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Abstract

We present an exploration of generative mod-
eling for the question answering (QA) task to
rank candidate passages. We investigate La-
tent Dirichlet Allocation (LDA) models to ob-
tain ranking scores based on a novel similar-
ity measure between a natural language ques-
tion posed by the user and a candidate passage.
We construct two models each one introducing
deeper evaluations on latent characteristics of
passages together with given question. With
the new representation of topical structures on
QA datasets, using a limited amount of world
knowledge, we show improvements on perfor-
mance of a QA ranking system.

1 Introduction

Question Answering (QA) is a task of automatic
retrieval of an answer given a question. Typically
the question is linguistically processed and search
phrases are extracted, which are then used to retrieve
the candidate documents, passages or sentences.

A typical QA system has a pipeline structure start-
ing from extraction of candidate sentences to rank-
ing true answers. Some approaches to QA use
keyword-based techniques to locate candidate pas-
sages/sentences in the retrieved documents and then
filter based on the presence of the desired answer
type in candidate text. Ranking is then done using
syntactic features to characterize similarity to query.
In cases where simple question formulation is not
satisfactory, many advanced QA systems implement
more sophisticated syntactic, semantic and contex-
tual processing such as named-entity recognition
(Molla et al., 2006), coreference resolution (Vicedo
and Ferrandez, 2000), logical inferences (abduction

or entailment) (Harabagiu and Hickl, 2006) trans-
lation (Ma and McKeowon, 2009), etc., to improve
answer ranking. For instance, how questions, or spa-
tially constrained questions, etc., require such types
of deeper understanding of the question and the re-
trieved documents/passages.

Many studies on QA have focused on discrimina-
tive models to predict a function of matching fea-
tures between each question and candidate passage
(set of sentences), namely q/a pairs, e.g., (Ng et al.,
2001; Echihabi and Marcu, 2003; Harabagiu and
Hickl, 2006; Shen and Klakow, 2006; Celikyilmaz
et al., 2009). Despite their success, they have some
room for improvement which are not usually raised,
e.g., they require hand engineered features; or cas-
cade features learnt separately from other modules
in a QA pipeline, thus propagating errors. The struc-
tures to be learned can become more complex than
the amount of training data, e.g., alignment, entail-
ment, translation, etc. In such cases, other source
of information, e.g., unlabeled examples, or human
prior knowledge, should be used to improve perfor-
mance. Generative modeling is a way of encoding
this additional information, providing a natural way
to use unlabeled data.

In this work, we present new similarity measures
to discover deeper relationship between q/a pairs
based on a probabilistic model. We investigate two
methods using Latent Dirichlet Allocation (LDA)
(Blei, 2003) in § 3, and hierarchical LDA (hLDA)
(Blei, 2009) in § 4 to discover hidden concepts. We
present ways of utilizing this information within a
discriminative classifier in § 5. With empirical ex-
periments in § 6, we analyze the effects of gener-
ative model outcome on a QA system. With the
new representation of conceptual structures on QA
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datasets, using a limited amount of world knowl-
edge, we show performance improvements.

2 Background and Motivation

Previous research have focused on improving mod-
ules of the QA pipeline such as question processing
(Huang et al., 2009), information retrieval (Clarke
et al., 2006), information extraction (Saggion and
Gaizauskas, 2006). Recent work on textual en-
tailment has shown improvements on QA results
(Harabagiu and Hickl, 2006), (Celikyilmaz et al.,
2009), when used for filtering and ranking answers.
They discover similarities between q/a pairs, where
the answer to a question should be entailed by the
text that supports the correctness of its answer.

In this paper, we present a ranking schema fo-
cusing on a new similarity modeling approach via
generative and discriminative methods to utilize best
features of both approaches. Combinations of dis-
criminative and generative methodologies have been
explored by several authors, e.g. (Bouchard and
Triggs, 2004; McCallum et al., 2006; Bishop and
Lasserre, 2007; Schmah et al., 2009), in many fields
such as natural language processing, speech recog-
nition, etc. In particular, the recent ”deep learning”
approaches (Weston et al., 2008) rely heavily on a
hybrid generative-discriminative approach: an un-
supervised generative learning phase followed by a
discriminative fine-tuning.

In an analogical way to the deep learning meth-
ods, we discover relations between the q/a pairs
based on the similarities on their latent topics dis-
covered via Bayesian probabilistic approach. We in-
vestigate different ways of discovering topic based
similarities following the fact that it is more likely
that the candidate passage entails given question and
contains true answer if they share similar topics.
Later we combine this information in different ways
into a discriminative classifier-based QA model.

The underlying mechanism of our similarity mod-
eling approach is Latent Dirichlet Allocation (LDA)
(Blei et al., 2003b). We argue that similarities can
be characterized better if we define a semantic simi-
larity measure based on hidden concepts (topics) on
top of lexico-syntactic features. We later extend our
similarity model using a hierarchical LDA (hLDA)
(Blei et al., 2003a) to discover latent topics that are

organized into hierarchies. A hierarchical structure
is particularly appealing to QA task than a flat LDA,
in that one can discover abstract and specific topics.
For example, discovering that baseball and football
are both contained in a more abstract class sports
can help to relate to a general topic of a question.

3 Similarity Modeling with LDA

We assume that for a question posed by a user, the
document sets D are retrieved by a search engine
based on the query expanded from the question. Our
aim is to build a measure to characterize similar-
ities between a given question and each candidate
passage/sentence s ∈ D in the retrieved documents
based on similarities of their hidden topics. Thus,
we built bayesian probabilistic models on passage
level rather than document level to explicitly extract
their hidden topics. Moreover, the fact that there is
limited amount of retrieved documents D per ques-
tion (∼100 documents) makes it appealing to build
probabilistic models on passages in place of docu-
ments and define semantically coherent groups in
passages as latent concepts. Given window size n
sentences, we define a passage as s = (|D| −n) + 1
based on a n-sliding-window, where |D| is the to-
tal number of sentences in retrieved documents D.
There are 25+ sentences in documents, hence we ex-
tracted around 2500 passages for each question.

3.1 LDA Model for Q/A System

We briefly describe LDA (Blei et al., 2003b) model
as used in our QA system. A passage in retrieved
documents (document collection) is represented as a
mixture of fixed topics, with topic z getting weight
θ
(s)
z in passage s and each topic is a distribution

over a finite vocabulary of words, with word w hav-
ing a probability φ(z)

w in topic z. Placing symmet-
ric Dirichlet priors on θ(s) and φ(z), with θ(s) ∼
Dirichlet(α) and φ(z) ∼ Dirichlet(β), where α
and β are hyper-parameters to control the sparsity
of distributions, the generative model is given by:

wi|zi, φ(zi)
wi ∼ Discrete(φ(zi)), i = 1, ...,W

φ(z) ∼ Dirichlet(β), z = 1, ...,K
zi|θ(si) ∼ Discrete(θ(si)), i = 1, ...,W
θ(s) ∼ Dirichlet(α), s = 1, ..., S

(1)
2



where S is the number of passages discovered from
the document collection, K is the total number of
topics, W is the total number of words in the docu-
ment collection, and si and zi are the passage and the
topic of the ith word wi, respectively. Each word in
the vocabulary wi ∈ V = {w1, ...wW } is assigned
to each latent topic variable zi=1,...,W of words.

After seeing the data, our goal is to calculate the
expected posterior probabilities φ̂(zi)

wi of a word wi
in a candidate passage given a topic zi = k and ex-
pected posterior probability θ̂(s) of topic mixings of
a given passage s, using the count matrices:

φ̂
(zi)
wi =

nWK
wik +βPW

j=1 n
WK
wjk +Wβ

θ̂(s) = nSK
sk +αPK

j=1 n
SK
sj +Kα

(2)
where nWK

wik
is the count of wi in topic k, and nSKsk

is the count of topic k in passage s. The LDA model
makes no attempt to account for the relation of topic
mixtures, i.e., topics are distributed flat, and each
passage is a distribution over all topics.

3.2 Degree of Similarity Between Q/A via
Topics from LDA:

We build a LDA model on the set of retrieved pas-
sages s along with a given question q and calculate
the degree of similarity DESLDA(q,s) between each
q/a pair based on two measures (Algorithm 1):
(1) simLDA

1 : To capture the lexical similarities
on hidden topics, we represent each s and q as
two probability distributions at each topic z =
k. Thus, we sample sparse unigram distributions
from each φ̂(z) using the words in q and s. Each
sparse word given topic distribution is denoted as
p
(z)
q = p(wq|z, φ̂(z)) with the set of words wq =

(w1, ..., w|q|) in q and ps = p(ws|z, φ̂(z)) with the
set of words ws = (w1, ..., w|s|) in s, and z = 1...K
represent each topic.

The sparse probability distributions per topic are
represented with only the words in q and s, and the
probabilities of the rest of the words in V are set
to zero. The W dimensional word probabilities is
the expected posteriors obtained from LDA model
(Eq.(2)), p(z)

s = (φ̂(z)
w1 , ..., φ̂

(z)
w|s| , 0, 0, ..) ∈ (0, 1)W ,

p
(z)
q = (φ̂(z)

w1 , ..., φ̂
(z)
w|q| , 0, 0, ..) ∈ (0, 1)W . Given a

topic z, the similarity between p(z)
q and p(z)

s is mea-
sured via transformed information radius (IR). We
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Figure 1: (a) The topic distributions of a passage s and a
question q obtained from LDA. Each topic zk is a distri-
bution over words (Most probable terms are illustrated).
(b) magnified view of (a) demonstrating sparse distribu-
tions over the vocabulary V, where only words in passage
s and question q get values. The passage-topic distribu-
tions are topic mixtures, θ(s) and θ(q), for s and q.

first measure the divergence at each topic using IR
based on Kullback-Liebler (KL) divergence:

IR(p
(z)
q ,p

(z)
s )=KL(p

(z)
q ||

p
(z)
q +p

(z)
s

2
)+KL(p

(z)
s ||

p
(z)
q +p

(z)
s

2
)

(3)
where, KL(p||q) =

∑
i pi log pi

qi
. The divergence is

transformed into similarity measure (Manning and
Schutze, 1999):

W (p(z)
q , p

(z)
s ) = 10−δIR(p

(z)
q ,p

(z)
s )1 (4)

To measure the similarity between probability distri-
butions we opted for IR instead of commonly used
KL because with IR there is no problem with infinite
values since pq+ps

2 6= 0 if either pq 6= 0 or ps 6= 0,
and it is also symmetric, IR(p,q)=IR(q,p). The simi-
larity of q/a pairs on topic-word basis is the average

1In experiments δ = 1 is used.
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of transformed divergence over the entire K topics:

simLDA
1 (q, s) = 1

K

∑K
k=1W (p(z=k)

q , p
(z=k)
s ) (5)

(2) simLDA
2 : We introduce another measure based on

passage-topic mixing proportions in q and s to cap-
ture similarities between their topics using the trans-
formed IR in Eq.(4) as follows:

simLDA
2 (q, s) = 10−IR(θ̂(q), θ̂(s)) (6)

The θ̂(q) and θ̂(s) are K-dimensional discrete topic
weights in question q and a passage s from Eq.(2).
In summary, simLDA

1 is a measure of lexical simi-
larity on topic-word level and simLDA

2 is a measure
of topical similarity on passage level. Together they
form the degree of similarity DESLDA(s, q) and are
combined as follows:

DESLDA(s,q)=simLDA
1 (q,s)*simLDA

2 (q, s) (7)

Fig.1 shows sparse distributions obtained for sam-
ple q and s. Since the topics are not distributed hi-
erarchially, each topic distribution is over the entire
vocabulary of words in retrieved collection D. Fig.1
only shows the most probable words in a given topic.
Moreover, each s and q are represented as a discrete
probability distribution over all K topics.

Algorithm 1 Flat Topic-Based Similarity Model
1: Given a query q and candidate passages s ∈ D
2: Build an LDA model for the retrieved passages.
3: for each passages s ∈ D do
4: - Calculate sim1(q, s) using Eq.(5)
5: - Calculate sim2(q, s) using Eq.(6)
6: - Calculate degree of similarity between q and s:
7: DESLDA(q,s)=sim1(q, s) ∗ sim2(q, s)
8: end for

4 Similarity Modeling with hLDA

Given a question, we discover hidden topic distribu-
tions using hLDA (Blei et al., 2003a). hLDA orga-
nizes topics into a tree of a fixed depth L (Fig.2.(a)),
as opposed to flat LDA. Each candidate passage s is
assigned to a path cs in the topic tree and each word
wi in s is assigned to a hidden topic zs at a level
l of cs. Each node is associated with a topic dis-
tribution over words. The Gibbs sampler (Griffiths
and Steyvers, 2004) alternates between choosing a

new path for each passage through the tree and as-
signing each word in each passage to a topic along
that path. The structure of tree is learnt along with
the topics using a nested Chinese restaurant process
(nCRP) (Blei et al., 2003a), which is used as a prior.

The nCRP is a stochastic process, which assigns
probability distributions to infinitely branching and
deep trees. nCRP specifies a distribution of words in
passages into paths in an L-level tree. Assignments
of passages to paths are sampled sequentially: The
first passage takes the initial L-level path, starting
with a single branch tree. Next,mth subsequent pas-
sage is assigned to a path drawn from distribution:

p(pathold, c|m,mc) = mc
γ+m−1

p(pathnew, c|m,mc) = γ
γ+m−1

(8)

pathold and pathnew represent an existing and novel
(branch) path consecutively, mc is the number of
previous passages assigned to path c, m is the to-
tal number of passages seen so far, and γ is a hyper-
parameter, which controls the probability of creating
new paths. Based on this probability each node can
branch out a different number of child nodes propor-
tional to γ. The generative process for hLDA is:
(1) For each topic k ∈ T , sample a distribution βk v
Dirichlet(η).
(2) For each passage s in retrieved documents,

(a) Draw a path cs v nCRP(γ),
(b) Sample L-vector θs mixing weights from

Dirichlet distribution θs ∼ Dir(α).
(c) For each word n, choose :

(i) a level zs,n|θs, (ii) a word ws,n| {zs,n, cs, β}
Given passage s, θs is a vector of topic propor-

tions from L dimensional Dirichlet parameterized
by α (distribution over levels in the tree.) The
nth word of s is sampled by first choosing a level
zs,n = l from the discrete distribution θs with prob-
ability θs,l. Dirichlet parameter η and γ control the
size of tree effecting the number of topics. Large
values of η favor more topics (Blei et al., 2003a).

Model Learning: Gibbs sampling is a common
method to fit the hLDA models. The aim is to ob-
tain the following samples from the posterior of: (i)
the latent tree T , (ii) the level assignment z for all
words, (iii) the path assignments c for all passages
conditioned on the observed words w.

Given the assignment of words w to levels z and
assignments of passages to paths c, the expected
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posterior probability of a particular word w at a
given topic z=l of a path c=c is proportional to the
number of times w was generated by that topic:

p(w|z, c,w, η) ∝ n(z=l,c=c,w=w) + η (9)

Similarly, posterior probability of a particular topic
z in a given passage s is proportional to number of
times z was generated by that passage:

p(z|s, z, c, α) ∝ n(c=cc,z=l) + α (10)

n(.) is the count of elements of an array satisfying
the condition. Posterior probabilities are normalized
with total counts and their hyperparameters.

4.1 Tree-Based Similarity Model
The hLDA constructs a hierarchical tree structure
of candidate passages and given question, each of
which are represented by a path in the tree, and each
path can be shared by many passages/question. The
assumption is that passages sharing the same path
should be more similar to each other because they
share the same topics (Fig.2). Moreover, if a path
includes a question, then other passages on that path
are more likely to entail the question than passages
on the other paths. Thus, the similarity of a can-
didate passage s to a question q sharing the same
path is a measure of semantic similarity (Algorithm
2). Given a question, we build an hLDA model on
retrieved passages. Let cq be the path for a given

q. We identify the candidate passages that share the
same path with q, M = {s ∈ D|cs = cq}. Given
path cq and M , we calculate the degree of similarity
DEShLDA(s, q) between q and s by calculating two
similarity measures:
(1) simhLDA

1 : We define two sparse (discrete) uni-
gram distributions for candidate s and question q at
each node l to define lexical similarities on topic
level. The distributions are over a vocabulary of
words generated by the topic at that node, vl ⊂
V . Note that, in hLDA the topic distributions at
each level of a path is sampled from the vocabu-
lary of passages sharing that path, contrary to LDA,
in which the topics are over entire vocabulary of
words. This enables defining a similarity measure
on specific topics. Given wq =

{
w1, ..., w|q|

}
, let

wq,l ⊂ wq be the set of words in q that are gener-
ated from topic zq at level l on path cq. The discrete
unigram distribution pql = p(wq,l|zq = l, cq, vl) rep-
resents the probability over all words vl assigned to
topic zq at level l, by sampling only for words in
wq,l. The probability of the rest of the words in vl are
set 0. Similarly, ps,l = p(ws,l|zs, cq, vl) is the proba-
bility of words ws in s extracted from the same topic
(see Fig.2.b). The word probabilities in pq,l and ps,l
are obtained using Eq. (9) and then normalized.

The similarity between pq,l and ps,l at each level
is obtained by transformed information radius:

Wcq,l
(pq,l, ps,l) = 10δ-IRcq,l(pq,l,ps,l) (11)
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where the IRcq,l
(pq,l, ps,l) is calculated as in Eq.(3)

this time for pq,l and ps,l (δ = 1). Finally simhLDA
1 is

obtained by averaging Eq.(11) over different levels:

simhLDA
1 (q, s) = 1

L

∑L
l=1 Wcq ,l(pq,l, ps,l) ∗ l (12)

The similarity between pq,l and ps,l is weighted by
the level l because the similarity should be rewarded
if there is a specific word overlap at child nodes.

Algorithm 2 Tree-Based Similarity Model
1: Given candidate passages s and question q.
2: Build hLDA on set of s and q to obtain tree T .
3: Find path cq on tree T and candidate passages
4: on path cq , i.e., M = {s ∈ D|cs = cq}.
5: for candidate passage s ∈M do
6: Find DEShDLA(q, s) = simhLDA

1 ∗ simhLDA
2

7: using Eq.(12) and Eq.(13)
8: end for
9: if s /∈M , then DEShDLA(q, s)=0.

(2) simhLDA
2 : We introduce a concept-base mea-

sure based on passage-topic mixing proportions to
calculate the topical similarities between q and s.
We calculate the topic proportions of q and s, rep-
resented by pzq = p(zq|cq) and pzs = p(zs|cq) via
Eq.(10). The similarity between the distributions is
then measured with transformed IR as in Eq.(11) by:

simhLDA
2 (q, s) = 10−IRcq(pzq ,pzs) (13)

In summary, simhLDA
1 provides information about

the similarity between q and s based on topic-word
distributions, and simhLDA

2 is the similarity between
the weights of their topics. The two measures are
combined to calculate the degree of similarity:

DEShLDA(q,s)=simhLDA
1 (q,s)*simhLDA

2 (q, s) (14)

Fig.2.b depicts a sample path illustrating sparse uni-
gram distributions of a q and s at each level and their
topic proportions, pzq , and pzs . The candidate pas-
sages that are not on the same path as the question
are assigned DEShLDA(s, q) = 0.

5 Discriminitive Model for QA

In (Celikyilmaz et al., 2009), the QA task is posed
as a textual entailment problem using lexical and se-
mantic features to characterize similarities between

q/a pairs. A discriminative classifier is built to pre-
dict the existence of an answer in candidate sen-
tences. Although they show that semi-supervised
methods improve accuracy of their QA model un-
der limited amount of labeled data, they suggest that
with sufficient number of labeled data, supervised
methods outperform semi-supervised methods. We
argue that there is a lot to discover from unlabeled
text to help improve QA accuracy. Thus, we pro-
pose using Bayesian probabilistic models. First we
briefly present the baseline method:
Baseline: We use the supervised classifier

model presented in (Celikyilmaz et al., 2009) as
our baseline QA model. Their datasets, provided in
http://www.eecs.berkeley.edu/∼asli/asliPublish.html,
are q/a pairs from TREC task. They define each
q/a pair as a d dimensional feature vector xi ∈ <d
characterizing entailment information between
them. They build a support vector machine (SVM)
(Drucker et al., 1997) classifier model to predict the
entailment scores for q/a pairs.

To characterize the similarity between q/a pairs
they use: (i) features represented by similarities
between semantic components, e.g., subject, ob-
ject, verb, or named-entity types discovered in q/a
pairs, and (ii) lexical features represented by lexico-
syntactic alignments such as n-gram word overlaps
or cause and entailment relations discovered from
WordNet (Miller, 1995). For a given question q, they
rank the candidate sentences s based on predicted
entailment scores from the classifier, TE(q, s).

We extend the baseline by using the degree of
similarity between question and candidate passage
obtained from LDA, DESLDA(q, s), as well as hLDA
DEShLDA(q, s), and evaluate different models:
Model M-1: Degree of Similarity as Rank

Scores: In this model, the QA is based on a fully
generative approach in which the similarity mea-
sures of Eq.(7) in §3 and Eq.(14) in §4 are used to
obtain ranking scores. We build two separate mod-
els, M-1.1 using DESLDA(q, s), and M-1.2 using
DEShLDA(q, s) as rank scores and measure accu-
racy by re-ranking candidate passages accordingly.
Given a question, this model requires training indi-
vidual LDA and hLDA models.
Model M-2: Interpolation Between

Classifier-Based Entailment Scores and Genera-
tive Model Scores: In this model, the underlying
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mechanism of QA is the discriminative method
presented in baseline. We linearly combine the
probabilistic similarity scores from generative
models, DES scores in M-1, with the baseline
scores. We build two additional models to calculate
the final rank scores; M-2.1 using:

score(s|q) = a∗TE(q, s)+b∗DESLDA(q, s) (15)

and M-2.2 using:

score(s|q) = a∗TE(q, s)+b∗DEShLDA(q, s) (16)

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 and a + b = 1.
We find the optimum a∗ and b∗ based on the valida-
tion experiments on training dataset. The candidate
sentences are re-ranked based on these scores.
Model M-3: Degree of Similarity as Entail-

ment Features: Another way to incorporate the la-
tent information into the discriminitive QA model
is to utilize the latent similarities as explanatory
variables in the classifier model. Particularly we
build M-3.1 by using simLDA

1 , simLDA
2 as well as

DESLDA(q, s) as additional features for the SVM, on
top of the the existing features used in (Celikyilmaz
et al., 2009). Similarly, we build M-3.2 by using
simhLDA

1 , simhLDA
2 as well as DEShLDA(q, s) as addi-

tional features to the SVM classifier model to predict
entailment scores. This model requires building two
new SVM classifier models with the new features.

6 Experiments and Discussions

We demonstrate the results of our experiments on
exploration of the effect of different generative mod-
els presented in §5 on TREC QA datasets.

We performed experiments on the datasets used in
(Celikyilmaz et al., 2009). Their train dataset com-
poses of a set of 1449 questions from TREC-99-
03. For each question, the 5 top-ranked candidate
sentences are extracted from a large newswire cor-
pora (Acquaint corpus) through a search engine, i.e.,
Lucene 2. The q/a pairs are labeled as true/false de-
pending on the containment of the true answer string
in retrieved passages. Additionally, to calculate the
LDA and hLDA similarity measures for each candi-
date passage, we also extract around 100 documents
in the same fashion using Lucene and identify pas-
sages to build the probabilistic models. We calculate

2http://lucene.apache.org/java/

the probabilistic similarities, i.e., simLDA
1 , simLDA

2 ,
simhLDA

1 , simhLDA
2 , and the degree of similarity val-

ues, i.e., DESLDA(q, s) and DEShLDA(q, s) for
each of the 5 top-ranked candidate sentences in
training dataset at inference time. Around 7200 q/a
pairs are compiled accordingly.

The provided testing data contains a set of 202
questions from TREC2004 along with 20 candidate
sentences for each question, which are labeled as
true/false. To calculate the similarities for the 20
candidate sentences, we extract around 100 docu-
ments for each question and build LDA and hLDA
models. 4037 testing q/a pairs are compiled.

We report the retrieval performance of our mod-
els in terms of Mean Reciprocal Rank (MRR), top
1 (Top1) and top 5 prediction accuracies (Top5)
(Voorhees, 2004). We performed parameter opti-
mization during training based on prediction ac-
curacy to find the best C =

{
10−2, .., 102

}
and

Γ =
{

2−2, .., 23
}

for RBF kernel SVM. For the
LDA models we present the results with 10 top-
ics. In hLDA models, we use four levels for the
tree construction and set the topic Dirichlet hyper-
parameters in decreasing order of levels at η =
{1.0, 0.75, 0.5, 0.25} to encourage as many terms in
the mid to low levels as the higher levels in the hi-
erarchy, for a better comparison between q/a pairs.
The nested CRP parameter γ is fixed at 1.0. We
evaluated n-sliding-window size of sentences in se-
quence, n = {1, 3, 5}, to compile candidate pas-
sages for probabilistic models (Table 1). The output
scores for SVM models are normalized to [0,1].
? As our baseline (in §5), we consider supervised

classifier based QA presented in (Celikyilmaz et al.,
2009). The baseline MRR on TREC-2004 dataset is
MRR=%67.6, Top1=%58, Top5=%82.2.
? The results of the new models on testing dataset

are reported in Table 1. Incorporating the genera-
tive model output to the classifier model as input
features, i.e., M-3.1 and M-3-2, performs con-
sistently better than the rest of the models and the
baseline, where MRR result is statistically signifi-
cant based on t-test statistics (at p = 0.95 confi-
dence level). When combined with the textual en-
tailment scores, i.e., M-2.1 and M-2.2, they pro-
vide a slightly better ranking, a minor improvement
compared to the baseline. However, using the gen-
erative model outcome as sole ranking scores in
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Window-size 1-window 3-window 5-window
MRR categories MRR Top1 Top5 MRR Top1 Top5 MRR Top1 Top5

M
od

el
s

M-1.1 (with LDA) 42.7 30.2 64.4 42.1 30.2 64.4 42.1 30.2 64.4
M-1.1 (with hLDA) 55.8 45.5 71.0 55.8 45.5 71.0 54.9 45.5 71.0
M-2.1 (with LDA) 66.2 55.1 82.2 65.2 54.5 80.7 65.2 54.5 80.7
M-2.2 (with hLDA) 68.2 58.4 82.2 67.6 58.0 82.2 67.4 58.0 81.6
M-3.1 (with LDA) 68.0 61.0 82.2 68.0 58.1 82.2 68.2 58.1 82.2
M-3.2 (with hLDA) 68.4 63.4 82.2 68.3 61.0 82.2 68.3 61.0 82.2

Table 1: The MRR results of the models presented in §5 on testing dataset (TREC 2004) using different window sizes
of candidate passages. The statistically significant model results in each corresponding MRR category are bolded.
Baseline MRR=%67.6, Top1=%58, Top5=%82.2.

M-1.1 and M-1.2 do not reveal as good results as
the other models, suggesting room for improvement.
? In Table 1, Top1 MRR yields better improve-

ment compared to the other two MRRs, especially
for models M-3.1 and M-3.2. This suggests that
the probabilistic model outcome rewards the can-
didate sentences containing the true answer by es-
timating higher scores and moves them up to the
higher levels of the rank.
? The analysis of different passage sizes suggest

that the 1-window size yields best results and no sig-
nificant performance improvement is observed when
window size is increased. Thus, the similarity be-
tween q/a pairs can be better explained if the candi-
date passage contains less redundant sentences.
? The fact that the similarity scores obtained from

the hLDA models are significantly better than LDA
models in Table 1 indicates an important property
of hierarchal topic models. With the hLDA specific
and generic topics can be identified on different lev-
els of the hierarchy. Two candidate passages can
be characterized with different abstract and specific
topics (Fig. 2) enabling representation of better fea-
tures to identify similarity measures between them.
Whereas in LDA, each candidate passage has a pro-
portion in each topic. Rewarding the similarities on
specific topics with the hLDA models help improve
the QA rank performance.
? In M-3.1 and M-3.2 we use probabilistic sim-

ilarities and DES as inputs to the classifier. In Table
2 we show the individual effects of these features on
the MRR testing performance along with other lexi-
cal and semantic features of the baseline. Although
the effect of each feature is comparable, the DESLDA

Features M-3.1 Features M-3.1

sim1LDA 67.7 sim1hLDA 67.8
sim2LDA 67.5 sim2hLDA 68.0
DESLDA 67.9 DEShLDA 68.1

Table 2: The MRR results of the similarity measures on
testing dataset (TREC 2004) when used as input features.

and DEShLDA features reveal slightly better results.

7 Conclusion and Future Work

In this paper we introduced a set of methods based
on Latent Dirichlet Allocation (LDA) to character-
ize the similarity between the question and the can-
didate passages, which are used as ranking scores.
The results of our experiments suggest that extract-
ing information from hidden concepts improves the
results of a classifier-based QA model.

Although unlabeled data exploration through
probabilistic graphical models can help to improve
information extraction, devising a machinery with
suitable generative models for the given natural lan-
guage task is a challenge. This work helps with
such understanding via extensive simulations and
puts forward and confirms a hypothesis explaining
the mechanisms behind the effect of unsupervised
pre-training for the final discriminant learning task.

In the future, we would like to further evaluate
the models presented in this paper for larger datasets
and for different tasks such as question paraphrase
retrieval or query expansion. Moreover, we would
like to enhance the similarities with other semantic
components extracted from questions such as ques-
tion topic and question focus.
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