Generating Quantifiers and Negation to Explain Homework Testing

Jason Perry and Chung-chieh Shan
Rutgers University
Department of Computer Science

Abstract

We describe Prograder, a software package for
automatic checking of requirements for pro-
gramming homework assignments. Prograder
lets instructors specify requirements in natural
language as well as explains grading results to
students in natural language. It does so using
a grammar that generates as well as parses to
translate between a small fragment of English
and a first-order logical specification language
that can be executed directly in Python. This
execution embodies multiple semantics—both
to check the requirement and to search for ev-
idence that proves or disproves the require-
ment. Such a checker needs to interpret and
generate sentences containing quantifiers and
negation. To handle quantifier and negation
scope, we systematically simulate continua-
tion grammars using record structures in the
Grammatical Framework.

1 Introduction

The typical programming assignment in a computer-
science course comes with not only a problem de-
scription but also correctness and stylistic require-
ments such as

(1) Every source file compiles and has comments,
and a text file mentions every source file and
every header file.

Although the requirements do not usually specify
exactly how the students’ work will be judged, they
make it much easier to grade and respond to the sub-
mitted work. Many requirements can be checked

57

automatically by computer, and often they are—
perhaps even right after each student uploads their
work so that the student can revise their work using
the immediate feedback.

This common workflow is wanting in two aspects.
First, the requirements are both specified to the stu-
dents in English and coded into a testing harness by
the course staff. Keeping the two versions is a hassle
that involves much boilerplate text as well as boil-
erplate code. Second, students rightfully demand
comprehensible explanations when their work is re-
jected by the requirement tester. It is tricky to code
up a tester that produces error messages neither too
terse nor too verbose, when one student might forget
to comment just one file and another might not know
the lexical syntax of comments at all.

A natural approach to improve this workflow,
then, is to specify the requirements in a formal lan-
guage and to implement an interpreter for the lan-
guage that produces explanations. Because many
instructors, like students, are averse to learning new
languages, we pursue the use of a controlled subset
of English as that formal language. In short, we aim
to produce a programming-assignment tester that
allows instructors to specify requirements for pro-
gramming assignments in natural language, checks
those requirements automatically by executing com-
mands on the submitted assignment files, and gen-
erates for the student a natural-language explanation
of the results. For example, in an introductory pro-
gramming class, a professor may write the specifi-
cation sentence (1). The system would then grade
all students’ programming assignments according to
these criteria, and return individualized explanations

Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications, pages 57-65,
Los Angeles, California, June 2010. (©)2010 Association for Computational Linguistics

to students like

(2) Credit was lost because bar . ¢ did not compile
and no text file mentioned the files foo.h and
baz.h.

As this example illustrates, the tester needs to in-
terpret and generate sentences with quantifiers and
negation. Although the interpretation of quantifiers
and negation is a traditional research area in com-
putational linguistics (VanLehn, 1978; Hobbs and
Shieber, 1987; Moran, 1988), their generation is
much less studied (Gailly, 1988). Even if our system
were to compose explanations entirely from the in-
put specification sentences and their negation, it can-
not negate a specification sentence merely by adding
or removing verbal auxiliaries: the negation of “a
source file defines main () is not “a source file does
not define main()”.

1.1 Contributions

We have built Prograder, a rudimentary program-
ming-assignment tester that correctly interprets and
generates a small fragment of English that includes
quantifiers and negation. This paper describes the
architecture of Prograder. Our implementation uses
a declarative grammar that simultaneously supports
interpretation and generation by relating English
phrase structure to type-logical semantics. This pa-
per details the new techniques we use in this gram-
mar to represent quantifier scope and De Morgan du-
ality in a tractable way.

Prograder also lets us investigate how to make a
computer program explain its own execution. The
concerns for a tester that must justify its output to
students are not merely grammatical, but involve the
semantics and pragmatics of summarization and jus-
tification. For example, when is it semantically cor-
rect to combine entities within an NP, as in “foo.h
and baz.h” above? When is an explanation prag-
matically enough for a student who has a right to
know why she lost credit on a programming assign-
ment? Which pieces of evidence must be stated and
which are better left out? We plan to study these
questions within type-logical semantics as well.

1.2 Organization of This Paper

In Section 1, we have introduced the problem and
outlined the contributions of the research carried out

58

in building Prograder. In Section 2, we give a high-
level overview of the architecture of the system, in-
cluding the representation of natural-language syn-
tax and type-logical semantics, as well as the proce-
dure of operation. Section 3 describes Prograder’s
checking procedure and how it generates explana-
tions in tandem with the checking. In Section 4,
we begin to describe the details of the grammati-
cal framework that allows us to handle bidirectional
translation between English and the logical form.
Continuing in Section 5, we discuss the handling
of negation and quantifier scoping by means of a
record-based implementation of continuation gram-
mars. Section 6 reviews the architecture of the sys-
tem with additional implementation details, and Sec-
tion 7 concludes with future work.

2 System Overview

We explain the architecture of our Prograder sys-
tem using a simplified example. Suppose that the
instructor specifies the requirement that

(3) Every source file compiles.

Prograder begins by parsing this sentence into an ab-
stract syntax tree:

4) ApplyS

EverySourceFile Compiles

Interpreting this tree compositionally gives the
meaning of the sentence:

(5) everysourcefile(lambda x:
compiles(x))

On one hand, this expression is a formula in pred-
icate logic. In general, each requirement specifi-
cation is a sentence, whose truth value is deter-
mined by checking a single student’s programming
assignment. We use the types of Montague gram-
mar (1974), which are the base type of entities e, the
base type of propositions ¢, and function types no-
tated by —. Our logical language is defined by a
domain-specific vocabulary of typed predicates and
entities (Hudak, 1996). Naturally, the files submit-
ted by the student are entities.

For example, the unary predicates compiles and
hascomments have the type e — ¢, and the bi-
nary predicate mentions has the type e — e — 1.
These predicates in our vocabulary represent vari-
ous properties of submitted files that instructors may
want to check. Logical connectives are also part
of the vocabulary; for instance, and and or have
the type t — ¢t — ¢, not_b has the type t — ¢, and
everysourcefile has the type (e — ¢) — ¢. There-
fore, the expression (5) has the type ¢, as do the ex-
pressions

(6) compiles("foo.c")

(7) and(compiles("foo.c"),
hascomments("bar.c"))

On the other hand, the expressions (5-7) are exe-
cutable Python code. Prograder includes a library
of Python functions such as everysourcefile,
which iterates over the source files submitted, and
compiles, which invokes gcc. As each student sub-
mits their homework, we evaluate the expression (5)
to check the requirement (3). We use Python’s own
lambda abstraction and first-class functions to ex-
press quantified statements. For example, evaluating
(5) invokes gcc on each source file submitted.

Evaluation not only computes a Boolean value but
also yields a tree of evidence statements to justify
the result. At the root of the tree is either the re-
quirement (5) or its negation:

(8) asourcefile(lambda x:
not_b(compiles(x)))

Each node’s children are the premises that together
justify the conclusion at that node. For example, if
every source file submitted by the student compiles
successfully except one, then (8) would be justified
by a sole child:

(9) not_b(compiles("bar.c"))

Prograder then parses each evidence statement into
abstract syntax:

(10) ApplyS ApplyS
ASourceFile Not_VP bar.c Not_VP
Compiles Compiles

59

From these trees, Prograder finally renders each ev-
idence statement as an English clause:

(11) A source file does not compile because bar.c
does not compile.

To summarize, Prograder’s steps of operation are
as follows:

1. Parse the natural-language requirement state-
ment into a phrase-structure syntax tree.

2. Produce a logical semantic representation from
the syntax tree.

3. Execute the semantic representation to check
the requirement and produce a semantic repre-
sentation of each evidence statement.

4. Parse the evidence statements into phrase-
structure syntax trees.

5. Produce natural-language explanation from the
syntax trees.

From end to end, these steps operate on just three
levels of representation: the abstract syntax trees in
(4) and (10) can be spelled out either in natural lan-
guage (English) as in (3) and (11) or in predicate
logic (Python) as in (5-9). Thus, Prograder inter-
prets natural-language requirements and generates
natural-language explanations using the same exe-
cutable semantic representations. In fact, it uses the
same grammar, as described in Section 4.

3 Gathering Evidence while Testing Truth

As sketched above, evaluating a proposition gives a
Boolean result along with a tree of evidence propo-
sitions that justify that result. That is, we represent
the type ¢ in Python as an ordered pair, not just a
Boolean value. This is straightforward for primitive
first-order predicates. For example, the compiles
function, when invoked with the argument "foo.c",
tries to compile foo.c, then either returns True
along with a trivial evidence tree containing just the
proposition compiles("foo.c"), orreturns False
along with a trivial evidence tree containing just
the proposition not_b(compiles("foo.c")). In
short, we hold whether a file compiles to be self-
evident.

The picture is more complex for logical connec-
tives, especially higher-order functions such as the
quantifier everysourcefile. Ideally, the falsity
of (3) should be justified by an explanation like

(12) Not every source file compiles because foo.c
and bar . ¢ do not compile.

Also, the explanation should be generated by com-
posing the implementations of everysourcefile
and of compiles, so that new quantifiers (“most
source files”) and predicates (“has comments”) can
be added as separate modules. For example, evaluat-
ing the proposition not_b(compiles("foo.c"))
first evaluates compiles("foo.c") then negates
the Boolean while keeping the evidence the same.

Prograder currently justifies quantified proposi-
tions in the following compositional way. When
the higher-order function everysourcefile is in-
voked with the predicate argument p, it invokes p
on each source file submitted and collects the result-
ing Boolean-evidence pairs. If any of the Boolean
results is False, then the overall Boolean result is
of course also False. This result is justified by an
evidence tree whose root proposition is

(13) not_b(everysourcefile(p))

and whose subtrees are the evidence trees for all the
False results. (After all, the primary mode of ex-
planation required in grading a programming assign-
ment is to say why credit has been subtracted.) Pro-
grader then produces the serviceable explanation

(14) Not every source file compiles because foo.c
does not compile and bar. ¢ does not compile.

(We are working on simplifying this explanation
to (12).) This process generalizes immediately to
propositions with multiple quantifiers, such as

(15) Every text file mentions a source file.
everytextfile(lambda x:
asourcefile(lambda y:
mentions(y) (x)))

For example, Prograder might explain that

(16) Not every text file mentions a source file be-
cause README mentions no source file.

In sum, Prograder generates explanations in the
same process—the same sequence of function calls
60

and returns—as it computes Boolean values. In this
way, the checking process gains an additional inter-
pretation as a process of gathering evidence for the
explanation. The explanation itself is a tree structure
corresponding to the pattern of function calls in the
computation; in fact, it is a proof tree for the require-
ments specification statement (or its negation). Once
all the evidence has been gathered, a textual version
of the explanation can be generated by traversing the
tree and concatenating evidence statements, possi-
bly using summarization techniques to make the ex-
planation more concise.

We have so far glossed over how English sen-
tences, especially those with quantification and
negation such as (14) and (16), are parsed into and
generated from logical representations. The rest of
this paper describes our principled approach to this
problem, based on a consistent mapping between
syntactic categories and semantic types.

4 Using the Grammatical Framework

We relate natural language (English) to logical se-
mantics (Python) using the Grammatical Framework
(GF) of Ranta (2004). GF is a mature system that al-
lows linguists and logicians to define grammars for
both natural and formal languages using a Haskell-
like syntax. Once defined, the grammars can be used
for parsing as well as generation (linearization) with
no further programming.

In GF, grammars are specified in two parts: an ab-
stract grammar and a concrete grammar. An abstract
grammar specifies the set of well-formed abstract
syntax trees, whereas a concrete grammar specifies
how to spell out abstract syntax as strings. For exam-
ple, an abstract grammar can admit the abstract syn-
tax tree in (4) by specifying that EverySourceFile
is an NP, Compiles is a VP, and ApplyS combines
an NP and a VP into an S:

fun EverySourceFile: NP;

fun Compiles: VP;

fun ApplyS: NP -> VP -> S;

A concrete grammar for English can then specify
that the linearization of EverySourceFile is a sin-
gular (Sg) string,

lin EverySourceFile = {

s = "every source file"; n = Sg };

the linearization of Compiles is a pair of strings,

lin Compiles = {
s = { Sg => "compiles";
Pl => "compile" } };

and the linearization of ApplyS is a function that
combines these two linearizations into the string (3).

lin ApplyS NP VP = {
s = NP.s ++ (VP.s ! NP.n) };

Here ++ denotes string concatenation and ! denotes
table lookup.

Multiple concrete grammars can share the same
abstract grammar in GF, as in synchronous gram-
mars (Aho and Ullman, 1969) and abstract catego-
rial grammars (de Groote, 2002). This sharing is
meant to enable multilingual applications, in which
the same meaning representation defined by a sin-
gle abstract grammar can be rendered into various
natural languages by different concrete grammars.

This separation into abstract and concrete gram-
mars lets us use one concrete grammar to model En-
glish and another to model the Python syntax of Pro-
grader’s logical forms. For example, the lineariza-
tion of Compiles into Python is simply compiles,
which can be combined with "foo.c" by the lin-
earization of ApplyS to form compiles("foo.c").
The system can thus parse a natural-language spec-
ification into an abstract syntax tree using the first
concrete grammar, then produce the corresponding
semantic representation using the second concrete
grammar. Since each concrete grammar can be used
for both parsing and generation, the system can also
be run in the other direction, to parse the semantic
representations of an explanation, then generate that
explanation in natural language.

Since the linearization compiles("foo.c") in
Python is virtually isomorphic to its abstract syn-
tax tree, one may wonder why we bother with the
second concrete grammar at all. Why not just ex-
press the type-theoretical semantic structure in the
abstract syntax and relate it to English in a sin-
gle concrete grammar? The answer is that using
two concrete grammars lets us represent quantifier
meanings and scope preferences. Without the dis-
tinction between abstract syntax and logical seman-
tics, we would have to specify how to linearize
everysourcefile and asourcefile so that the
Python in (15) linearizes to the English. Moreover,

61

Prograder should disprefer the inverse-scope reading

(17) asourcefile(lambda y:
everytextfile(lambda x:
mentions(y)(x)))

for the same English sentence. We do not see a way
to achieve these goals given GF’s limited support for
higher-order abstract syntax. Instead, we keep our
grammars first-order and let our abstract grammar
express only the surface structure of English, where
quantifiers stay “in situ” just like proper names.
Below we describe how even a first-order concrete
grammar for semantic representations can represent
quantifier meanings and scope preferences.

5 Quantifier Scope, Negation and
Continuation Grammars

Quantifier scoping has long been a key source of
difficulty in mapping natural language sentences to
logical forms. Scope ambiguities arise even in rela-
tively simple sentences such as (15), which any in-
structor might be expected to generate in specifying
programming assignment requirements. The scope
of negation is also problematic. An algorithm for
generating all possible quantifier scopings was de-
tailed by Hobbs and Shieber (1987). However, we
need a solution that prefers one highly likely default
scoping, that supports both interpretation and gener-
ation, and that is integrated with the type structure
of our semantic representation.

Compositional semantics based on continuations
(Barker, 2002) can represent preferred scoping of
quantifiers and negation without the semantic type-
shifting or syntactic underspecification (Hendriks,
1993; Steedman, 1996; Bos, 1995; Koller et al.,
2003) that typically complicates interpreting and
generating quantification. The rough idea is to gen-
eralize Montague’s PTQ (1974), so that every con-
stituent’s semantic type has the form (--- — 1) — ¢
not only does every NP denote the type (e — 1) — ¢
instead of e, but every VP also denotes the type
((e = t) = t) — t instead of e — . For example
(as in PTQ),

(18) “foo.c” denotes lambda c: c("foo.c")

(19) “every text file” denotes
lambda c:
everytextfile(lambda x: c(x))

Analogously (but unlike in PTQ),

(20) “compiles” denotes lambda c: c(compiles)

(21) “mentions a source file” denotes
lambda c:
asourcefile(lambda x:
c(mentions(x)))

Recall from Section 4 that we model denotations as
the linearizations of abstract syntax trees. Therefore,
in GF, we want to specify linearizations like

lin EverySourceFile =
lambda c:
everysourcefile(lambda x: c(x));
lin Compiles = lambda c: c(compiles);

to be combined by the linearization of ApplyS

lin ApplyS NP VP =
NP(lambda n: VP(lambda v: v(n)));

into the expression (5).

In this last linearization, the innermost application
v(n) means to apply the VP’s predicate meaning
to the subject NP’s entity meaning. The surround-
ing NP(lambda n: VP(lambda v: ...)) lets a
quantificational subject take wide scope over the VP.
This general composition rule thus yields surface
scope to the exclusion of inverse scope. In particu-
lar, it equally well combines the denotations in (19)
and (21) into the expression (15), rather than (17).
In the present implementation of Prograder, the rules
all encode surface scope for the quantifiers. A simi-
lar linearization forms the VP denotation in (21) by
composing a transitive verb and its object NP:

lin ApplyVP VT NP =
lambda c¢: NP(lambda n: c(VT(n)))

The same machinery generalizes to handle posses-
sives, ditransitive verbs, relative clauses, and so on.

5.1 Simulating higher-order functions

As shown above, denotations using continuations
are higher-order functions. However, linearization
in GF does not allow higher-order functions—in
fact, the only “functions” allowed in GF are record
or table structures indexed by a finite set of parame-
ters. To keep parsing tractable, GF only lets strings
be concatenated, not beta-reduced as lambda-terms;
the one extension that GF makes to the context-free

62

model is allowing argument suppression and repeti-
tion. In other words, GF cannot equate logical forms
by beta-equivalence. Therefore, we cannot just feed
the pseudocode above into GF to generate explana-
tions. This is an instance of the problem of logical-
form equivalence (Shieber, 1993).

Fortunately, because denotations using continua-
tions are always of a certain form (Danvy and Filin-
ski, 1992), we can simulate these higher-order func-
tions using first-order records. Specifically, we sim-
ulate a higher-order function of the form

(22) lambda c: s; c(s,) s,
by the triple of strings
23){ s_1

= §;; S_Mm = S,; S_.T =S5 }

in GF. The middle string s,, corresponds to the
“core” of the phrase, and the left and right strings
81,8, are those parts which may take scope over other
phrases. For example, following the pseudocode
above, we write

lin EverySourceFile = {

s_1 = "everysourcefile (lambda x :";
s_m = "x";
s_r=")"1};
lin Compiles = {
s.1 =",
s_m = "compiles";
s.r =""13;

in our GF concrete grammar. Continuing to follow
the pseudocode above, we can also implement the
linearizations of ApplyS and ApplyVP to operate on
triples rather than the functions they simulate:
lin ApplyS NP VP = {
s = NP.s_1 ++ VP.s_1 ++
VP.s_m ++ "(" ++ NP.s_m ++ ")" ++
VP.s_r ++ NP.s_r };
lin ApplyVP VT NP = {

s_1 = NP.s_1;
s_m = VT.s ++ NP.s_m;
s_r = NP.s_r };

Here the linearization of the transitive verb VT con-
sists of a single string s.

This simulation is reminiscent of Barker and
Shan’s “tower notation” (2008). In general, we
can simulate a n-level semantic tower by a tuple of

2n — 1 strings. Overall, this simulation makes us
hopeful that linearization in GF can be extended to a
broad, useful class of higher-order expressions while
keeping parsing tractable.

5.2 Maintaining De Morgan duals

Both to interpret requirements and to generate ex-
planations, our system needs to deal with negation
correctly. Whether in the form of a negative quanti-
fier such as “no source file” or a VP modifier such as
“don’t”, negation takes scope. (In the case of the de-
terminer “no”, the scope of negation is linked to the
containing NP.) We use continuations to account for
the scope of negation, as for all scope-taking.

When scope ambiguities arise, negation exhibits
the same preference for surface scope as other quan-
tifiers. For example, all of the sentences below pre-
fer the reading where the subject takes wide scope.

(24) A source file doesn’t compile.
(25) A text file mentions no source file.

(26) No text file mentions a source file.

The linearization of ApplyS shown above already
captures this preference; we just need to specify new
linearizations with not_b in them. The pseudocode

lin NoSourceFile =
lambda c:
not_b(asourcefile(lambda x: c(x)));
lin Not_VP VP =
lambda c:
not_b(VP(lambda v: c(v)));

captures the fact that the negation of “A source file
compiles” is not (24) but “No source file compiles”.

To generate natural-sounding negations of sen-
tences containing quantification, some simple logi-
cal equivalences are necessary. To take an extreme
example, suppose that Prograder needs to negate the
requirement specification

(27) Every text file mentions no source file.
Strictly speaking, it would be correct to generate

(28) Not every text file mentions no source file.

However, it would be much more comprehensible
for Prograder to report instead

(29) A text file mentions a source file.
63

One heuristic for preferring (29) over (28) is to use
as few negations as possible. But to apply this
heuristic, Prograder must first realize that (29) is a
correct negation of (27). In general, our concrete
grammar ought to equate formulas that are equiv-
alent by De Morgan’s laws. Unfortunately, GF can
no more equate formulas by De Morgan equivalence
than by beta-equivalence.

In lieu of equating formulas, we normalize them:
we use De Morgan’s laws to move negations log-
ically as far “inside” as possible. In other words,
we impose an invariant on our semantic represen-
tation, that not_b applies only to atomic formulas
(as in (8-9)). This invariant is easy to enforce in
our Python code for gathering evidence, because we
can rewrite each evidence statement after generating
it. It is trickier to enforce the invariant in our GF
concrete grammar for semantic representations, be-
cause (to keep parsing tractable) linearizations can
only be concatenated, never inspected and rewritten.
Therefore, our linearizations must maintain formu-
las alongside their De Morgan duals.

Specifically, we revise the simulation described in
the previous section as follows. The record

(30) { spl = s; spm = s}; spr = s;
snl = §; 5 som = 5,3

ms Snr = s,
switched = False }

represents a higher-order function of the form
(31) lambda c: s c(sih) s

assuming that it is equivalent to

(32) lambda c: not_b(s; mnot_b(c(s,)) s,)

Dually, the record

(33){ spl = s/; spm = s}; spr = s5;
snl = sl_; snm = §,,; Snr = S, ;

switched = True }
represents a higher-order function of the form
(34) lambda c: s not_b(c(s})) s
assuming that it is equivalent to

(35) lambda c: not_b(s; c(s,) s,)

For example, given the linearizations

lin NoSourceFile = {

spl = "everysourcefile (lambda x :";
spm = "X"; spr = n)n;

snl = "asourcefile (lambda x :";

snm = "X"; snr = n)n;

switched = True };
lin EverySourceFile = {
spl = "everysourcefile (lambda y :";
spm = "y"; spr = ")";
snl = "asourcefile (lambda y :";
snm = "y"; snr = ")";
switched = False };
lin ASourceFile = {

spl = "asourcefile (lambda x :";

spm = an; Spr = u)n;

snl = "everysourcefile (lambda x :";
snm = "X"; snr = n)n;

switched = False };

(and an alphabetic variant of ASourcefile), Pro-
grader uses the switched flags to deduce that one
way to negate “Every source file mentions no source
file” is “A source file mentions a source file”.

Our solution demonstrates that an existing gram-
matical software package can express continuation
grammars. While the record-based implementation
is somewhat unwieldy when encoded in the gram-
mar by hand, restricting ourselves to GF’s context-
free rewrite grammars also ensures efficient parsing.

6 Putting It All Together

Currently, our English grammar supports declarative
sentences with a small vocabulary of transitive and
intransitive verbs (“exists”, “compiles”, “has com-
ments”, “mentions”), proper noun phrases referring
to specific source files, noun phrases representing
quantified nouns, and negations.

Given that the grammars correctly specify logi-
cal scoping and natural language syntax for parsing
and generation, the Python code that implements re-
quirement checking and evidence gathering is rela-
tively straightforward. As described above, the log-
ical form of the requirements specification is exe-
cutable Python, and their execution emits an evi-
dence statement in the same logical language for
each check performed, in a tree structure. Thus
the execution of the checking code is an evidence-
gathering or proof-search process. The evidence

64

statements are then translated to natural language by
means of the two GF grammars.

A Python “glue script” ties the Python and GF
components together and manages the dataflow of
the end-to-end system. This script provides a simple
scanner and symbol table to replace file names with
standardized placeholders from the grammar. The
variables used in lambda expressions also need to be
renamed in order to prevent conflicts.

Here is a sample output of the system as it cur-
rently runs:

./runPrograder.py ’every source file
compiles and every source file has
comments’

sk ok koK oK oK ok ok ok ok ko sk ok ok ok o o o o o o o o o ok o o ok

RESULT: False, because:

some source files don’t compile and

some source files don’t have

comments:

"nowork2.c" doesn’t compile

"nowork.c" doesn’t compile

"nowork2.c" doesn’t have comments

"nowork.c" doesn’t have comments

7 Conclusions and Future Work

To our knowledge, Prograder incorporates the first
implementation of continuation-based semantics
within a grammatical framework that supports ef-
ficient parsing and generation. Consequently, our
declarative grammar uniformly expresses quantifier
meanings and scope preferences.

We want to see how far we can stretch a record-
based grammar system such as GF to handle quan-
tifiers and negation using continuations. In the end,
the boilerplate ingredients of our solution ought to
be automated, so as to combine the expressivity of
continuation-based semantics with the usability and
efficiency of GF. This will also make it easier to ex-
pand the range of natural-language constructs that
the system handles. Of course, this development
should be driven by feedback from actual instructors
using the system, which we also intend to obtain.

Our second area of future work is the summa-
rization of explanations. We plan to use Prograder
to investigate the semantics and pragmatics of sum-
marization, and to search for underlying principles
based on proofs and types.

References

Alfred V. Aho and Jeffrey D. Ullman. 1969. Syn-
tax directed translations and the pushdown assembler.
Journal of Computer and System Sciences, 3(1):37—
56, February.

Chris Barker and Chung-chieh Shan. 2008. Donkey
anaphora is in-scope binding. Semantics and Prag-
matics, 1(1):1-46.

Chris Barker. 2002. Continuations and the na-
ture of quantification. Natural Language Semantics,
10(3):211-242.

Johan Bos. 1995. Predicate logic unplugged. In Paul
Dekker and Martin Stokhof, editors, Proceedings of
the 10th Amsterdam Colloquium, pages 133-142. In-
stitute for Logic, Language and Computation, Univer-
siteit van Amsterdam.

Olivier Danvy and Andrzej Filinski. 1992. Representing
control: A study of the CPS transformation. Math-
ematical Structures in Computer Science, 2(4):361—
391, December.

Philippe de Groote. 2002. Towards abstract catego-
rial grammars. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics, pages 148—155, San Francisco, CA, July. Morgan
Kaufmann.

Pierre-Joseph Gailly. 1988. Expressing quantifier scope
in French generation. In COLING ’88: Proceedings of
the 12th International Conference on Computational
Linguistics, volume 1, pages 182—184.

Herman Hendriks. 1993. Studied Flexibility: Categories
and Types in Syntax and Semantics. Ph.D. thesis, In-
stitute for Logic, Language and Computation, Univer-
siteit van Amsterdam.

Jerry R. Hobbs and Stuart M. Shieber. 1987. An al-
gorithm for generating quantifier scopings. Compu-
tational Linguistics, 13(1-2):47-63.

Paul Hudak. 1996. Building domain-specific embedded
languages. ACM Computing Surveys, 28.

Alexander Koller, Joachim Niehren, and Stefan Thater.
2003. Bridging the gap between underspecification
formalisms: Hole semantics as dominance constraints.
In Proceedings of the 10th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 195-202, Somerset, NJ. Association for
Computational Linguistics.

Richard Montague. 1974. The proper treatment of
quantification in ordinary English. In Richmond H.
Thomason, editor, Formal Philosophy: Selected Pa-
pers of Richard Montague, pages 247-270. Yale Uni-
versity Press, New Haven.

Douglas B. Moran. 1988. Quantifier scoping in the
SRI core language engine. In Proceedings of the 26th
Annual Meeting of the Association for Computational

65

Linguistics, pages 33-40, Somerset, NJ. Association
for Computational Linguistics.

Aarne Ranta. 2004. Grammatical Framework: A type-
theoretical grammar formalism. Journal of Functional
Programming, 14(2):145-189.

Stuart M. Shieber. 1993. The problem of logical-form
equivalence. Computational Linguistics, 19(1):179-
190.

Mark J. Steedman. 1996. Surface Structure and Inter-
pretation. MIT Press, Cambridge.

Kurt A. VanLehn. 1978. Determining the scope of
English quantifiers. Master’s thesis, Department of
Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology.

