of preventing a policy from looping forever during

testing. During training, to allow the system to bet-

ter model the cost of choosing the same action re-

peatedly, we use a longer cutoff of 1000 utterances

rather than 10.

In addition to solution quality, two different cost

components are utilized. The first, a dialogue-length

cost (DC), assigns a cost of 1 for each user utterance.

The second, an annoyance cost (AC), assigns a cost

calculated as the difference between the system’s

amplitude setting and the user’s optimal amplitude.

This difference is multiplied by 3 when the sys-

tem’s amplitude setting is below the user’s optimal.

This multiplier was chosen based on research that

demonstrated increased response times and errors

during cognitively challenging tasks when speech

was presented below, rather than above, typical con-

versational levels (Baldwin and Struckman-Johnson,

2002). Thus, only utterances at the optimal ampli-

tude have no cost.

7 Results

With the above system and user models, we trained

policies using the two cost functions discussed

above, eight with the DC component and eight us-

ing the AC component. All used Q-Learning and

the ǫ-greedy method to explore the state space with

ǫ set at 20% (Sutton and Barto, 1998). Dialogue runs

were grouped into epochs of 100; after each epoch,

the current dialogue policy was updated. We trained

each policy for 60,000 epochs. After certain epochs,

we tested the policy on 5000 user tasks.

For our simple domain, the solution quality cost

remained 0 after about the 100th epoch, as all poli-

cies learned to avoid user abandonment. Because of

this, only the dialogue-length cost(DC) and annoy-

ance cost(AC) components are reflected in the fol-

lowing analyses.

7.1 DC-Trained Policies

By 40,000 epochs, all eight DC policies converged

to one common optimal policy. Dialogues resulting

from the DC policies average 9.76 user utterances

long. DC policies start each dialogue using the de-

fault amplitude setting of 5. After receiving the ini-

tial user response, they aggressively explore the am-

plitude range. If the initial user response is TL (or
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DC AC

AmpHistory System Amp User AmpHistory System Amp User

-----[-]----- Query1 +0 5 TS -----[-]----- Query1 +1 6 TS

<<<<<[<]----- Query1 +2 7 Answer <<<<<<[<]---- Query1 +1 7 Answer

<<<<<<-[0]--- Query2 +0 7 Answer <<<<<<<[0]--- Query2 +1 8 Answer

<<<<<<-[0]--- Query3 +0 7 Answer <<<<<<<0[0]-- Query3 +1 9 Answer

<<<<<<-[0]--- Query4 +0 7 Answer <<<<<<00[0]- Query4 +1 10 TL

<<<<<<-[0]--- Query5 +0 7 Answer <<<<<<<000[>] Query4 -2 8 Answer

<<<<<<-[0]--- Query6 +0 7 Answer <<<<<<<0[0]0> Query5 +0 8 Answer

. . . . . . . . . . . . . . . . . . . . . . . .

dialogue length cost = 10 annoyance cost = 12

Table 1: Comparison of DC (left) and AC (right) interactions with a user who has an optimal amplitude of 8 and a

tolerance range of 3. The policies continue as shown, without changing the amplitude level, until all 9 queries are

answered.

TS), they continue by decreasing (or increasing) the

amplitude by -2 (or +2) until they find a tolerable

volume, in which case they stop. Table 1 illustrates

the above noted aspects of the policy. Additionally,

if the policy receives user feedback that is contrary

to the last feedback (i.e., TS after TL, or TL after

TS), the policy backtracks one amplitude setting. In

addition, if the current amplitude is near the bound-

ary (3 or 7), the policy will change the volume by

-1 or +1 as changing it by -2 or +2 would cause it

to move outside users’ amplitude range of 2-8. In

essence, the DC policies are quite straightforward;

aggressively changing the amplitude if the user com-

plains, and assuming the amplitude is correct if the

user does not complain.

7.2 AC-Trained Policies

By 55,000 epochs, AC policies converged to one of

two optimal solutions, with an average annoyance

cost of 7.49. As illustrated in Table 1, the behav-

ior of the AC policies is substantially more complex

than the DC policies. First, the AC policies start

by increasing the amplitude, delivering the first ut-

terance at a setting of 6 or 7. Second, the policies

do not stop exploring after they find a tolerable set-

ting, instead attempting to bracket the user’s toler-

ance range, thus identifying the user’s optimal am-

plitude. Third, AC policies sometimes avoid lower-

ing the amplitude, even when doing so would con-

cretely identify the user’s optimal amplitude. By do-

ing so, the policies potentially incur a cost of 1 for

all following turns, but avoid incurring a one time

cost of 3 or 6. In essence, the AC policies attempt to

find the user’s optimal amplitude but may stop short

as they approach the end of the dialogue, favoring a

slightly too high amplitude over one that might be

too low.

7.3 Comparing AC- and DC- Trained Policies

The costs for the AC and DC trained policy sets can-

not be directly compared as each set used a different

cost function. However, we can compare them using

each others’ cost function.

First, we compare the two sets of policies in terms

of average dialogue-length. For example, in Table 1,

following a DC policy results in a dialogue-length

of 10. However, for the same user, following the AC

policy results in a dialogue-length of 11, one utter-

ance longer due to the TL response to Query4.

The average dialogue-length of the DC and AC

policies, averaged across users, is shown in the right-

most two columns of Figure 1. As expected, the DC

policies perform better in terms of dialogue-length,

averaging 9.76 utterances long. However, the AC

policies average 10.32 utterances long, only 0.52 ut-

terances longer. This similarity in length is to be ex-

pected, as system communication outside the user’s

tolerance range impedes progress and is costly using

either cost component.

We also compared the AC and DC policies’ aver-

age dialogue-length for users with the same optimal

amplitude (i.e., each column shows the average cost

across users with tolerance ranges of 1, 3 and 5), as

shown in Figure 1. From this figure it is clear that

there is little difference in dialogue-length between

AC and DC policies for users with the same optimal
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amplitude. In addition, for both policies, the lengths

are similar between users with differing optimal am-

plitudes.
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Figure 1: Comparison of the dialogue-length between AC

and DC policies for users with differing optimal ampli-

tudes.

Second, we compare the two sets of polices in

terms of annoyance costs. For example, in Table 1,

following the AC policy results in an annoyance cost

of 12. For the same user, following the DC policy re-

sults in an annoyance cost of 36; 9 for Query1 as it is

three below the user’s optimal amplitude, and 3 for

each of the following nine utterances as they are all

one below optimal.

As shown in the rightmost columns of Figure 2,

DC policies average annoyance cost was 13.35, a

substantial 78% increase over the average cost of

7.49 for AC policies. Figure 2 also illustrates that

the AC and DC policies perform quite differently for

users with differing optimal amplitudes. For exam-

ple, users of the DC policies whose optimal is at (5),

or slightly below (4), the system’s default setting (5)

average lower annoyance costs than those using the

AC policies. However, these lowered costs for users

in the mid-range is gained at the expense of users

whose optimal amplitude is farther afield, especially

those users requiring higher amplitude settings. This

substantial difference between users with different

optimal amplitudes is because, for DC policies, the

interaction is often conducted at the very edge of the

users’ tolerance. In contrast, the AC policies risk

more intolerable utterances, but use this information

to decrease overall costs by better meeting users’

amplitude needs. As such, users of the AC policies

can expect the majority of the task to be conducted

at, or only one setting above, their optimal ampli-

tude.
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Figure 2: Comparison of the annoyance cost between AC

and DC policies for users with differing optimal ampli-

tudes.

7.4 Comparing Hand-crafted and Learned

Policies

Each of the two hand-crafted policies were run with

each user simulation (i.e., optimal amplitude from

2-8 and tolerance ranges of 1, 3, or 5). In addition,

we varied the domain task size, requiring between 4

and 10 pieces of information. DC and AC policies

were also trained for these domain task sizes.

As shown in Figure 3, The no-complain policy’s

annoyance costs ranged from 7.81 for dialogues re-

quiring four pieces of information to 14.67 for those

requiring ten pieces. The cost increases linearly with

the amount of information required, because the no-

complain policy maintains the first amplitude setting

found that does not result in a user response of TS

or TL. This ensures the amplitude setting is toler-

able to the user, but may not be the user’s optimal

amplitude.

In contrast, the find-optimal policy’s annoyance

costs initially increase from 9.67 for four pieces of

information to 12.24 for seven through ten pieces.

The cost does not continue to increase when the

amount of information required is greater than seven

because, for dialogues long enough to allow the sys-

tem to concretely identify the user’s optimal ampli-

tude, the cost is zero for all subsequent utterances.

Figure 3 also includes the mean annoyance cost

for the DC and AC policies. Although one might

expect the DC trained policies to resemble the

no-complain policy, the learned policy performs

slightly better. This difference is because the DC

policies learn the range of users’ optimal amplitude

settings (2-8), and do not move the amplitude below

2 or above 8. In contrast, the no-complain policies
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Figure 3: Average user annoyance costs for hand-crafted,

DC and AC policies across dialogues requiring differing

amounts of information.

behave consistently regardless of the current setting,

and thus will incur costs for exploring settings out-

side the range of users’ optimal amplitudes. Simi-

larly, AC policies could be anticipated to closely re-

semble the find-optimal policy. However, the AC

policies average cost is lower than the costs for ei-

ther hand-crafted policy, regardless of the amount

of information required. This difference is, in part,

due to differences in behavior at the ends of the

users’ optimal amplitude range, like the DC poli-

cies. However, additional factors include the AC

policies’ more varied use of amplitude changes and

their balancing of the remaining duration of the di-

alogue against the cost to perform additional explo-

ration, as discussed in subsection 7.2.

8 Discussion and Future Work

The first objective of this work was to create a model

of the communication channel that takes into ac-

count the abilities and preferences of diverse users.

In this model, each user has an optimal amplitude,

but will answer a system query delivered within a

range around that amplitude, although they find non-

preferred, especially too soft, amplitudes annoying.

When outside the user’s tolerance, the user pro-

vides explicit feedback regarding the communica-

tion channel breakdown. For the system, the model

specifies a composite system action, pairing a do-

main action with a possible communication chan-

nel management action to change the amplitude. By

modeling explicit user actions, and implicit system

actions, this model captures some essential elements

of how people manage the communication channel.

The second objective was to determine whether

RL is appropriate for learning communication chan-

nel management. As expected, the learned policies

found and maintained a tolerable amplitude setting

and eliminated user abandonment. We also com-

pared the learned policies with handcrafted solu-

tions, and found that the learned policies performed

better. This is primarily due to RL’s ability to auto-

matically balance the opposing goals of finding the

user’s optimal amplitude and minimizing dialogue-

length.

An added benefit of RL is that it optimizes the sys-

tem’s behavior for the users on which it is trained.

In this work, we purposely used a flat distribution of

users, which caused RL to find a policy (especially

when using annoyance costs) that does not penal-

ize the outliers, which are usually those with special

needs. In fact, we could modify the user distribution,

or the simulated users’ behavior, and RL would op-

timize the system’s behavior automatically.

In this work, we contrasted dialogue length (DC)

against annoyance cost (AC) components. We found

that the AC and DC policies share the objective of

finding an amplitude setting within the user’s tol-

erance range because both incur stepwise costs for

intolerable utterances. But, AC policies further re-

fine this objective by incurring costs for tolerable,

but non-optimal, amplitudes as well. AC policies

are using information that is not explicitly commu-

nicated to the system, but which none-the-less RL

can use while learning a policy.

As this was exploratory work, the user model does

not yet fully reflect expected user behavior. For ex-

ample, as the system’s amplitude decreases, users

may misunderstand the system’s query or fail to re-

spond at all. In future work we will use an enhanced

user model that includes more natural user behavior.

In addition, because we wanted the system to focus

on learning a communication channel management

strategy, the domain task was fixed. In future work,

we will use RL to learn policies that both accom-

plish a more complex domain task, and model con-

nections between domain tasks and communication

channel management. Ultimately, we need to con-

duct user-testing to measure the efficacy of the com-

munication channel management policies. We feel

confident that learned policies trained using a com-

munication channel model which reflects the range

of users’ abilities and preferences will prove effec-

tive for supporting all users.
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