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Introduction

NLP researchers are now building educational applications across a number of areas, including
automated evaluation of student writing and speaking, rich grammatical error detection with an
increasing focus on English language learning, tools to support student reading, and intelligent tutoring.

This workshop is the fifth in a series, specifically related to Building NLP Applications for Education,
that began at NAACL/HLT (2003), and continued at ACL 2005 (Ann Arbor), ACL/HLT 2008
(Columbus), NAACL/HLT 2009 (Boulder), and now at NAACL/HLT 2010 (Los Angeles). Research
in this area continues to grow, and there is ever-increasing interest and practical application which was
evidenced this year, again, by an even larger number of submissions.

We received a record 28 submissions and accepted 13 papers, two of which include demos. All of
the papers are published in these proceedings. Each paper was carefully reviewed by two members of
the Program Committee. We selected reviewers most appropriate for each paper so as to give more
helpful feedback and comments. This workshop offers an opportunity to present and publish work
that is highly relevant to NAACL, but is also highly specialized, and so this workshop is often a more
appropriate venue for such work. While the field is growing, we do recognize that there is a core group
of institutions and researchers who work in this area. That said, we continue to have a very strong
policy to deal with conflicts of interest. First, reviewers were not assigned any papers to evaluate if the
paper had an author from their institution. Second, with respect to the organizing committee, authors
of papers where there was a conflict of interest recused themselves from the discussion.

The papers accepted to this workshop were selected on the basis of several factors: the strength of
the research, the novelty of the approach or domain, and the appropriateness for this workshop. The
final set of papers fall under several main themes which we show below in the order of the workshop
program.

Technology designed to support reading comprehension:

• Readability Assessment for Text Simplification (Aluisio, Specia, Gasperin and Scarton)

• Enhancing Authentic Web Pages for Language Learners (Meurers, Ziai, Amaral, Boyd, Dimitrov,
Metcalf and Ott)

• AutoTutor: a piece of cake for teachers (Quixal, Preu, Garca-Narbona and Boullosa)

Learner error detection and annotation:

• Annotating ESL Errors: Challenges and Rewards (Rozovskaya and Roth)

• Search right and thou shalt find ... Using Web Queries for Learner Error Detection (Gamon and
Leacock)

• Rethinking Grammatical Error Annotation and Evaluation with the Amazon Mechanical Turk
(Tetreault, Filatova and Chodorow)
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Classroom assessment and instruction:

• Predicting Cloze Task Quality for Vocabulary Training (Skory and Eskenazi)

• Generating Quantifiers and Negation to Explain Homework Testing (Perry and Shan)

• Leveraging Hidden Dialogue State to Select Tutorial Moves (Boyer, Phillips, Ha, Wallis, Vouk
and Lester)

Evaluation of Noisy Data:

• Towards Using Structural Events To Assess Non-native Speech (Lei Chen, Joel Tetreault and
Xiaoming Xi)

• A Human-Computer Collaboration Approach to Improve Accuracy of an Automated English
Scoring System (Jee Eun Kim and Kong Joo Lee)

• Towards Identifying Unresolved Discussions in Student Online Forums (Jihie Kim, Jia Li and
Taehwan Kim)

• Off-topic essay detection using short prompt texts (Louis and Higgins)

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
attended this workshop. All of these factors contribute to a truly rich and successful event!

Joel Tetreault, Educational Testing Service
Jill Burstein, Educational Testing Service
Claudia Leacock, Butler-Hill Group
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Abstract 

We describe a readability assessment ap-

proach to support the process of text simplifi-

cation for poor literacy readers. Given an in-

put text, the goal is to predict its readability 

level, which corresponds to the literacy level 

that is expected from the target reader: rudi-

mentary, basic or advanced. We complement 

features traditionally used for readability as-

sessment with a number of new features, and 

experiment with alternative ways to model 

this problem using machine learning methods, 

namely classification, regression and ranking. 

The best resulting model is embedded in an 

authoring tool for Text Simplification. 

1 Introduction 

In Brazil, the National Indicator of Functional Lite-

racy (INAF) index has been computed annually 

since 2001 to measure the levels of literacy of the 

Brazilian population. The 2009 report presented a 

worrying scenario: 7% of the individuals are illite-

rate; 21% are literate at the rudimentary level; 47% 

are literate at the basic level; only 25% are literate 

at the advanced level (INAF, 2009). These literacy 

levels are defined as:  

(1) Illiterate: individuals who cannot perform 

simple tasks such as reading words and phrases;  

(2) Rudimentary: individuals who can find ex-

plicit information in short and familiar texts (such 

as an advertisement or a short letter);  

(3) Basic: individuals who are functionally lite-

rate, i.e., they can read and understand texts of av-

erage length, and find information even when it is 

necessary to make some inference; and  

(4) Advanced: fully literate individuals, who can 

read longer texts, relating their parts, comparing 

and interpreting information, distinguish fact from 

opinion, make inferences and synthesize.   

In order to promote digital inclusion and acces-

sibility for people with low levels of literacy, par-

ticularly to documents available on the web, it is 

important to provide text in a simple and easy-to- 

read way. This is a requirement of the Web Con-

tent Accessibility Guidelines 2.0’s principle of 

comprehensibility and accessibility of Web con-

tent
1
. It states that for texts which demand reading 

skills more advanced than that of individuals with 

lower secondary education, one should offer an al-

ternative version of the same content suitable for 

those individuals. While readability formulas for 

English have a long history – 200 formulas have 

been reported from 1920 to 1980s (Dubay, 2004) – 

the only tool available for Portuguese is an adapta-

tion of the Flesch Reading Ease index.  It evaluates 

the complexity of texts in a 4-level scale corres-

ponding to grade levels (Martins et al., 1996).  

In the PorSimples project (Aluísio et al., 2008) 

we develop text adaptation methods (via text sim-

plification and elaboration approaches) to improve 

the comprehensibility of texts published on gov-

ernment websites or by renowned news agencies, 

which are expected to be relevant to a large au-

dience with various literacy levels. The project 

provides automatic simplification tools to aid (1) 

poorly literate readers to understand online content 

– a browser plug-in for automatically simplifying 

websites – and (2) authors producing texts for this 

audience – an authoring tool for guiding the crea-

tion of simplified versions of texts.  

This paper focuses on a readability assessment 

approach to assist the simplification process in the 

authoring tool, SIMPLIFICA. The current version 

of SIMPLIFICA offers simplification operations 

addressing a number of lexical and syntactic phe-

nomena to make the text more readable. The au-

                                                           
1 http://www.w3.org/TR/WCAG20/ 
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thor has the freedom to choose when and whether 

to apply the available simplification operations, a 

decision based on the level of complexity of the 

current text and on the target reader.  

A method for automatically identifying such 

level of complexity is therefore of great value. 

With our readability assessment tool, the author is 

able to automatically check the complexi-

ty/readability level of the original text, as well as 

modified versions of such text produced as he/she 

applies simplification operations offered by 

SIMPLIFICA, until the text reaches the expected 

level, adequate for the target reader. 

In this paper we present such readability as-

sessment tool, developed as part of the PorSimples 

project, and discuss its application within the au-

thoring tool. Different from previous work, the tool 

does not model text difficulty according to linear 

grade levels (e.g., Heilman et al., 2008), but in-

stead maps the text into the three levels of literacy 

defined by INAF: rudimentary, basic or advanced. 

Moreover, it uses a more comprehensive set of fea-

tures, different learning techniques and targets a 

new language and application, as we discuss in 

Section 4. More specifically, we address the fol-

lowing research questions: 
 

1. Given some training material, is it possible to 

detect the complexity level of Portuguese texts, 

which corresponds to the different literacy levels 

defined by INAF? 

2. What is the best way to model this problem 

and which features are relevant? 
 

We experiment with nominal, ordinal and interval-

based modeling techniques and exploit a number 

of the cognitively motivated features proposed by 

Coh-Metrix 2.0 (Graesser et al., 2004) and adapted 

to Portuguese (called Coh-Metrix-PORT), along 

with a set of new features, including syntactic fea-

tures to capture simplification operations and n-

gram language model features.  

In the remainder of this paper, we first provide 

some background information on the need for a 

readability assessment tool within our text simpli-

fication system (Section 2) and discuss prior work 

on readability assessment (Section 3), to then 

present our features and modeling techniques (Sec-

tion 4) and the experiments performed to answer 

our research questions (Section 5). 

2. Text Simplification in PorSimples 

Text Simplification (TS) aims to maximize reading 

comprehension of written texts through their sim-

plification. Simplification usually involves substi-

tuting complex by simpler words and breaking 

down and changing the syntax of complex, long 

sentences (Max, 2006; Siddharthan, 2003).   

To meet the needs of people with different le-

vels of literacy, in the PorSimples project we pro-

pose two types of simplification: natural and 

strong. The first type results in texts adequate for 

people with a basic literacy level and the second, 

rudimentary level. The difference between these 

two is the degree of application of simplification 

operations to complex sentences. In strong simpli-

fication, operations are applied to all complex syn-

tactic phenomena present in the text in order to 

make it as simple as possible, while in natural sim-

plification these operations are applied selectively, 

only when the resulting text remains “natural”. 

One example of original text (a), along with its 

natural (b) and strong (c) manual simplifications, is 

given in Table 1. 
 

(a) The cinema theaters around the world were show-

ing a production by director Joe Dante in which a 

shoal of piranhas escaped from a military laborato-

ry and attacked participants of an aquatic show. 

(...) More than 20 people were bitten by palometas 

(Serrasalmus spilopleura, a species of piranhas) 

that live in the waters of the Sanchuri dam. 

(b) The cinema theaters around the world were show-

ing a production by director Joe Dante. In the pro-

duction a shoal of piranhas escaped from a military 

laboratory and attacked participants of an aquatic 

show. (…) More than 20 people were bitten by pa-

lometas that live in the waters of the Sanchuri dam. 

Palometas are Serrasalmus spilopleura, a species 

of piranhas. 

(c) The cinema theaters around the world were show-

ing a movie by director Joe Dante. In the movie a 

shoal of piranhas escaped from a military laborato-

ry. The shoal of piranhas attacked participants of 

an aquatic show. (...). Palometas have bitten more 

than 20 people. Palometas live in the waters of the 

Sanchuri dam. Palometas are Serrasalmus spilop-

leura, a species of piranhas. 

Table 1: Example of original and simplified texts 
 

The association between these two types of simpli-

fication and the literacy levels was identified by 

means of a corpus study. We have manually built a 

corpus of simplified texts at both natural and 
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strong levels and analyzed their linguistic struc-

tures according to the description of the two litera-

cy levels. We verified that strong simplified sen-

tences are more adequate for rudimentary level 

readers, and natural ones for basic level readers. 

This claim is supported by several studies which 

relate capabilities and performance of the working 

memory with reading levels (Siddharthan, 2003; 

McNamara et al., 2002). 

2.1 The Rule-based Simplification System 

The association between simplification operations 

and the syntactic phenomena they address is im-

plemented within a rule-based syntactic simplifica-

tion system (Candido Jr. et al., 2009). This system 

is able to identify complex syntactic phenomena in 

a sentence and perform the appropriate operations 

to simplify each phenomenon.  

The simplification rules follow a manual for 

syntactic simplification in Portuguese also devel-

oped in PorSimples. They cover syntactic con-

structions such as apposition, relative clauses, 

coordination and subordination, which had already 

been addressed by previous work on text simplifi-

cation (Siddharthan, 2003). Additionally, they ad-

dress the transformation of sentences from passive 

into active voice, normalization of sentences into 

the Subject-Verb-Object order, and simplification 

of adverbial phrases. The simplification operations 

available are: sentence splitting, changing particu-

lar discourse markers by simpler ones, transform-

ing passive into active voice, inverting the order of 

clauses, converting to subject-verb-object order, 

relocating long adverbial phrases.  

2.2 The SIMPLIFICA Tool 

The rule-based simplification system is part of 

SIMPLIFICA, an authoring tool for writers to 

adapt original texts into simplified texts. Within 

SIMPLIFICA, the author plays an active role in 

generating natural or strong simplified texts by ac-

cepting or rejecting the simplifications offered by 

the system on a sentence basis and post-editing 

them if necessary. 

 Despite the ability to make such choices at the 

sentence level, it is not straightforward for the au-

thor to judge the complexity level of the text as 

whole in order to decide whether it is ready for a 

certain audience. This is the main motivation for 

the development of a readability assessment tool.  

The readability assessment tool automatically 

detects the level of complexity of a text at any 

moment of the authoring process, and therefore 

guides the author towards producing the adequate 

simplification level according to the type of reader. 

It classifies a text in one of three levels: rudimenta-

ry, basic or advanced.  

Figure 1 shows the interface of SIMPLIFICA, 

where the complexity level of the current text as 

given by the readability assessment tool is shown 

at the bottom, in red (in this case, “Nível Pleno”, 

which corresponds to advanced). To update the 

readability assessment of a text the author can 

choose “Nível de Inteligibilidade” (readability lev-

el) at any moment.  

The text shown in Figure 1 is composed of 13 

sentences, 218 words. The lexical simplification 

module (not shown in the Figure 1) finds 10 candi-

date words for simplification in this text, and the 

syntactic simplification module selects 10 sen-

tences to be simplified (highlighted in gray).  

When the author selects a highlighted sentence, 

he/she is presented with all possible simplifications 

proposed by the rule-based system for this sen-

tence. Figure 2 shows the options for the first sen-

tence in Figure 1. The first two options cover non-

finite clause and adverbial adjuncts, respectively, 

while the third option covers both phenomena in 

one single step. The original sentence is also given 

as an option.  

It is possible that certain suggestions of auto-

matic simplifications result in ungrammatical or 

inadequate sentences (mainly due to parsing er-

rors). The author can choose not to use such sug-

gestions as well as manually edit the original or 

automatically simplified versions. The impact of 

the author’s choice on the overall readability level 

of the text is not always clear to the author. The 

goal of the readability assessment function is to 

provide such information. 

Simplified texts are usually longer than the 

original ones, due to sentence  splittings and 

repetition of information to connect such 

sentences.  We  acknowledge  that  low literacy 

readers prefer short texts, but in this tool the 

shortening of the text is a responsibility of the 

author. Our focus is on the linguistic structure of 

the texts; the length of the text actually is a feature 

considered by our readability assessment system. 
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Figure 1: SIMPLIFICA interface 

Figure 2. Simplification options available for the first sentence of the text presented in Figure 1

3. Readability Assessment 

Recent work on readability assessment for the 

English language focus on: (i) the feature set used 

to capture the various aspects of readability, to 

evaluate the contribution of lexical, syntactic, se-

mantic and discursive features; (ii) the audience of 

the texts the readability measurement is intended 

to; (iii) the genre effects on the calculation of text 

difficult; (iv) the type of learning technique 

which is more appropriate: those producing nomi-

nal, ordinal or interval scales of measurement, and 

(v) providing an application for the automatic as-

sessment of reading difficulty.  

Pitler and Nenkova (2008) propose a unified 

framework composed of vocabulary, syntactic, 

elements of lexical cohesion, entity coherence and 

discourse relations to measure text quality, which 

resembles the composition of rubrics in the area of 

essay scoring (Burstein et al., 2003).  

 The following studies address readability as-

sessment for specific audiences: learners of Eng-

lish as second language (Schwarm and Ostendorf, 

2005; Heilman et al., 2007), people with intellec-

tual disabilities (Feng et al., 2009), and people with 

cognitive impairment caused by Alzheimer (Roark 

at al, 2007). 

Sheehan et al. (2007) focus on models for 

literary and expository texts, given that traditional 

metrics like Flesch-Kincaid Level score tend to 

overpredict the difficulty of literary texts and 

underpredict the difficulty of expository texts.  

Heilman et al. (2008) investigate an appropriate 

scale of measurement for reading difficulty – 

nominal, ordinal, or interval – by comparing the 

effectiveness of statistical models for each type of 

data. Petersen and Ostendorf (2009) use 

classification and regression techniques to predict a 

readability score. 

Miltsakali and Troutt (2007; 2008) propose an 

automatic tool to evaluate reading difficulty of 

Web texts in real time, addressing teenagers and 

adults with low literacy levels. Using machine 

learning, Glöckner et al. (2006) present a tool for 

automatically rating the readability of German 

texts using several linguistic information sources 

and a global readability score similar to the Flesch 

Reading Ease.   
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4. A Tool for Readability Assessment 

In this section we present our approach to readabil-

ity assessment.  It differs from previous work in 

the following aspects: (i) it uses a feature set with 

cognitively-motivated metrics and a number of ad-

ditional features to provide a better explanation of 

the complexity of a text; (ii) it targets a new audi-

ence: people with different literacy levels; (iii) it 

investigates different statistical models for non- 

linear data scales: the levels of literacy defined by 

INAF, (iv) it focus on a new application: the use of 

readability assessment for text simplification sys-

tems; and (v) it is aimed at Portuguese. 

4.1 Features for Assessing Readability 

Our feature set (Table 2) consists of 3 groups of 

features. The first group contains cognitively-

motivated features (features 1-42), derived from 

the Coh-Metrix-PORT tool (see Section 4.1.1). 

The second group contains features that reflect the 

incidence of particular syntactic constructions 

which we target in our text simplification system 

(features 43-49). The third group (the remaining 

features in Table 2) contains features derived from 

n-gram language models built considering uni-

grams, bigrams and trigrams probability and per-

plexity plus out-of-vocabulary rate scores. We later 

refer to a set of basic features, which consist of 

simple counts that do not require any linguistic tool 

or external resources to be computed. This set cor-

responds to features 1-3 and 9-11. 

4.1.1 Coh-Metrix-Port 

The Coh-Metrix tool was developed to compute 

features potentially relevant to the comprehension 

of English texts through a number of measures in-

formed by linguistics, psychology and cognitive 

studies. The main aspects covered by the measures 

are cohesion and coherence (Graesser et al., 2004). 

Coh-Metrix 2.0, the free version of the tool, con-

tains 60 readability metrics. The Coh-Metrix-

PORT tool (Scarton et al., 2009) computes similar 

metrics for texts in Brazilian Portuguese. The ma-

jor challenge to create such tool is the lack of some 

of the necessary linguistic resources. The follow-

ing metrics are currently available in the tool (we 

refer to Table 2 for details): 

1. Readability metric: feature 12. 
 

2. Words and textual information:  

 Basic counts: features 1 to 11. 

1 Number of words 

2 Number of sentences 

3 Number of paragraphs 

4 Number of verbs 

5 Number of nouns 

6 Number of adjectives 

7 Number of adverbs 

8 Number of pronouns 

9 Average number of words per sentence 

10 Average number of sentences per paragraph 

11 Average number of syllables per word 

12 Flesch index for Portuguese 

13 Incidence of content words 

14 Incidence of functional words  

15 Raw Frequency of content words  

16 Minimal frequency of content words  

17 Average number of verb hypernyms 

18 Incidence of NPs 

19 Number of NP modifiers 

20 Number of words before the main verb 

21 Number of high level constituents 

22 Number of personal pronouns 

23 Type-token ratio 

24 Pronoun-NP ratio 

25 Number of “e” (and) 

26 Number of “ou” (or)  

27 Number of “se” (if) 

28 Number of negations 

29 Number of logic operators 

30 Number of connectives  

31 Number of positive additive connectives 

32 Number of negative additive connectives 

33 Number of positive temporal connectives 

34 Number of negative temporal connectives 

35 Number of positive causal connectives 

36 Number of negative causal connectives 

37 Number of positive logic connectives 

38 Number of negative logic connectives 

39 Verb ambiguity ratio 

40 Noun ambiguity ratio 

41 Adverb ambiguity ratio 

42 Adjective ambiguity ratio 

43 Incidence of clauses 

44 Incidence of adverbial phrases 

45 Incidence of apposition 

46 Incidence of passive voice 

47 Incidence of relative clauses 

48 Incidence of coordination 

49 Incidence of subordination 

50 Out-of-vocabulary words  

51 LM probability of unigrams  

52 LM perplexity of unigrams  

53 LM perplexity of unigrams, without line break  

54 LM probability of bigrams  

55 LM perplexity of bigrams  

56 LM perplexity of bigrams, without line break  

57 LM probability of trigrams  

58 LM perplexity of trigrams  

59 LM perplexity of trigrams, without line break  

Table 2. Feature set 
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 Frequencies: features 15 to 16. 

 Hypernymy: feature 17. 
 

3. Syntactic information:  

 Constituents: features 18 to 20. 

 Pronouns: feature 22 

 Types and Tokens: features 23 to 24. 

 Connectives: features 30 to 38. 
 

4. Logical operators: features 25 to 29. 
 

The following resources for Portuguese were used: 

the MXPOST POS tagger (Ratnaparkhi, 1996), a 

word frequency list compiled from a 700 million-

token corpus
2
, a tool to identify reduced noun 

phrases (Oliveira et al., 2006), a list of connectives 

classified as positives/negatives and according to 

cohesion type (causal, temporal, additive or logi-

cal), a list of logical operators and WordNet.Br 

(Dias-da-Silva et al., 2008).  

In this paper we include seven new metrics to 

Coh-Metrix-PORT: features 13, 14, 21, and 39 to 

42. We used TEP
3
 (Dias-da-Silva et al., 2003) to 

obtain the number of senses of words (and thus 

their ambiguity level), and the Palavras parser 

(Bick, 2000) to identify the higher level constitu-

ents. The remaining metrics were computed based 

on the POS tags. 

According to a report on the performance of 

each Coh-Metrix-PORT metric (Scarton et al., 

2009), no individual feature provides sufficient in-

dication to measure text complexity, and therefore 

the need to exploit their combination, and also to 

combine them with the other types of features de-

scribed in this section. 

4.1.2 Language-model Features 

Language model features were derived from a 

large corpus composed of a sample of the Brazilian 

newspaper Folha de São Paulo containing issues 

from 12 months taken at random from 1994 to 

2005. The corpus contains 96,868 texts and 

26,425,483 tokens. SRILM (Stolcke, 2002), a 

standard language modelling toolkit, was used to 

produce the language model features.  

4.2 Learning Techniques 

Given that the boundaries of literacy level classes 

are one of the subjects of our study, we exploit 

three different types of models in order to check 

                                                           
2 http://www2.lael.pucsp.br/corpora/bp/index.htm 
3 http://www.nilc.icmc.usp.br/tep2/index.htm 

which of them can better distinguish among the 

three literacy levels. We therefore experiment with 

three types of machine learning algorithms: a stan-

dard classifier, an ordinal (ranking) classifier and a 

regressor. Each algorithm assumes different rela-

tions among the groups: the classifier assumes no 

relation, the ordinal classifier assumes that the 

groups are ordered, and the regressor assumes that 

the groups are continuous.  

As classifier we use the Support Vector Ma-

chines (SVM) implementation in the Weka
4
 toolkit 

(SMO). As ordinal classifier we use a meta clas-

sifier in Weka which takes SMO as the base classi-

fication algorithm and performs pairwise classifi-

cations (OrdinalClassClassifier). For regression we 

use the SVM regression implementation in Weka 

(SMO-reg). We use the linear versions of the algo-

rithms for classification, ordinal classification and 

regression, and also experiment with a radial basis 

function (RBF) kernel for regression. 

5. Experiments 

5.1 Corpora 

In order to train (and test) the different machine 

learning algorithms to automatically identify the 

readability level of the texts we make use of ma-

nually simplified corpora created in the PorSimples 

project. Seven corpora covering our three literacy 

levels (advanced, basic and rudimentary) and two 

different genres were compiled. The first corpus is 

composed of general news articles from the Brazil-

ian newspaper Zero Hora (ZH original). These ar-

ticles were manually simplified by a linguist, ex-

pert in text simplification, according to the two 

levels of simplification: natural (ZH natural) and 

strong (ZH strong). The remaining corpora are 

composed of popular science articles from differ-

ent sources: (a) the Caderno Ciência section of the 

Brazilian newspaper Folha de São Paulo, a main-

stream newspaper in Brazil (CC original) and a 

manually simplified version of this corpus using 

the natural (CC natural) and strong (CC strong) 

levels; and (b) advanced level texts from a popular 

science magazine called Ciência Hoje (CH). Table 

3 shows a few statistics about these seven corpora. 

5.2 Feature Analysis 

As a simple way to check the contribution of dif-

ferent features to our three literacy levels, we com- 

                                                           
4 http://www.cs.waikato.ac.nz/ml/weka/ 

6



  

Corpus Doc Sent Words Avg. words 

per text (std. 

deviation) 

Avg. 

words p. 

sentence 

ZH original 104 2184 46190 444.1 (133.7) 21.1 

ZH natural 104 3234 47296 454.7 (134.2) 14.6 

ZH strong 104 3668 47938 460.9 (137.5) 13.0 

CC original 50 882 20263 405.2 (175.6) 22.9 

CC natural 50 975 19603 392.0 (176.0) 20.1 

CC strong 50 1454 20518 410.3 (169.6) 14.1 

CH 130 3624 95866 737.4 (226.1) 26.4 

Table 3. Corpus statistics 
 

puted the (absolute) Pearson correlation between 

our features and the expected literacy level for the 

two sets of corpora that contain versions of the 

three classes of interest (original, natural and 

strong). Table 4 lists the most highly correlated 

features. 
 

 Feature Corr. 

1 Words per sentence 0.693 

2 Incidence of apposition 0.688 

3 Incidence of clauses 0.614 

4 Flesch index  0.580 

5 Words before main verb  0.516 

6 Sentences per paragraph  0.509 

7 Incidence of relative clauses  0.417 

8 Syllables per word 0.414 

9 Number of positive additive connectives  0.397 

10 Number of negative causal connectives 0.388 

Table 4: Correlation between features and literacy levels 
 

Among the top features are mostly basic and syn-

tactic features representing the number of apposi-

tive and relative clauses and clauses in general, and 

also features from Coh-Metrix-PORT. This shows 

that traditional cognitively-motivated features can 

be complemented with more superficial features 

for readability assessment. 

5.3 Predicting Complexity Levels 

As previously discussed, the goal is to predict the 

complexity level of a text as original, naturally or 

strongly simplified, which correspond to the three 

literacy levels of INAF: rudimentary, basic and ad-

vanced level.  

Tables 5-7 show the results of our experiments 

using 10-fold cross-validation and standard classi-

fication (Table 5), ordinal classification (Table 6) 

and regression (Table 7), in terms of F-measure 

(F), Pearson correlation with true score (Corr.) and 

mean absolute error (MAE). Results using our 

complete feature set (All) and different subsets of 

it are shown so that we can analyze the 

performance of each group of features. We also 

experiment with the Flesch index on its own as a 

feature. 

 

Features Class F Corr. MAE 

All original 0.913 0.84 0.276 

natural 0.483 

strong 0.732 

Language 

Model 

original 0.669 0.25 0.381 

natural 0.025 

strong 0.221 

Basic original 0.846 0.76 0.302 

natural 0.149 

strong 0.707 

Syntactic original 0.891 0.82 0.285 

natural 0.32 

strong 0.74 

Coh-

Metrix-

PORT 

original 0.873 0.79 0.290 

natural 0.381 

strong 0.712 

Flesch original 0.751 0.52 0.348 
natural 0.152 

strong 0.546 

Table 5: Standard Classification 
 

Features Class F Corr. MAE 

All original 0.904 0.83 0.163 

natural 0.484 

strong 0.731 

Language 

Model 

original 0.634 0.49 0.344 

natural 0.497 

strong 0.05 

Basic original 0.83 0.73 0.231 

natural 0.334 

strong 0.637 

Syntactic original 0.891 0.81 0.180 

natural 0.382 

strong 0.714 

Coh-

Metrix-

PORT 

original 0.878 0.8 0.183 

natural 0.432 

strong 0.709 

Flesch original 0.746 0.56 0.310 

natural 0.489 

strong 0 

Table 6: Ordinal classification 
 

The results of the standard and ordinal classifica-

tion are comparable in terms of F-measure and cor-

relation, but the mean absolute error is lower for 

the ordinal classification. This indicates that ordi-

nal classification is more adequate to handle our 

classes, similarly to the results found in (Heilman 

et al., 2008). Results also show that distinguishing 

between natural and strong simplifications is a 

harder problem than distinguishing between these 

and original texts. This was expected, since these 

two levels of simplification share many features. 

However, the average performance achieved is 

considered satisfactory. 

Concerning the regression model (Table 7), the 

RBF kernel reaches the best correlation scores 
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among all models. However, its mean error rates 

are above the ones found for classification. A lin-

ear SVM (not shown here) achieves very poor re-

sults across all metrics. 
   

Features Corr. MAE 

All 0.8502 0.3478 

Language Model 0.6245 0.5448 

Basic 0.7266 0.4538 

Syntactic 0.8063 0.3878 

Coh-Metrix-PORT 0.8051 0.3895 

Flesch 0.5772 0.5492 

Table 7: Regression with RBF kernel 
 

With respect to the different feature sets, we can 

observe that the combination of all features consis-

tently yields better results according to all metrics 

across all our models. The performances obtained 

with the subsets of features vary considerably from 

model to model, which shows that the combination 

of features is more robust across different learning 

techniques. Considering each feature set independ-

ently, the syntactic features, followed by Coh-

Metrix-PORT, achieve the best correlation scores, 

while the language model features performed the 

poorest. 

These results show that it is possible to predict 

with satisfactory accuracy the readability level of 

texts according to our three classes of interest: 

original, naturally simplified and strongly simpli-

fied texts. Given such results we embedded the 

classification model (Table 5) as a tool for read-

ability assessment into our text simplification au-

thoring system. The linear classification is our 

simplest model, has achieved the highest F-

measure and its correlation scores are comparable 

to those of the other models.  

6. Conclusions 

We have experimented with different machine 

learning algorithms and features in order to verify 

whether it was possible to automatically distin-

guish among the three readability levels: original 

texts aimed at advanced readers, naturally simpli-

fied texts aimed at people with basic literacy level, 

and strongly simplified texts aimed at people with 

rudimentary literacy level. All algorithms achieved 

satisfactory performance with the combination of 

all features and we embedded the simplest model 

into our authoring tool. 

As future work, we plan to investigate the con-

tribution of deeper cognitive features to this prob-

lem, more specifically, semantic, co-reference and 

mental model dimensions metrics. Having this ca-

pacity for readability assessment is useful not only 

to inform authors preparing simplified material 

about the complexity of the current material, but 

also to guide automatic simplification systems to 

produce simplifications with the adequate level of 

complexity according to the target user.  

The authoring tool, as well as its text simplifica-

tion and readability assessment systems, can be 

used not only for improving text accessibility, but 

also for educational purposes: the author can pre-

pare texts that are adequate according to the level 

of the reader and it will also allow them to improve 

their reading skills. 
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Abstract

Second language acquisition research since
the 90s has emphasized the importance of
supporting awareness of language categories
and forms, and input enhancement techniques
have been proposed to make target language
features more salient for the learner.

We present an NLP architecture and web-
based implementation providing automatic vi-
sual input enhancement for web pages. Learn-
ers freely choose the web pages they want to
read and the system displays an enhanced ver-
sion of the pages. The current system supports
visual input enhancement for several language
patterns known to be problematic for English
language learners, as well as fill-in-the-blank
and clickable versions of such pages support-
ing some learner interaction.

1 Introduction

A significant body of research into the effectiveness
of meaning-focused communicative approaches to
foreign language teaching has shown that input
alone is not sufficient to acquire a foreign lan-
guage, especially for older learners (cf., e.g., Light-
bown and Spada, 1999). Recognizing the important
role of consciousness in second-language learning
(Schmidt, 1990), learners have been argued to ben-
efit from (Long, 1991) or even require (Lightbown,
1998) a so-called focus on form to overcome incom-
plete or incorrect knowledge of specific forms or
regularities. Focus on form is understood to be “an
occasional shift of attention to linguistic code fea-
tures” (Long and Robinson, 1998, p. 23).

In an effort to combine communicative and struc-
turalist approaches to second language teaching,
Rutherford and Sharwood Smith (1985) argued for
the use of consciousness raising strategies drawing
the learner’s attention to specific language proper-
ties. Sharwood Smith (1993, p. 176) coined the term
input enhancement to refer to strategies highlighting
the salience of language categories and forms.

Building on this foundational research in second
language acquisition and foreign language teaching,
in this paper we present an NLP architecture and a
system for automatic visual input enhancement of
web pages freely selected by language learners. We
focus on learners of English as a Second Language
(ESL), and the language patterns enhanced by the
system include some of the well-established diffi-
culties: determiners and prepositions, the distinction
between gerunds and to-infinitives, wh-question for-
mation, tense in conditionals, and phrasal verbs.

In our approach, learners can choose any web
page they like, either by using an ordinary search-
engine interface to search for one or by entering the
URL of the page they want to enhance. In contrast to
textbooks and other pre-prepared materials, allow-
ing the learner to choose up-to-date web pages on
any topic they are interested in and enhancing the
page while keeping it intact (with its links, multi-
media, and other components working) clearly has
a positive effect on learner motivation. Input en-
hanced web pages also are attractive for people out-
side a traditional school setting, such as in the vol-
untary, self-motivated pursuit of knowledge often
referred to as lifelong learning. The latter can be
particularly relevant for adult immigrants, who are
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already functionally living in the second language
environment, but often stagnate in their second lan-
guage acquisition and lack access or motivation to
engage in language classes or other explicit lan-
guage learning activities. Nevertheless, they do use
the web to obtain information that is language-based
and thus can be enhanced to also support language
acquisition while satisfying information needs.

In terms of paper organization, in section 2 we
first present the system architecture and in 2.1 the
language phenomena handled, before considering
the issues involved in evaluating the approach in 2.2.
The context of our work and related approaches are
discussed in section 3, and we conclude and discuss
several avenues for future research in section 4.

2 The Approach

The WERTi system (Working with English Real
Texts interactively) we developed follows a client-
server paradigm where the server is responsible for
fetching the web page and enriching it with annota-
tions, and the client then receives the annotated web
page and transforms it into an enhanced version.
The client here is a standard web browser, so on the
learner’s side no additional software is needed.

The system currently supports three types of input
enhancement: i) color highlighting of the pattern or
selected parts thereof, ii) a version of the page sup-
porting identification of the pattern through clicking
and automatic color feedback, and iii) a version sup-
porting practice, such as a fill-in-the-blank version
of the page with automatic color feedback.

The overall architecture is shown in Figure 1.
Essentially, the automated input enhancement pro-
cess consists of the following steps:

1. Fetch the page.
2. Find the natural language text portions in it.
3. Identify the targeted language pattern.
4. Annotate the web page, marking up the lan-

guage patterns identified in the previous step.
5. Transform the annotated web page into the out-

put by visually enhancing the targeted pattern
or by generating interaction possibilities.

Steps 1–4 take place on the server side, whereas step
5 happens in the learner’s browser.1 As NLP is only
involved in step 3, we here focus on that step.

1As an alternative to the server-based fetching of web pages,

Server

UIMA                     

Browser                                         

URL Fetching

HTML Annotation

Identifying text in HTML page

Tokenization

Sentence Boundary Detection

POS Tagging

Pattern-specific NLP

Colorize Click Practice

Figure 1: Overall WERTi architecture. Grey components
are the same for all patterns and activities, cf. section 2.1.

While the first prototype of the WERTi system2

presented at CALICO (Amaral, Metcalf and Meur-
ers, 2006) and EUROCALL (Metcalf and Meurers,
2006) was implemented in Python, the current sys-
tem is Java-based, with all NLP being integrated in
the UIMA framework (Ferrucci and Lally, 2004).
UIMA is an architecture for the management and
analysis of unstructured information such as text,
which is built on the idea of referential annotation
and can be seen as an NLP analysis counterpart
to current stand-off encoding standards for anno-
tated corpora (cf., e.g., Ide et al. 2000). The input

we are developing a Firefox plugin, leaving only the NLP up to
the server. This increases compatibility with web pages using
dynamically generated contents and special session handling.

2http://purl.org/icall/werti-v1
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can be monotonically enriched while passing from
one NLP component to the next, using a flexible
data repository common to all components (Götz
and Suhre, 2004). Such annotation-based processing
is particularly useful in the WERTi context, where
keeping the original text intact is essential for dis-
playing it in enhanced form.

A second benefit of using the UIMA framework is
that it supports a flexible combination of individual
NLP components into larger processing pipelines.
To obtain a flexible approach to input enhancement
in WERTi, we need to be able to identify and an-
alyze phenomena from different levels of linguistic
analysis. For example, lexical classes can be iden-
tified by a POS tagger, whereas other patterns to be
enhanced require at least shallow syntactic chunk-
ing. The more diverse the set of phenomena, the
less feasible it is to handle all of them within a
single processing strategy or formalism. Using the
UIMA framework, we can re-use the same basic
processing (e.g., tokenizing, POS tagging) for all
phenomena and still be able to branch into pattern-
specific NLP in a demand-driven way. Given that
NLP components in UIMA include self-describing
meta-information, the processing pipeline to be run
can dynamically be obtained from the module con-
figuration instead of being hard-wired into the core
system. The resulting extensible, plugin-like archi-
tecture seems particularly well-suited for the task of
visual input enhancement of a wide range of hetero-
geneous language properties.

Complementing the above arguments for the
UIMA-based architecture of the current WERTi sys-
tem, a detailed discussion of the advantages of an
annotation-based, demand-driven NLP architecture
for Intelligent Computer-Assisted Language Learn-
ing can be found in Amaral, Meurers, and Ziai (To
Appear), where it is employed in an Intelligent Lan-
guage Tutoring System.

2.1 Implemented Modules

The modules implemented in the current system
handle a number of phenomena commonly judged
as difficult for second language learners of English.
In the following we briefly characterize each mod-
ule, describing the nature of the language pattern,
the required NLP, and the input enhancement results,
which will be referred to as activities.

Lexical classes

Lexical classes are the most basic kind of linguis-
tic category we use for input enhancement. The in-
ventory of lexical categories to be used and which
ones to focus on should be informed by second
language acquisition research and foreign language
teaching needs. The current system focuses on func-
tional elements such as prepositions and determiners
given that they are considered to be particularly dif-
ficult for learners of English (cf. De Felice, 2008 and
references therein).

We identify these functional elements using the
LingPipe POS tagger (http://alias-i.com/
lingpipe) employing the Brown tagset (Francis
and Kucera, 1979). As we show in section 2.2, the
tagger reliably identifies prepositions and determin-
ers in native English texts such as those expected for
input enhancement.

The input enhancement used for lexical classes is
the default set of activities provided by WERTi. In
the simplest case, Color, all automatically identified
instances in the web page are highlighted by color-
ing them; no learner interaction is required. This is
illustrated by Figure 2, which shows the result of en-
hancing prepositions in a web page from the British

Figure 2: Screenshot of color activity for prepositions, cf.
http://purl.org/icall/werti-color-ex
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newspaper The Guardian.3

In this and the following screenshots, links al-
ready present in the original web page appear in light
blue (e.g., Vauban in Germany). This raises an im-
portant issue for future research, namely how to de-
termine the best visual input enhancement for a par-
ticular linguistic pattern given a specific web page
with its existing visual design features (e.g., bold-
facing in the text or particular colors used to indicate
links), which includes the option of removing or al-
tering some of those original visual design features.

A more interactive activity type is Click, where
the learner during reading can attempt to identify in-
stances of the targeted language form by clicking on
it. Correctly identified instances are colored green
by the system, incorrect guesses red.

Thirdly, input can be turned into Practice activi-
ties, where in its simplest form, WERTi turns web
pages into fill-in-the-blank activities and provides
immediate color coded feedback for the forms en-
tered by the learner. The system currently accepts
only the form used in the original text as correct.
In principle, alternatives (e.g., other prepositions)
can also be grammatical and appropriate. The ques-
tion for which cases equivalence classes of target an-
swers can automatically be determined is an interest-
ing question for future research.4

Gerunds vs. to-infinitives
Deciding when a verb is required to be realized as

a to-infinitive and when as a gerund -ing form can be
difficult for ESL learners. Current school grammars
teach students to look for certain lexical clues that
reliably indicate which form to choose. Examples
of such clues are prepositions such as after and of,
which can only be followed by a gerund.

In our NLP approach to this language pattern, we
use Constraint Grammar rules (Karlsson et al., 1995)
on top of POS tagging, which allow for straightfor-
ward formulation of local disambiguation rules such
as: “If an -ing form immediately follows the prepo-
sition by, select the gerund reading.” Standard POS

3Given the nature of the input enhancement using colors, the
highlighting in the figure is only visible in a color printout.

4The issue bears some resemblance to the task of identify-
ing paraphrases (Androutsopoulos and Malakasiotis, 2009) or
classes of learner answers which differ in form but are equiva-
lent in terms of meaning (Bailey and Meurers, 2008).

tagsets for English contain a single tag for all -ing
forms. In order to identify gerunds only, we in-
troduce all possible readings for all -ing forms and
wrote 101 CG rules to locally disambiguate them.
The to-infinitives, on the other hand, are relatively
easy to identify based on the surface form and re-
quire almost no disambiguation.

For the implementation of the Constraint Gram-
mar rules, we used the freely available CG3 system.5

While simple local disambiguation rules are suffi-
cient for the pattern discussed here, through iterative
application of rules, Constraint Grammar can iden-
tify a wide range of phenomena without the need to
provide a full grammatical analysis.

The Color activity resulting from input enhance-
ment is similar to that for lexical classes described
above, but the system here enhances both verb forms
and clue phrases. Figure 3 shows the system high-
lighting gerunds in orange, infinitives in purple, and
clue phrases in blue.

Figure 3: Color activity for gerunds vs. to-infinitives, cf.
http://purl.org/icall/werti-color-ex2

For the Click activity, the web page is shown
with colored gerund and to-infinitival forms and the
learner can click on the corresponding clue phrases.

For the Practice activity, the learner is presented
with a fill-in-the-black version of the web page, as
in the screenshot in Figure 4. For each blank, the
learner needs to enter the gerund or to-infinitival
form of the base form shown in parentheses.

Wh-questions
Question formation in English, with its particu-

lar word order, constitutes a well-known challenge
for second language learners and has received sig-
nificant attention in the second language acquisi-

5http://beta.visl.sdu.dk/cg3.html
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Figure 4: Practice activity for gerunds vs. to-infinitives,
cf. http://purl.org/icall/werti-cloze-ex

tion literature (cf., e.g., White et al., 1991; Spada
and Lightbown, 1993). Example (1) illustrates the
use of do-support and subject-aux inversion in wh-
questions as two aspects challenging learners.

(1) What do you think it takes to be successful?

In order to identify the wh-question patterns, we
employ a set of 126 hand-written Constraint Gram-
mar rules. The respective wh-word acts as the lex-
ical clue to the question as a whole, and the rules
then identify the subject and verb phrase based on
the POS and lexical information of the local context.

Aside from the Color activity highlighting the rel-
evant parts of a wh-question, we adapted the other
activity types to this more complex language pattern.
The Click activity prompts learners to click on either
the subject or the verb phrase of the question. The
Practice activity presents the words of a wh-question
in random order and requires the learner to rearrange
them into the correct one.

Conditionals
English has five types of conditionals that are used

for discussing hypothetical situations and possible
outcomes. The tenses used in the different condi-
tional types vary with respect to the certainty of the
outcome as expressed by the speaker/writer. For ex-
ample, one class of conditionals expresses high cer-
tainty and uses present tense in the if -clause and fu-
ture in the main clause, as in example (2).

(2) If the rain continues, we will return home.

The recognition of conditionals is approached us-
ing a combination of shallow and deep methods. We
first look for lexical triggers of a conditional, such as

the word if at the beginning of a sentence. This first
pass serves as a filter to the next, more expensive
processing step, full parsing of the candidate sen-
tences using Bikel’s statistical parser (Bikel, 2002).
The parse trees are then traversed to identify and
mark the verb forms and the trigger word.

For the input enhancement, we color all relevant
parts of a conditional, namely the trigger and the
verb forms. The Click activity for conditionals re-
quires the learner to click on exactly these parts. The
Practice activity prompts users to classify the condi-
tional instances into the different classes.

Phrasal verbs
Another challenging pattern for English language

learners are phrasal verbs consisting of a verb and
either a preposition, an adverb or both. The meaning
of a phrasal verb often differs considerably from that
of the underlying verb, as in (3) compared to (4).

(3) He switched the glasses without her noticing.

(4) He switched off the light before he went to bed.

This distinction is difficult for ESL learners, who
often confuse phrasal and non-phrasal uses.

Since this is a lexical phenomenon, we ap-
proached the identification of phrasal verbs via a
database lookup in a large online collection of verbs
known to occur in phrasal form.6 In order to find out
about noun phrases and modifying adverbs possibly
occurring in between the verb and its particles, we
run a chunker and use this information in specifying
a filter for such intervening elements.

The visual input enhancement activities targeting
phrasal verbs are the same as for lexical classes, with
the difference that for the Practice activity, learners
have to fill in only the particle, not the particle and
the main verb, since otherwise the missing contents
may be too difficult to reconstruct. Moreover, we
want the activity to focus on distinguishing phrasal
from non-phrasal uses, not verb meaning in general.

2.2 Evaluation issues

The success of a visual input enhancement approach
such as the one presented in this paper depends on
a number of factors, each of which can in principle

6http://www.usingenglish.com/reference/
phrasal-verbs
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be evaluated. The fundamental but as far as we are
aware unanswered question in second language ac-
quisition research is for which language categories,
forms, and patterns input enhancement can be effec-
tive. As Lee and Huang (2008) show, the study of
visual input enhancement sorely needs more experi-
mental studies. With the help of the WERTi system,
which systematically produces visual input enhance-
ment for a range of language properties, it becomes
possible to conduct experiments in a real-life foreign
language teaching setting to test learning outcomes7

with and without visual input enhancement under a
wide range of parameters. Relevant parameters in-
clude the linguistic nature of the language property
to be enhanced as well as the nature of the input en-
hancement to be used, be it highlighting through col-
ors or fonts, engagement in different types of activi-
ties such as clicking, entering fill-in-the-blank infor-
mation, reordering language material, etc.

A factor closely related to our focus in this pa-
per is the impact of the quality of the NLP analysis.8

For a quantitative evaluation of the NLP, one signif-
icant problem is the mismatch between the phenom-
ena focused on in second language learning and the
available gold standards where these phenomena are
actually annotated. For example, standard corpora
such as the Penn Treebank contain almost no ques-
tions and thus do not constitute a useful gold stan-
dard for wh-question identification. Another prob-
lem is that some grammatical distinctions taught to
language learners are disputed in the linguistic liter-
ature. For example, Huddleston and Pullum (2002,
p. 1120) eliminate the distinction between gerunds
and present participles, combining them into a class
called “gerund-participle”. And in corpus annota-
tion practice, gerunds are not identified as a class by
the tagsets used to annotate large corpora, making it
unclear what gold standard our gerund identification
component should be evaluated against.

While the lack of available gold standards means
that a quantitative evaluation of all WERTi mod-
ules is beyond the scope of this paper, the deter-
miner and preposition classes focused on in the lex-
ical classes module can be identified using the stan-

7Naturally, online measures of noticing, such as eye tracking
or Event-Related Potentials (ERP) would also be relevant.

8The processing time for the NLP analysis as other relevant
aspect is negligible for most of the activities presented here.

dard CLAWS-7 or Brown tagsets, for which gold-
standard corpora are available. We thus decided
to evaluate this WERTi module against the BNC
Sampler Corpus (Burnard, 1999), which contains
a variety of genres, making it particularly appro-
priate for evaluating a tool such as WERTi, which
learners are expected to use with a wide range of
web pages as input. The BNC Sampler corpus is
annotated with the fine-grained CLAWS-7 tagset9

where, e.g., prepositions are distinguished from sub-
ordinating conjunctions. By mapping the relevant
POS tags from the CLAWS-7 tagset to the Brown
tagset used by the LingPipe tagger as integrated in
WERTi, it becomes possible to evaluate WERTi’s
performance for the specific lexical classes focused
on for input enhancement, prepositions and deter-
miners. For prepositions, precision was 95.07% and
recall 90.52% while for determiners, precision was
97.06% with a recall of 94.07%.

The performance of the POS tagger on this refer-
ence corpus thus seems to be sufficient as basis for
visual input enhancement, but the crucial question
naturally remains whether identification of the target
patterns is reliable in the web pages that language
learners happen to choose. For a more precise quan-
titative study, it will thus be important to try the sys-
tem out with real-life users in order to identify a set
of web pages which can constitute an adequate test
set. Interestingly, which web pages the users choose
depends on the search engine front-end we provide
for them. As discussed under outlook in section 4,
we are exploring the option to implicitly guide them
towards web pages containing enough instances of
the relevant language patterns in text at the appro-
priate reading difficulty.

3 Context and related work

Contextualizing our work, one can view the auto-
matic visual input enhancement approach presented
here as an enrichment of Data-Driven Learning
(DDL). Where DDL has been characterized as an
“attempt to cut out the middleman [the teacher] as
far as possible and to give the learner direct access
to the data” (Boulton 2009, p. 82, citing Tim Johns),
in visual input enhancement the learner stays in con-

9http://www.natcorp.ox.ac.uk/docs/
c7spec.html
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trol, but the NLP uses ‘teacher knowledge’ about rel-
evant and difficult language properties to make those
more prominent and noticeable for the learner.

In the context of Intelligent Computer-Assisted
Language Learning (ICALL), NLP has received
most attention in connection with Intelligent Lan-
guage Tutoring Systems, where NLP is used to ana-
lyze learner data and provide individual feedback on
that basis (cf. Heift and Schulze, 2007). Demands
on such NLP are high given that it needs to be able
to handle learner language and provide high-quality
feedback for any sentence entered by the learner.

In contrast, visual input enhancement makes use
of NLP analysis of authentic, native-speaker text and
thus applies the tools to the native language they
were originally designed and optimized for. Such
NLP use, which we will refer to as Authentic Text
ICALL (ATICALL), also does not need to be able
to correctly identify and manipulate all instances of
a language pattern for which input enhancement is
intended. Success can be incremental in the sense
that any visual input enhancement can be beneficial,
so that one can focus on enhancing those instances
which can be reliably identified in a text. In other
words, for ATICALL, precision of the NLP tools is
more important than recall. It is not necessary to
identify and enhance all instances of a given pattern
as long as the instances we do identify are in fact
correct, i.e., true positives. As the point of our sys-
tem is to enhance the reading experience by raising
language awareness, pattern occurrences we do not
identify are not harmful to the overall goal.10

We next turn to a discussion of some interest-
ing approaches in two closely related fields, exercise
generation and reading support tools.

3.1 Exercise Generation

Exercise generation is widely studied in CALL re-
search and some of the work relates directly to the
input enhancement approach presented in this paper.
For instance, Antoniadis et al. (2004) describe the
plans of the MIRTO project to support “gap-filling”
and “lexical spotting” exercises in combination with
a corpus database. However, MIRTO seems to fo-

10While identifying all instances of a pattern indeed is not
crucial in this context, representativeness remains relevant to
some degree. Where only a skewed subset of a pattern is high-
lighted, learners may not properly conceptualize the pattern.

cus on a general architecture supporting instructor-
determined activity design. Visual input enhance-
ment or language awareness are not mentioned. The
VISL project (Bick, 2005) offers games and visual
presentations in order to foster knowledge of syntac-
tic forms and rules, and its KillerFiller tool can cre-
ate slot-filler exercises from texts. However, Killer-
Filler uses corpora and databases as the text base and
it presents sentences in isolation in a testing setup.
In contrast to such exercise generation systems, we
aim at enhancing the reader’s second language input
using the described web-based mash-up approach.

3.2 Reading Support Tools

Another branch of related approaches consists of
tools supporting the reading of texts in a foreign lan-
guage. For example, the Glosser-RuG project (Ner-
bonne et al., 1998) supports reading of French texts
for Dutch learners with an online, context-dependent
dictionary, as well as morphological analysis and ex-
amples of word use in corpora. A similar system,
focusing on multi-word lexemes, was developed in
the COMPASS project (Breidt and Feldweg, 1997).
More recently, the ALPHEIOS project11 has pro-
duced a system that can look up words in a lexi-
con and provide aligned translations. While such
lexicon-based tools are certainly useful to learners,
they rely on the learner asking for help instead of
enhancing specific structures from the start and thus
clearly differ from our approach.

Finally, the REAP project12 supports learners in
searching for texts that are well-suited for provid-
ing vocabulary and reading practice (Heilman et al.,
2008). While it differs in focus from the visual input
enhancement paradigm underlying our approach, it
shares with it the emphasis on providing the learner
with authentic text in support of language learning.

4 Conclusion and Outlook

In this paper we presented an NLP architecture and
a concrete system for the enhancement of authen-
tic web pages in order to support language aware-
ness in ESL learners. The NLP architecture is flexi-
ble enough to integrate any processing approach that
lends itself to the treatment of the language phe-

11http://alpheios.net
12http://reap.cs.cmu.edu
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nomenon in question, without confining the devel-
oper to a particular formalism. The WERTi system
illustrates this with five language patterns typically
considered difficult for ESL learners: lexical classes,
gerunds vs. to-infinitives, wh-questions, condition-
als and phrasal verbs.

Looking ahead, we already mentioned the funda-
mental open question where input enhancement can
be effective in section 2.2. A system such as WERTi,
systematically producing visual input enhancement,
can help explore this question under a wide range of
parameters in a real-life language teaching setting.
A more specific future research issue is the auto-
matic computation of equivalence classes of target
forms sketched in section 2.1. Not yet mentioned
but readily apparent is the goal to integrate more
language patterns known to be difficult for language
learners into WERTi (e.g., active/passive, tense and
aspect distinctions, relative clauses), and to explore
the approach for other languages, such as German.

A final important avenue for future research con-
cerns the starting point of the system, the step where
learners search for a web page they are interested
in and select it for presentation with input enhance-
ment. Enhancing of patterns presupposes that the
pages contain instances of the pattern. The less
frequent the pattern, the less likely we are to find
enough instances of it in web pages returned by the
standard web search engines typically used by learn-
ers to find pages of interest to them. The issue is re-
lated to research on providing learners with texts at
the right level of reading difficulty (Petersen, 2007;
Miltsakaki and Troutt, 2008), but the focus for us
is on ensuring that texts which include instances of
the specific language pattern targeted by a given in-
put enhancement are ranked high in the search re-
sults. Ott (2009) presents a search engine prototype
which, in addition to the content-focused document-
term information and traditional readability mea-
sures, supports indexing based on a more general no-
tion of a text model into which the patterns relevant
to input enhancement can be integrated – an idea we
are exploring further (Ott and Meurers, Submitted).
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Tübingen in Summer 2008. Last but not least, the
paper benefited from two helpful workshop reviews.

References
Luiz Amaral, Vanessa Metcalf, and Detmar Meur-

ers. 2006. Language awareness through re-use
of NLP technology. Presentation at the CALICO
Workshop on NLP in CALL – Computational and
Linguistic Challenges, May 17, 2006. University
of Hawaii. http://purl.org/dm/handouts/
calico06-amaral-metcalf-meurers.pdf.

Luiz Amaral, Detmar Meurers, and Ramon Ziai.
To Appear. Analyzing learner language: To-
wards a flexible NLP architecture for intelligent
language tutors. Computer-Assisted Language
Learning. http://purl.org/dm/papers/
amaral-meurers-ziai-10.html.

Ion Androutsopoulos and Prodromos Malakasiotis.
2009. A survey of paraphrasing and textual entailment
methods. Technical report, NLP Group, Informatics
Dept., Athens University of Economics and Business,
Greece. http://arxiv.org/abs/0912.3747.

Georges Antoniadis, Sandra Echinard, Olivier Kraif,
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Abstract 

This paper
1
 presents AutoLearn’s authoring 

tool: AutoTutor, a software solution that en-

ables teachers (content creators) to develop 

language learning activities including auto-

matic feedback generation without the need of 

being a programmer. The software has been 

designed and implemented on the basis of 

processing pipelines developed in previous 

work. A group of teachers has been trained to 

use the technology and the accompanying 

methodology, and has used materials created 

by them in their courses in real instruction set-

tings, which served as an initial evaluation. 

The paper is structured in four sections: Sec-

tion 1 introduces and contextualizes the re-

search work. Section 2 describes the solution, 

its architecture and its components, and spe-

cifically the way the NLP resources are cre-

ated automatically with teacher input. Section 

3 describes and analyses a case study using 

the tool to create and test a language learning 

activity. Finally Section 4 concludes with re-

marks on the work done and connections to 

related work, and with future work. 

1 Introduction 

Over the past four decades there have been several 

hundreds of CALL (Computer-Aided Language 

Learning) projects, often linked to CALL practice 

(Levy 1997), and within the last twenty years a 

considerable number of them focused on the use of 

                                                           
1 Research funded by the Lifelong Learning Programme 2007-

2013 (AUTOLEARN, 2007-3625/001-001). 

NLP in the context of CALL (Amaral and Meur-

ers, in preparation). Despite this, there is an appall-

ing absence of parser-based CALL in real 

instruction settings, which has been partially at-

tributed to a certain negligence of the pedagogical 

needs (Amaral and Meurers, in preparation). In 

contrast, projects and systems that were pedagogi-

cally informed succeeded, yielded and are yielding 

interesting results, and are evolving for over a dec-

ade now (Nagata 2002; Nagata 2009; Heift 2001; 

Heift 2003; Heift 2005; Amaral and Meurers, in 

preparation). According to Amaral and Meurers 

successful projects were able to restrict learner 

production in terms of NLP complexity by limiting 

the scope of the learning activities to language-

oriented (as opposed to communicative-oriented) 

or translation exercises, or by providing feedback 

on formal aspects of language in content oriented 

activities, always under pedagogical considerations 

–focus on form. 

Our proposal is a step forward in this direction 

in two ways: a) it allows for feedback generation 

focusing both on formal and content (communica-

tive-oriented) aspects of language learning activi-

ties, and b) it provides teachers with a tool and a 

methodology –both evolving– for them to gain 

autonomy in the creation of parser-based CALL 

activities –which by the way has a long tradition in 

CALL (Levy 1997, chap. 2). The goal is to shape 

language technologies to the needs of the teachers, 

and truly ready-to-hand. 

1.1 Related work and research context 

The extent to which pedagogues appreciate and 

require autonomy in the design and creation of 

CALL activities can be traced in the historical 
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overview offered by (Levy 1997, 16, 17, 19, 23 

and 38). Moreover, parallel research shows that the 

integration of CALL in the learning context is 

critical to ensure the success of whatever materials 

are offered to learners (Levy 1997, 200-203; Polis-

ca 2006). 

AutoTutor goes beyond tools such as Hot Pota-

toes, eXelearning or JClic
2
 in that it offers the pos-

sibility of authoring NLP-based CALL activities. It 

is also more ambitious than other authoring tools 

developed for the creation of activities in intelli-

gent tutoring systems. Chen and Tokuda (2003) 

and Rösener (2009) present authoring tools for 

translation exercises, where expected learner input 

is much more controlled (by the sentence in the 

source language).  

Heift and Toole (2002) present Tutor Assistant, 

which enables to create activities such as build-a-

sentence, drag-and-drop and fill-in-the-blank. An 

important difference between AutoTutor and Tutor 

Assistant is that the latter is a bit more restrictive in 

terms of the linguistic objects that can be used. It 

also presents a lighter complexity in the modelling 

of the underlying correction modules. However, 

the system underlying Tutor Assistant provides 

with more complex student adaptation functional-

ities (Heift 2003) and would be complementary in 

terms of overall system functionalities. 

                                                           
2 http://hotpot.uvic.ca/, http://sourceforge.net/apps/trac/exe/wiki, 

http://clic.xtec.cat/es/jclic/index.htm. 

2 AutoTutor: AutoLearn’s authoring 

software 

AutoTutor is a web-based software solution to 

assist non-NLP experts in the creation of language 

learning activities using NLP-intensive processing 

techniques. The process includes a simplified 

specification of the means to automatically create 

the resources used to analyse learner input for each 

exercise. The goal is to use computational devices 

to analyse learner production and to be able to go 

beyond “yes-or-no” answers providing additional 

feedback focused both on form and content. 

This research work is framed within the 

AutoLearn project, a follow up of the ALLES pro-

ject (Schmidt et al., 2004, Quixal et al., 2006). 

AutoLearn’s aim was to exploit in a larger scale a 

subset of the technologies developed in ALLES in 

real instruction settings. Estrada et al. (2009) de-

scribe how, in AutoLearn’s first evaluation phase, 

the topics of the activities were not attractive 

enough for learners and how learner activity de-

creased within the same learning unit across exer-

cises. Both observations –together with what it has 

been shown with respect to the integration of inde-

pendent language learning, see above –  impelled 

us to develop AutoTutor, which allows teachers to 

create their own learning units. 

As reflected in Figure 1, AutoTutor consists 

primarily of two pieces of software: AutoTutor 

Activity Creation Kit (ATACK) and AutoTutor 

Activity Player (ATAP). ATACK, an authoring 

Figure 1. AutoTutor software architecture. 

20



tool, provides teachers with the ability to create 

parser-based CALL exercises and define the corre-

sponding exercise specifications for the generation 

of automated feedback. ATAP allows teachers to 

insert, track and manage those exercises in Moodle 

(http://moodle.org), giving learners the possibility 

to visualize and answer them. Both ATACK and 

ATAP share a common infrastructure of NLP ser-

vices which provides the basic methods for gener-

ating, storing and using NLP tools. Access to those 

methods is made through XML-RPC calls. 

2.1 AutoTutor Activity Creation Kit 

ATACK is divided in two components: a GUI that 

allows content creators to enter the text, questions 

and instructions to be presented to learners in order 

to elicit answers from them; and an NLP resource 

creation module that automatically generates the 

resources that will be used for the automated feed-

back. Through the GUI, teachers are also able to 

define a set of expected correct answers for each 

question, and, optionally, specific customized 

feedback and sample answers. 

To encode linguistic and conceptual variation in 

the expected answers, teachers are required to turn 

them into linguistic patterns using blocks. Blocks 

represent abstract concepts, and contain the con-

crete chunks linked to those concepts. Within a 

block one can define alternative linguistic struc-

tures representing the same concept. By combining 

and ordering blocks, teachers can define the se-

quences of text that correspond to the expected 

correct answers –i.e., they can provide the seeds 

for answer modelling. 

Modelling answers 

Given an exercise where learners are required 

to answer the question “From an architecture point 

of view, what makes Hagia Sophia in Istanbul so 

famous according to its Wikipedia entry?”, the 

following answers would be accepted: 

1. {The Hagia Sophia/The old mosque} is 

famous for its massive dome. 

2. The reputation of {the Hagia Sophia/the 

old mosque} is due to its massive dome. 

To model these possible answers, one would 

use four blocks (see Figure 2) corresponding to 

WHO (Hagia Sophia), WHAT (Famousness), and 

WHY (Dome), and complementary linguistic ex-

pressions such as “is due to”. Thus, the possible 

correct block sequences would be (indices corre-

sponding to Figure 2): 

a) B1 B2.A B4 

b) B2.B B1 B3 B4 

Block B1 is an example of interchangeable al-

ternatives (the Hagia Sophia or the old mosque), 

which do not require any further condition to ap-

ply. In contrast, block B2 is an instance of a syn-

tactic variation of the concept. Famousness can be 

expressed through an adjective or through a verb 

(in our example), but each of the choices requires a 

different sentence structure.  

Alternative texts in a block with no variants (as 

in B1) exploit the paradigmatic properties of lan-

guage, while alternative texts in a block with two 

variants as in B2 account for its syntagmatic prop-

erties, reflected in the block sequences. Interest-

ingly, this sort of splitting of a sentence into blocks 

is information-driven and simplifies the linguistic 

expertise needed for the exercise specifications. 

2.2 Automatic generation of exercise-specific 
NLP-resources 

Figure 3 shows how the teacher’s input is con-

verted into NLP-components. Predefined system 

components present plain borders, and the result-

ing ones present hyphenised borders. The figure 

also reflects the need for answer and error model-

ling resources. 

NLP resource generation process 

B2 (FAMOUSNESS) 

B: 

the reputation of 

A: 

is famous for 

B1 (SOPHIA) 

the Hagia Sophia 

the old mosque 

B3 (DUE) 

is due to 

B4 (CAUSE) 

its massive dome 

Figure 2 Blocks as specified in AutoTutor GUI. 
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The generation of the NLP resources is possible 

through the processing of the teacher’s input with 

three modules:  the morphological analysis module 

performs a lexicon lookup and determines un-

known words that are entered into the exercise-

specific lexicon; the disambiguation of base form 

module, disambiguates base forms, e.g. “better” is 

disambiguated between verb and adjective depend-

ing on the context in preparation of customized 

feedback.  

The last and most important module in the ar-

chitecture is the match settings component, which 

determines the linguistic features and structures to 

be used by the content matching and the exercise-

specific error checking modules (see Figure 4). 

Using relaxation techniques, the parsing of learner 

input is flexible enough to recognize structures 

including incorrect word forms and incorrect, 

missing or additional items such as determiners, 

prepositions or digits, or even longish chunks of 

text with no correspondence the specified answers. 

The match settings component contains rules that 

later on trigger the input for the exercise-specific 

error checking.  

The match settings component consists of 

KURD rules (Carl et al. 1998). Thus it can be 

modified and extended by a computational linguist 

any time without the need of a programmer. 

Once the exercise’s questions and expected an-

swers have been defined, ATACK allows for the 

generation of the NLP resources needed for the 

automatic correction of that exercise. The right-

hand side of Figure 3 shows which the generated 

resources are: 

• An exercise-specific lexicon to handle un-

known words 

• A content matching module based on the 

KURD formalism to define several lin-

guistically-motivated layers with different 

levels of relaxation (using word, lemma, 

and grammatical features) for determining 

the matching between the learner input and 

the expected answers  

• A customized feedback module for teacher-

defined exercise-specific feedback  

• An exercise-specific error checking mod-

ule for context-dependent errors linked to 

language aspects in the expected answers 

• A general content evaluation component 

that checks whether the analysis performed 

by the content matching module conforms 

to the specified block orders 

2.3 AutoTutor Activity Player (ATAP) 

With ATAP learners have access to the contents 

enhanced with automatic tutoring previously cre-

ated by teachers. ATAP consists of a) a client GUI 

for learners, integrated in Moodle, to answer exer-

cises and track their own activity; b) a client GUI 

for teachers, also integrated in Moodle, used to 

manage and track learning resources and learner 

Teacher input (GUI) 

ERROR MODEL 

ANSWER MODEL 

Morph. 

analysis 

Morph. 

analysis 

Customized 

feedback 

Match 

settings 

General content 

evaluation 

Content mat-

ching 

Disam. of 

base form 

Exercise-specific lexicon 

Exercise-specific 

error checking 

Blocks (word 

chunks) 

Teacher defined 

error modelling 

Block order 

Figure 3. Processing schema and components of the customizable NLP resources of ATACK 
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activity; and c) a backend module, integrated into 

the AutoTutor NLP Services Infrastructure, re-

sponsible for parsing the learner’s input and gener-

ating feedback messages. 

Figure 4 describes the two steps involved in the 

NLP-based feedback generation: the NLP compo-

nents created through ATACK –in hyphenised 

rectangles– are combined with general built-in 

NLP-based correction modules. 

2.4 The feedback generation software 

Feedback is provided to learners in two steps, 

which is reflected in Figure 4 by the two parts, the 

upper and lower part, called General Checking and 

Exercise Specific Checking respectively. The for-

mer consists in the application of standard spell 

and grammar checkers. The latter consists in the 

application of the NLP resources automatically 

generated with the teacher’s input. 

Content matching module 

The text chunks (blocks) that the teacher has en-

tered into ATACK’s GUI are converted into 

KURD rules. KURD provides with sophisticated 

linguistically-oriented matching and action opera-

tors. These operators are used to model (predict-

able) learner text. The content matching module is 

designed to be able to parse learners input with 

different degrees of correctness combining both 

relaxation techniques and mal-rules. For instance, 

it detects the presence of both correct and incorrect 

word forms, but it also detects incorrect words 

belonging to a range of closed or open word 

classes –mainly prepositions, determiners, modal 

verbs and digits– which can be used to issue a cor-

responding linguistically motivated error messages 

like “Preposition wrong in this context”, in a con-

text where the preposition is determined by the 

relevant communicative situation. 

Error types that are more complex to handle in 

technical terms involve mismatches between the 

amount of expected elements and the actual 

amount of informational elements in the learner’s 

answer. Such mismatches arise on the grammatical 

level if a composite verb form is used instead of a 

simple one, or when items such as determiners or 

commas are missing or redundant. The system also 

accounts for additional modifiers and other words 

interspersed in the learner’s answer.  

The matching strategy uses underspecified 

empty slots to fit in textual material in between the 

correct linguistic structures. Missing words are 

handled by a layer of matching in which certain 

elements, mainly grammatical function words such 

as determiners or auxiliary verbs, are optional.  

Incorrect word choice in open and closed word 

classes is handled by matching on more abstract 

linguistic features instead of lexeme features. 

The interaction between KURD-based linguis-

tically-driven triggers in the content matching 

module and the rules in the exercise-specific error 

checking (see below) module allows for specific 

mal-rule based error correction. 

Customized feedback 

Teachers can create specific error messages for 

simple linguistic patterns (containing errors or 

searching for missing items) ranging from one or 

two word structures to more complex word-based 

linguistic structures. Technically, error patterns are 

Morph. 

analysis 

Spell 

checking 

Grammar 

checking 

Lexicon Exercise-specific lexicon 

Customized 

feedback 

Exercise-specific 

error checking 

General content 

evaluation 

Content 

matching 

EXERCISE-SPECIFIC CHECKING (TWO) 

GENERAL CHECKING (ONE) 

Figure 4. Processing schema of the NLP resources to generate automatic feedback. 
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implemented as KURD rules linked to a specific 

error message. These rules have preference over 

the rules applied by any other later module. 

Exercise-specific error checking 

Teachers do not encode all the exercise-specific 

errors themselves because a set of KURD rules for 

the detection of prototypical errors is encoded –this 

module uses the triggers set by the content match-

ing component. Exercise-specific linguistic errors 

handled in this module have in common that they 

result in sentences that are likely to be wrong ei-

ther from a formal (but context-dependent) point of 

view or from an informational point of view.  

General content evaluation 

Since the contents are specified by the blocks cre-

ated by teachers, the evaluation has a final step in 

which the system checks whether the learner’s 

answer contains all the necessary information that 

belongs to a valid block sequence.  

This module checks for correct order in infor-

mation blocks, for blending structures (mixtures of 

two possible correct structures), missing informa-

tion and extra words (which do not always imply 

an error). The messages generated with this com-

ponent pertain to the level of completeness and 

adequacy of the answer in terms of content. 

3 Usage and evaluation 

AutoTutor has been used by a group of seven 

content creators –university and school teachers– 

for a period of three months. They developed over 

20 activities for learning units on topics such as 

business and finance, sustainable production and 

consumption, and new technologies. Those activi-

ties contain listening and reading comprehension 

activities, short-text writing activities, enabling 

tasks on composition writing aspects, etc. whose 

answers must be expressed in relatively free an-

swers consisting of one sentence. In November 

2009, these activities were used in real instruction 

settings with approximately 600 learners of Eng-

lish and German. Furthermore, an evaluation of 

both teacher and learner satisfaction and system 

performance was carried out. 

We briefly describe the process of creating the 

materials by one of the (secondary school) teachers 

participating in the content creation process and 

evaluate the results of system performance in one 

activity created by this same teacher. 

3.1 Content creation: training and practice 

To start the process teachers received a 4-hour 

training course (in two sessions) where they were 

taught how to plan, pedagogically speaking, a 

learning sequence including activities to be cor-

rected using automatically generated feedback. We 

required them to develop autonomous learning 

units if possible. And we invited them to get hold 

of any available technology or platform functional-

ity to implement their ideas (and partially offered 

support to them too), convinced that technology 

had to be a means rather than a goal in itself. The 

course also included an overview of NLP tech-

niques and a specific course on the mechanics of 

ATACK (the authoring tool) and ATAP (the activ-

ity management and deployment tool).  

During this training we learned that most teach-

ers do not plan how activities will be assessed: that 

is, they often do not think of the concrete answers 

to the possible questions they will pose to learners. 

They do not need to, since they have all the knowl-

edge required to correct learner production any 

place, any time in their heads (the learner, the ac-

tivity and the expert model) no matter if the learner 

production is written or oral. This is crucial since it 

requires a change in normal working routine. 

After the initial training they created learning 

materials. During creation we interacted with them 

to make sure that they were not designing activities 

whose answers were simply impossible to model. 

For instance, the secondary school teacher who 

prepared the activity on sustainable production and 

consumption provided us with a listening compre-

hension activity including questions such as: 

1) Which is your attitude concerning respon-

sible consumption? How do you deal with 

recycling? Do you think yours is an eco-

logical home? Are you doing your best to 

reduce your ecological footprint? Make a 

list with 10 things you could do at home to 

reduce, reuse o recycle waste at home. 

All these things were asked in one sole instruc-

tion, to be answered in one sole text area. We then 

talked to the teacher and argued with her the kinds 

of things that could be modelled using simple one-

sentence answers. We ended up reducing the input 

provided to learners to perform the activity to one 
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video (initially a text and a video) and prompting 

learners with the following three questions: 

1) Explain in your words what the ecological 

footprint is. 

2) What should be the role of retailers accord-

ing to Timo Mäkelä? 

3) Why should producers and service provid-

ers use the Ecolabel? 

Similar interventions were done in other activi-

ties created by other content creators. But some of 

them were able to create activities which could be 

used almost straightforwardly. 

3.2 System evaluation 

The materials created by teachers were then 

used in their courses. In the setting that we analyse 

learners of English as a second language were 

Catalan and Spanish native speakers between 15 

and 17 years old that attended a regular first year 

of Batxillerat (first course for those preparing to 

enter university studies). They had all been learn-

ing English for more than five years, and according 

to their teacher their CEF level was between A2 

and B1. They were all digital literates and they all 

used the computer on a weekly basis for their stud-

ies or leisure (80% daily). 

We analyse briefly the results obtained for two 

of the questions in one of the activities created by 

the school teacher who authored the learning unit 

on sustainable production and consumption, 

namely questions 1) and 2) above. This learning 

unit was offered to a group of 25 learners. 

Overall system performance 

Table 1 reflects the number of attempts performed 

by learners trying to answer the two questions 

evaluated here: correct, partially correct and incor-

rect answers are almost equally distributed (around 

30% each) and non-evaluated answers are roughly 

10%. In non-evaluated answers we include basi-

cally answers where learners made a bad use of the 

system (e.g., answers in a language other than the 

one learned) or answers which were exactly the 

same as the previous one for two attempts in a row, 

which can interpreted in several ways (misunder-

standing of the feedback, usability problems with 

the interface, problems with pop-up windows, etc.) 

that fall out of the scope of the current analysis. 

Table 2 and Table 3 show the number of mes-

sages issued by the system for correct, partially 

correct and incorrect answers for each of the two 

questions analyzed. The tables distinguish between 

Form Messages and Content Messages, and Real 

Form Errors and Real Content Errors –a crucial 

distinction given our claim that using AutoTutor 

more open questions could be tackled.
3
 

QST CORR. PART. INCORR. INV. TOT 

1ST 36 23 12 2 73 

2ND 14 29 36 21 100 

ALL 50 (29%) 52(30%) 48(28%) 23(13%) 173 

Table 1. Correct, partially correct and incorrect answers. 

Table 2 and Table 3 show that the contrast be-

tween issued feedback messages (most commonly 

error messages, but sometimes rather pieces of 

advice or suggestions) and real problems found in 

the answers is generally balanced in formal prob-

lems (31:15, 8:7 and 41:39 for Table 2; and 6:8, 

29:18, and 20:21 for Table 3) independently of the 

correctness of the answer.  

On the contrary, the contrast between issued 

messages and content problems is much more un-

balanced in correct and partially correct answers 

(139:71 and 84:42 for Table 2; and 45:20 and 

110:57 for Table 3) and more balanced for incor-

rect answers (30:18 for Table 2; and 93:77 for 

Table 3). 

 

MESSAGES REAL ERRORS 

Form Cont Form Cont 

CORRECT ANSWERS 31 139 15 71 

PARTIALLY CORRECT 8 84 7 42 

INCORRECT ANSWERS 41 30 39 18 

 TOTAL ANSWERS 80 253 61 131 

Table 2. Messages issued vs. real errors for question 1 

in the answers produced by learners. 

 

MESSAGES REAL ERRORS 

Form Cont Form Cont 

CORRECT ANSWERS 6 45 8 20 

PARTIALLY CORRECT 29 110 18 57 

INCORRECT ANSWERS 20 93 21 77 

TOTAL ANSWERS 55 248 47 154 

Table 3. Messages issued vs. real errors for question 2 

in the answers produced by learners. 

This indicates that generally speaking the sys-

tem behaved more confidently in the detection of 

formal errors than in the detection of content er-

rors. 

                                                           
3 A proper evaluation would require manual correction of the 

activities by a number of teachers and the corresponding 

evaluation process. 
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System feedback analysis 

To analyze the system’s feedback we looked into 

the answers and the feedback proposed by the sys-

tem and annotated each answer with one or more 

of the tags corresponding to a possible cause of 

misbehaviour. The possible causes and its absolute 

frequency are listed in Table 4. 

The less frequent ones are bad use of the system 

on the learner side, bad guidance (misleading the 

learner to an improper answer or to a more com-

plex way of getting to it), connection failure, and 

message drawing attention on form when the error 

was on content. 
MISBEHAVIOUR QUESTION 1 QUESTION 2 

CONN-FAIL 1 0 

BAD-USE 1 1 

FRM-INSTOF-CONT 2 1 

BAD-GUIDE 4 2 

OOV 11 13 

WRNG-DIAG 11 20 

FRM-STRICT 33 20 

ARTIF-SEP 0 61 

SPECS-POOR 1 62 

Table 4. Frequent sources of system errors. 

The most frequent causes of system misbehav-

iour are out-of-vocabulary words, wrong diagno-

ses, and corrections too restrictive with respect to 

form. 

Two interesting causes of misbehaviour and in 

fact the most frequent ones were artificial separa-

tion and poor specifications. The former refers to 

the system dividing answer parts into smaller parts 

(and therefore generation of a larger number of 

issued messages). For instance in a sentence like 

(as an answer to question 2) 

The retailers need to make sure that whatever 

they label or they put in shelf is understandable 

to consumers.
4
 

the system would generate six different feedback 

messages informing that some words were not 

expected (even if correct) and some were found but 

not in the expected location or form. 

In this same sentence above we find examples 

of too poor specifications, where, for instance, it 

was not foreseen that retailers was used in the 

answer. These two kinds of errors reflect the flaws 

of the current system: artificial separation reflects a 

lack of generalization capacity of the underlying 

                                                           
4 One of the expected possible answers was “They need to 

make sure that whatever they label and whatever they put in 

the shelves is understood by consumers”. 

parser, and poor specifications reflect the incom-

pleteness of the information provided by novice 

users, teachers acting as material designers. 

4 Concluding remarks 

This paper describes software that provides 

non-NLP experts with a means to utilize and cus-

tomize NLP-intensive resources using an authoring 

tool for language instruction activities. Its usability 

and usefulness have been tested in real instruction 

settings and are currently being evaluated and ana-

lyzed. Initial analyses show that the technology 

and methodology proposed allow teachers to create 

contents including automatic generation feedback 

without the need of being neither a programmer 

nor an NLP expert.  

Moreover, system performance shows a reason-

able confidence in error detection given the imma-

turity of the tool and of its users –following 

Shneiderman and Plaisant’s terminology (2006). 

There is room for improvement in the way to re-

duce false positives related with poor specifica-

tions. It is quite some work for exercise designers 

to foresee a reasonable range of linguistic alterna-

tives for each answer. One could further support 

them in the design of materials with added func-

tionalities –using strategies such as shallow seman-

tic parsing, as in (Bailey and Meurers, 2008), or 

adding functionalities on the user interface that 

allow teachers to easily feed exercise models or 

specific feedback messages using learner answers. 

The architecture presented allows for portability 

into other languages (English and German already 

available), with a relative simplicity provided that 

the lexicon for the language exists and contains 

basic morpho-syntactic information. Moreover, 

having developed it as a Moodle extension makes 

it available to a wide community of teachers and 

learners. The modularity of ATACK and ATAP 

makes them easy to integrate in other Learning 

Management Systems. 

In the longer term we plan to improve AutoTu-

tor’s configurability so that its behaviour can be 

defined following pedagogical criteria. One of the 

aspects to be improved is that a computational 

linguist is needed to add new global error types to 

be handled or new linguistic phenomena to be con-

sidered in terms of block order. If such a system is 

used by wider audiences, then statistically driven 

techniques might be employed gradually, probably 
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in combination with symbolic techniques –the 

usage of the tool will provide with invaluable 

learner corpora. In the meantime AutoTutor pro-

vides with a means to have automatic correction 

and feedback generation for those areas and text 

genres where corpus or native speaker text is 

scarce, and experiments show it could be realisti-

cally used in real instruction settings. 
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Abstract

In this paper, we present a corrected and error-
tagged corpus of essays written by non-native
speakers of English. The corpus contains
63000 words and includes data by learners of
English of nine first language backgrounds.
The annotation was performed at the sentence
level and involved correcting all errors in the
sentence. Error classification includes mis-
takes in preposition and article usage, errors
in grammar, word order, and word choice. We
show an analysis of errors in the annotated
corpus by error categories and first language
backgrounds, as well as inter-annotator agree-
ment on the task.

We also describe a computer program that was
developed to facilitate and standardize the an-
notation procedure for the task. The program
allows for the annotation of various types of
mistakes and was used in the annotation of the
corpus.

1 Introduction

Work on automated methods for detecting and cor-
recting context dependent mistakes (e.g., (Golding
and Roth, 1996; Golding and Roth, 1999; Carlson
et al., 2001)) has taken an interesting turn over the
last few years, and has focused on correcting mis-
takes made by non-native speakers of English. Non-
native writers make a variety of errors in grammar
and word usage. Recently, there has been a lot of
effort on building systems for detecting mistakes in
article and preposition usage (DeFelice, 2008; Eeg-
Olofsson, 2003; Gamon et al., 2008; Han et al.,

2006; Tetreault and Chodorow, 2008b). Izumi et al.
(2003) consider several error types, including article
and preposition mistakes, made by Japanese learn-
ers of English, and Nagata et al. (2006) focus on the
errors in mass/count noun distinctions with an ap-
plication to detecting article mistakes also made by
Japanese speakers. Article and preposition mistakes
have been shown to be very common mistakes for
learners of different first language (L1) backgrounds
(Dagneaux et al., 1998; Gamon et al., 2008; Izumi
et al., 2004; Tetreault and Chodorow, 2008a), but
there is no systematic study of a whole range of er-
rors non-native writers produce, nor is it clear what
the distribution of different types of mistakes is in
learner language.

In this paper, we describe a corpus of sentences
written by English as a Second Language (ESL)
speakers, annotated for the purposes of developing
an automated system for correcting mistakes in text.
Although the focus of the annotation were errors
in article and preposition usage, all mistakes in the
sentence have been corrected. The data for anno-
tation were taken from two sources: The Interna-
tional Corpus of Learner English (ICLE, (Granger
et al., 2002a)) and Chinese Learners of English Cor-
pus (CLEC, (Gui and Yang, 2003)). The annotated
corpus includes data from speakers of nine first lan-
guage backgrounds. To our knowledge, this is the
first corpus of non-native English text (learner cor-
pus) of fully-corrected sentences from such a diverse
group of learners1. The size of the annotated corpus
is 63000 words, or 2645 sentences. While a corpus

1Possibly, except for the Cambridge Learner Corpus
http://www.cambridge.org/elt
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of this size may not seem significant in many natu-
ral language applications, this is in fact a large cor-
pus for this field, especially considering the effort to
correct all mistakes, as opposed to focusing on one
language phenomenon. This corpus was used in the
experiments described in the companion paper (Ro-
zovskaya and Roth, 2010).

The annotation schema that we developed was
motivated by our special interest in errors in arti-
cle and preposition usage, but also includes errors
in verbs, morphology, and noun number. The cor-
pus contains 907 article corrections and 1309 prepo-
sition corrections, in addition to annotated mistakes
of other types.

While the focus of the present paper is on anno-
tating ESL mistakes, we have several goals in mind.
First, we present the annotation procedure for the
task, including an error classification schema, anno-
tation speed, and inter-annotator agreement. Sec-
ond, we describe a computer program that we de-
veloped to facilitate the annotation of mistakes in
text. Third, having such a diverse corpus allows
us to analyze the annotated data with respect to the
source language of the learner. We show the anal-
ysis of the annotated data through an overall break-
down of error types by the writer’s first language.
We also present a detailed analysis of errors in arti-
cle and preposition usage. Finally, it should be noted
that there are currently very few annotated learner
corpora available. Consequently, systems are eval-
uated on different data sets, which makes perfor-
mance comparison impossible. The annotation of
the data presented here is available2 and, thus, can
be used by researchers who obtain access to these
respective corpora3.

The rest of the paper is organized as follows.
First, we describe previous work on the annotation
of learner corpora and statistics on ESL mistakes.
Section 3 gives a description of the annotation pro-
cedure, Section 4 presents the annotation tool that
was developed for the purpose of this project and
used in the annotation. We then present error statis-
tics based on the annotated corpus across all error
types and separately for errors in article and preposi-
tion usage. Finally, in Section 6 we describe how we

2Details about the annotation are accessible from
http://L2R.cs.uiuc.edu/˜cogcomp/

3The ICLE and CLEC corpora are commercially available.

evaluate inter-annotator agreement and show agree-
ment results for the task.

2 Learner Corpora and Error Tagging

In this section, we review research in the annota-
tion and error analysis of learner corpora. For a
review of learner corpus research see, for exam-
ple, (Dı́az-Negrillo, 2006; Granger, 2002b; Pravec,
2002). Comparative error analysis is difficult, as
there are no standardized error-tagging schemas, but
we can get a general idea about the types of errors
prevalent with such speakers. Izumi et al. (2004a)
describe a speech corpus of Japanese learners of En-
glish (NICT JLE). The corpus is corrected and anno-
tated and consists of the transcripts (2 million words)
of the audio-recordings of the English oral profi-
ciency interview test. In the NICT corpus, whose
error tag set consists of 45 tags, about 26.6% of er-
rors are determiner related, and 10% are preposition
related, which makes these two error types the most
common in the corpus (Gamon et al., 2008). The
Chinese Learners of English corpus (CLEC, (Gui
and Yang, 2003)) is a collection of essays written
by Chinese learners of beginning, intermediate, and
advanced levels. This corpus is also corrected and
error-tagged, but the tagging schema does not allow
for an easy isolation of article and preposition errors.
The International Corpus of Learner English (ICLE,
(Granger et al., 2002a)) is a corpus of argumenta-
tive essays by advanced English learners. The cor-
pus contains 2 million words of writing by European
learners from 14 mother tongue backgrounds. While
the entire corpus is not error-tagged, the French sub-
part of the corpus along with other data by French
speakers of a lower level of proficiency has been an-
notated (Dagneaux et al., 1998). The most com-
mon errors for the advanced level of proficiency
were found to be lexical errors (words) (15%), regis-
ter (10%), articles (10%), pronouns (10%), spelling
(8%) , verbs (8%).

In a study of 53 post-intermediate ESOL (mi-
grant) learners in New Zealand (Bitchener et al.,
2005), the most common errors were found to be
prepositions (29%), articles (20%), and verb tense
(22%). Dalgish (1985) conducted a study of er-
rors produced by ESL students enrolled at CUNY.
It was found that across students of different first
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languages, the most common error types among
24 different error types were errors in article us-
age (28%), vocabulary error (20-25%) (word choice
and idioms), prepositions (18%), and verb-subject
agreement (15%). He also noted that the speakers of
languages without article system made considerably
more article errors, but the breakdown of other error
types across languages was surprisingly similar.

3 Annotation

3.1 Data Selection

Data for annotation were extracted from the ICLE
corpus (Granger et al., 2002a) and CLEC (Gui and
Yang, 2003). As stated in Section 2, the ICLE con-
tains data by European speakers of advanced level
of proficiency, and the CLEC corpus contains es-
says by Chinese learners of different levels of pro-
ficiency. The annotated corpus includes sentences
written by speakers of nine languages: Bulgarian,
Chinese, Czech, French, German, Italian, Polish,
Russian, and Spanish. About half of the sentences
for annotation were selected based on their scores
with respect to a 4-gram language model built using
the English Gigaword corpus (LDC2005T12). This
was done in order to exclude sentences that would
require heavy editing and sentences with near-native
fluency, sentences with scores too high or too low.
Such sentences would be less likely to benefit from
a system on preposition/article correction. The sen-
tences for annotation were a random sample out of
the remaining 80% of the data.

To collect more data for errors in preposition us-
age, we also manually selected sentences that con-
tained such errors. This might explain why the pro-
portion of preposition errors is so high in our data.

3.2 Annotation Procedure

The annotation was performed by three native
speakers of North American English, one under-
graduate and two graduate students, specializing in
foreign languages and Linguistics, with previous ex-
perience in natural language annotation. A sentence
was presented to the annotator in the context of the
essay from which it was extracted. Essay context
can become necessary, especially for the correction
of article errors, when an article is acceptable in the
context of a sentence, but is incorrect in the context

of the essay. The annotators were also encouraged
to propose more than one correction, as long as all
of their suggestions were consistent with the essay
context.

3.3 Annotation Schema

While we were primarily interested in article and
preposition errors, the goal of the annotation was to
correct all mistakes in the sentence. Thus, our er-
ror classification schema4, though motivated by our
interest in errors in article and preposition usage,
was also intended to give us a general idea about
the types of mistakes ESL students make. A better
understanding of the nature of learners’ mistakes is
important for the development of a robust automated
system that detects errors and proposes corrections.
Even when the focus of a correction system is on
one language phenomenon, we would like to have
information about all mistakes in the context: Error
information around the target article or preposition
could help us understand how noisy data affect the
performance.

But more importantly, a learner corpus with er-
ror information could demonstrate how mistakes in-
teract in a sentence. A common approach to de-
tecting and correcting context-sensitive mistakes is
to deal with each phenomenon independently, but
sometimes errors cannot be corrected in isolation.
Consider, for example, the following sentences that
are a part of the corpus that we annotated.

1. ”I should know all important aspects of English.”→ ”I should
know all of the important aspects of English.”

2. ”But some of the peoplethought about him as a parodist of a
rhythm-n-blues singer.”→ ”But some people considered him to
be a parodist of a rhythm-n-blues singer.”

3. ”...to bea competent avionicsengineer...” → ...”to become com-
petent avionicsengineers...”

4. ”...which reflect a traditional female role and a traditional attitude
to a woman...” → ”...which reflect a traditional female role and
a traditional attitude towardswomen...”

5. ”Marx lived in the epoch when therewere no entertainments.”
→ ”Marx lived in an era when therewas no entertainment.”

In the examples above, errors interact with one an-
other. In example 1, the context requires a definite
article, and the definite article, in turn, calls for the

4Our error classification was inspired by the classification
developed for the annotation of preposition errors (Tetreault and
Chodorow, 2008a).
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preposition ”of”. In example 2, the definite article
after ”some of” is used extraneously, and deleting it
also requires deleting preposition ”of”. Another case
of interaction is caused by a word choice error: The
writer used the verb ”thought” instead of ”consid-
ered”; replacing the verb requires also changing the
syntactic construction of the verb complement. In
examples 3 and 4, the article choice before the words
”engineer” and ”woman” depends on the number
value of those nouns. To correctly determine which
article should be used, one needs to determine first
whether the context requires a singular noun ”engi-
neer” or plural ”engineers”. Finally, in example 5,
the form of the predicate in the relative clause de-
pends on the number value of the noun ”entertain-
ment”.

For the reasons mentioned above, the annotation
involved correcting all mistakes in a sentence. The
errors that we distinguish arenoun number, spelling,
verb form, andword form, in addition to article and
preposition errors . All other corrections, the major-
ity of which are lexical errors, were marked asword
replacement, word deletion, andword insertion. Ta-
ble 1 gives a description of each error type.

4 Annotation Tool

In this section, we describe a computer program that
was developed to facilitate the annotation process.
The main purpose of the program is to allow an an-
notator to easily mark the type of mistake, when cor-
recting it. In addition, the tool allows us to provide
the annotator with sufficient essay context. As de-
scribed in Section 3, sentences for annotation came
from different essays, so each new sentence was usu-
ally extracted from a new context. To ensure that
the annotators preserved the meaning of the sentence
being corrected, we needed to provide them with the
essay context. A wider context could affect the an-
notator’s decision, especially when determining the
correct article choice. The tool allowed us to effi-
ciently present to the annotator the essay context for
each target sentence.

Fig. 1 shows the program interface. The sentence
for annotation appears in the white text box and the
annotator can type corrections in the box, as if work-
ing in a word processor environment. Above and be-
low the text box we can see the context boxes, where

the rest of the essay is shown. Below the lower con-
text box, there is a list of buttons. The pink buttons
and the dark green buttons correspond to different
error types, the pink buttons are for correcting arti-
cle and preposition errors, and the dark green but-
tons – for correcting other errors. The annotator can
indicate the type of mistake being corrected by plac-
ing the cursor after the word that contains an error
and pressing the button that corresponds to this er-
ror type. Pressing on an error button inserts a pair of
delimiters after the word. The correction can then be
entered between the delimiters. The yellow buttons
and the three buttons next to the pink ones are the
shortcuts that can be used instead of typing in arti-
cles and common preposition corrections. The but-
ton None located next to the article buttons is used
for correcting cases of articles and prepositions used
superfluously. To correct other errors, the annotator
needs to determine the type of error, insert the corre-
sponding delimiters after the word by pressing one
of the error buttons and enter the correction between
the delimiters.

The annotation rate for the three annotators varied
between 30 and 40 sentences per hour.

Table 2 shows sample sentences annotated with
the tool. The proposed corrections are located inside
the delimiters and follow the word to which the cor-
rection refers. When replacing a sequence of words,
the sequence was surrounded with curly braces. This
is useful if a sequence is a multi-word expression,
such asat last.

5 Annotation Statistics

In this section, we present the results of the anno-
tation by error type and the source language of the
writer.

Table 3 shows statistics for the annotated sen-
tences by language group and error type. Because
the sub-corpora differ in size, we show the number
of errors per hundred words. In total, the annotated
corpus contains 63000 words or 2645 sentences of
learner writing. Categorypunctuation was not spec-
ified in the annotation, but can be easily identified
and includes insertion, deletion, and replacement of
punctuation marks. The largest error category is
word replacement, which combines deleted, inserted
words and word substitutions. This is followed by
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Error type Description Examples
Article error Any error involving an article ”Women were indignant at [None/the] inequality

from men.”
Preposition error Any error involving a preposition ”...to change their views [to/for] the better.”
Noun number Errors involving plural/singular

confusion of a noun
”Science is surviving by overcoming the mistakes not
by uttering the [truths/truth] .”

Verb form Errors in verb tense and verb inflec-
tions

”He [write/writes] poetry.”

Word form Correct lexeme, but wrong suffix ”It is not [simply/simple] to make professional army
.”

Spelling Error in spelling ”...if a person [commited/committed] a crime...”
Word insertion, deletion,
or replacement

Other corrections that do not fall
into any of the above categories

”There is a [probability/possibility] that today’s fan-
tasies will not be fantasies tomorrow.”

Table 1: Error classification used in annotation

Figure 1: Example of a sentence for annotation as it appears in the annotation tool window. The target sentence is
shown in the white box. The surrounding essay context is shown in the brown boxes. The buttons appear below the
boxes with text: pink buttons (for marking article and preposition errors), dark green (for marking other errors), light
green (article buttons) and yellow (preposition buttons).

Annotated sentence Corrected errors
1. Television becomes their life , and in many cases it replaces their real life /lives/ noun number (life → lives)
2. Here I ca n’t $help$ but mention that all these people were either bankers or the
Heads of companies or something of that kind @nature, kind@.

word insertion (help); word replacement (kind → kind,
nature)

3. We exterminated *have exterminated* different kinds of animals verb form (exterminated → have exterminated)
4. ... nearly 30000 species of plants are under the<a> serious threat of disappear-
ance|disappearing|

article replacement (the → a); word form (disappear-
ance → disappearing)

5. There is &a& saying that laziness is the engine of the<None> progress article insertion (a); article deletion (the)
6. ...experience teaches people to strive to<for> the<None> possible things preposition replacement (to → for); article deletion

(the)

Table 2: Examples of sentences annotated using the annotation tool. Each type of mistake is marked using a different
set of delimiters. The corrected words are enclosed in the delimiters and follow the word to which the correction
refers. In example 2, the annotator preserved the author’s choicekind and added a better choicenature.
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Source Total Total Errors per Corrections by Error Type
language sent. words 100 words Articles Prepo- Verb Word Noun Word Spell. Word Punc.

sitions form form number order repl.
Bulgarian 244 6197 11.9 10.3% 12.1% 3.5% 3.1% 3.0% 2.0% 5.0% 46.7% 14.2%
Chinese 468 9327 15.1 12.7% 27.2% 7.9% 3.1% 4.6% 1.4% 5.4% 26.2% 11.3%
Czech 296 6570 12.9 16.3% 10.8% 5.2% 3.4% 2.7% 3.2% 8.3% 32.5% 17.5%
French 238 5656 5.8 6.7% 17.4% 2.1% 4.0% 4.6% 3.1% 9.8% 12.5% 39.8%
German 198 5086 11.4 4.0% 13.0% 4.3% 2.8% 1.9% 2.9% 4.7% 15.4% 51.0%
Italian 243 6843 10.6 5.9% 16.6% 6.4% 1.4% 3.0% 2.4% 4.6% 20.5% 39.3%
Polish 198 4642 10.1 15.1% 16.3% 4.0% 1.3% 1.3% 2.3% 2.1% 12.3% 45.2%
Russian 464 10844 13.0 19.2% 17.8% 3.7% 2.5% 2.5% 2.1% 5.0% 28.3% 18.8%
Spanish 296 7760 15.0 11.5% 14.2% 6.0% 3.8% 2.6% 1.6% 11.9% 37.7% 10.7%
All 2645 62925 12.2 12.5% 17.1% 5.2% 2.9% 3.0% 2.2% 6.5% 28.2% 22.5%

Table 3: Error statistics on the annotated data by source language and error type

the punctuation category, which comprises 22% of
all corrections. About 12% of all errors involve ar-
ticles, and prepositions comprise 17% of all errors.
We would expect the preposition category to be less
significant if we did not specifically look for such er-
rors, when selecting sentences for annotation. Two
other common categories arespelling andverb form.
Verb form combines errors in verb conjugation and
errors in verb tense. It can be observed from the
table that there is a significantly smaller proportion
of article errors for the speakers of languages that
have articles, such as French or German. Lexical
errors (word replacement) are more common in lan-
guage groups that have a higher rate of errors per
100 words. In contrast, the proportion of punctua-
tion mistakes is higher for those learners that make
fewer errors overall (cf. French, German, Italian,
and Polish). This suggests that punctuation errors
are difficult to master, maybe because rules of punc-
tuation are not generally taught in foreign language
classes. Besides, there is a high degree of variation
in the use of punctuation even among native speak-
ers.

5.1 Statistics on Article Corrections

As stated in Section 2, article errors are one of the
most common mistakes made by non-native speak-
ers of English. This is especially true for the speak-
ers of languages that do not have articles, but for ad-
vanced French speakers this is also a very common
mistake (Dagneaux et al., 1998), suggesting that ar-
ticle usage in English is a very difficult language fea-
ture to master.

Han et al. (2006) show that about 13% of noun
phrases in TOEFL essays by Chinese, Japanese, and

Russian speakers have article mistakes. They also
show that learners do not confuse articles randomly
and the most common article mistakes are omissions
and superfluous article usage. Our findings are sum-
marized in Table 4 and are very similar. We also
distinguish between the superfluous use ofa and
the, we allows us to observe that most of the cases
of extraneously used articles involve articlethe for
all language groups. In fact, extraneousthe is the
most common article mistake for the majority of
our speakers. Superfluousthe is usually followed
by the omission ofthe and the omission ofa. An-
other statistic that our table demonstrates and that
was shown previously (e.g. (Dalgish, 1985)) is that
learners whose first language does not have articles
make more article mistakes: We can see from col-
umn 3 of the table that the speakers of German,
French and Italian are three to four times less likely
to make an article mistake than the speakers of Chi-
nese and all of the Slavic languages. The only ex-
ception are Spanish speakers. It is not clear whether
the higher error rate is only due to a difference in
overall language proficiency (as is apparent from the
average number of mistakes by these speakers in Ta-
ble 3) or to other factors. Finally, the last column in
the table indicates that confusing articles with pro-
nouns is a relatively common error and on average
accounts for 10% of all article mistakes5. Current
article correction systems do not address this error
type.

5An example of such confusion is ” To pay forthe crimes,
criminals are put in prison”, wherethe is used instead oftheir.
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Source Errors Errors Article mistakes by error type
language total per 100 Miss. Miss. Extr. Extr. Confu- Mult. Other

words the a the a sion labels
Bulgarian 76 1.2 9% 25% 41% 3% 8% 1% 13%
Chinese 179 1.9 20% 12% 48% 4% 7% 2% 7%
Czech 138 2.1 29% 13% 29% 9% 7% 4% 9%
French 22 0.4 9% 14% 36% 14% 0% 23% 5%
German 23 0.5 22% 9% 22% 4% 8% 9% 26%
Italian 43 0.6 16% 40% 26% 2% 9% 0% 7%
Polish 71 1.5 37% 18% 17% 8% 11% 4% 4%
Russian 271 2.5 24% 18% 31% 6% 11% 1% 9%
Spanish 134 1.7 16% 10% 51% 7% 3% 1% 10%
All 957 1.5 22% 16% 36% 6% 8% 3% 9%

Table 4: Distribution of article mistakes by error type and source language of the writer.Confusion error type refers to
confusing articlesa andthe. Multiple labels denotes cases where the annotator specified more than one article choice,
one of which was used by the learner.Other refers to confusing articles with possessive and demonstrative pronouns.

5.2 Statistics on Preposition Corrections

Table 5 shows statistics on errors in preposition us-
age. Preposition mistakes are classified into three
categories:replacements, insertions, anddeletions.
Unlike with article errors, the most common type
of preposition errors is confusing two prepositions.
This category accounts for more than half of all er-
rors, and the breakdown is very similar for all lan-
guage groups. The fourth category in the table,with
original, refers to the preposition usages that were
found acceptable by the annotators, but with a bet-
ter suggestion provided. We distinguish this case
as a separate category because preposition usage is
highly variable, unlike, for example, article usage.
Tetreault and Chodorow (Tetreault and Chodorow,
2008a) show that agreement between two native
speakers on a cloze test targeting prepositions is
about 76%, which demonstrates that there are many
contexts that license multiple prepositions.

6 Inter-annotator Agreement

Correcting non-native text for a variety of mistakes
is challenging and requires a number of decisions on
the part of the annotator. Human language allows for
many ways to express the same idea. Furthermore, it
is possible that the corrected sentence, even when it
does not contain clear mistakes, does not sound like
a sentence produced by a native speaker. The latter
is complicated by the fact that native speakers differ
widely with respect to what constitutes acceptable
usage (Tetreault and Chodorow, 2008a).

To date, a common approach to annotating non-
native text has been to use one rater (Gamon et al.,

Source Errors Errors Mistakes by error type
language total per 100 Repl. Ins. Del. With

words orig.
Bulgarian 89 1.4 58% 22% 11% 8%
Chinese 384 4.1 52% 24% 22% 2%
Czech 91 1.4 51% 21% 24% 4%
French 57 1.0 61% 9% 12% 18%
German 75 1.5 61% 8% 16% 15%
Italian 120 1.8 57% 22% 12% 8%
Polish 77 1.7 49% 18% 16% 17%
Russian 251 2.3 53% 21% 17% 9%
Spanish 165 2.1 55% 20% 19% 6%
All 1309 2.1 54% 21% 18% 7%

Table 5: Distribution of preposition mistakes by error
type and source language of the writer.With orig refers to
prepositions judged as acceptable by the annotators, but
with a better suggestion provided.

2008; Han et al., 2006; Izumi et al., 2004; Na-
gata et al., 2006). The output of human annota-
tion is viewed as the gold standard when evaluating
an error detection system. The question of reliabil-
ity of using one rater has been raised in (Tetreault
and Chodorow, 2008a), where an extensive reliabil-
ity study of human judgments in rating preposition
usage is described. In particular, it is shown that
inter-annotator agreement on preposition correction
is low (kappa value of 0.63) and that native speakers
do not always agree on whether a specific preposi-
tion constitutes acceptable usage.

We measure agreement by asking an annotator
whether a sentence corrected by another person is
correct. After all, our goal was to make the sentence
sound native-like, without enforcing that errors are
corrected in the same way. One hundred sentences
annotated by each person were selected and the cor-
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Agreement set Rater Judged Judged
correct incorrect

Agreement set 1
Rater #2 37 63
Rater #3 59 41

Agreement set 2
Rater #1 79 21
Rater #3 73 27

Agreement set 3
Rater #1 83 17
Rater #2 47 53

Table 6: Annotator agreement at the sentence level. The
number next to the agreement set denotes the annotator
who corrected the sentences on the first pass.Judged cor-
rect denotes the proportion of sentences in the agreement
set that the second rater did not change.Judged incorrect
denotes the proportion of sentences, in which the second
rater made corrections.

rections were applied. This corrected set was mixed
with new sentences and given to the other two anno-
tators. In this manner, each annotator received two
hundred sentences corrected by the other two anno-
tators. For each pair of the annotators, we compute
agreement based on the 100 sentences on which they
did a second pass after the initial corrections by the
third rater. To compute agreement at the sentence
level, we assign the annotated sentences to one of
the two categories: ”correct” and ”incorrect”: A sen-
tence is considered ”correct” if a rater did not make
any corrections in it on the second pass6. Table 6
shows for each agreement set the number of sen-
tences that were corrected on the second pass. On
average, 40.8% of the agreement set sentences be-
long to the ”incorrect” category, but the proportion
of ”incorrect” sentences varies across annotators.

We also compute agreement on the two cate-
gories, ”correct” and ”incorrect”. The agreement
and the kappa values are shown in Table 7. Agree-
ment on the sentences corrected on the second pass
varies between 56% to 78% with kappa values rang-
ing from 0.16 to 0.40. The low numbers reflect the
difficulty of the task and the variability of the na-
tive speakers’ judgments about acceptable usage. In
fact, since the annotation requires looking at sev-
eral phenomena, we can expect a lower agreement,
when compared to agreement rate on one language
phenomenon. Suppose rater A disagrees with rater
B on a given phenomenon with probability 1/4,
then, when there are two phenomena, the probabil-
ity that he will disagree with at least on of them is

6We ignore punctuation corrections.

Agreement set Agreement kappa
Agreement set 1 56% 0.16
Agreement set 2 78% 0.40
Agreement set 3 60% 0.23

Table 7: Agreement at the sentence level.Agreement
shows how many sentences in each agreement set were
assigned to the same category (”correct”, ”incorrect”) for
each of the two raters.

1 − 9/16 = 7/16. And the probability goes down
with the number of phenomena.

7 Conclusion

In this paper, we presented a corpus of essays by stu-
dents of English of nine first language backgrounds,
corrected and annotated for errors. To our knowl-
edge, this is the first fully-corrected corpus that con-
tains such diverse data. We have described an anno-
tation schema, have shown statistics on the error dis-
tribution for writers of different first language back-
grounds and inter-annotator agreement on the task.
We have also described a program that was devel-
oped to facilitate the annotation process.

While natural language annotation, especially in
the context of error correction, is a challenging and
time-consuming task, research in learner corpora
and annotation is important for the development of
robust systems for correcting and detecting errors.
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Abstract

We investigate the use of web search queries 

for detecting errors in non-native writing. Dis-

tinguishing a correct sequence of words from 

a sequence with a learner error is a baseline 

task that any error detection and correction 

system needs to address. Using a large corpus 

of error-annotated learner data, we investigate 

whether web search result counts can be used 

to distinguish correct from incorrect usage. In 

this investigation, we compare a variety of 

query formulation strategies and a number of 

web resources, including two major search 

engine APIs and a large web-based n-gram 

corpus. 

1 Introduction 

Data-driven approaches to the detection and cor-

rection of non-native errors in English have been 

researched actively in the past several years. Such 

errors are particularly amenable to data-driven me-

thods because many prominent learner writing er-

rors involve a relatively small class of phenomena 

that can be targeted with specific models, in par-

ticular article and preposition errors. Preposition 

and determiner errors (most of which are article 

errors) are the second and third most frequent er-

rors in the Cambridge Learner Corpus (after the 

more intractable problem of content word choice). 

By targeting the ten most frequent prepositions 

involved in learner errors, more than 80% of pre-

position errors in the corpus are covered.  

Typically, data-driven approaches to learner er-

rors use a classifier trained on contextual informa-

tion such as tokens and part-of-speech tags within 

a window of the preposition/article (Gamon et al. 

2008, 2010, DeFelice and Pulman 2007, 2008, Han 

et al. 2006, Chodorow et al. 2007, Tetreault and 

Chodorow 2008).  

Language models are another source of evidence 

that can be used in error detection. Using language 

models for this purpose is not a new approach, it 

goes back to at least Atwell (1987). Gamon et al. 

(2008) and Gamon (2010) use a combination of 

classification and language modeling. Once lan-

guage modeling comes into play, the quantity of 

the training data comes to the forefront. It has been 

well-established that statistical models improve as 

the size of the training data increases (Banko and 

Brill 2001a, 2001b). This is particularly true for 

language models: other statistical models such as a 

classifier, for example, can be targeted towards a 

specific decision/classification, reducing the appe-

tite for data somewhat, while language models 

provide probabilities for any sequence of words - a 

task that requires immense training data resources 

if the language model is to consider increasingly 

sparse longer n-grams.  

Language models trained on data sources like 

the Gigaword corpus have become commonplace, 

but of course there is one corpus that dwarfs any 

other resource in size: the World Wide Web. This 

has drawn the interest of many researchers in natu-

ral language processing over the past decade. To 

mention just a few examples, Zhu and Rosenfeld 

(2001) combine trigram counts from the web with 

an existing language model where the estimates of 

the existing model are unreliable because of data 

sparseness. Keller and Lapata (2003) advocate the 

use of the web as a corpus to retrieve backoff 

probabilities for unseen bigrams. Lapata and Keller 

(2005) extend this method to a range of additional 

natural language processing tasks, but also caution 

that web counts have limitations and add noise. 

Kilgariff (2007) points out the shortcomings of 
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accessing the web as a corpus through search que-

ries: (a) there is no lemmatization or part-of-speech 

tagging in search indices, so a linguistically mea-

ningful query can only be approximated, (b) search 

syntax, as implemented by search engine provid-

ers, is limited, (c) there is often a limit on the num-

ber of automatic queries that are allowed by search 

engines, (c) hit count estimates are estimates of 

retrieved pages, not of retrieved words. We would 

like to add to that list that hit count estimates on 

the web are just that -- estimates. They are com-

puted on the fly by proprietary algorithms, and ap-

parently the algorithms also access different slices 

of the web index, which causes a fluctuation over 

time, as Tetrault and Chodorow (2009) point out. 

In 2006, Google made its web-based 5gram lan-

guage model available through the Linguistic Data 

Consortium, which opens the possibility of using 

real n-gram statistics derived from the web direct-

ly, instead of using web search as a proxy. 

In this paper we explore the use of the web as a 

corpus for a very specific task: distinguishing be-

tween a learner error and its correction. This is ob-

viously not the same as the more ambitious 

question of whether a system can be built to detect 

and correct errors on the basis of web counts alone, 

and this is a distinction worth clarifying. Any sys-

tem that successfully detects and corrects an error 

will need to accomplish three tasks1: (1) find a part 

of the user input that contains an error (error de-

tection). (2) find one or multiple alternative 

string(s) for the alleged error (candidate genera-

tion) and (3) score the alternatives and the original 

to determine which alternative (if any) is a likely 

correction (error correction). Here, we are only 

concerned with the third task, specifically the 

comparison between the incorrect and the correct 

choice. This is an easily measured task, and is also 

a minimum requirement for any language model or 

language model approximation: if the model can-

not distinguish an error from a well-formed string, 

it will not be useful. 

                                                           
1 Note that these tasks need not be addressed by separate com-

ponents. A contextual classifier for preposition choice, for 

example, can generate a probability distribution over a set of 

prepositions (candidate generation). If the original preposition 

choice has lower probability than one or more other preposi-

tions, it is a potential error (error detection), and the preposi-

tions with higher probability will be potential corrections 

(error correction). 

We focus on two prominent learner errors in this 

study: preposition inclusion and choice and article 

inclusion and choice. These errors are among the 

most frequent learner errors (they comprise nearly 

one third of all errors in the learner corpus used in 

this study). 

In this study, we compare three web data 

sources: The public Bing API, Google API, and the 

Google 5-gram language model. We also pay close 

attention to strategies of query formulation. The 

questions we address are summarized as follows: 

Can web data be used to distinguish learner er-

rors from correct phrases? 

What is the better resource for web-data: the 

Bing API, the Google API, or the Google 5-

gram data? 

What is the best query formulation strategy 

when using web search results for this task? 

How much context should be included in the 

query? 

2 Related Work

Hermet et al. (2008) use web search hit counts for 

preposition error detection and correction in 

French. They use a set of confusable prepositions 

to create a candidate set of alternative prepositional 

choices and generate queries for each of the candi-

dates and the original. The queries are produced 

using linguistic analysis to identify both a govern-

ing and a governed element as a minimum mea-

ningful context. On a small test set of 133 

sentences, they report accuracy of 69.9% using the 

Yahoo! search engine. 

Yi et al. (2008) target article use and collocation 

errors with a similar approach. Their system first 

analyzes the input sentence using part-of-speech 

tagging and a chunk parser. Based on this analysis, 

potential error locations for determiners and verb-

noun collocation errors are identified. Query gen-

eration is performed at three levels of granularity: 

the sentence (or clause) level, chunk level and 

word level. Queries, in this approach, are not exact 

string searches but rather a set of strings combined 

with the chunk containing the potential error 

through a boolean operator. An example for a 

chunk level query for the sentence "I am learning 

economics at university" would be "[economics] 

AND [at university] AND [learning]". For article 
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errors the hit count estimates (normalized for query 

length) are used directly. If the ratio of the norma-

lized hit count estimate for the alternative article 

choice to the normalized hit count estimate of the 

original choice exceeds a manually determined 

threshold, the alternative is suggested as a correc-

tion. For verb-noun collocations, the situation is 

more complex since the system does not automati-

cally generate possible alternative choices for 

noun/verb collocations. Instead, the snippets (doc-

ument summaries) that are returned by the initial 

web search are analyzed and potential alternative 

collocation candidates are identified. They then 

submit a second round of queries to determine 

whether the suggestions are more frequent than the 

original collocation. Results on a 400+ sentence 

corpus of learner writing show 62% precision and 

41% recall for determiners, and 30.7% recall and 

37.3% precision for verb-noun collocation errors. 

Tetreault and Chodorow (2009) make use of the 

web in a different way. Instead of using global web 

count estimates, they issue queries with a region-

specific restriction and compare statistics across 

regions. The idea behind this approach is that re-

gions that have a higher density of non-native 

speakers will show significantly higher frequency 

of erroneous productions than regions with a high-

er proportion of native speakers. For example, the 

verb-preposition combinations married to versus 

married with show very different counts in the UK 

versus France regions. The ratio of counts for mar-

ried to/married with in the UK is 3.28, whereas it 

is 1.18 in France. This indicates that there is signif-

icant over-use of married with among native 

French speakers, which serves as evidence that this 

verb-preposition combination is likely to be an er-

ror predominant for French learners of English. 

They test their approach on a list of known verb-

preposition errors. They also argue that, in a state-

of-the-art preposition error detection system, recall 

on the verb-preposition errors under investigation 

is still so low that systems can only benefit from 

increased sensitivity to the error patterns that are 

discoverable through the region web estimates. 

Bergsma et al (2009) are the closest to our work. 

They use the Google N-gram corpus to disambi-

guate usage of 34 prepositions in the New York 

Times portion of the Gigaword corpus. They use a 

sliding window of n-grams (n ranging from 2 to 5) 

across the preposition and collect counts for all 

resulting n-grams. They use two different methods 

to combine these counts. Their SuperLM model 

combines the counts as features in a linear SVM 

classifier, trained on a subset of the data. Their 

SumLM model is simpler, it sums all log counts 

across the n-grams. The preposition with the high-

est score is then predicted for the given context. 

Accuracy on the New York Times data in these ex-

periments reaches 75.4% for SuperLM and 73.7% 

for SumLM. 

Our approach differs from Bergsma et al. in 

three crucial respects. First, we evaluate insertion, 

deletion, and substitution operations, not just subs-

titution, and we extend our evaluation to article 

errors. Second, we focus on finding the best query 

mechanism for each of these operations, which 

requires only a single query to the Web source. 

Finally, the focus of our work is on learner error 

detection, so we evaluate on real learner data as 

opposed to well-formed news text. This distinction 

is important: in our context, evaluation on edited 

text artificially inflates both precision and recall 

because the context surrounding the potential error 

site is error-free whereas learner writing can be, 

and often is, surrounded by errors. In addition, 

New York Times writing is highly idiomatic while 

learner productions often include unidiomatic word 

choices, even though the choice may not be consi-

dered an error. 

3 Experimental Setup 

3.1 Test Data 

Our test data is extracted from the Cambridge Uni-

versity Press Learners’ Corpus (CLC). Our ver-

sion of CLC currently contains 20 million words 

from non-native English essays written as part of 

one of Cambridge’s English language proficiency 

tests (ESOL) – at all proficiency levels. The essays 

are annotated for error type, erroneous span and 

suggested correction. We perform a number of 

preprocessing steps on the data. First, we correct 

all errors that were flagged as being spelling errors. 

Spelling errors that were flagged as morphology 

errors were left alone. We also changed confusable 

words that are covered by MS Word. In addition, 

we changed British English spelling to American 

English. We then eliminate all annotations for non-

pertinent errors (i.e. non-preposition/article errors, 

or errors that do not involve any of the targeted 

prepositions), but we retain the original (errone-
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ous) text for these. This makes our task harder 

since we will have to make predictions in text con-

taining multiple errors, but it is more realistic giv-

en real learner writing. Finally, we eliminate 

sentences containing nested errors (where the an-

notation of one error contains an annotation for 

another error) and multiple article/preposition er-

rors. Sentences that were flagged for a replacement 

error but contained no replacement were also elim-

inated from the data. The final set we use consists 

of a random selection of 9,006 sentences from the 

CLC with article errors and 9,235 sentences with 

preposition errors. 

3.2 Search APIs and Corpora 

We examine three different sources of data to dis-

tinguish learner errors from corrected errors. First, 

we use two web search engine APIs, Bing and 

Google. Both APIs allow the retrieval of a page-

count estimate for an exact match query. Since 

these estimates are provided based on proprietary 

algorithms, we have to treat them as a "black box". 

The third source of data is the Google 5-gram cor-

pus (Linguistic Data Consortium 2006) which con-

tains n-grams with n ranging from 1 to 5. The 

count cutoff for unigrams is 200, for higher order 

n-grams it is 40. 

3.3 Query Formulation 

There are many possible ways to formulate an ex-

act match (i.e. quoted) query for an error and its 

correction, depending on the amount of context 

that is included on the right and left side of the er-

ror. Including too little context runs the risk of 

missing the linguistically relevant information for 

determining the proper choice of preposition or 

determiner. Consider, for example, the sentence we

rely most of/on friends. If we only include one 

word to the left and one word to the right of the 

preposition, we end up with the queries "most on 

friends" and "most of friends" - and the web hit 

count estimate may tell us that the latter is more 

frequent than the former. However, in this exam-

ple, the verb rely determines the choice of preposi-

tion and when it is included in the query as in "rely 

most on friends" versus "rely most of friends", the 

estimated hit counts might correctly reflect the in-

correct versus correct choice of preposition. Ex-

tending the query to cover too much of the context, 

on the other hand, can lead to low or zero web hit 

estimates because of data sparseness - if we in-

clude the pronoun we in the query as in "we rely 

most on friends" versus "we rely most of friends", 

we get zero web count estimates for both queries.  

Another issue in query formulation is what 

strategy to use for corrections that involve dele-

tions and insertions, where the number of tokens 

changes. If, for example, we use queries of length 

3, the question for deletion queries is whether we 

use two words to the left and one to the right of the 

deleted word, or one word to the left and two to the 

right. In other words, in the sentence we traveled 

to/0 abroad last year, should the query for the cor-

rection (deletion) be "we traveled abroad" or "tra-

veled abroad last"? 

Finally, we can employ some linguistic informa-

tion to design our query. By using part-of-speech 

tag information, we can develop heuristics to in-

clude a governing content word to the left and the 

head of the noun phrase to the right. 

The complete list of query strategies that we 

tested is given below. 

SmartQuery: using part-of-speech information 

to include the first content word to the left and the 

head noun to the right. If the content word on the 

left cannot be established within a window of 2 

tokens and the noun phrase edge within 5 tokens, 

select a fixed window of 2 tokens to the left and 2 

tokens to the right. 

FixedWindow Queries: include n tokens to the 

left and m tokens to the right. We experimented 

with the following settings for n and m: 1_1, 2_1, 

1_2, 2_2, 3_2, 2_3. The latter two 6-grams were 

only used for the API’s, because the Google corpus 

does not contain 6-grams. 

FixedLength Queries: queries where the length 

in tokens is identical for the error and the correc-

tion. For substitution errors, these are the same as 

the corresponding FixedWindow queries, but for 

substitutions and deletions we either favor the left 

or right context to include one additional token to 

make up for the deleted/inserted token. We expe-

rimented with trigrams, 4-grams, 5-grams and 6-

grams, with left and right preference for each, they 

are referred to as Left4g (4-gram with left prefe-

rence), etc. 
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3.4 Evaluation Metrics 

For each query pair <qerror, qcorrection>, we produce 

one of three different outcomes: 

correct (the query results favor the correction of 

the learner error over the error itself):  

count(qcorrection) > count(qerror) 

incorrect (the query results favor the learner error 

over its correction):   

count(qerror) >= count(qcorrection) 

 where(count(qerror) &  0 OR 

 count(qcorrection) &  0) 

noresult:  

count(qcorrection) = count(qerror) = 0 

For each query type, each error (preposition or ar-

ticle), each correction operation (deletion, inser-

tion, substitution) and each web resource (Bing 

API, Google API, Google N-grams) we collect 

these counts and use them to calculate three differ-

ent metrics. Raw accuracy is the ratio of correct 

predictions to all query pairs: 

!"#$"%%&'"%( ) $
%*''

%*'' + ,-%*'' + -*'./&01
 

We also calculate accuracy for the subset of query 

pairs where at least one of the queries resulted in a 

successful hit, i.e. a non-zero result. We call this 

metric Non-Zero-Result-Accurracy (NZRA), it is 

the ratio of correct predictions to incorrect predic-

tions, ignoring noresults: 

2*-3.'*!./&014%%&'"%( ) $
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Finally, retrieval ratio is the ratio of queries that 

returned non-zero results: 

4 Results

We show results from our experiments in Table 1 -   

Table 6. Since space does not permit a full tabula-

tion of all the individual results, we restrict our-

selves to listing only those query types that achieve 

best results (highlighted) in at least one metric. 

Google 5-grams show significantly better results 

than both the Google and Bing APIs. This is good 

news in terms of implementation, because it frees 

the system from the vagaries involved in relying on 

search engine page estimates: (1) the latency, (2) 

query quotas, and (3) fluctuations of page esti-

mates over time. The bad news is that the 5-gram 

corpus has much lower retrieval ratio because, pre-

sumably, of its frequency cutoff. Its use also limits 

the maximum length of a query to a 5-gram (al-

though neither of the APIs outperformed Google 5-

grams when retrieving 6-gram queries). 

The results for substitutions are best, for fixed 

window queries. For prepositions, the SmartQue-

ries perform with about 86% NZRA while a fixed 

length 2_2 query (targeted word with a ±2-token 

window) achieves the best results for articles, at 

about 85% (when there was at least one non-zero 

match). Retrieval ratio for the prepositions was 

about 6% lower than retrieval ratio for articles –

41% compared to 35%.  

The best query type for insertions was fixed-

length LeftFourgrams with about 95% NZRA and 

71% retrieval ratio for articles and 89% and 78% 

retrieval ratio for prepositions. However, Left-

Fourgrams favor the suggested rewrites because, 

by keeping the query length at four tokens, the 

original has more syntactic/semantic context. If the 

original sentence contains is referred as the and the 

annotator inserted to before as, the original query 

will be is referred as the and the correction query 

is referred to as.  

Conversely, with deletion, having a fixed win-

dow favors the shorter rewrite string. The best 

query types for deletions were: 2_2 queries for ar-

ticles (94% NZRA and 46% retrieval ratio) and 

SmartQueries for prepositions (97% NZRA and 

52% retrieval ratio). For prepositions the fixed 

length 1_1 query performs about the same as the 

SmartQueries, but that query is a trigram (or 

smaller at the edges of a sentence) whereas the av-

erage length of SmartQueries is 4.7 words for pre-

positions and 4.3 words for articles. So while the 

coverage for SmartQueries is much lower, the 

longer query string cuts the risk of matching on 

false positives.  

The Google 5-gram Corpus differs from search 

engines in that it is sensitive to upper and lower 

case distinctions and to punctuation. While intui-

tively it seemed that punctuation would hurt n-

gram performance, it actually helps because the 

punctuation is an indicator of a clause boundary. A 

recent Google search for have a lunch and have 

lunch produced estimates of about 14 million web 

pages for the former and only 2 million for the lat-

ter. Upon inspecting the snippets for have a lunch, 

the next word was almost always a noun such as 

menu, break, date, hour, meeting, partner, etc. The 

relative frequencies for have a lunch would be 

much different if a clause boundary marker were 
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required. The 5-gram corpus also has sentence 

boundary markers which is especially helpful to 

identify changes at the beginning of a sentence. 

 

Query type 

non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

SmartQuery 0.8637 0.9548 0.9742 0.8787 0.8562 0.5206 0.7589 0.8176 0.5071

1_1 0.4099 0.9655 0.9721 0.9986 0.9978 0.9756 0.4093 0.9634 0.9484

Table 1: Preposition deletions (1395 query pairs). 

Query type 

non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

Left4g 0.7459 0.8454 0.8853 0.9624 0.9520 0.7817 0.7178 0.8048 0.6920

1_1 0.5679 0.2983 0.3550 0.9973 0.9964 0.9733 0.5661 0.2971 0.3456

Right3g 0.6431 0.8197 0.8586 0.9950 0.9946 0.9452 0.6399 0.8152 0.8116

Table 2: Preposition insertions (2208 query pairs). 

Query type 

non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

SmartQuery 0.7396 0.8183 0.8633 0.7987 0.7878 0.4108 0.5906 0.6446 0.5071

1_1=L3g=R3g 0.4889 0.6557 0.6638 0.9870 0.9856 0.9041 0.4826 0.6463 0.6001

1_2=R4g 0.6558 0.7651 0.8042 0.9178 0.9047 0.6383 0.6019 0.6921 0.5133

Table 3: Preposition substitutions (5632 query pairs). 

Query type 

non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

2_2 0.7678 0.9056 0.9386 0.8353 0.8108 0.4644 0.6414 0.7342 0.4359

1_1 0.3850 0.8348 0.8620 0.9942 0.9924 0.9606 0.3828 0.8285 0.8281

1_2 0.5737 0.8965 0.9097 0.9556 0.9494 0.7920 0.5482 0.8512 0.7205

Table 4: Article deletions (2769 query pairs). 

Query type 

non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

Left4g 0.8292 0.9083 0.9460 0.9505 0.9428 0.7072 0.7880 0.8562 0.6690

1_1 0.5791 0.3938 0.3908 0.9978 0.9975 0.9609 0.5777 0.3928 0.3755

Left3g 0.6642 0.8983 0.8924 0.9953 0.9955 0.9413 0.6611 0.8942 0.8400

Table 5: Article insertions (5520 query pairs). 

Query type 

non-zero-result accuracy retrieval ratio raw accuracy 

B-API G-API G-Ngr B-API G-API G-Ngr B-API G-API G-Ngr 

2_2=Left5g= 

Right5g 0.6970 0.7842 0.8486 0.8285 0.8145 0.4421 0.5774 0.6388 0.3752

1_1=L3g=R3g 0.4385 0.7063 0.7297 0.9986 0.9972 0.9596 0.4379 0.7043 0.7001

1_2=R4g 0.5268 0.7493 0.7917 0.9637 0.9568 0.8033 0.5077 0.7169 0.6360

Table 6: Article substitutions (717 query pairs). 
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5 Error Analysis 

We manually inspected examples where the 

matches on the original string were greater than 

matches on the corrected string. The results of this 

error analysis are shown in table 7. Most of the 

time, (1) the context that determined article or pre-

position use and choice was not contained within 

the query. This includes, for articles, cases where 

article usage depends either on a previous mention 

or on the intended sense of a polysemous head 

noun. Some other patterns also emerged. Some-

times (2) both and the original and the correction 

seemed equally good in the context of the entire 

sentence, for example it’s very important to us and 

it’s very important for us.  In other cases, (3) there 

was another error in the query string (recall that we 

retained all of the errors in the original sentences 

that were not the targeted error). Then there is a 

very subjective category (4) where the relative n-

gram frequencies are unexpected, for example 

where the corpus has 171 trigrams guilty for you 

but only 137 for guilty about you. These often oc-

cur when both of the frequencies are either low 

and/or close. This category includes cases where it 

is very likely that one of the queries is retrieving an 

n-gram whose right edge is the beginning of a 

compound noun (as in with the trigram have a 

lunch). Finally, (5) some of the “corrections” either 

introduced an error into the sentence or the original 

and “correction” were equally bad. In this catego-

ry, we also include British English article usage 

like go to hospital. For prepositions, (6) some of 

the corrections changed the meaning of the sen-

tence – where the disambiguation context is often 

not in the sentence itself and either choice is syn-

tactically correct, as in I will buy it from you 

changed to I will buy it for you. 

 

 Articles Preps 

 freq ratio freq ratio

1.N-gram does not con-

tain necessary context 
187 .58 183 .52

2.Original and correc-

tion both good 
39 .12 51 .11

3.Other error in n-gram 30 .9 35 .10

4.Unexpected ratio 36 .11 27 .09

5.Correction is wrong 30 .9 30 .08

6.Meaning changing na na 24 .07

Table 7: Error analysis 

 

If we count categories 2 and 5 in Table 7 as not 

being errors, then the error rate for articles drops 

20% and the error rate for prepositions drops 19%. 

A disproportionately high subcategory of query 

strings that did not contain the disambiguating con-

text (category 1) was at the edges of the sentence – 

especially for the LeftFourgrams at the beginning 

of a sentence where the query will always be a bi-

gram. 

6 Conclusion and Future Work 

We have demonstrated that web source counts can 

be an accurate predictor for distinguishing between 

a learner error and its correction - as long as the 

query strategy is tuned towards the error type. 

Longer queries, i.e. 4-grams and 5-grams achieve 

the best non-zero-result accuracy for articles, while 

SmartQueries perform best for preposition errors. 

Google N-grams across the board achieve the best 

non-zero-result accuracy, but not surprisingly they 

have the lowest retrieval ratio due to count cutoffs. 

Between the two search APIs, Bing tends to have 

better retrieval ratio, while Google achieves higher 

accuracy. 

In terms of practical use in an error detection 

system, a general "recipe" for a high precision 

component can be summarized as follows. First, 

use the Google Web 5-gram Corpus as a web 

source. It achieves the highest NZRA, and it avoids 

multiple problems with search APIs: results do not 

fluctuate over time, results are real n-gram counts 

as opposed to document count estimates, and a lo-

cal implementation can avoid the high latency as-

sociated with search APIs. Secondly, carefully 

select the query strategy depending on the correc-

tion operation and error type. 

We hope that this empirical investigation can 

contribute to a more solid foundation for future 

work in error detection and correction involving 

the web as a source for data. While it is certainly 

not sufficient to use only web data for this purpose, 

we believe that the accuracy numbers reported here 

indicate that web data can provide a strong addi-

tional signal in a system that combines different 

detection and correction mechanisms. One can im-

agine, for example, multiple ways to combine the 

n-gram data with an existing language model. Al-

ternatively, one could follow Bergsma et al. (2009) 

and issue not just a single pair of queries but a 
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whole series of queries and sum over the results. 

This would increase recall since at least some of 

the shorter queries are likely to return non-zero 

results. In a real-time system, however, issuing 

several dozen queries per potential error location 

and potential correction could cause performance 

issues. Finally, the n-gram counts can be incorpo-

rated as one of the features into a system such as 

the one described in Gamon (2010) that combines 

evidence from various sources in a principled way 

to optimize accuracy on learner errors. 
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Abstract

In this paper we present results from two pi-
lot studies which show that using the Amazon
Mechanical Turk for preposition error anno-
tation is as effective as using trained raters,
but at a fraction of the time and cost. Based
on these results, we propose a new evaluation
method which makes it feasible to compare
two error detection systems tested on different
learner data sets.

1 Introduction

The last few years have seen an explosion in the de-
velopment of NLP tools to detect and correct errors
made by learners of English as a Second Language
(ESL). While there has been considerable empha-
sis placed on the system development aspect of the
field, with researchers tackling some of the tough-
est ESL errors such as those involving articles (Han
et al., 2006) and prepositions (Gamon et al., 2008),
(Felice and Pullman, 2009), there has been a woeful
lack of attention paid to developing best practices for
annotation and evaluation.

Annotation in the field of ESL error detection has
typically relied on just one trained rater, and that
rater’s judgments then become the gold standard for
evaluating a system. So it is very rare that inter-rater
reliability is reported, although, in other NLP sub-
fields, reporting reliability is the norm. Time and
cost are probably the two most important reasons
why past work has relied on only one rater because
using multiple annotators on the same ESL texts
would obviously increase both considerably. This is

especially problematic for this field of research since
some ESL errors, such as preposition usage, occur at
error rates as low as 10%. This means that to collect
a corpus of 1,000 preposition errors, an annotator
would have to check over 10,000 prepositions.1

(Tetreault and Chodorow, 2008b) challenged the
view that using one rater is adequate by showing
that preposition usage errors actually do not have
high inter-annotator reliability. For example, trained
raters typically annotate preposition errors with a
kappa around 0.60. This low rater reliability has
repercussions for system evaluation: Their experi-
ments showed that system precision could vary as
much as 10% depending on which rater’s judgments
they used as the gold standard. For some grammat-
ical errors such as subject-verb agreement, where
rules are clearly defined, it may be acceptable to
use just one rater. But for usage errors, the rules
are less clearly defined and two native speakers can
have very different judgments of what is acceptable.
One way to address this is by aggregating a multi-
tude of judgments for each preposition and treating
this as the gold standard, however such a tactic has
been impractical due to time and cost limitations.

While annotation is a problem in this field, com-
paring one system to another has also been a major
issue. To date, none of the preposition and article
error detection systems in the literature have been
evaluated on the same corpus. This is mostly due to
the fact that learner corpora are difficult to acquire
(and then annotate), but also to the fact that they are

1(Tetreault and Chodorow, 2008b) report that it would take
80hrs for one of their trained raters to find and mark 1,000
preposition errors.
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usually proprietary and cannot be shared. Examples
include the Cambridge Learners Corpus2 used in
(Felice and Pullman, 2009), and TOEFL data, used
in (Tetreault and Chodorow, 2008a). This makes it
difficult to compare systems since learner corpora
can be quite different. For example, the “difficulty”
of a corpus can be affected by the L1 of the writ-
ers, the number of years they have been learning En-
glish, their age, and also where they learn English (in
a native-speaking country or a non-native speaking
country). In essence, learner corpora are not equal,
so a system that performs at 50% precision in one
corpus may actually perform at 80% precision on
a different one. Such an inability to compare sys-
tems makes it difficult for this NLP research area to
progress as quickly as it otherwise might.

In this paper we show that the Amazon Mechani-
cal Turk (AMT), a fast and cheap source of untrained
raters, can be used to alleviate several of the evalua-
tion and annotation issues described above. Specifi-
cally we show:

• In terms of cost and time, AMT is an effec-
tive alternative to trained raters on the tasks of
preposition selection in well-formed text and
preposition error annotation in ESL text.

• With AMT, it is possible to efficiently collect
multiple judgments for a target construction.
Given this, we propose a new method for evalu-
ation that finally allows two systems to be com-
pared to one another even if they are tested on
different corpora.

2 Amazon Mechnical Turk

Amazon provides a service called the Mechani-
cal Turk which allows requesters (companies, re-
searchers, etc.) to post simple tasks (known as Hu-
man Intelligence Tasks, or HITs) to the AMT web-
site for untrained raters to perform for payments as
low as $0.01 in many cases (Sheng et al., 2008).
Recently, AMT has been shown to be an effective
tool for annotation and evalatuation in NLP tasks
ranging from word similarity detection and emotion
detection (Snow et al., 2008) to Machine Transla-
tion quality evaluation (Callison-Burch, 2009). In
these cases, a handful of untrained AMT workers

2http://www.cambridge.org/elt

(or Turkers) were found to be as effective as trained
raters, but with the advantage of being considerably
faster and less expensive. Given the success of us-
ing AMT in other areas of NLP, we test whether we
can leverage it for our work in grammatical error de-
tection, which is the focus of the pilot studies in the
next two sections.

The presence of a gold standard in the above pa-
pers is crucial. In fact, the usability of AMT for text
annotation has been demostrated in those studies by
showing that non-experts’ annotation converges to
the gold standard developed by expert annotators.
However, in our work we concentrate on tasks where
there is no single gold standard, either because there
are multiple prepositions that are acceptable in a
given context or because the conventions of preposi-
tion usage simply do not conform to strict rules.

3 Selection Task
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Figure 1: Error Detection Task: Reliability of AMT as a
function of number of judgments

Typically, an early step in developing a preposi-
tion or article error detection system is to test the
system on well-formed text written by native speak-
ers to see how well the system can predict, or select,
the writer’s preposition given the context around
the preposition. (Tetreault and Chodorow, 2008b)
showed that trained human raters can achieve very
high agreement (78%) on this task. In their work, a
rater was shown a sentence with a target preposition
replaced with a blank, and the rater was asked to se-
lect the preposition that the writer may have used.
We replicate this experiment not with trained raters
but with the AMT to answer two research questions:
1. Can untrained raters be as effective as trained
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raters? 2. If so, how many raters does it take to
match trained raters?

In the experiment, a Turker was presented with
a sentence from Microsoft’s Encarta encyclopedia,
with one preposition in that sentence replaced with
a blank. There were 194 HITs (sentences) in all, and
we requested 10 Turker judgments per HIT. Some
Turkers did only one HIT, while others completed
more than 100, though none did all 194. The Turk-
ers’ performance was analyzed by comparing their
responses to those of two trained annotators and to
the Encarta writer’s preposition, which was consid-
ered the gold standard in this task. Comparing each
trained annotator to the writer yielded a kappa of
0.822 and 0.778, and the two raters had a kappa of
0.742. To determine how many Turker responses
would be required to match or exceed these levels of
reliability, we randomly selected samples of various
sizes from the sets of Turker responses for each sen-
tence. For example, when samples were of size N =
4, four responses were randomly drawn from the set
of ten responses that had been collected. The prepo-
sition that occurred most frequently in the sample
was used as the Turker response for that sentence. In
the case of a tie, a preposition was randomly drawn
from those tied for most frequent. For each sample
size, 100 samples were drawn and the mean values
of agreement and kappa were calculated. The reli-
ability results presented in Table 1 show that, with
just three Turker responses, kappa with the writer
(top line) is comparable to the values obtained from
the trained annotators (around 0.8). Most notable is
that with ten judgments, the reliability measures are
much higher than those of the trained annotators. 3

4 Error Detection Task

While the previous results look quite encouraging,
the task they are based on, preposition selection in
well-formed text, is quite different from, and less
challenging than, the task that a system must per-
form in detecting errors in learner writing. To exam-
ine the reliability of Turker preposition error judg-
ments, we ran another experiment in which Turkers
were presented with a preposition highlighted in a
sentence taken from an ESL corpus, and were in-

3We also experimented with 50 judgments per sentence, but
agreement and kappa improved only negligibly.

structed to judge its usage as either correct, incor-
rect, or the context is too ungrammatical to make
a judgment. The set consisted of 152 prepositions
in total, and we requested 20 judgments per prepo-
sition. Previous work has shown this task to be a
difficult one for trainer raters to attain high reliabil-
ity. For example, (Tetreault and Chodorow, 2008b)
found kappa between two raters averaged 0.630.

Because there is no gold standard for the er-
ror detection task, kappa was used to compare
Turker responses to those of three trained anno-
tators. Among the trained annotators, inter-kappa
agreement ranged from 0.574 to 0.650, for a mean
kappa of 0.606. In Figure 2, kappa is shown for the
comparisons of Turker responses to each annotator
for samples of various sizes ranging from N = 1 to
N = 18. At sample size N = 13, the average kappa is
0.608, virtually identical to the mean found among
the trained annotators.
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Figure 2: Error Detection Task: Reliability of AMT as a
function of number of judgments

5 Rethinking Evaluation

We contend that the Amazon Mechanical Turk can
not only be used as an effective alternative annota-
tion source, but can also be used to revamp evalu-
ation since multiple judgments are now easily ac-
quired. Instead of treating the task of error detection
as a “black or white” distinction, where a preposi-
tion is either correct or incorrect, cases of prepo-
sition use can now be grouped into bins based on
the level of agreement of the Turkers. For example,
if 90% or more judge a preposition to be an error,
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Task # of HITs Judgments/HIT Total Judgments Cost Total Cost # of Turkers Total Time
Selection 194 10 1,940 $0.02 $48.50 49 0.5 hours
Error Detection 152 20 3,040 $0.02 $76.00 74 6 hours

Table 1: AMT Experiment Statistics

the high agreement is strong evidence that this is a
clear case of an error. Conversely, agreement lev-
els around 50% would indicate that the use of a par-
ticular preposition is highly contentious, and, most
likely, it should not be flagged by an automated er-
ror detection system.

The current standard method treats all cases of
preposition usage equally, however, some are clearly
harder to annotate than others. By breaking an eval-
uation set into agreement bins, it should be possible
to separate the “easy” cases from the “hard” cases
and report precision and recall results for the differ-
ent levels of human agreement represented by differ-
ent bins. This method not only gives a clearer pic-
ture of how a system is faring, but it also ameliorates
the problem of cross-system evaluation when two
systems are evaluated on different corpora. If each
evaluation corpus is annotated by the same number
of Turkers and with the same annotation scheme, it
will now be possible to compare systems by sim-
ply comparing their performance on each respective
bin. The assumption here is that prepositions which
show X% agreement in corpus A are of equivalent
difficulty to those that show X% agreement in cor-
pus B.

6 Discussion

In this paper, we showed that the AMT is an ef-
fective tool for annotating grammatical errors. At
a fraction of the time and cost, it is possible to
acquire high quality judgments from multiple un-
trained raters without sacrificing reliability. A sum-
mary of the cost and time of the two experiments
described here can be seen in Table 1. In the task of
preposition selection, only three Turkers are needed
to match the reliability of two trained raters; in the
more complicated task of error detection, up to 13
Turkers are needed. However, it should be noted
that these numbers can be viewed as upper bounds.
The error annotation scheme that was used is a very
simple one. We intend to experiment with different

guidelines and instructions, and to screen (Callison-
Burch, 2009) and weight Turkers’ responses (Snow
et al., 2008), in order to lower the number of Turk-
ers required for this task. Finally, we will look at
other errors, such as articles, to determine how many
Turkers are necessary for optimal annotation.
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Abstract

Computer  generation  of  cloze  tasks  still  falls 
short of full automation; most current systems 
are  used  by  teachers  as  authoring  aids. 
Improved methods to estimate cloze quality are 
needed  for  full  automation.  We  investigated 
lexical reading difficulty as a novel automatic 
estimator  of  cloze  quality,  to  which  co-
occurrence  frequency of  words was compared 
as an alternate estimator. Rather than relying on 
expert evaluation of cloze quality, we submitted 
open  cloze  tasks  to  workers  on  Amazon 
Mechanical  Turk (AMT) and discuss ways  to 
measure  of  the  results  of  these  tasks.  Results 
show  one  statistically  significant  correlation 
between  the  above  measures  and  estimators, 
which  was  lexical  co-occurrence  and  Cloze 
Easiness.  Reading difficulty was not found to 
correlate  significantly.  We  gave  subsets  of 
cloze sentences to an English teacher as a gold 
standard.  Sentences  selected  by co-occurrence 
and Cloze Easiness  were  ranked most  highly, 
corroborating the evidence from AMT.

1 Cloze Tasks

Cloze  tasks,  described  in  Taylor  (1953),  are 
activities  in  which  one  or  several  words  are 
removed from a sentence and a student is asked to 
fill  in the missing content.  That  sentence can be 
referred  to  as  the  'stem',  and  the  removed  term 
itself as the 'key'.  (Higgins, 2006)  The portion of 
the sentence from which the key has been removed 
is the 'blank'. 'Open cloze' tasks are those in which 
the student can propose any answer. 'Closed cloze' 
describes multiple choice tasks in which the key is 
presented along with a set of several 'distractors'.

1.1 Cloze Tasks in Assessment

Assessment is the best known application of cloze 
tasks. As described in (Alderson, 1979), the “cloze 
procedure”  is  that  in  which  multiple  words  are 
removed at  intervals  from a text.  This  is  mostly 
used  in  first  language  (L1)  education.  Alderson 
describes  three  deletion  strategies:  random 
deletion, deletion of every nth word, and targeted 
deletion,  in  which  certain  words  are  manually 
chosen and deleted by an instructor.  Theories  of 
lexical  quality  (Perfetti  & Hart,  2001)  and word 
knowledge levels (Dale, 1965) illustrate why cloze 
tasks can effectively assess multiple dimensions of 
vocabulary knowledge.

Perfetti & Hart explain that lexical knowledge 
can  be  decomposed  into  orthographic,  phonetic, 
syntactic,  and  semantic  constituents.  The  lexical 
quality of a given word can then be defined as a 
measure based on both the depth of knowledge of 
each  constituent  and  the  degree  to  which  those 
constituents are bonded together. Cloze tasks allow 
a test author to select for specific combinations of 
constituents to assess (Bachman, 1982). 

1.2 Instructional Cloze Tasks

Cloze tasks can be employed for instruction as well 
as  assessment.  Jongsma  (1980)  showed  that 
targeted deletion is an effective use of instructional 
passage-based  cloze  tasks.  Repeated  exposure  to 
frequent words leads first to familiarity with those 
words, and increasingly to suppositions about their 
semantic  and  syntactic  constituents.  Producing 
cloze tasks through targeted deletion takes implicit, 
receptive word knowledge, and forces the student 
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to consider explicitly how to match features of the 
stem with  what  is  known about  features  of  any 
keys she may consider.

2 Automatic Generation of Cloze Tasks

Most  cloze  task  “generation”  systems  are  really 
cloze task  identification systems. That is, given a 
set  of  requirements,  such  as  a  specific  key  and 
syntactic structure (Higgins 2006) for the stem, a 
system looks into a database of pre-processed text 
and attempts to identify sentences matching those 
criteria.  Thus,  the content  generated for a closed 
cloze is the stem (by deletion of the key), and a set 
of  distractors.  In  the  case  of  some  systems,  a 
human  content  author  may  manually  tailor  the 
resulting stems to meet further needs.

Identifying  suitable  sentences  from  natural 
language  corpora  is  desirable  because  the 
sentences  that  are  found  will  be  authentic. 
Depending  on  the  choice  of  corpora,  sentences 
should also be well-formed and suitable in terms of 
reading level and content.  Newspaper text is one 
popular source (Hoshino & Nakagawa, 2005; Liu 
et  al.,  2005;  Lee  &  Seneff,  2007).  Pino  et  al. 
(2008)  use  documents  from  a  corpus  of  texts 
retrieved  from  the  internet  and  subsequently 
filtered  according  to  readability  level,  category, 
and  appropriateness  of  content.  Using  a  broader 
corpus  increases  the  number  and  variability  of 
potential  matching sentences, but also lowers the 
confidence that sentences will be well-formed and 
contain appropriate language (Brown & Eskenazi, 
2004).

2.1 Tag-based Sentence Search

Several cloze item authoring tools (Liu et al. 2005; 
Higgins,  2006)  implement  specialized  tag-based 
sentence  search.  This  goes  back  to  the  original 
distribution  of  the  Penn  Treebank  and  the 
corresponding  tgrep program.  Developed by Pito 
in  1992  (Pito,  1994)  this  program  allows 
researchers to search for corpus text according to 
sequences  of part  of  speech (POS) tags  and tree 
structure.

The linguists' Search Engine (Resnik & Elkiss, 
2005)  takes  the  capabilities  of  tgrep yet  further, 
providing  a  simplified  interface  for  linguists  to 

search within tagged corpora along both syntactic 
and lexical features.

Both  tgrep  and  the  Linguists'  Search  Engine 
were not designed as cloze sentence search tools, 
but they paved the way for similar tools specialized 
for this task. For example, Higgins' (2006) system 
uses  a  regular  expression  engine  that  can  work 
either on the tag level, the text level or both. This 
allows  test  content  creators  to  quickly  find 
sentences  within  very  narrow  criteria.  They  can 
then alter these sentences as necessary.

Liu et al. (2005) use sentences from a corpus of 
newspaper  text  tagged  for  POS  and  lemma. 
Candidate sentences are found by searching on the 
key and its POS as well as the POS sequence of 
surrounding  terms.  In  their  system  results  are 
filtered for proper word sense by comparing other 
words  in  the  stem with data  from WordNet  and 
HowNet,  databases  of  inter-word  semantic 
relations.

2.2 Statistical Sentence Search

Pino et al (2009) use co-occurrence frequencies to 
identify  candidate  sentences.  They  used  the 
Stanford Parser (Klein & Manning, 2003) to detect 
sentences within a desired range of complexity and 
likely well-formedness. Co-occurrence frequencies 
of words in the corpus were calculated and keys 
were  compared  to  other  words  in  the  stem  to 
determine  cloze quality,  producing suitable cloze 
questions  66.53%  of  the  time.  This  method 
operates  on  the  theory  that  the  quality  of  the 
context  of  a  stem is  based on  the  co-occurrence 
scores of other words in the sentence. Along with 
this  result,  Pino  et  al.  incorporated  syntactic 
complexity in terms of the number of parses found. 

Hoshino  &  Nakagawa  (2005)  use  machine 
learning  techniques  to  train  a  cloze  task  search 
system. Their system, rather than finding sentences 
suitable  for  cloze  tasks,  attempts  to  automate 
deletion for passage-based cloze. The features used 
include  sentence  length  and  POS  of  keys  and 
surrounding words. Both a Naïve Bayes and a K-
Nearest Neighbor classifier were trained to find the 
most likely words for deletion within news articles. 
To train the system they labeled cloze sentences 
from a TOEIC training test as true, then shifted the 
position  of  the  blanks  from those  sentences  and 
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labeled  the  resulting  sentences  as  false.  Manual 
evaluation  of  the  results  showed  that,  for  both 
classifiers, experts saw over 90% of the deletions 
as either easy to solve or merely possible to solve.

3 Reading Level and Information Theory

An  information-theoretical  basis  for  an  entirely 
novel approach to automated cloze sentence search 
is  found  in  Finn  (1978).  Finn  defines  Cloze 
Easiness as “the percent of subjects filling in the 
correct word in a cloze task.” Another metric of the 
quality of  a  cloze task is  context  restriction;  the 
number of solutions perceived as acceptable keys 
for a given stem.  Finn's theory of lexical  feature 
transfer  provides  one  mechanism  to  explain 
context  restriction.  The  theory  involves  the 
information content of a blank.

According to Shannon's  (1948) seminal  work 
on information theory,  the  information contained 
in a given term is inverse to its predictability.  In 
other words, if a term appears despite following a 
history after which is it considered very unlikely to 
occur, that word has high information content. For 
example, consider the partial sentence “She drives 
a  nice...”.  A  reader  forms  hypotheses  about  the 
next  word  before  seeing  it,  and  thus  expects  an 
overall  meaning  of  the  sentence.  A  word  that 
conforms to this hypothesis, such as the word 'car', 
does little to change a reader's knowledge and thus 
has little  information.  If instead the next word is 
'taxi', 'tank', or 'ambulance', unforeseen knowledge 
is gained and relative information is higher.

According to Finn (1978) the applicability of 
this  theory  to  Cloze  Easiness  can  be  explained 
though lexical transfer features. These features can 
be both syntactic and semantic, and they serve to 
interrelate  words  within  a  sentence.  If  a  large 
number  of  lexical  transfer  features  are  within  a 
given proximity of a blank, then the set of words 
matching those features will  be highly restricted. 
Given that each choice of answer will  be from a 
smaller  pool  of  options,  the  probability  of  that 
answer  will  be  much  higher.  Thus,  a  highly 
probable key has correspondingly low information 
content. 

Predicting  context  restriction  is  of  benefit  to 
automatic  generation  of  cloze  tasks.  Cloze 
Easiness  improves  if  a  student  chooses  from  a 

smaller set of possibilities. The instructional value 
of  a  highly  context-restricted  cloze  task  is  also 
higher by providing a richer set of lexical transfer 
features with which to associate vocabulary.

Finn's  application  of  information  theory  to 
Cloze Easiness and context restriction provides one 
possible  new  avenue  to  improve  the  quality  of 
generated cloze tasks. We hypothesize that words 
of higher reading levels contain higher numbers of 
transfer  features  and  thus  their  presence  in  a 
sentence  can  be  correlated  with  its  degree  of 
context  restriction.  To  the  authors'  knowledge 
reading  level  has  not  been previously applied  to 
this problem.

We can use a unigram reading level model to 
investigate  this  hypothesis.  Returning  to  the 
example words for the partial sentence “She drives 
a  nice...”,  we  can  see  that  our  current  model 
classifies the highly expected word, 'car', at reading 
level  1,  while 'taxi','tank',  and 'ambulance',  are at 
reading levels 5, 6, and 11 respectively.

3.1 Reading Level Estimators

The estimation of reading level is a complex topic 
unto  itself.  Early  work  used  heuristics  based  on 
average  sentence  length  and  the  percentage  of 
words deemed unknown to a baseline reader. (Dale 
& Chall, 1948; Dale, 1965) Another early measure, 
the Flesch-Kincaid measure, (Kincaid et al., 1975) 
uses a function of the syllable length of words in a 
document and the average sentence length.

More recent work on the topic also focuses on 
readability  classification  at  the  document  level. 
Collins-Thompson  & Callan  (2005)  use  unigram 
language  models  without  syntactic  features. 
Heilman et al. (2008) use a probabilistic parser and 
unigram language models to combine grammatical 
and lexical features. (Petersen & Ostendorf, 2006) 
add higher-order n-gram features to the above to 
train  support  vector  machine  classifiers  for  each 
grade level.

These  recent  methods  perform  well  to 
characterize the level  of  an entire  document,  but 
they are untested for single sentences. We wish to 
investigate if  a  robust  unigram model  of reading 
level can be employed to improve the estimation of 
cloze quality at the sentence level. By extension of 
Finn's  (1978)  hypothesis,  it  is  in  fact  not  the 
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overall  level  of  the sentence that has a predicted 
effect  on cloze context  restriction,  but  rather  the 
reading  level  of  the  words  in  proximity  to  the 
blank. Thus we propose that it should be possible 
to find a correlation between cloze quality and the 
reading levels of words in near context to the blank 
of a cloze task. 

4 The Approach

We investigate a multi-staged filtering approach to 
cloze sentence generation. Several variations of the 
final filtering step of this approach were employed 
and correlations sought between the resulting sets 
of  each  filter  variation.  The  subset  predicted  to 
contain the best sentences by each filter was finally 
submitted to expert review as a gold standard test 
of cloze quality.

This study compares two features of sentences, 
finding  the  levels  of  context  restriction 
experimentally. The first feature in question is the 
maximum reading level  found in near-context  to 
the  blank.  The  second  feature  is  the  mean  skip 
bigram co-occurrence score  of words within that 
context.

Amazon Mechanical Turk (AMT) is used as a 
novel  cloze  quality  evaluation  method.  This 
method  is  validated  by  both  positive  correlation 
with   the  known-valid  (Pino  et  al.,  2008)  co-
occurrence  score  predictor,  and  an  expert  gold 
standard. Experimental results from AMT are then 
used to evaluate the hypothesis that reading level 
can be used as a new, alternative predictor of cloze 
quality.

4.1 Cloze Sentence Filtering

The first step in preparing material for this study 
was to obtain a set of keys. We expect that in most 
applications of sentence-based cloze tasks the set 
of  keys  is  pre-determined  by instructional  goals. 
Due  to  this  constraint,  we  choose  a  set  of  keys 
distributed across several reading levels and hold it 
as fixed. Four words were picked from the set of 
words common in texts labeled as grades four, six, 
eight, ten, and twelve respectively.

201,025  sentences  containing  these  keys  were 
automatically  extracted  from  a  corpus  of  web 
documents  as  the  initial  filtering  step.  This 
collection  of  sentences  was  then  limited  to 
sentences of length 25 words or less. Filtering by 
sentence  length  reduced  the  set  to  136,837 
sentences.

A probabilistic  parser  was  used  to  score  each 
sentence. This parser gives log-probability values 
corresponding to confidence of the best parse. A 
threshold  for  this  confidence  score  was  chosen 
manually  and  sentences  with  scores  below  the 
threshold were removed,  reducing the number  of 
sentences to 29,439.

4.2 Grade Level

Grade  level  in  this  study  is  determined  by  a 
smoothed  unigram  model  based  on  normalized 
concentrations  within  labeled  documents.  A 
sentence is assigned the grade level of the highest 
level word in context of the key.

4.3 Co-occurrence Scores

Skip bigram co-occurrence counts were calculated 
from  the  Brown  (Francis  &  Kucera,  1979)  and 
OANC (OANC, 2009) corpora. A given sentence's 
score is calculated as the mean of the probabilities 
of finding that sentence's context for the key.

These  probabilities  are  defined  on  the  triplet 
(key, word, window size), in which key is the target 
word to be removed, word any term in the corpus, 
and  window size is a positive integer less than or 
equal to the length of the sentence.

This probability is estimated as the number  of 
times  word is found within the same sentence as 
key and  within  an  absolute  window  size  of 2 
positions from key, divided by the total number of 
times  all  terms  are  found in that  window.  These 
scores are thus maximum likelihood estimators of 
the probability of word given key and window size:

4th: 'little', 'thought', 'voice',  'animals'
6th: ‘president', 'sportsmanship', 'national',  experience'
8th: 'college', 'wildlife', 'beautiful', 'competition'
10th: 'medical', 'elevations','qualities', 'independent'
12th: 'scientists',  'citizens', 'discovered', 'university'

Figure 1: common words per grade level.
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(1) For some key k , word w, and window-size m :
Cj(w, k) := count of times w found j words from the 
position of k, within the same sentence.

(2) For a vocabulary V and for some positive integer 
window-size m, let n = (m-1) / 2, then:

i.e. if our corpus consisted of the single sentence
“This is a good example sentence.”:

C−1 (w = good, k = example) = 1
C1 (w = sentence, k = example) = 1
P (w = good | k = example, m = 3) =  1 / (1+1)= .5

Finally, the overall score of the sentence is taken 
to be the mean of the skip bigram probabilities of 
all words in context of the key.

4.4 Variable Filtering by Grade and Score

Skip bigram scores were calculated for all words 
co-occurrent  in  a  sentence  with  each  of  our  20 
keys. To maximize the observable effect of the two 
dimensions of grade level and co-occurrence score, 
the  goal  was  to  find  sentences  representing 
combinations  of  ranges  within those  dimensions. 
To  achieve  this  it  was  necessary  to  pick  the 
window size that best  balances variance of these 
dimensions  with a  reasonably flat  distribution of 
sentences.

In terms  of  grade level,  smaller  window sizes 
resulted  in  very few sentences  with  at  least  one 
high-level  word,  while  larger  window  sizes 
resulted in few sentences with no high-level words. 
Variance  in  co-occurrence  score,  on  the  other 
hand, was maximal at a window size of 3 words, 
and  dropped  off  until  nearly  flattening  out  at  a 
window size  of  20 words.  A window size  of  15 
words was found to offer a reasonable distribution 
of grade level while preserving sufficient variance 
of co-occurrence score.

Using the above window-size, we created filters 
according to maximum grade level:  one each for 
the grade ranges 5-6, 7-8, 9-10,  and 11-12.  Four 
more  filters  were  created  according  to  co-
occurrence score: one selecting the highest-scoring 
quartile  of  sentences,  one  the  second  highest-
scoring quartile, and so on. Each grade level filter 
was combined with each co-occurrence score filter 

creating 4x4=16 composite filters.  By combining 
these filters we can create a final set of sentences 
for  analysis  with  high  confidence  of  having  a 
significant  number  of  sentences  representing  all 
possible values  of grade level  and co-occurrence 
score. At most two sentences were chosen for each 
of the 20 keys using these composite filters. The 
final number of sentences was 540.

4.5 Experimental Cloze Quality

Previous  evaluation  of  automatically  generated 
cloze tasks has relied on expert judgments. (Pino et 
al., 2008; Liu et al., 2005) We present the use of 
crowdsourcing techniques as a new approach for 
this  evaluation.  We believe  the approach can be 
validated  by  statistically  significant  correlations 
with predicted cloze quality and comparison with 
expert judgments.

The  set  of  540  sentences  were  presented  to 
workers  from Amazon  Mechanical  Turk  (AMT), 
an  online  marketplace  for  “human  intelligence 
tasks.” Each worker was shown up to twenty of the 
stems of these sentences as open cloze tasks. No 
worker was allowed to see more than one stem for 
the  same  key.  Workers  were  instructed  to  enter 
only those words that  “absolutely make  sense in 
this context”, but were not encouraged to submit 
any particular  number  of answers.  Workers were 
paid US$.04 per sentence, and the task was limited 
to workers with approval ratings on past tasks at or 
above 90%.

For  each  sentence  under  review  each  worker 
contributes one subset of answers. Cloze Easiness, 
as  defined  by  Finn  (1978)  is  calculated  as  the 
percentage of these subsets containing the original 
key.  We  define  context  restriction on  n as  the 
percentage of answer subsets containing n or fewer 
words.

Using the example sentence: “Take this cloze 
sentence, for    (example)  .” We can find the set of 
answer subsets A:

A  =  {  A1={example, free, fun, me}
A2={example,instance}

A3={instance}     }

Then, Cloze Easiness is |{A1,A2}| / |A| ≈ .67 and 
Context restriction (on one or two words) is |
{A2,A3}| / |A| ≈ .67
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5 Results

Each sentence in the final set was seen, on average, 
by  27  Mechanical  Turk  workers.  We  wish  to 
correlate measures of Cloze Easiness and context 
restriction  with  cloze  quality  predictors  of 
maximum  grade  level  and  score.  We  use  the 
Pearson correlation  coefficient  (PCC)  to  test  the 
linear relationship between each measure of cloze 
quality and each predictor.

Table (1)  shows these PCC values. All of  the 
values are positive, meaning there is a correlation 
showing that one value will tend to increase as the 
other increases. The strongest correlation is that of 
co-occurrence and Cloze Easiness. This is also the 
only statistically significant correlation. The value 
of  P(H0)  represents  the  likelihood  of  the  null 
hypothesis:  that  two  random  distributions 
generated  the  same  correlation.  Values  of  P(H0) 
under  0.05  can  be  considered  statistically 
significant.

Figure  (3)  shows  scatter  plots  of  these  four 
correlations  in  which  each  dot  represents  one 
sentence. 

The top-leftmost  plot  shows the correlation of 
co-occurrence  score  (on  the  x-axis),  and  Cloze 
Easiness (on the y-axis). Co-occurrence scores are 
shown on a log-scale. The line through these points 
represents a linear regression, which is in this case 
statistically significant.

The  bottom-left  plot  shows  correlation  of  co-
occurrence score (x-axis) with context restriction. 
In this case context  restriction was calculated on 
n=2,  i.e.  the  percent  of  answers  containing  only 

Cloze Easiness PCC = 0.2043
P(H0)=1.6965e-06

PCC = 0.0671
P(H0)=0.1193

Context 
Restriction (2)

PCC = 0.0649
P(H0)=0.1317

PCC = 0.07
P(H0)=0.1038

Co-occurrence Maximum Grade

Table (1): Pearson Correlation Coefficient and 
probability of null hypothesis for estimators and 
measures of cloze quality.

Figure (3): Scatter plots of all sentences with cloze quality measure as y-axis, and cloze quality estimator as x-axis. 
The linear regression of each distribution is shown.
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one  or  two  words.  The  linear  regression  shows 
there  is  a  small  (statistically  insignificant) 
correlation.

The  top-right  plot  shows  Cloze  Easiness  (y-
axis)  per  grade  level  (x-axis).  The  bottom  left 
shows context restriction (y-axis) as a function of 
grade level.  In both cases linear regressions here 
also show small, statistically insignificant positive 
correlations.

The lack of significant correlations for three out 
of four combinations of measures and estimators is 
not grounds to dismiss these measures. Across all 
sentences,  the  measure  of  context  restriction  is 
highly variant, at 47.9%. This is possibly the result 
of the methodology; in an attempt to avoid biasing 
the AMT workers, we did not specify the desirable 
number  of  answers.  This  led  to  many  workers 
interpreting the task differently.

In terms of maximum grade level, the lack of a 
significant correlation with context restriction does 
not  absolutely  refute  Finn  (1978)'s  hypothesis. 
Finn  specifies  that  semantic  transfer  features 
should be in  “lexical  scope” of a  blank.  A clear 
definition of “lexical scope” was not presented. We 
generalized scope to mean proximity within a fixed 
contextual window size. It is possible that a more 
precise definition of “lexical scope” will provide a 
stronger  correlation  of  reading  level  and  context 
restriction.

5.1 Expert Validation

Finally,  while  we  have  shown  a  statistically 
significant  positive  correlation  between  co-
occurrence  scores  and  Cloze  Easiness,  we  still 
need to demonstrate that Cloze Easiness is a valid 
measure of cloze quality. To do so, we selected the 
set  of  20  sentences  that  ranked  highest  by  co-
occurrence score and by Cloze Easiness to submit 
to expert evaluation. Due to overlap between these 
two  sets,  choosing  distinct  sentences  for  both 
would  require  choosing  some  sentences  ranked 
below the top 20 for each category.  Accordingly, 
we  chose  to  submit  just  one  set  based  on  both 
criteria in combination.

Along with these 20 sentences, as controls, we 
also  selected  two  more  distinct  sets  of  20 
sentences:  one  set  of  sentences  measuring  most 

highly  in  context  restriction,  and  one  set  most 
highly estimated by maximum grade level.

We asked a former English teacher to read each 
open cloze,  without  the  key,  and rate,  on  a  five 
point  Likert  scale,  her  agreement  with  the 
statement  “This  is  a  very  good  fill-in-the-blank  
sentence.” where 1 means strong agreement, and 5 
means strong disagreement.

Expert evaluation on 
5-point Scale

Mean Standard
Deviation

20
best 
sentences
as 
determined 
by:

Cloze Easiness and co-
occurrence score 2.25 1.37

Context restriction 3.05 1.36

Maximum grade level 3.15 1.2

Table (2): Mean ratings for each sentence category.

The results in Table (2) show that, on average, 
the correlated results of selecting sentences based 
on Cloze Easiness and co-occurrence score are in 
fact rated more highly by our expert as compared 
to sentences selected based on context restriction, 
which is, in turn, rated more highly than sentences 
selected  by maximum grade  level.  Using  a  one-
sample t-test and a population mean of 2.5, we find 
a p-value of .0815 for our expert's ratings.

6 Conclusion

We  present  a  multi-step  filter-based  paradigm 
under which diverse estimators of cloze quality can 
be applied towards the goal of full automation of 
cloze  task  generation.  In  our  implementation  of 
this  approach sentences  were  found  for  a  set  of 
keys,  and  then  filtered  by  maximum  length  and 
likelihood  of  well-formedness.  We  then  tested 
combinations  of  two  estimators  and  two 
experimental measures of cloze quality for the next 
filtering step.

We presented an information-theoretical  basis 
for the use of reading level as a novel estimator for 
cloze quality. The hypothesis that maximum grade 
level should be correlated with context restriction 
was  not,  however,  shown  with  statistical 
significance.  A  stronger  correlation  might  be 
shown with a different experimental methodology 
and a more refined definition of lexical scope.
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As an alternative to expert evaluation of cloze 
quality,  we  investigated  the  use  of  non-expert 
workers  on  AMT.  A  statistically  significant 
correlation was found between the co-occurrence 
score of a sentence and its experimental measure of 
Cloze  Easiness.  This  is  evidence  that 
crowdsourcing  techniques  agree  with  expert 
evaluation of co-occurrence scores in past studies.

To gain further evidence of the validity of these 
experimental  results,  sentences  selected  by  a 
composite filter of co-occurrence score and Cloze 
Easiness were compared to sentences selected by 
context  restriction  and  reading  level.  An  expert 
evaluation  showed  a  preference  for  sentences 
selected by the composite filter.

We  believe  that  this  method  of  cloze  task 
selection is promising. It will now be tested in a 
real  learning  situation.  This  work  contributes 
insight  into  methods  for  improving  technologies 
such as intelligent tutoring systems and language 
games.
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Abstract

We describe Prograder, a software package for
automatic checking of requirements for pro-
gramming homework assignments. Prograder
lets instructors specify requirements in natural
language as well as explains grading results to
students in natural language. It does so using
a grammar that generates as well as parses to
translate between a small fragment of English
and a first-order logical specification language
that can be executed directly in Python. This
execution embodies multiple semantics—both
to check the requirement and to search for ev-
idence that proves or disproves the require-
ment. Such a checker needs to interpret and
generate sentences containing quantifiers and
negation. To handle quantifier and negation
scope, we systematically simulate continua-
tion grammars using record structures in the
Grammatical Framework.

1 Introduction

The typical programming assignment in a computer-
science course comes with not only a problem de-
scription but also correctness and stylistic require-
ments such as

(1) Every source file compiles and has comments,
and a text file mentions every source file and
every header file.

Although the requirements do not usually specify
exactly how the students’ work will be judged, they
make it much easier to grade and respond to the sub-
mitted work. Many requirements can be checked

automatically by computer, and often they are—
perhaps even right after each student uploads their
work so that the student can revise their work using
the immediate feedback.

This common workflow is wanting in two aspects.
First, the requirements are both specified to the stu-
dents in English and coded into a testing harness by
the course staff. Keeping the two versions is a hassle
that involves much boilerplate text as well as boil-
erplate code. Second, students rightfully demand
comprehensible explanations when their work is re-
jected by the requirement tester. It is tricky to code
up a tester that produces error messages neither too
terse nor too verbose, when one student might forget
to comment just one file and another might not know
the lexical syntax of comments at all.

A natural approach to improve this workflow,
then, is to specify the requirements in a formal lan-
guage and to implement an interpreter for the lan-
guage that produces explanations. Because many
instructors, like students, are averse to learning new
languages, we pursue the use of a controlled subset
of English as that formal language. In short, we aim
to produce a programming-assignment tester that
allows instructors to specify requirements for pro-
gramming assignments in natural language, checks
those requirements automatically by executing com-
mands on the submitted assignment files, and gen-
erates for the student a natural-language explanation
of the results. For example, in an introductory pro-
gramming class, a professor may write the specifi-
cation sentence (1). The system would then grade
all students’ programming assignments according to
these criteria, and return individualized explanations
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to students like

(2) Credit was lost because bar.c did not compile
and no text file mentioned the files foo.h and
baz.h.

As this example illustrates, the tester needs to in-
terpret and generate sentences with quantifiers and
negation. Although the interpretation of quantifiers
and negation is a traditional research area in com-
putational linguistics (VanLehn, 1978; Hobbs and
Shieber, 1987; Moran, 1988), their generation is
much less studied (Gailly, 1988). Even if our system
were to compose explanations entirely from the in-
put specification sentences and their negation, it can-
not negate a specification sentence merely by adding
or removing verbal auxiliaries: the negation of “a
source file defines main()” is not “a source file does
not define main()”.

1.1 Contributions
We have built Prograder, a rudimentary program-
ming-assignment tester that correctly interprets and
generates a small fragment of English that includes
quantifiers and negation. This paper describes the
architecture of Prograder. Our implementation uses
a declarative grammar that simultaneously supports
interpretation and generation by relating English
phrase structure to type-logical semantics. This pa-
per details the new techniques we use in this gram-
mar to represent quantifier scope and De Morgan du-
ality in a tractable way.

Prograder also lets us investigate how to make a
computer program explain its own execution. The
concerns for a tester that must justify its output to
students are not merely grammatical, but involve the
semantics and pragmatics of summarization and jus-
tification. For example, when is it semantically cor-
rect to combine entities within an NP, as in “foo.h
and baz.h” above? When is an explanation prag-
matically enough for a student who has a right to
know why she lost credit on a programming assign-
ment? Which pieces of evidence must be stated and
which are better left out? We plan to study these
questions within type-logical semantics as well.

1.2 Organization of This Paper
In Section 1, we have introduced the problem and
outlined the contributions of the research carried out

in building Prograder. In Section 2, we give a high-
level overview of the architecture of the system, in-
cluding the representation of natural-language syn-
tax and type-logical semantics, as well as the proce-
dure of operation. Section 3 describes Prograder’s
checking procedure and how it generates explana-
tions in tandem with the checking. In Section 4,
we begin to describe the details of the grammati-
cal framework that allows us to handle bidirectional
translation between English and the logical form.
Continuing in Section 5, we discuss the handling
of negation and quantifier scoping by means of a
record-based implementation of continuation gram-
mars. Section 6 reviews the architecture of the sys-
tem with additional implementation details, and Sec-
tion 7 concludes with future work.

2 System Overview

We explain the architecture of our Prograder sys-
tem using a simplified example. Suppose that the
instructor specifies the requirement that

(3) Every source file compiles.

Prograder begins by parsing this sentence into an ab-
stract syntax tree:

(4) ApplyS

EverySourceFile Compiles

Interpreting this tree compositionally gives the
meaning of the sentence:

(5) everysourcefile(lambda x:

compiles(x))

On one hand, this expression is a formula in pred-
icate logic. In general, each requirement specifi-
cation is a sentence, whose truth value is deter-
mined by checking a single student’s programming
assignment. We use the types of Montague gram-
mar (1974), which are the base type of entities e, the
base type of propositions t, and function types no-
tated by !. Our logical language is defined by a
domain-specific vocabulary of typed predicates and
entities (Hudak, 1996). Naturally, the files submit-
ted by the student are entities.
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For example, the unary predicates compiles and
hascomments have the type e ! t, and the bi-
nary predicate mentions has the type e ! e ! t.
These predicates in our vocabulary represent vari-
ous properties of submitted files that instructors may
want to check. Logical connectives are also part
of the vocabulary; for instance, and and or have
the type t ! t ! t, not_b has the type t ! t, and
everysourcefile has the type (e! t)! t. There-
fore, the expression (5) has the type t, as do the ex-
pressions

(6) compiles("foo.c")

(7) and(compiles("foo.c"),

hascomments("bar.c"))

On the other hand, the expressions (5–7) are exe-
cutable Python code. Prograder includes a library
of Python functions such as everysourcefile,
which iterates over the source files submitted, and
compiles, which invokes gcc. As each student sub-
mits their homework, we evaluate the expression (5)
to check the requirement (3). We use Python’s own
lambda abstraction and first-class functions to ex-
press quantified statements. For example, evaluating
(5) invokes gcc on each source file submitted.

Evaluation not only computes a Boolean value but
also yields a tree of evidence statements to justify
the result. At the root of the tree is either the re-
quirement (5) or its negation:

(8) asourcefile(lambda x:

not_b(compiles(x)))

Each node’s children are the premises that together
justify the conclusion at that node. For example, if
every source file submitted by the student compiles
successfully except one, then (8) would be justified
by a sole child:

(9) not_b(compiles("bar.c"))

Prograder then parses each evidence statement into
abstract syntax:

(10) ApplyS

ASourceFile Not_VP

Compiles

ApplyS

bar.c Not_VP

Compiles

From these trees, Prograder finally renders each ev-
idence statement as an English clause:

(11) A source file does not compile because bar.c

does not compile.

To summarize, Prograder’s steps of operation are
as follows:

1. Parse the natural-language requirement state-
ment into a phrase-structure syntax tree.

2. Produce a logical semantic representation from
the syntax tree.

3. Execute the semantic representation to check
the requirement and produce a semantic repre-
sentation of each evidence statement.

4. Parse the evidence statements into phrase-
structure syntax trees.

5. Produce natural-language explanation from the
syntax trees.

From end to end, these steps operate on just three
levels of representation: the abstract syntax trees in
(4) and (10) can be spelled out either in natural lan-
guage (English) as in (3) and (11) or in predicate
logic (Python) as in (5–9). Thus, Prograder inter-
prets natural-language requirements and generates
natural-language explanations using the same exe-
cutable semantic representations. In fact, it uses the
same grammar, as described in Section 4.

3 Gathering Evidence while Testing Truth

As sketched above, evaluating a proposition gives a
Boolean result along with a tree of evidence propo-
sitions that justify that result. That is, we represent
the type t in Python as an ordered pair, not just a
Boolean value. This is straightforward for primitive
first-order predicates. For example, the compiles

function, when invoked with the argument "foo.c",
tries to compile foo.c, then either returns True

along with a trivial evidence tree containing just the
proposition compiles("foo.c"), or returns False
along with a trivial evidence tree containing just
the proposition not_b(compiles("foo.c")). In
short, we hold whether a file compiles to be self-
evident.
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The picture is more complex for logical connec-
tives, especially higher-order functions such as the
quantifier everysourcefile. Ideally, the falsity
of (3) should be justified by an explanation like

(12) Not every source file compiles because foo.c

and bar.c do not compile.

Also, the explanation should be generated by com-
posing the implementations of everysourcefile
and of compiles, so that new quantifiers (“most
source files”) and predicates (“has comments”) can
be added as separate modules. For example, evaluat-
ing the proposition not_b(compiles("foo.c"))

first evaluates compiles("foo.c") then negates
the Boolean while keeping the evidence the same.

Prograder currently justifies quantified proposi-
tions in the following compositional way. When
the higher-order function everysourcefile is in-
voked with the predicate argument p, it invokes p

on each source file submitted and collects the result-
ing Boolean-evidence pairs. If any of the Boolean
results is False, then the overall Boolean result is
of course also False. This result is justified by an
evidence tree whose root proposition is

(13) not_b(everysourcefile(p))

and whose subtrees are the evidence trees for all the
False results. (After all, the primary mode of ex-
planation required in grading a programming assign-
ment is to say why credit has been subtracted.) Pro-
grader then produces the serviceable explanation

(14) Not every source file compiles because foo.c

does not compile and bar.c does not compile.

(We are working on simplifying this explanation
to (12).) This process generalizes immediately to
propositions with multiple quantifiers, such as

(15) Every text file mentions a source file.
everytextfile(lambda x:

asourcefile(lambda y:

mentions(y)(x)))

For example, Prograder might explain that

(16) Not every text file mentions a source file be-
cause README mentions no source file.

In sum, Prograder generates explanations in the
same process—the same sequence of function calls

and returns—as it computes Boolean values. In this
way, the checking process gains an additional inter-
pretation as a process of gathering evidence for the
explanation. The explanation itself is a tree structure
corresponding to the pattern of function calls in the
computation; in fact, it is a proof tree for the require-
ments specification statement (or its negation). Once
all the evidence has been gathered, a textual version
of the explanation can be generated by traversing the
tree and concatenating evidence statements, possi-
bly using summarization techniques to make the ex-
planation more concise.

We have so far glossed over how English sen-
tences, especially those with quantification and
negation such as (14) and (16), are parsed into and
generated from logical representations. The rest of
this paper describes our principled approach to this
problem, based on a consistent mapping between
syntactic categories and semantic types.

4 Using the Grammatical Framework

We relate natural language (English) to logical se-
mantics (Python) using the Grammatical Framework
(GF) of Ranta (2004). GF is a mature system that al-
lows linguists and logicians to define grammars for
both natural and formal languages using a Haskell-
like syntax. Once defined, the grammars can be used
for parsing as well as generation (linearization) with
no further programming.

In GF, grammars are specified in two parts: an ab-
stract grammar and a concrete grammar. An abstract
grammar specifies the set of well-formed abstract
syntax trees, whereas a concrete grammar specifies
how to spell out abstract syntax as strings. For exam-
ple, an abstract grammar can admit the abstract syn-
tax tree in (4) by specifying that EverySourceFile
is an NP, Compiles is a VP, and ApplyS combines
an NP and a VP into an S:
fun EverySourceFile: NP;

fun Compiles: VP;

fun ApplyS: NP -> VP -> S;

A concrete grammar for English can then specify
that the linearization of EverySourceFile is a sin-
gular (Sg) string,
lin EverySourceFile = {

s = "every source file"; n = Sg };

the linearization of Compiles is a pair of strings,
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lin Compiles = {

s = { Sg => "compiles";

Pl => "compile" } };

and the linearization of ApplyS is a function that
combines these two linearizations into the string (3).

lin ApplyS NP VP = {

s = NP.s ++ (VP.s ! NP.n) };

Here ++ denotes string concatenation and ! denotes
table lookup.

Multiple concrete grammars can share the same
abstract grammar in GF, as in synchronous gram-
mars (Aho and Ullman, 1969) and abstract catego-
rial grammars (de Groote, 2002). This sharing is
meant to enable multilingual applications, in which
the same meaning representation defined by a sin-
gle abstract grammar can be rendered into various
natural languages by different concrete grammars.

This separation into abstract and concrete gram-
mars lets us use one concrete grammar to model En-
glish and another to model the Python syntax of Pro-
grader’s logical forms. For example, the lineariza-
tion of Compiles into Python is simply compiles,
which can be combined with "foo.c" by the lin-
earization of ApplyS to form compiles("foo.c").
The system can thus parse a natural-language spec-
ification into an abstract syntax tree using the first
concrete grammar, then produce the corresponding
semantic representation using the second concrete
grammar. Since each concrete grammar can be used
for both parsing and generation, the system can also
be run in the other direction, to parse the semantic
representations of an explanation, then generate that
explanation in natural language.

Since the linearization compiles("foo.c") in
Python is virtually isomorphic to its abstract syn-
tax tree, one may wonder why we bother with the
second concrete grammar at all. Why not just ex-
press the type-theoretical semantic structure in the
abstract syntax and relate it to English in a sin-
gle concrete grammar? The answer is that using
two concrete grammars lets us represent quantifier
meanings and scope preferences. Without the dis-
tinction between abstract syntax and logical seman-
tics, we would have to specify how to linearize
everysourcefile and asourcefile so that the
Python in (15) linearizes to the English. Moreover,

Prograder should disprefer the inverse-scope reading

(17) asourcefile(lambda y:

everytextfile(lambda x:

mentions(y)(x)))

for the same English sentence. We do not see a way
to achieve these goals given GF’s limited support for
higher-order abstract syntax. Instead, we keep our
grammars first-order and let our abstract grammar
express only the surface structure of English, where
quantifiers stay “in situ” just like proper names.

Below we describe how even a first-order concrete
grammar for semantic representations can represent
quantifier meanings and scope preferences.

5 Quantifier Scope, Negation and
Continuation Grammars

Quantifier scoping has long been a key source of
difficulty in mapping natural language sentences to
logical forms. Scope ambiguities arise even in rela-
tively simple sentences such as (15), which any in-
structor might be expected to generate in specifying
programming assignment requirements. The scope
of negation is also problematic. An algorithm for
generating all possible quantifier scopings was de-
tailed by Hobbs and Shieber (1987). However, we
need a solution that prefers one highly likely default
scoping, that supports both interpretation and gener-
ation, and that is integrated with the type structure
of our semantic representation.

Compositional semantics based on continuations
(Barker, 2002) can represent preferred scoping of
quantifiers and negation without the semantic type-
shifting or syntactic underspecification (Hendriks,
1993; Steedman, 1996; Bos, 1995; Koller et al.,
2003) that typically complicates interpreting and
generating quantification. The rough idea is to gen-
eralize Montague’s PTQ (1974), so that every con-
stituent’s semantic type has the form (� � � ! t)! t:
not only does every NP denote the type (e! t)! t
instead of e, but every VP also denotes the type
((e ! t) ! t) ! t instead of e ! t. For example
(as in PTQ),

(18) “foo.c” denotes lambda c: c("foo.c")

(19) “every text file” denotes
lambda c:

everytextfile(lambda x: c(x))
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Analogously (but unlike in PTQ),

(20) “compiles” denotes lambda c: c(compiles)

(21) “mentions a source file” denotes
lambda c:

asourcefile(lambda x:

c(mentions(x)))

Recall from Section 4 that we model denotations as
the linearizations of abstract syntax trees. Therefore,
in GF, we want to specify linearizations like

lin EverySourceFile =

lambda c:

everysourcefile(lambda x: c(x));

lin Compiles = lambda c: c(compiles);

to be combined by the linearization of ApplyS

lin ApplyS NP VP =

NP(lambda n: VP(lambda v: v(n)));

into the expression (5).
In this last linearization, the innermost application

v(n) means to apply the VP’s predicate meaning
to the subject NP’s entity meaning. The surround-
ing NP(lambda n: VP(lambda v: ...)) lets a
quantificational subject take wide scope over the VP.
This general composition rule thus yields surface
scope to the exclusion of inverse scope. In particu-
lar, it equally well combines the denotations in (19)
and (21) into the expression (15), rather than (17).
In the present implementation of Prograder, the rules
all encode surface scope for the quantifiers. A simi-
lar linearization forms the VP denotation in (21) by
composing a transitive verb and its object NP:

lin ApplyVP VT NP =

lambda c: NP(lambda n: c(VT(n)))

The same machinery generalizes to handle posses-
sives, ditransitive verbs, relative clauses, and so on.

5.1 Simulating higher-order functions

As shown above, denotations using continuations
are higher-order functions. However, linearization
in GF does not allow higher-order functions—in
fact, the only “functions” allowed in GF are record
or table structures indexed by a finite set of parame-
ters. To keep parsing tractable, GF only lets strings
be concatenated, not beta-reduced as lambda-terms;
the one extension that GF makes to the context-free

model is allowing argument suppression and repeti-
tion. In other words, GF cannot equate logical forms
by beta-equivalence. Therefore, we cannot just feed
the pseudocode above into GF to generate explana-
tions. This is an instance of the problem of logical-
form equivalence (Shieber, 1993).

Fortunately, because denotations using continua-
tions are always of a certain form (Danvy and Filin-
ski, 1992), we can simulate these higher-order func-
tions using first-order records. Specifically, we sim-
ulate a higher-order function of the form

(22) lambda c: sl c(sm) sr

by the triple of strings

(23) { s_l = sl; s_m = sm; s_r = sr }

in GF. The middle string sm corresponds to the
“core” of the phrase, and the left and right strings
sl;sr are those parts which may take scope over other
phrases. For example, following the pseudocode
above, we write

lin EverySourceFile = {

s_l = "everysourcefile ( lambda x :";

s_m = "x";

s_r = ")" };

lin Compiles = {

s_l = "";

s_m = "compiles";

s_r = "" };

in our GF concrete grammar. Continuing to follow
the pseudocode above, we can also implement the
linearizations of ApplyS and ApplyVP to operate on
triples rather than the functions they simulate:

lin ApplyS NP VP = {

s = NP.s_l ++ VP.s_l ++

VP.s_m ++ "(" ++ NP.s_m ++ ")" ++

VP.s_r ++ NP.s_r };

lin ApplyVP VT NP = {

s_l = NP.s_l;

s_m = VT.s ++ NP.s_m;

s_r = NP.s_r };

Here the linearization of the transitive verb VT con-
sists of a single string s.

This simulation is reminiscent of Barker and
Shan’s “tower notation” (2008). In general, we
can simulate a n-level semantic tower by a tuple of
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2n� 1 strings. Overall, this simulation makes us
hopeful that linearization in GF can be extended to a
broad, useful class of higher-order expressions while
keeping parsing tractable.

5.2 Maintaining De Morgan duals
Both to interpret requirements and to generate ex-
planations, our system needs to deal with negation
correctly. Whether in the form of a negative quanti-
fier such as “no source file” or a VP modifier such as
“don’t”, negation takes scope. (In the case of the de-
terminer “no”, the scope of negation is linked to the
containing NP.) We use continuations to account for
the scope of negation, as for all scope-taking.

When scope ambiguities arise, negation exhibits
the same preference for surface scope as other quan-
tifiers. For example, all of the sentences below pre-
fer the reading where the subject takes wide scope.

(24) A source file doesn’t compile.

(25) A text file mentions no source file.

(26) No text file mentions a source file.

The linearization of ApplyS shown above already
captures this preference; we just need to specify new
linearizations with not_b in them. The pseudocode

lin NoSourceFile =

lambda c:

not_b(asourcefile(lambda x: c(x)));

lin Not_VP VP =

lambda c:

not_b(VP(lambda v: c(v)));

captures the fact that the negation of “A source file
compiles” is not (24) but “No source file compiles”.

To generate natural-sounding negations of sen-
tences containing quantification, some simple logi-
cal equivalences are necessary. To take an extreme
example, suppose that Prograder needs to negate the
requirement specification

(27) Every text file mentions no source file.

Strictly speaking, it would be correct to generate

(28) Not every text file mentions no source file.

However, it would be much more comprehensible
for Prograder to report instead

(29) A text file mentions a source file.

One heuristic for preferring (29) over (28) is to use
as few negations as possible. But to apply this
heuristic, Prograder must first realize that (29) is a
correct negation of (27). In general, our concrete
grammar ought to equate formulas that are equiv-
alent by De Morgan’s laws. Unfortunately, GF can
no more equate formulas by De Morgan equivalence
than by beta-equivalence.

In lieu of equating formulas, we normalize them:
we use De Morgan’s laws to move negations log-
ically as far “inside” as possible. In other words,
we impose an invariant on our semantic represen-
tation, that not_b applies only to atomic formulas
(as in (8–9)). This invariant is easy to enforce in
our Python code for gathering evidence, because we
can rewrite each evidence statement after generating
it. It is trickier to enforce the invariant in our GF
concrete grammar for semantic representations, be-
cause (to keep parsing tractable) linearizations can
only be concatenated, never inspected and rewritten.
Therefore, our linearizations must maintain formu-
las alongside their De Morgan duals.

Specifically, we revise the simulation described in
the previous section as follows. The record

(30) { spl = s+l ; spm = s+m; spr = s+r ;
snl = s�l ; snm = s�m; snr = s�r ;
switched = False }

represents a higher-order function of the form

(31) lambda c: s+l c(s+m) s+r

assuming that it is equivalent to

(32) lambda c: not_b(s�l not_b(c(s�m)) s�r )

Dually, the record

(33) { spl = s+l ; spm = s+m; spr = s+r ;
snl = s�l ; snm = s�m; snr = s�r ;
switched = True }

represents a higher-order function of the form

(34) lambda c: s+l not_b(c(s+m)) s+r

assuming that it is equivalent to

(35) lambda c: not_b(s�l c(s�m) s�r )

For example, given the linearizations
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lin NoSourceFile = {

spl = "everysourcefile ( lambda x :";

spm = "x"; spr = ")";

snl = "asourcefile ( lambda x :";

snm = "x"; snr = ")";

switched = True };

lin EverySourceFile = {

spl = "everysourcefile ( lambda y :";

spm = "y"; spr = ")";

snl = "asourcefile ( lambda y :";

snm = "y"; snr = ")";

switched = False };

lin ASourceFile = {

spl = "asourcefile ( lambda x :";

spm = "x"; spr = ")";

snl = "everysourcefile ( lambda x :";

snm = "x"; snr = ")";

switched = False };

(and an alphabetic variant of ASourcefile), Pro-
grader uses the switched flags to deduce that one
way to negate “Every source file mentions no source
file” is “A source file mentions a source file”.

Our solution demonstrates that an existing gram-
matical software package can express continuation
grammars. While the record-based implementation
is somewhat unwieldy when encoded in the gram-
mar by hand, restricting ourselves to GF’s context-
free rewrite grammars also ensures efficient parsing.

6 Putting It All Together

Currently, our English grammar supports declarative
sentences with a small vocabulary of transitive and
intransitive verbs (“exists”, “compiles”, “has com-
ments”, “mentions”), proper noun phrases referring
to specific source files, noun phrases representing
quantified nouns, and negations.

Given that the grammars correctly specify logi-
cal scoping and natural language syntax for parsing
and generation, the Python code that implements re-
quirement checking and evidence gathering is rela-
tively straightforward. As described above, the log-
ical form of the requirements specification is exe-
cutable Python, and their execution emits an evi-
dence statement in the same logical language for
each check performed, in a tree structure. Thus
the execution of the checking code is an evidence-
gathering or proof-search process. The evidence

statements are then translated to natural language by
means of the two GF grammars.

A Python “glue script” ties the Python and GF
components together and manages the dataflow of
the end-to-end system. This script provides a simple
scanner and symbol table to replace file names with
standardized placeholders from the grammar. The
variables used in lambda expressions also need to be
renamed in order to prevent conflicts.

Here is a sample output of the system as it cur-
rently runs:

./runPrograder.py 'every source file

compiles and every source file has

comments'

******************************

RESULT: False, because:

some source files don't compile and

some source files don't have

comments:

"nowork2.c" doesn't compile

"nowork.c" doesn't compile

"nowork2.c" doesn't have comments

"nowork.c" doesn't have comments

7 Conclusions and Future Work

To our knowledge, Prograder incorporates the first
implementation of continuation-based semantics
within a grammatical framework that supports ef-
ficient parsing and generation. Consequently, our
declarative grammar uniformly expresses quantifier
meanings and scope preferences.

We want to see how far we can stretch a record-
based grammar system such as GF to handle quan-
tifiers and negation using continuations. In the end,
the boilerplate ingredients of our solution ought to
be automated, so as to combine the expressivity of
continuation-based semantics with the usability and
efficiency of GF. This will also make it easier to ex-
pand the range of natural-language constructs that
the system handles. Of course, this development
should be driven by feedback from actual instructors
using the system, which we also intend to obtain.

Our second area of future work is the summa-
rization of explanations. We plan to use Prograder
to investigate the semantics and pragmatics of sum-
marization, and to search for underlying principles
based on proofs and types.
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Abstract 

A central challenge for tutorial dialogue 
systems is selecting an appropriate move 
given the dialogue context. Corpus-based 
approaches to creating tutorial dialogue 
management models may facilitate more 
flexible and rapid development of tutorial 
dialogue systems and may increase the 
effectiveness of these systems by allowing 
data-driven adaptation to learning contexts 
and to individual learners. This paper presents 
a family of models, including first-order 
Markov, hidden Markov, and hierarchical 
hidden Markov models, for predicting tutor 
dialogue acts within a corpus. This work takes 
a step toward fully data-driven tutorial 
dialogue management models, and the results 
highlight important directions for future work 
in unsupervised dialogue modeling. 

1 Introduction 

A central challenge for dialogue systems is 
selecting appropriate system dialogue moves 
(Bangalore, Di Fabbrizio, & Stent, 2008; Frampton 
& Lemon, 2009; Young et al., 2009). For tutorial 
dialogue systems, which aim to support learners 
during conceptual or applied learning tasks, 
selecting an appropriate dialogue move is 
particularly important because the tutorial 
approach could significantly influence cognitive 
and affective outcomes for the learner (Chi, 
Jordan, VanLehn, & Litman, 2009). The strategies 
implemented in tutorial dialogue systems have 
historically been based on handcrafted rules 

derived from observing human tutors (e.g., Aleven, 
McLaren, Roll, & Koedinger, 2004; Evens & 
Michael, 2006; Graesser, Chipman, Haynes, & 
Olney, 2005; Jordan, Makatchev, Pappuswamy, 
VanLehn, & Albacete, 2006). While these systems 
can achieve results on par with unskilled human 
tutors, tutorial dialogue systems have not yet 
matched the effectiveness of expert human tutors 
(VanLehn et al., 2007). 

A more flexible model of strategy selection may 
enable tutorial dialogue systems to increase their 
effectiveness by responding adaptively to a broader 
range of contexts. A promising method for 
deriving such a model is to learn it directly from 
corpora of effective human tutoring. Data-driven 
approaches have shown promise in task-oriented 
domains outside of tutoring (Bangalore et al., 
2008; Hardy et al., 2006; Young et al., 2009), and 
automatic dialogue policy creation for tutoring has 
been explored recently (Chi, Jordan, VanLehn, & 
Hall, 2008; Tetreault & Litman, 2008). Ultimately, 
devising data-driven approaches for developing 
tutorial dialogue systems may constitute a key step 
towards achieving the high learning gains that have 
been observed with expert human tutors.  

The work presented in this paper focuses on 
learning a model of tutorial moves within a corpus 
of human-human dialogue in the task-oriented 
domain of introductory computer science. Unlike 
the majority of task-oriented domains that have 
been studied to date, our domain involves the 
separate creation of a persistent artifact by the user 
(the student). The modification of this artifact, in 
our case a computer program, is the focus of the 
dialogues. Our corpus consists of textual dialogue 
utterances and a separate synchronous stream of 
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task actions. Our goal is to extract a data-driven 
dialogue management model from the corpus, as 
evidenced by predicting system (tutor) dialogue 
acts.  

In this paper, we present an annotation approach 
that addresses dialogue utterances and task actions, 
and we propose a unified sequential representation 
for these separate synchronous streams of events. 
We explore the predictive power of three 
stochastic models — first-order Markov models, 
hidden Markov models, and hierarchical hidden 
Markov models — for predicting tutor dialogue 
acts in the unified sequences. By leveraging these 
models to capture effective tutorial dialogue 
strategies, this work takes a step toward creating 
data-driven tutorial dialogue management models. 

2 Related Work 

Much of the research on selecting system dialogue 
acts relies on a Markov assumption (Levin, 
Pieraccini, & Eckert, 2000). This formulation is 
often used in conjunction with reinforcement 
learning (RL) to derive optimal dialogue policies 
(Frampton & Lemon, 2009). Sparse data and large 
state spaces can pose serious obstacles to RL, and 
recent work aims to address these issues (Ai, 
Tetreault, & Litman, 2007; Henderson, Lemon, & 
Georgila, 2008; Heeman, 2007; Young et al., 
2009). For tutorial dialogue, RL has been applied 
to selecting a state space representation that best 
facilitates learning an optimal dialogue policy 
(Tetreault & Litman, 2008). RL has also been used 
to compare specific tutorial dialogue tactic choices 
(Chi et al., 2008).  

While RL learns a dialogue policy through 
exploration, our work assumes that a flexible, good 
(though possibly not optimal) dialogue policy is 
realized in successful human-human dialogues. We 
extract this dialogue policy by predicting tutor 
(system) actions within a corpus. Using human 
dialogues directly in this way has been the focus of 
work in other task-oriented domains such as 
finance (Hardy et al., 2006) and catalogue ordering 
(Bangalore et al., 2008). Like the parse-based 
models of Bangalore et al., our hierarchical hidden 
Markov models (HHMM) explicitly capture the 
hierarchical nesting of tasks and subtasks in our 
domain. In other work, this level of structure has 
been studied from a slightly different perspective 
as conversational game (Poesio & Mikheev, 1998).  

For tutorial dialogue, there is compelling 
evidence that human tutoring is a valuable model 
for extracting dialogue system behaviors. The 
CIRCSIM-TUTOR (Evens & Michael, 2006), 
ITSPOKE (Forbes-Riley, Rotaru, Litman, & 
Tetreault, 2007; Forbes-Riley & Litman, 2009), 
and KSC-PAL (Kersey, Di Eugenio, Jordan, & 
Katz, 2009) projects have made extensive use of 
data-driven techniques based on human corpora. 
Perhaps most directly comparable to the current 
work are the bigram models of Forbes-Riley et al.; 
we explore first-order Markov models, which are 
equivalent to bigram models, for predicting tutor 
dialogue acts.  In addition, we present HMMs and 
HHMMs trained on our corpus. We found that 
both of these models outperformed the bigram 
model for predicting tutor moves. 

3 Corpus and Annotation 

The corpus was collected during a human-human 
tutoring study in which tutors and students worked 
to solve an introductory computer programming 
problem (Boyer et al., in press). The dialogues 
were effective: on average, students exhibited a 7% 
absolute gain from pretest to posttest (N=48, paired 
t-test p<0.0001).  

The corpus contains 48 textual dialogues with a 
separate, synchronous task event stream. Tutors 
and students collaborated to solve an introductory 
computer programming problem using an online 
tutorial environment with shared workspace 
viewing and textual dialogue. Each student 
participated in exactly one tutoring session. The 
corpus contains 1,468 student utterances, 3,338 
tutor utterances, and 3,793 student task actions. In 
order to build the dialogue model, we annotated 
the corpus with dialogue act tags and task 
annotation labels. 

3.1 Dialogue Act Annotation  

We have developed a dialogue act tagset inspired 
by schemes for conversational speech (Stolcke et 
al., 2000), task-oriented dialogue (Core & Allen, 
1997), and tutoring (Litman & Forbes-Riley, 
2006). The dialogue act tags are displayed in Table 
1. Overall reliability on 10% of the corpus for two 
annotators was ĸ=0.80. 
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Table 1. Dialogue act tags 

DA  Description 

Stu. 
Rel. 
Freq. 

Tut. 
Rel. 
Freq.  κ 

ASSESSING 
QUESTION (AQ) 

Request for feedback on 
task or conceptual 

utterance. 

.20  .11  .91 

EXTRA‐DOMAIN 

(EX) 
Asides not relevant to the 

tutoring task. 
.08  .04  .79 

GROUNDING (G)  Acknowledgement/thanks  .26  .06  .92 

LUKEWARM 
CONTENT 

FEEDBACK (LCF) 

Negative assessment with 
explanation. 

.01  .03  .53 

LUKEWARM 

FEEDBACK (LF) 

Lukewarm assessment of 
task action or conceptual 

utterance. 

.02  .03  .49 

NEGATIVE 
CONTENT 
FEEDBACK 
(NCF) 

Negative assessment with 
explanation. 

.01  .10  .61 

NEGATIVE 
FEEDBACK (NF) 

Negative assessment of 
task action or conceptual 

utterance. 

.05  .02  .76 

POSITIVE 
CONTENT 

FEEDBACK (PCF) 

Positive assessment with 
explanation. 

.02  .03  .43 

POSITIVE 
FEEDBACK (PF) 

Positive assessment of 
task action or conceptual 

utterance. 

.09  .16  .81 

QUESTION (Q) 
Task or conceptual 

question. 
.09  .03  .85 

STATEMENT (S) 
Task or conceptual 

assertion. 
.16  .41  .82 

3.2 Task Annotation 
The dialogues focused on the task of solving an 
introductory computer programming problem. The 
task actions were recorded as a separate but 
synchronous event stream. This stream included 
97,509 keystroke-level user task events. These 
events were manually aggregated and annotated for 
subtask structure and then for correctness. The task 
annotation scheme was hierarchical, reflecting the 
nested nature of the subtasks. An excerpt from the 
task annotation scheme is depicted in Figure 1; the 
full scheme contains 66 leaves. The task annotation 
scheme was designed to reflect the different depth 
of possible subtasks nested within the overall task. 
Each labeled task action was also judged for 
correctness according to the requirements of the 
task, with categories CORRECT, BUGGY, 
INCOMPLETE, and DISPREFERRED (technically 

correct but not accomplishing the pedagogical 
goals of the task). 

Each group of task keystrokes that occurred 
between dialogue utterances was tagged, possibly 
with many subtask labels, by a human judge. A 
second judge tagged 20% of the corpus in a 
reliability study for which one-to-one subtask 
identification was not enforced (giving judges 
maximum flexibility to apply the tags). To ensure a 
conservative reliability statistic, all unmatched 
subtask tags were treated as disagreements. The 
resulting unweighted kappa statistic was ĸsimple= 
0.58, but the weighted Kappa ĸweighted=0.86 is more 
meaningful because it takes into account the 
ordinal nature of the labels that result from 
sequential subtasks. On task actions for which the 
two judges agreed on subtask tag, the agreement 
statistic for correctness was ĸsimple=0.80. 

 
Figure 1. Portion of task annotation scheme 

3.3 Adjacency Pair Joining 

Some dialogue acts establish an expectation for 
another dialogue act to occur next (Schegloff & 
Sacks, 1973). Our previous work has found that 
identifying the statistically significant adjacency 
pairs in a corpus and joining them as atomic 
observations prior to model building produces 
more interpretable descriptive models. The models 
reported here were trained on hybrid sequences of 
dialogue acts and adjacency pairs. A full 
description of the adjacency pair identification 
methodology and joining algorithm is reported in 
(Boyer et al., 2009). A partial list of the most 
highly statistically significant adjacency pairs, 
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which for this work include task actions, is 
displayed in Table 2.  
 

Table 2. Subset of significant adjacency pairs 
CORRECTTASKACTION‐CORRECTTASKACTION;  
EXTRADOMAINS‐EXTRADOMAINT; GROUNDINGS‐GROUNDINGT; 
ASSESSINGQUESTIONT‐POSITIVEFEEDBACKS;  
ASSESSINGQUESTIONS‐POSITIVEFEEDBACKT; QUESTIONT‐STATEMENTS; 
ASSESSINGQUESTIONT‐STATEMENTS; EXTRADOMAINT‐EXTRADOMAINS; 
QUESTIONS‐STATEMENTT; NEGATIVEFEEDBACKS‐GROUNDINGT; 
INCOMPLETETASKACTION‐INCOMPLETETASKACTION; 
POSITIVEFEEDBACKS‐GROUNDINGT;  
BUGGYTASKACTION‐BUGGYTASKACTION 

4 Models 

We learned three types of models using cross-
validation with systematic sampling of training and 
testing sets. 

4.1 First-Order Markov Model 
The simplest model we discuss is the first-order 
Markov model (MM), or bigram model (Figure 2). 
A MM that generates observation (state) sequence 
o1o2…ot is defined in the following way. The 
observation symbols are drawn from the alphabet 
∑={σ1, σ2, …, σM}, and the initial probability 
distribution is Π=[πi] where πi is the probability of 
a sequence beginning with observation symbol σi. 
The transition probability distribution is A=[aij], 
where aij is the probability of observation j 
occurring immediately after observation i. 

 
Figure 2. Time-slice topology of MM 

 

We trained MMs on our corpus of dialogue acts 
and task events using ten-fold cross-validation to 
produce a model that could be queried for the next 
predicted tutorial dialogue act given the history.  

4.2 Hidden Markov Model 
A hidden Markov model (HMM) augments the 
MM framework, resulting in a doubly stochastic 
structure (Rabiner, 1989). For a first-order HMM, 
the observation symbol alphabet is defined as 
above, along with a set of hidden states 
S={s1,s2,…,sN}. The transition and initial 
probability distributions are defined analogously to 
MMs, except that they operate on hidden states 

rather than on observation symbols (Figure 3). 
That is, Π=[πi] where πi is the probability of a 
sequence beginning in hidden state si. The 
transition matrix is A=[aij], where aij is the 
probability of the model transitioning from hidden 
state i to hidden state j. This framework constitutes 
the first stochastic layer of the model, which can be 
thought of as modeling hidden, or unobservable, 
structure. The second stochastic layer of the model 
governs the production of observation symbols: the 
emission probability distribution is B=[bik] where 
bik is the probability of state i emitting observation 
symbol k. 

 
Figure 3. Time-slice topology of HMM 

 

The notion that dialogue has an overarching 
unobservable structure that influences the 
observations is widely accepted. In tutoring, this 
overarching structure may correspond to tutorial 
strategies. We have explored HMMs’ descriptive 
power for extracting these strategies (Boyer et al., 
2009), and this paper explores the hypothesis that 
HMMs provide better predictive power than MMs 
on our dialogue sequences. We trained HMMs on 
the corpus using the standard Baum-Welch 
expectation maximization algorithm and applied 
state labels that reflect post-hoc interpretation 
(Figure 4). 
 

 
Figure 4. Portion of learned HMM 

69



4.3 Hierarchical Hidden Markov Model 
Hierarchical hidden Markov models (HHMMs) 
allow for explicit representation of multilevel 
stochastic structure. A complete formal definition 
of HHMMs can be found in (Fine, Singer, & 
Tishby, 1998), but here we present an informal 
description.  HHMMs include two types of hidden 
states: internal nodes, which do not produce 
observation symbols, and production nodes, which 
do produce observations. An internal node includes 
a set of substates that correspond to its potential 
children, S={s1, s2, …, sN}, each of which is itself 
the root of an HHMM. The initial probability 
distribution Π=[πi] for each internal node governs 
the probability that the model will make a vertical 
transition to substate si from this internal node; that 
is, that this internal node will produce substate si as 
its leftmost child. Horizontal transitions are 
governed by a transition probability distribution 
similar to that described above for flat HMMs. 
Production nodes are defined by their observation 
symbol alphabet and an emission probability 
distribution over the symbols; HHMMs do not 
require a global observation symbol alphabet. The 
generative topology of our HHMMs is illustrated 
in Figure 5. 

 
Figure 5. Generative topology of HHMM 

 
HHMMs of arbitrary topology can be trained using 
a generalized version of the Baum-Welch 
algorithm (Fine et al., 1998). Our HHMMs 
featured a pre-specified model topology based on 
known task/subtask structure. A Bayesian view of 
a portion of the best-fit HHMM is depicted in 
Figure 6.  This model was trained using five-fold 
cross-validation to address the absence of symbols 
from the training set that were present in the 
testing set, a sparsity problem that arose from 
splitting the data hierarchically. 

Figure 6. Portion of learned HHMM 
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5 Results 

We trained and tested MMs, HMMs, and HHMMs 
on the corpus and compared prediction accuracy 
for tutorial dialogue acts by providing the model 
with partial sequences from the test set and 
querying for the next tutorial move. The baseline 
prediction accuracy for this task is 41.1%, 
corresponding to the most frequent tutorial 
dialogue act (STATEMENT). As depicted in 
Figure 7, a first-order MM performed worse than 
baseline (p<0.001)1 at 27% average prediction 
accuracy (

€ 

ˆ σ MM=6%). HMMs performed better 
than baseline (p<0.0001), with an average accuracy 
of 48% (

€ 

ˆ σ HMM=3%). HHMMs averaged 57% 
accuracy, significantly higher than baseline 
(p=0.002) but weakly significantly higher than 
HMMs (p=0.04), and with high variation 
(

€ 

ˆ σ HHMM=23%). 

 
Figure 7. Average prediction accuracies of three 

model types on tutor dialogue acts 
 

To further explore the performance of the 
HHMMs, Figure 8 displays their prediction 
accuracy on each of six labeled subtasks. These 
subtasks correspond to the top level of the 
hierarchical task/subtask annotation scheme. The 
UNDERSTAND THE PROBLEM subtask corresponds 
to the initial phase of most tutoring sessions, in 
which the student and tutor agree to some extent 
on a problem-solving plan. Subtasks 1, 2, and 3 
account for the implementation and debugging of 
three distinct modules within the learning task, and 
Subtask 4 involves testing and assessing the 
student’s finalized program. The EXTRA-DOMAIN 
subtask involves side conversations whose topics 
are outside of the domain.  

The HHMM performed as well as or better 
(p<0.01) than baseline on the first three in-domain 
subtasks. The performance on SUBTASK 4 was not 
distinguishable from baseline (p=0.06); relatively 
few students reached this subtask. The model did 

                                                
1 All p-values in this section were produced by two-sample 
one-tailed t-tests with unequal sample variances. 

not outperform baseline (p=0.40) for the 
UNDERSTAND THE PROBLEM subtask, and 
qualitative inspection of the corpus reveals that the 
dialogue during this phase of tutoring exhibits 
limited regularities between students.  

 
Figure 8. Average prediction accuracies of 

HHMMs by subtask 

6 Discussion 

The results support our hypothesis that HMMs, 
because of their capacity for explicitly representing 
dialogue structure at an abstract level, perform 
better than MMs for predicting tutor moves. The 
results also suggest that explicitly modeling 
hierarchical task structure can further improve 
prediction accuracy of the model. The below-
baseline performance of the bigram model 
illustrates that in our complex task-oriented 
domain, an immediately preceding event is not 
highly predictive of the next move. While this 
finding may not hold for conversational dialogue 
or some task-oriented dialogue with a more 
balanced distribution of utterances between 
speakers, the unbalanced nature of our tutoring 
sessions may not be as easily captured.  

In our corpus, tutor utterances outnumber 
student utterances by more than two to one. This 
large difference is due to the fact that tutors 
frequently guided students and provided multi-turn 
explanations, the impetus for which are not 
captured in the corpus, but rather, involve external 
pedagogical goals. The MM, or bigram model, has 
no mechanism for capturing this layer of stochastic 
behavior. On the other hand, the HMM can 
account for unobserved influential variables, and 
the HHMM can do so to an even greater extent by 
explicitly modeling task/subtask structure. 

Considering the performance of the HHMM on 
individual subtasks reveals interesting properties of 
our dialogues. First, the HHMM is unable to 
outperform baseline on the UNDERSTAND THE 
PROBLEM subtask. To address this issue, our 
ongoing work investigates taking into account 
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student characteristics such as incoming 
knowledge level and self-confidence. On all four 
in-domain subtasks, the HHMM achieved a 30% to 
50% increase over baseline. For extra-domain 
dialogues, which involve side conversations that 
are not task-related, the HHMM achieved 86% 
prediction accuracy on tutor moves, which 
constitutes a 115% improvement over baseline. 
This high accuracy may be due in part to the fact 
that out-of-domain asides were almost exclusively 
initiated by the student, and tutors rarely engaged 
in such exchanges beyond providing a single 
response. This regularity likely facilitated 
prediction of the tutor’s dialogue moves during 
out-of-domain talk. 

We are aware of only one recent project that 
reports extensively on predicting system actions 
from a corpus of human-human dialogue. 
Bangalore et al.’s (2008) flat task/dialogue model 
in a catalogue-ordering domain achieved a 
prediction accuracy of 55% for system dialogue 
acts, a 175% improvement over baseline. When 
explicitly modeling the hierarchical task/subtask 
dialogue structure, they report a prediction 
accuracy of 35.6% for system moves, 
approximately 75% above baseline (Bangalore & 
Stent, 2009). These findings were obtained by 
utilizing a variety of lexical and syntactic features 
along with manually annotated dialogue acts and 
task/subtask labels. In comparison, our HHMM 
achieved an average 42% improvement over 
baseline using only annotated dialogue acts and 
task/subtask labels. In ongoing work we are 
exploring the utility of additional features for this 
prediction task. 

Our best model performed better than baseline 
by a significant margin. The absolute prediction 
accuracy achieved by the HHMM was 57% across 
the corpus, which at first blush may appear too low 
to be of practical use. However, the choice of 
tutorial move involves some measure of 
subjectivity, and in many contexts there may be no 
uniquely appropriate dialogue act. Work in other 
domains has dealt with this uncertainty by 
maintaining multiple hypotheses (Wright Hastie, 
Poesio, & Isard, 2002) and by mapping to clustered 
sets of moves rather than maintaining policies for 
each possible system selection (Young et al., 
2009). Such approaches may prove useful in our 
domain as well, and may help to more fully realize 

the potential of a learned dialogue management 
model.  

7 Conclusion and Future Work 

Learning models that predict system moves within 
a corpus is a first step toward building fully data-
driven dialogue management models. We have 
presented Markov models, hidden Markov models, 
and hierarchical hidden Markov models trained on 
sequences of manually annotated dialogue acts and 
task events. Of the three models, the hierarchical 
models appear to perform best in our domain, 
which involves an intrinsically hierarchical 
task/subtask structure.  

The models’ performance points to promising 
future work that includes utilizing additional 
lexical and syntactic features along with fixed user 
(student) characteristics within a hierarchical 
hidden Markov modeling framework. More 
broadly, the results point to the importance of 
considering task structure when modeling a 
complex domain such as those that often 
accompany task-oriented tutoring. Finally, a key 
direction for data-driven dialogue management 
models involves learning unsupervised dialogue 
act and task classification models.  
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Abstract

We investigated using structural events, e.g.,
clause and disfluency structure, from tran-
scriptions of spontaneous non-native speech,
to compute features for measuring speaking
proficiency. Using a set of transcribed au-
dio files collected from the TOEFL Practice
Test Online (TPO), we conducted a sophisti-
cated annotation of structural events, includ-
ing clause boundaries and types, as well as
disfluencies. Based on words and the anno-
tated structural events, we extracted features
related to syntactic complexity, e.g., the mean
length of clause (MLC) and dependent clause
frequency (DEPC), and a feature related to
disfluencies, the interruption point frequency
per clause (IPC). Among these features, the
IPC shows the highest correlation with holis-
tic scores (r = −0.344). Furthermore, we in-
creased the correlation with human scores by
normalizing IPC by (1) MLC (r = −0.386),
(2) DEPC (r = −0.429), and (3) both (r =
−0.462). In this research, the features derived
from structural events of speech transcriptions
are found to predict holistic scores measuring
speaking proficiency. This suggests that struc-
tural events estimated on speech word strings
provide a potential way for assessing non-
native speech.

1 Introduction

In the last decade, a breakthrough in speech pro-
cessing is the emergence of a lot of active research
work on automatic estimation of structural events,
e.g., sentence structure and disfluencies, on sponta-
neous speech (Shriberg et al., 2000; Liu, 2004; Os-

tendorf et al., 2008). The detected structural events
have been successfully used in many natural lan-
guage processing (NLP) applications (Ostendorf et
al., 2008).

However, the structural events in speech data
haven’t been largely utilized by the research on us-
ing automatic speech recognition (ASR) technology
to assess speech proficiency (Neumeyer et al., 2000;
Zechner et al., 2007), which mainly used cues de-
rived at the word level, such as timing information
of spoken words. The information beyond the word
level, e.g., clause/sentence structure of utterances
and disfluency structure, has not been or is poorly
represented. For example, in Zechner et al. (2007),
only special words for filled pauses such as um and
uh were obtained from ASR results to represent dis-
fluencies.

Given the successful usage of structural events
on a wide range of NLP applications and the fact
that the usage of these events is missing in the auto-
matic speech assessment research, a research ques-
tion emerges: Can we use structural events of spon-
taneous speech to assess non-native speech profi-
ciency?

We will address this question in this paper. The
paper is organized as follows: Section 2 reviews
previous research. Section 3 describes our annota-
tion convention. Section 4 reports on the data col-
lection, annotation, and quality control. Section 5
reports on features based on structural event anno-
tations. Section 6 reports on our experiments. Sec-
tion 7 discusses our findings and plans for future re-
search work.
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2 Previous Work

In the last decade, a large amount of research (Os-
tendorf et al., 2008) has been conducted on detection
of structural events, e.g., sentence structure and dis-
fluency structure, in spontaneous speech. In these
research works, the structural events were detected
with a quite high accuracy. Furthermore, the de-
tected sentence and disfluency structures have been
found to help many of the following NLP tasks,
e.g., speech parsing, information retrieval, machine
translation, and extractive speech summary (Osten-
dorf et al., 2008).

In the second language acquisition (SLA) and
child language development research fields, the lan-
guage development is measured according to flu-
ency, accuracy, and complexity (Iwashita, 2006).
The syntactic complexity of learners’ writing data
has been extensively studied in the SLA commu-
nity (Ortega, 2003). Recently, this study has been
extended to the learner’s speaking data (Iwashita,
2006). Typical metrics for examining syntactic com-
plexity include: length of production unit (e.g., T-
unit, which is defined as essentially a main clause
plus any other clauses which are dependent upon
it (Hunt, 1970), clauses, verb phrases, and sen-
tences), amount of embedding, subordination and
coordination, range of structural types, and structure
sophistication.

Iwashita (2006) investigated several measures for
syntactic complexity on the data from learners of
Japanese. The author reported that some measure-
ments, e.g., T-unit length, the number of clauses per
T-unit, and the number of independent clauses per T-
Unit, were good at predicting learners’ proficiency
levels.

In addition, some previous studies used measure-
ments related to disfluencies to assess speaking pro-
ficiency. For example, Lennon (1990) used a dozen
features related to speed, pauses, and several dis-
fluency markers, such as filler pauses per T-unit,
to measure four German-speaking women’s English
improvement during a half year study in England.
He found a significant change in filled pauses per
T-unit during the studying process.

The features related to syntactic complexity and
the features related to ”smoothness” (disfluency) of
speech were jointly used in some previous stud-

ies. For example, Mizera (2006) used fluency fac-
tors related to speed, voiced smoothness (frequen-
cies of repetitions or self-corrections), pauses, syn-
tactic complexity (mean length of T-units), and
accuracy, to measure speaking proficiency on 20
non-native English speakers. In this experiment,
disfluency-related factors, such as total voiced dis-
fluencies, had a high correlation with fluency (r =
−0.45). However, the syntactic complexity factor
only showed a moderate correlation (r = 0.310).
Yoon (2009) implemented an automated disfluency
detection method and found that the disfluency-
related features lead to the moderate improvement
in the automated speech proficiency scoring.

There were limitations on using the features re-
ported in these SLA studies on standard language
tests. For example, only a very limited number of
subjects (from 20 to 30 speakers) were used in these
studies. Second, the speaking content was narra-
tions of picture books or cartoon videos rather than
standard test questions. Therefore, we conducted a
study using a much larger data set obtained from real
speech tests to address these limitations.

3 Structural Event Annotation Convention

To annotate structural events of speech content, we
have developed a convention based on previous stud-
ies and our observations on the TOEFL Practice On-
line (TPO) test data. Defining clauses is a relatively
simple task; however, defining clause boundaries
and specifying which elements fall within a particu-
lar clause is a much more challenging task for spo-
ken discourse, due to the presence of grammatical
errors, fragments, repetitions, self corrections, and
conversation fillers.

Foster et al. (Foster et al., 2000) review various
units for analyzing spoken language, including syn-
tactic, semantic and intonational units, and propose
a new analysis of speech unit (AS-Unit) that they
claim is appropriate for many different purposes. In
this study, we focused on clauses given the charac-
teristics of spontaneous speech. Also, we defined
clause types based on grammar books such as (Azar,
2003). The following clause types were defined:

• Simple sentence (SS) contains a subject and a
verb, and expresses a complete thought.
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• Independent clause (I) is the main clause that
can stand along syntactically as a complete sen-
tence. It consists minimally a subject and a fi-
nite verb (a verb that shows tense, person, or
singular/plural, e.g., he goes, I went, and I was).

• Subordinate clause is a clause in a complex
sentence that cannot stand alone as a complete
sentence and that functions within the sentence
as a noun, a verb complement, an adjective or
an adverb. There are three types of subordi-
nate clauses: noun clause (NC), relative clause
that functions as an adjective (ADJ), adverbial
clause that functions as an adverb (ADV).

• Coordinate clause (CC) is a clause in a com-
pound sentence that is grammatically equiva-
lent to the main clause and that performs the
same grammatical function.

• Adverbial phrase (ADVP) is a separate clause
from the main clause that contains a non-finite
verb (a verb that does not show tense, person,
or singular/plural).

The clause boundaries and clause types were an-
notated on the word transcriptions. Round brack-
ets were used to indicate the beginning and end of a
clause. Then, the abbreviations described above for
clause types were added. Also, if a specific bound-
ary serves as the boundaries for both the local and
global clause, the abbreviation of the local clause
was followed by that of the global. Some examples
of clause boundaries and types are reported in Ta-
ble 1.

In our annotation manual, a speech disfluency
contains three parts:

• Reparandum: the speech portion that will be
repeated, corrected, or even abandoned. The
end of the reparandum is called the interruption
point (IP), which indicates the stop of a normal
fluent speech stream.

• Editing phrase: optional inserted words, e.g.,
um.

• Correction: the speech portion that repeats,
corrects, or even starts new content.

In our annotation manual, the reparandum was en-
closed by “*”, the editing phrase was enclosed by
“%”, and the correction was enclosed by “$”. For
example, in the following utterance, “He is a * very
mad * % er % $ very bad $ cop”, “very mad” was
corrected by “very bad” and an editing phrase, er,
was inserted.

4 Data Collection and Annotation

4.1 Audio data collection and scoring

About 1300 speech responses from the TPO test
were collected and transcribed. Each item was
scored by two experienced human raters indepen-
dently using a 4-point holistic score based on the
scoring rubrics designed for the test.

In the TPO test, some tasks required test-takers to
provide information or opinions on familiar topics
based on their personal experience or background
knowledge. Others required them to summarize and
synthesize information presented in listening and/or
reading materials. Each test-taker was required to
finish six items in one test session. Each item has a
45 or 60 seconds response time.

4.2 Annotation procedure

Two annotators (who were not the human raters
mentioned above) with a linguistics background and
past linguistics annotation experience were first pre-
sented with a draft of the annotation convention.
After reading through it, the annotators, as well as
the second and third author completed four iterative
loops of rating 4 or 5 responses per meeting. All four
discussed differences in annotations and the conven-
tion was refined as needed. After the final iteration
of comparisons, the raters seemed to have very few
disagreement and thus began annotating sets of re-
sponses. Each set consisted of roughly 50-75 re-
sponses and then a kappa set of 30-50 responses
which both annotators completed. Accordingly, be-
tween the two annotators, a set comprised roughly
130 to 200 responses. Each response takes roughly
3-8 minutes to annotate. The annotators were in-
structed to listen to the corresponding audio file if
they needed the prosodic information to annotate a
particular speech disfluency event.

76



Clause type Example
SS (That’s right |SS)
I (He turned away |I) as soon as he saw me |ADV)
NC ((What he did |NC) shocked me |I)
ADJ (She is the woman (I told you about |ADJ)|I)
ADV (As soon as he saw me |ADV) (he turned away |I)
CC (I will go home |I) (and he will go to work |CC)
ADVP (While walking to class |ADVP) (I ran into a friend |I)

Table 1: Examples of clause boundary and type annotation

4.3 Evaluation of annotation
To evaluate the quality of structural event anno-
tation, we measured the inter-rater agreement on
clause boundary (CB) annotation and interruption
point (IP) of disfluencies1.

We used Cohen’s κ to calculate the annotator
agreement on each kappa set. κ is calculated on the
absence or presence of a boundary marker (either a
clause boundary (CB) or an interruption point (IP)
between consecutive words). For each consecutive
pair of words, we check for the existence of one or
more boundaries, and collapse the set into one term
“boundary” and then compute the agreement on this
reduced annotation.

In Table 2, we list the annotator agreement for
both boundary events over 4 kappa sets. The second
column refers to the number of speech responses in
the kappa set, the next two columns refer to the an-
notator agreement using the Cohen’s κ value on CB
and IP annotation results.

Set N κ CB κ IP
Set1 54 0.886 0.626
Set2 71 0.847 0.687
Set3 35 0.855 0.695
Set4 34 0.899 0.833

Table 2: Between-rater agreement of structural event an-
notation

In general, a κ of 0.8-1.0 represents excellent
agreement, 0.6-0.8 represents good agreement, and
so forth. Over each kappa set, κ for CB annota-
tions ranges between 0.8 and 0.9, which is an ex-

1Measurement on CBs and IPs can provide a rough qual-
ity measurement of annotations. In addition, doing so is more
important to us since automatic detection of these two types of
events will be investigated in future.

cellent agreement; κ for IP annotation ranges be-
tween 0.6 and 0.8, which is a good agreement. Com-
pared to annotating clauses, marking disfluencies is
more challenging. As a result, a lower between-rater
agreement is expected.

5 Features Derived On Structural Events

Based on the structural event annotations, including
clause boundaries and their types, as well as disflu-
encies, some features measuring syntactic complex-
ity and disfluency profile were derived.

Since simple sentence (SS), independent clause
(I), and conjunct clause (CC) represent a complete
idea, we treat them as an approximate to a T-unit (T).
The clauses that have no complete idea, are depen-
dent clauses (DEP), including noun clauses (N), rel-
ative clauses that function as adjective (ADJ), adver-
bial clauses (ADV), and adverbial phrases (ADVP).
The total number of clauses is a summation of the
number of T-units (T), dependent clauses (DEP), and
fragments2 (denoted as F). Therefore,

NT = NSS +NI +NCC

NDEP = NNC +NADJ +NADV +NADV P

NC = NT +NDEP +NF

Assuming Nw is the total number of words in
the speech response (without pruning speech re-
pairs), the following features, including mean length
of clause (MLC), dependent clauses per clause
(DEPC), and interruption points per clause (IPC),
are derived:

MLC = Nw/NC

2It is either a subordinate clause that does not have a cor-
responding independent clause or a string of words without a
subject or a verb that does not express a complete thought.
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DEPC = NDEP /NC

IPC = NIP /NC

Furthermore, we elaborated the IPC feature. Dis-
fluency is a complex behavior and is influenced by
a variety of factors, such as proficiency level, speak-
ing rate, and familiarity with speaking content. The
complexity of utterances is also an important fac-
tor on the disfluency pattern. For example, Roll
et al. (Roll et al., 2007) found that complexity of
expression computed based on the language’s pars-
ing tree structure influenced the frequency of disflu-
encies in their experiment on Swedish. Therefore,
since disfluency frequency was not only influenced
by the test-takers’ speaking proficiency but also by
the utterance’s syntactic structure’s difficulty, we re-
duced the impact from the syntactic structure so that
we can focus on speakers’ ability. For this purpose,
we normalized IPC by dividing by some features re-
lated to syntactic-structure’s complexity, including
MLC, DEPC, and both. Therefore, the following
elaborated disfluency-related features were derived:

IPCn1 = IPC/MLC

IPCn2 = IPC/DEPC

IPCn3 = IPC/MLC/DEPC

6 Experiment

For each item, two human raters rated it separately
with a score from 1 to 4. If these two scores are
consistent (the difference between two scores is ei-
ther zero or one), we put this item in an item-pool.
Finally, a total of 1, 257 audio items were included
in the pool. Following the score-handling protocol
used in the TPO test, we used the first human rater’s
score as the item score. From the obtained item-
pool, we selected speakers with more than three
items so that the averaged score per speaker can be
estimated on several items to achieve a robust score
computation3. As a result, 175 speakers4 were se-
lected.

3The mean holistic score of these speakers is 2.786, which
is close to the mean holistic score of the selected item-pool
(2.785), indicating that score distribution was kept after focus-
ing on speakers with more than three items.

4If a speaker was assigned in a Kappa set in the annotation
as described in Section 4, this speaker would have as many as 12
annotated items. Therefore, the minimum number of speakers
from the item-pool was about 105 (1257/12).

For each speaker, his or her annotations of words
and structural events were used to extract the fea-
tures described in Section 5. Then, we computed
the Pearson correlation among the obtained features
with the averaged holistic scores per speaker.

Feature r

MLC 0.211
DEPC 0.284
IPC -0.344
IPCn1 -0.386
IPCn2 -0.429
IPCn3 -0.462

Table 3: Correlation coefficients (rs) between the fea-
tures derived from structural events with human scores
averaged on test takers

Table 3 reports on the correlation coefficient
(r) between the proposed features derived from
structural events with holistic scores. Relying
on three simple structural event annotations, i.e.,
clause boundaries, dependent clauses, and interrup-
tion points in speech disfluencies, some promising
correlations between features with holistic scores
were found. Between the two syntactic complex-
ity features, the DEPC has a higher correlation with
holistic scores than the MLC (0.284 > 0.211). It ap-
pears that a measurement about clauses’ embedding
profile is more informative about a speaker’s profi-
ciency level. Second, compared to features measur-
ing syntactic complexity, the feature measuring the
disfluency profile is better to predict human holis-
tic scores on this non-native data set. For example,
IPC has a r of −0.344, which is better than the fea-
tures about clause lengths or embedding. Finally, by
jointly using the structural events related to clauses
and disfluencies, we can further achieve a further
improved r. Compared to IPC, IPCn3 has a relative
34.30% correlation increase. This is consistent with
our idea of reducing utterance-complexity’s impact
on disfluency-related features.

7 Discussion

In most current automatic speech assessment sys-
tems, features derived from recognized words, such
as delivery features about speaking rate, pause infor-
mation, and accuracy related to word identities, have
been widely used to assess non-native speech from
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fluency and accuracy points of view. However, in-
formation beyond recognized words, e.g., the struc-
ture of clauses and disfluencies, has only received
limited attention. Although several previous SLA
studies used features derived from structural events
to measure speaking proficiency, these studies were
limited and the findings from them were difficult to
directly apply to on large-scale standard tests.

In this paper, using a large-sized data set col-
lected in the TPO speaking test, we conducted an
sophisticated annotation of structural events, includ-
ing boundaries and types of clauses and disfluen-
cies, from transcriptions of spontaneous speech test
responses. A series of features were derived from
these structural event annotations and were eval-
uated according to their correlations with holistic
scores. We found that disfluency-related features
have higher correlations to human holistic scores
than features about syntactic complexity, which con-
firms the result reported in (Mizera, 2006). In spon-
taneous speech utterances, simple syntactic structure
tends to be utilized by speakers. This is in contrast to
sophisticated syntactic structure appearing in writ-
ing. This may cause that complexity-related features
are poor at predicting fluency scores. On the other
hand, disfluencies, a pattern unique to spontaneous
speech, were found to play a more important role in
indicating speaking proficiency levels.

Although syntactic complexity features were not
highly indicative of holistic scores, they were useful
to further improve disfluency-related features’ corre-
lation with holistic scores. By normalizing IPC us-
ing measurements representing syntactic complex-
ity, we can highlight contributions from speakers’
proficiency levels. Therefore, in our experiment,
IPCn3 shows a 34.30% relative improvement in its
correlation coefficient with human holistic scores
over the original IPC.

The study reported in this paper suggests promise
that structural events beyond speech recognition re-
sults can be utilized to measure non-native speaker
proficiency levels. Recently, in the NLP research
field, an increasing amount of effort has been
made on structural event detection in spontaneous
speech (Ostendorf et al., 2008). Therefore, such
progress can benefit the study of automatic estima-
tion of structural events on non-native speech data.

For our future research plan, first, we will inves-

tigate automatically detecting these structural events
from speech transcriptions and recognition hypothe-
ses. Second, the features derived from the obtained
structural events will be used to augment the features
in automatic speech assessment research to provide
a wider construct coverage than fluency and pronun-
ciation features do.
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Abstract 

This paper explores an issue of redundant errors 

reported while automatically scoring English 

learners’ sentences. We use a human-computer 

collaboration approach to eliminate redundant er-

rors. The first step is to automatically select can-

didate redundant errors using PMI and RFC. 

Since those errors are detected with different IDs 

although they represent the same error, the can-

didacy cannot be confirmed automatically. The 

errors are then handed over to human experts to 

determine the candidacy. The final candidates 

are provided to the system and trained with a de-

cision tree. With those redundant errors eliminat-

ed, the system accuracy has been improved. 

1 Introduction 

An automated English scoring system analyzes a 

student sentence and provides a score and feedback 

to students. The performance of a system is eva-

luated based on the accuracy of the score and the 

relevance of the feedback. 

The system described in this paper scores Eng-

lish sentences composed by Korean students learn-

ing English. A detailed explanation of the system 

is given in (Kim et al., 2007). The scores are calcu-

lated from three different phases including word, 

syntax and mapping, each of which is designed to 

assign 0~2 points. Three scores are added up to 

generate the final score. A spelling error, a plural 

form error, and a confusable word error are consi-

dered as typical word errors. A subject verb 

agreement error, a word order error and relative 

clause error are typical examples of syntactic er-

rors. Even when a student sentence is perfectly 

correct in lexical and syntactic level, it may fail to 

convey what is meant by the question. Such sen-

tences are evaluated as grammatical, but cannot be 

a correct answer for the question. In this case, the 

errors can only be recognized by comparing a stu-

dent sentence with its correct answers. The differ-

ences between a student answer and one of the 

answers can be considered as mapping errors. 

These three phases are independent from one 

another since they use different processing method, 

and refer different information. Independency of 

three phases causes some problems. 
 

(Ex1)  Correct answer: The earth is bigger than the moon. 
Student answer: The earth is small than the Moon. 

Err1: MODIFIER_COMP_ERR|4-7| syntactic 

Err2: LEXICAL_ERROR|4| mapping 
 

(Ex1) is an example of error reports provided 

to a student. The following two lines in (Ex1) show 

the error information detected from the student 

answer by the system. Err1 in (Ex1) reports a com-

parative form error of an adjective ‘small’, which 

covers the 4 ~ 7
th
 words of the student sentence. 

Err2 indicates that the 4
th
 word ‘small’ of the stu-

dent sentence is different from that of the answer 

sentence. The difference was identified by compar-

ing the student sentence and the answer sentence. 

Err1 was detected at the syntactic phase whereas 

Err2 was at the mapping phase. These two errors 

points to the same word, but have been reported as 

different errors. 
 

(Ex2)  Correct answer: She is too weak to carry the bag. 
Student answer: She is too weak to carry the her bag. 

Err1: EXTRA_DET_ERR|7-9| syntactic 

Err2: UNNECESSARY_NODE_ERR|8|(her) mapping 
 

Similarly, Err1 in (Ex2) reports an incorrect 

use of an article at the 7~9
th
 words. The syntactic 

analysis recognizes that ‘the’ and ‘her’ cannot oc-

cur consecutively, but it is not capable of deter-

mine which one to eliminate. Err2, on the other 

hand, pinpoints ‘her’ as an incorrectly used word 

by comparing the student sentence and the answer 

sentence.  

(Ex1) and (Ex2) have presented the errors 

which are detected at different processing phases, 
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but represent the same error. Since these redundant 

errors are a hindering factor to calculate accurate 

scores, one of the errors has to be removed. The 

proposed system deals with 70 error types; 16 for 

word, 46 for syntax, and 14 for mapping. In this 

paper, we have adopted a human-computer colla-

boration approach by which linguistic experts as-

sist the system to decide which one of the 

redundant errors should be removed.  

2 Redundant Errors  

The system-detected errors are reported in the fol-

lowing format: 
 

Error_ ID | Error_ Position | Error_Correction_Info 
 

Each error report is composed of three fields which 

are separated by ‘|’. The first field contains error 

identification. The second includes the numbers 

indicating where the error is detected in a student 

input sentence. For example, if the field has num-

ber “5-7”, it can be interpreted as the input sen-

tence has an error covering from the 5
th
 word to 7

th
 

word. Since syntactic errors are usually detected at 

a phrasal level, the position of an error covers more 

than one word. The third field may or may not be 

filled with a value, depending on the type of an 

error. When it has a value, it is mostly a suggestion, 

i.e. a corrected string which is formed by compar-

ing a student sentence with its corresponding cor-

rect answer. 

2.1 Definition of Redundant Errors 

(Condition 1) The errors should share an error 

position.  

     (Condition 2) The errors should be detected 

from different error process phases. 

     (Condition 3) The errors should represent lin-

guistically the same phenomenon. 
 

(Condition 1) implies that the two errors must 

deal with one or more common words. The posi-

tion is indicated on the student sentence. However, 

there are some exceptions in displaying the posi-

tion. An example of the exception is ‘OBLI-

GATORY_NODE_MISSING_ERR’ and ‘OP-

TIONAL_NODE_MISSING_ERR’ which are 

mapping errors. Since these errors are detected 

when a certain word is missing from a student in-

put but included in the answer, the position is indi-

cated on the answer sentence. Err5 and Err6 from 

(Ex3) represent the case. Error position ‘(7)’ and 

‘(8)’ 
1
 means that the 7th and 8th word of the an-

swer sentence, ‘to’ and ‘our’ are missing, respec-

tively. When an error position points to an answer 

sentence not a student sentence, the error cannot be 

checked with whether it includes the words shared 

with the errors whose positions indicate the student 

sentence. In this case, the error is assumed to have 

shared words with all the other errors; Err5 and 

Err6 are considered containing shared words with 

Err 1~4 in (Ex3). 
 

(Ex3)  

Correct answer: She is a teacher who came to our school last week.  
Student answer: She is a teacher who come school last week. 

Err1: CONFUSABLE_WORD_ERR|9|week word 

Err2: SUBJ_VERB_AGR_ERR|3-7| syntactic 

Err3: VERB_SUBCAT_ERR|6-7| syntactic 

Err4: TENSE_UNMATCHED_ERR|6|came[past] mapping 

Err5: OPTIONAL_NODE_MISSING_ERR|(7)|to mapping 

Err6: OPTIONAL_NODE_MISSING_ERR|(8)|our mapping 

Err1 and Err2 from (Ex3) cannot be redundant 

errors since they do not share an error position and 

accordingly do not satisfy Condition 1. Err2 and 

Err3 share error positions 6~7, but they are not also 

considered as redundant errors since both of them 

were detected at the same process phase, the syn-

tactic phase. Err2 and Err4 satisfy both Condition 1 

and 2, but fail to meet Condition 3. Err2 represents 

the subject-predicate agreement error whereas Err4 

points out a tense error. In comparison, Err3 and 

Err5 are legitimate candidates of “redundant er-

rors” since they satisfy all the conditions. They 

share error positions, but were detected from dif-

ferent error process phases, the syntactic phase and 

the mapping phase, respectively. They also deal 

with the same linguistic phenomenon that a verb 

“come” does not have a transitive sense but re-

quires a prepositional phrase led by “to”. 

2.2 Detection of Redundant Errors 

Two errors need to satisfy all the conditions men-

tioned in section 2.1 in order to be classified as 

redundant errors. The system’s detecting process 

began with scoring 14,892 student answers. From 

the scoring result, the candidates which met Condi-

tion 1 and 2 were selected. In the following subsec-

tions, we have described how to determine the 

final redundant errors using the system in collabo-

ration with human’s efforts. 

                                                           
1 Error positions in answer sentences are marked with a num-

ber surrounded by a pair of parenthesis. 
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2.2.1 Selection of the Candidates 

The system selected candidate errors which satis-

fied Condition 1 and 2 among the student sen-

tences.  For example, Table 1 presents 8 candidates 

extracted from (Ex3). 
 

1 CONFUSABLE_WORD_ERR|9|week 

OPTIONAL_NODE_MISSING_ERR|(7)|to 

2 CONFUSABLE_WORD_ERR|9|week 

OPTIONAL_NODE_MISSING_ERR|(8)|our 

3 SUBJ_VERB_AGR_ERR|3-7| 

TENSE_UNMATCHED_ERR|6|came[past] 

4 SUBJ_VERB_AGR_ERR|3-7| 

OPTIONAL_NODE_MISSING_ERR|(7)|to 

5 SUBJ_VERB_AGR_ERR|3-7| 

OPTIONAL_NODE_MISSING_ERR|(8)|our 

6 VERB_SUBCAT_ERR|6-7| 

TENSE_UNMATCHED_ERR|6|came[past] 

7 VERB_SUBCAT_ERR|6-7| 

OPTIONAL_NODE_MISSING_ERR|(7)|to 

8 VERB_SUBCAT_ERR|6-7| 

OPTIONAL_NODE_MISSING_ERR|(8)|our 

Table 1 Candidate pairs of errors extracted from (Ex3). 
 

As a result of the selection process, the total of 

150,419 candidate pairs was selected from 14,892 

scoring results of the student sentences. 

2.2.2 Filtering Candidate Errors 

The candidates extracted through the process men-

tioned in 2.2.1 were classified based on their error 

identifications only, without considering error po-

sition and error correction information. 150,419 

pairs of the errors were assorted into 657 types. 

The frequency of each type of the candidates was 

then calculated. These candidate errors were fil-

tered by applying PMI (Pointwise Mutual Informa-

tion) and RFC (Relative Frequency Count) (Su et 

al., 1994). 
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     PMI is represented by a number indicating how 

frequently two errors E1 and E2 occur simulta-

neously. RFC refers to relative frequency against 

average frequency of the total candidates. The fil-

tering equation is as follows: 
 

 kEERFCEEPMI ³´ ),(),( 2121     (3) 
 

Using this equation, the system filtered the candi-

dates whose value was above the threshold k. For 

this experiment, 0.4 was assigned to k and 111 er-

ror types were selected. 

2.2.3 Human Collaborated Filtering 

Filtered 111 error types include 29,588 candidate 

errors; on the average 278 errors per type. These 

errors were then handed over to human experts
2
 to 

confirm their candidacy. They checked Condition 

3 against each candidate. The manually filtered 

result was categorized into three classes as shown 

in Table 2.  
 

Class A:  

(number: 

20) 

(DET_NOUN_CV_ERR,DET_UNMATCHED_ERR) 

(EXTRA_DET_ERR, DET_UNMATCHED_ERR) 

(MODIFIER_COMP_ERR, FORM_UNMATCHED_ERR) 

 (MISSPELLING_ERR, LEXICAL_ERR) 

… 

Class B:  

(number: 

47) 

(SUBJ_VERB_AGR_ERR,TENSE_UNMATCHED_ERR) 

(AUX_MISSING_ERR, UNNECESSARY_NODE_ERR) 

(CONJ_MISSING_ERR, DET_UNMATCHED_ERR) 

… 

Class C: 

(number: 

44) 

(VERB_FORM_ERR, ASPECT_UNMATCHED_ERR) 

(VERB_ING_FORM_ERR, TENSE_UNMATCHED_ERR) 

(EXTRA_PREP_ERR, UNNECESSARY_NODE_ERR) 

… 

Table 2 Classes of Human Collaborated Filtering. 
 

Class A satisfies Condition 1 and 2 and is con-

firmed as redundant errors. When a pair of errors is 

a member of Class A, one of the errors can be re-

moved. Class B also meets Condition 1 and 2, but 

is eliminated from the candidacy because human 

experts have determined they did not deal with the 

same linguistic phenomenon. Each error of Class B 

has to be treated as unique. With respect to Class C, 

the errors cannot be determined its candidacy with 

the information available at this stage. Additional 

information is required to determine the redundan-

cy. 

2.2.4 Final Automated Filtering Using De-

cision Rules 

In order to confirm the errors of Class C as redun-

dant, additional information is necessary. 
 

(Ex4)   Correct answer: I don’t know why she went there. 

Student answer: I don’t know why she go to their. 

Err1: CONFUSABLE_WORD_ERR|8|there word 

Err2: SUBJ_VERB_AGR_ERR|6|went[3S] syntactic 

Err3: EXTRA_PREP_ERR|6-8| syntactic 

Err4: UNNECESSARY_NODE_ERR|7|(to) mapping 

Err5: TENSE_UNMATCHED_ERR|6|went[past] mapping 
 

(Ex5)   Correct answer: Would you like to come? 

Student answer: you go to home? 

Err1: FIRST_WORD_CASE_ERR|1| word 

Err2: EXTRA_PREP_ERR|3-4| syntactic 

Err3:OBLIGATORY_NODE_MISSING_ERR|(1,3)| 

Would _ like 

mapping 

Err4: UNNECESSARY_NODE_ERR|4|(home) mapping 

Err5: LEXICAL_ERR|2|come mapping 
 

                                                           
2 They are English teachers who have a linguistic background 

and teaching experiences of 10 years or more. 
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EXTRA_PREP_ERR’ and ‘UNNECESSARY_ 

NODE_ERR’ were selected as a candidate from 

both (Ex4) and (Ex5) through the steps mentioned 

in section 2.2.1 ~ 2.2.3. The pair from (Ex4) is a 

redundant error, but the one from (Ex5) is a false 

alarm. (Ex4) points out a preposition ‘to’ as an un-

necessary element whereas (Ex5) indicates a noun 

‘home’ as incorrect.  

To determine the finalist of redundant errors, 

we have adopted a decision tree. To train the deci-

sion tree, we have chosen a feature set for a pair of 

errors (E1, E2) as follows. 
 

(1) The length of shared words in E1 and  E2 divided by the 
length of  a shorter sentence (shared_length) 

(2) The length of non-shared words in E1 and E2 divided by the 
length of a shorter sentence. (non_shared_length) 

(3) The Error_Correction_Info of E1 (E1.Correction_Info) 

(4) The Error_Correction_Info of E2 (E2.Correction_Info) 
(5) Edit distance value between correction string of E1 and E2 

(edit_distance) 
(6) Error Position of E1 (E1.pos) 

(7) Error Position of E2 (E2.pos) 

(8) Difference of Error positions of E1 and E2 (diff_error_pos) 
 

12,178 pairs of errors for 44 types in Class C were 

used to train a decision tree. We used CART 

(Breiman et al., 1984) to extract decision rules. 

The followings show a part of the decision rules to 

eliminate redundant errors from Class C. 
 

E1=CONJ_MISSING_ERR 
E2=OPTIONAL_NODE_MISSING_ERR 

If  E2.Correction_Info=‘conj’ and  E2.pos=1   then redundant_error 

 
E1=EXTRA_PREP_ERR,  E2=UNNECESSARY_NODE_ERR 

If  E2.Correction_Info=‘prep’ and  E2.pos=1   then redundant_error  
 

E1=VERB_SUBCAT_ERR, 

E2=OPTIONAL_NODE_MISSING_ERR 
If  diff_error_pos <=3 and E2.Correction_Info={‘prep’ , ‘adv’} 

then redundant_error 
 

E1=VERB_ING_FORM_ERR,  E2=TENSE_UNMATCHED_ERR 

If  E2.Correction_Info=‘verb-ing’   then redundant_error 

… 
 

The errors are removed according to a priority spe-

cified in the rules. The syntactic phase is assigned 

with the highest priority since syntactic errors have 

the most extensive coverage which is identified at 

a phrasal level. On the other hand, the lowest prior-

ity is given to the mapping phase because mapping 

errors are detected through a simple word-to-word 

comparison of a student input with the correct an-

swer. 

3 Evaluation  

We evaluated the accuracy of determining redun-

dant errors. Table 3 presents the results. The evalu-

ation was performed on 200 sentences which were 

not included in the training data. Even though the 

redundancy of the pairs of errors in Class A and 

Class B are determined by the human expert, the 

accuracies of both classes did not reach 100% be-

cause the errors detected by the system were incor-

rect. The total accuracy including Class A, B, and 

C was 90.2%.  
 

 Class A Class B Class C 

Accuracy 94.1% 98.0% 82.3% 
Table 3: The accuracy 

 

The performance of our automated scoring sys-

tem was measured using exact agreement (Attali 

and Burstein, 2006) of the final scores calculated 

by the system and human raters. The overall per-

formance was improved by 2.6% after redundant 

errors were removed.  

4 Conclusion 

This paper has introduced a human collaborated 

filtering method to eliminate redundant errors re-

ported during automated scoring. Since scoring 

processes are performed through three separate 

phases including word, syntax and mapping, some 

of the errors are redundantly reported with differ-

ent IDs. In addition, it is almost impossible to pre-

dict every type of errors that could occur in student 

answers. Because of these issues, it is not easy for 

the system to automatically determine which errors 

are reported redundantly, or to estimate all the 

possible redundant errors. As a solution to these 

problems, we have adopted a human assisted ap-

proach. The performance has been improved after 

redundant errors were removed with the approach 

implemented in the system.  
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Abstract

Automatic tools for analyzing student online 
discussions are highly desirable for providing 
better assistance and promoting discussion 
participation. This paper presents an approach 
for identifying student discussions with unre-
solved issues or unanswered questions. In or-
der to handle highly incoherent data, we 
perform several data processing steps. We 
then apply a two-phase classification algo-
rithm. First, we classify “speech acts” of indi-
vidual messages to identify the roles that the 
messages play, such as question, issue raising, 
and answers. We then use the resulting speech 
acts as features for classifying discussion 
threads with unanswered questions or unre-
solved issues. We performed a preliminary 
analysis of the classifiers and the system 
shows an average F score of 0.76 in discus-
sion thread classification. 

1 Introduction
*

Online discussion boards have become a popular 
and important medium for distance education.  
Students use discussion forums to collaborate, to 
exchange information, and to seek answers to 
problems from their instructors and classmates.  
Making use of the dialog to assess student under-
standing is an open research problem. As the class 
size increases and online interaction becomes 
heavier, automatic tools for analyzing student dis-
cussions are highly desirable for providing better 
assistance and promoting discussion participation. 
In this paper, we present an approach for automati-
cally identifying discussions that have unresolved 
issues or unanswered questions. The resulting dis-

                                                          
*

cussions can be reported to instructors for further 
assistance. 

We present a two-phase machine learning ap-
proach where the first phase identifies high level 
dialogue features (speech acts such as question, 
issue raising, answer, and acknowledgement) that 
are appropriate for assessing student interactions. 
The second phase uses speech acts as features in 
creating thread classifiers that identify discussions 
with unanswered questions or unresolved issues. 
We also describe an approach where thread classi-
fiers are created directly from the features in dis-
cussion messages. The preliminary results indicate 
that although the direct learning approach can 
identify threads with unanswered questions well, 
SA based learning provide a little better results in 
identifying threads with issues and threads with 
unresolved issues.

2 Modeling Student Discussions

Our study takes place in the context of an under-
graduate course discussion board that is an integral 
component of an Operating Systems course in the 
Computer Science Department at the University of 
Southern California. We obtain our data from an 
existing online discussion board that hosts student 
technical discussions. Total 291 discussion threads 
(219 for training and 72 for test) with 1135 mes-
sages (848 for training and 287 for test) from two 
semesters’ discussions were used for this study. 
168 students participated in the discussions.  

2.1 Discussion Threads 

Unlike prototypical collaborative argumentation 
where a limited number of members take part in 
the conversation with a strong focus on solving 
specific problems, student online discussions have 
much looser conversational structure, possibly in-
volving multiple anonymous discussants. Student 
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discussions are very informal and noisy with re-
spect to grammar, syntax and punctuation. There is 
a lot of variance in the way that students present 
similar information. Messages about programming 
assignments include various forms of references to 
programming code. Figure 1 shows an example 
discussion thread that is relatively technical and 
formal. The raw data include humorous messages 
and personal announcements as well as technical 
questions and answers.

Figure 1. An example discussion thread 

The average number of messages per discussion 
thread in our undergraduate course is 3.9, and 
many discussion threads contain only two or three 
messages. Discussions often start with a question 
from a student on a project or an assignment. In 
some cases, the discussion ends with an answer 
that follows the question. In some other cases, the 
original poster may raise additional issues or ask 
questions about the answer. The discussion can 
continue with the following answer from another 
student as in Figure 1.  However, sometimes the 

discussion ends with hanging issues or questions 
without an answer.  

2.2 Speech Acts in messages: Identifying roles 

that a message plays 

For conversation analysis, we adopted the theory 
of Speech Acts (SAs) to capture relations between 
messages (Austin, 1962; Searle, 1969). Each mes-
sage within a discussion thread may play a differ-
ent role.  A message could include a question for a 
particular problem, or it could contain an answer or 
suggestion with respect to a previous question in 
the thread. Messages can include question, answer, 
acknowledgement, and objection. Since SAs are 
useful in understanding contributions made by stu-
dents in discussions, and are natural indicators for 
unanswered questions or unresolved issues, we use 
SAs as features for classifying discussion threads 
in a two phase learning as described below. 

Table 1. Speech Act Categories and Kappa values 

SA

Category
Description  kappa

QUES 
A question about a problem, in-

cluding question about a previous 
message 

0.94

ANS 
A simple or complex answer to a 
previous question. Suggestion or 

advice
0.72

ISSUE 
Report misunderstanding, unclear 
concepts or issues in solving prob-

lems 
0.88

Pos-Ack
An acknowledgement, compliment 

or support in response to a prev. 
message 

0.87

Neg-Ack
A correction or objection (or com-
plaint) to/on a previous message 

0.85

We divide message roles into several SA cate-
gories, extending the approaches presented in (Kim 
et al., 2006; Kim and Ravi 2007). We focus on the 
categories that are relevant to the problem of iden-
tifying discussion threads with unanswered ques-
tion or unresolved issues.  

The message might contain a question about a 
particular problem (QUES) or report a misunder-
standing, unclear concepts or issues in solving a 
problem (ISSUE). It might propose an answer or 
suggestion with respect to a previous question in 
the thread (ANS). Finally, a message might ac-
knowledge the previous message with support 

Message1: QUES

Message2: ANS

Poster1: I am still confused.  I understand it is in the
same address space as the parent process, where do we
allocate the 8 pages of mem for it? And how do we
keep track of .....?  I am sure it is a simple concept that
I am just missing.

Poster2: Have you read the student documentation for
the Fork syscall?

É

Poster1: The Professor gave us 2 methods for forking
threads from the main program.  One was .......  The
other was to ......... When you fork a thread where does
it get created and take its 8 pages from? Do you have to
calculate ......? If so how?  Where does it store its
PCReg .......?    Any suggestions would be helpfule.

Poster3: If you use the first implementation....,
then you'll have a hard limit on the number of
threads....If you use the second implementation,
you need to....

Either way, you'll need to implement the
AddrSpace::NewStack() function and make sure
that there is memory available.

…

Message3: ISSUE, QUES

Message4: ANS
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(Pos-Ack) or show disagreement or objection 
(Neg-Ack). SAs relate a pair of messages that has a 
‘reply-to’ relation. A pair of messages can be la-
beled with multiple SAs, and a message can have 
multiple SAs with more than one messages. This 
allows us to capture various relations among mes-
sages. Table 1 describes the categories we are fo-
cusing on and the kappa values from two 
annotators. Figure 1 shows SA relations between 
message pairs.  

During annotation of the corpus, the annotators 
marked the cues that are relevant to a particular SA 
category as well as the SA categories themselves. 
Such information provides hints on the kinds of 
features that are useful. We also interviewed the 
annotators to capture additional cues or indicators 
that they used during the annotation. We iterated 
with several different annotation approaches until 
we reach enough agreement among the annotators 
on a new dataset that was not seen by the annota-
tors before. 

Table 2 shows the distribution statistics of each 
SA category among the whole training and test 
corpus. Since a message may have more than one 
SA, the percentage sum of all SAs doesn’t equal to 
1. As we can see, Pos-Ack and Neg-Ack are ex-
periencing lacking data problem which is one of 
the challenges we are facing for SA classification. 

Table 2. Statistics for each Speech Act Category 

Training set Test set SA

Category # of msgs Percentage # of msgs Percentage

QUES 469 55.31% 146 50.87% 

ANS 508 59.91% 176 61.32% 

ISSUE 136 16.03% 46 16.03% 

Pos-Ack 78 9.20% 30 10.45% 

Neg-Ack 23 2.71% 8 2.79% 

3 Message Speech Act Classifiers  

In this section, we first describe how raw discus-
sion data is processed and show the features gener-
ated from the data, and we then present the current 
SA classifiers.  

3.1 Discussion Data Pre-processing

Besides typical data preprocessing steps, such 
as stemming and filtering, which are taken by most 

NLP systems, our system performs additional steps 
to reduce noise and variance (Ravi and Kim 2007).  

We first remove the text from previous mes-
sages that is automatically inserted by the discus-
sion board system starting with righ angle braket 
(>) when the user clicks on a “Reply to” button. 
We also apply a simple stemming algorithm that 
removes “s” and “es” for plurals. Apostrophes are 
also converted to their original forms. E.g., “I’m” 
is converted to “I am”. For discussions on pro-
gramming assignment, the discussion included pro-
gramming code fragments. Each section of 
programming code or code fragment is replaced 
with a single term called code.  Similar substitution 
patterns were used for a number of categories like 
filetype extensions (“.html”, “.c”, “.c++”, 

“.doc”), URL links and others. Students also tend 
to use informal words (e.g. “ya”, “yeah”, “yup”).
We substitute some of such words with one form 
(“yes”). For words like “which”,  ”where”, 

”when”, ”who” and ”how”, we used the term 
categ_wh. We do not replace pronouns (“I”, “we”, 
“they”,) since they may be useful for identifying 
some SAs. For example, “You can” may be a cue 
for ANS but “I can” may not.  

We also apply a simple sentence divider with 
simple cues (punctuation and white spaces such as 
newline) in order to captures the locations of the 
features in the message, such as cue words in the 
first sentence vs. cues in the last sentence.  

3.2 Features for Speech Act Classification

We have used six different types of features based 
on input from the annotators.  

F1: cue phases and their positions: In addition to 
SAs (e.g. QUES), the human annotators marked 
the parts within the message (cue phrases or sen-
tences), which helped them identify the SAs in the 
message. In order to overcome data sparseness, we 
generate features from the marked phrases. That is, 
from each phrase, we extract all the unigrams, bi-
grams, trigrams (sequence of 1/2/3 words) and add 
them to the feature set. We also added two separate 
unigrams, three separate unigrams and a unigram 
and a bigram combinations since the annotations in 
the training data indicated that they could be a use-
ful pattern.  All the cues including separate cues 
such as two unigrams are captured and used for a 
single sentence. Positions of the cues are included 
since in longer messages the cues in the beginning 
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sentences and the ones in the end sentences can 
indicate different SAs. For example, THANK in 
the beginning indicates a positive answer but 
THANK in latter part of the message usually 
means politeness (thank in advance). 

F2: Message Position: Position of current message 
within the discussion thread (e.g. the first message, 
the last message, or middle in the thread). 

F3: Previous Message Information: SAs in the 
previous message that the current message is reply-
ing to. 

F4: Poster Class: Student or Instructor. 

F5: Poster Change: Was the current message 
posted by the same person who posted the message 
that the current message is replying to? 

F6: Message Length: Values include Short(1-
5words), Medium(6-30 words), and Long(>30 
words).

F1 is a required feature since the annotators in-
dicated cues as useful feature in most cases. All the 
others are optional.

3.3 Speech Act Classifiers 

We applied SVM in creating binary classifiers for 
each SA category using Chang and Lin (2001). 
Also, Transformation-based Learning (TBL) was 
applied as it has been successfully used in spoken 
dialogue act classification (Samuel 2000; Brill 
1995). It starts with the unlabeled corpus and 
learns the best sequence of admissible “transforma-
tion rules” that must be applied to the training cor-
pus to minimize the error for the task.  The 
generated rules are easy to understand and useful 
for debugging the features used.  TBL results are 
also used in generating dependencies among SA 
categories for F3, i.e. which SAs tend to follow 
which other SAs1, as describe below.

SA Classification with TBL

Each rule 
iRule is composed of two parts - (1) 

iRuleLHS  - A combination of features that should 

be checked for applicability to the current message 
(2)

iRuleTAG  - SA tag to apply, if the feature com-

bination is applicable to the current message. 

                                                          
1 It is possible to collect related clues from SVM with distribution of 
feature values and information gain although dependencies can be 
easily recognized in TBL rules. 

iii RuleTAGRuleLHSRule !"::

Where
ii XRuleLHS !

)654321(; FFFFFFXXX i #####$%

The iRuleLHS  component can be instantiated 

from all the combination of the features F1, …,F6. 

iRuleTAG  is any SA (single SA) chosen from a list 

of all the SA categories. An example rule used in 
Speech Act learning is shown below: 

Rule1 :: IF cue-phrase = {“not”, “work”} 
& poster-info = Student 
& post-length = Long 
=> ISSUE 

Rule1 means if the post contains two unigrams 
“not” and “work”, the poster is a student, and the 
post length is long, then the Speech Act for the 
post is ISSUE.

We apply each rule in the potential rule set on 
all the posts in the training corpus and transform 
the post label if the post is applicable. The rule 
with highest improvement by F score is selected 
into the optimal rule set and moved from the po-
tential rule set. The iteration continues until there 
is no significant improvement with any rule.  

The training corpus was divided into 3 parts for 
3-fold cross validation. The rules from 3 rule sets 
are merged and sorted by weighted Mean Recipro-
cal Rank (MRR) (Voorhees, 2001). For example, if 
we have 5 rules among 3 rule sets as follows, 

Rule set 1 (0.85 on test): R1 R2 R3 
Rule set 2 (0.88 on test): R2 R1 R4 
Rule set 3 (0.79 on test): R1 R4 R5 

For R1, we calculate the weighted MRR as 
(0.85*1 + 0.88*(1/2) + 0.79*1) / 3. After sorting, 
we get top N rules from the merged rule set. Table 
3 shows some of the rules learned. 

Table 3. TBL rule examples 

IF cue-phrase = {“?”}  => QUES 

IF cue-phrase = {“yes you can”} 
& poster-info = Instructor 

& post-length = Medium  => ANS

IF cue-phrase = {“yes”} 
& cue-position = CP_BEGIN  

& prev-SA = QUES 
=> ANS

IF cue-phrase = {“not know”}  
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& poster-info = student  
& poster-change = YES  => ISSUE 

Based on the rules generated from TBL, we 
analyze dependencies among the SA categories for 
F3 (previous message SAs). In TBL rules, ANS 
depends on ISSUE and QUES, i.e. some ANS 
rules have QUES and ISSUE for F3. Also Pos-Ack 
and Neg-Ack tend to follow ANS. Both SVM and 
TBL classifiers use this information during testing. 
That is, we apply independent classifiers first and 
then use dependent classifiers according to the de-
pendency order as following:  

Currently there is no loop in the selected rules 
but we plan to address potential issues with loops 
in SA dependencies.

SA Classification with SVM 

Table 4. Some of the top selected features by Infor-

mation Gain 

SA  

Category 
Top features 

QUES

“?” 
POST_POSITION 

“_category_wh_ … ?” 
PREV_SA_FIRST_NONE 

“to … ?” 

ANS

POST_POSITION 
PREV_SA_QUESTION 

“?” 
POSTER_INFO 

ISSUE 

POSTER_INFO 
“not … sure” 

POST_POSITION 
FEATURE_LENGTH 

“error”

Pos-Ack 

PREV_SA_ANSWER 
POST_POSITION 

PREV_SA_FIRST_NONE 
“thanks” & cue-position = CP_BEGIN 

“ok” & cue-position = CP_BEGIN 

Neg-Ack

 “yes,  ” “, but” 
POST_POSITION 

“, but” 
“are … wrong”

Given all the combination of the features F1,…, 
F6, we use Information Gain (Yang and Pederson 
1997) for pruning the feature space and selecting 
features. For each Speech Act, we sort all the fea-
tures (lexical and non-lexical) by Information Gain 
and use the top N (=200) features. Table 4 shows 
the top features selected by Information Gain. The 
resulting features are used in representing a mes-
sage in a vector format.  

We did 5-fold cross validation in the training. 
RBF (Radial Basis Function) is used as the kernel 
function. We performed grid search to get the best 
parameter (C and gamma) in training and applied 
them to the test corpus.  

Table 5. SA classification results 

SVM TBL 
SA Cat-

egory 
Prec.

Re-

call

F

score 
Prec. 

Re-

call

F

score

QUES 0.95 0.90 0.94 0.96 0.91 0.95 

ANS 0.87 0.80 0.85 0.83 0.64 0.78 

ISSUE 0.65 0.54 0.62 0.46 0.76 0.50 

Pos- 
Ack

0.57 0.44 0.54 0.58 0.56 0.57 

Neg-Ack 0 0 0 0.5 0.38 0.47 

Table 5 shows the current classification accura-
cies with SVM and TBL. The main reason that 
ISSUE, Pos-Ack and Neg-Ack show low scores is 
that they have relatively small number of examples 
(see statistics in Table 2). We plan to add more 
examples as we collect more discussion annota-
tions. For thread classification described below, we 
use features with QUES, ANS, ISSUE and 
Pos_Ack only. 

4 Identifying Discussions with Unan-

swered or Unresolved Questions: 

Thread Classification 

Figure 2 shows typical patterns of interactions in 
our corpus. Many threads follow pattern (a) where 
the first message includes a question and the sub-
sequent message provides an answer.  In (b), after 
an answer, the student presents an additional ques-
tion or misunderstanding (ISSUE), which is fol-
lowed by another answer.  Often students provide 
positive acknowledgement when an answer is sat-

ISSUE

ANS

QUES

Pos-Ack

Neg-Ack
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isfying.  Pattern (c) covers cases for when the 
question is unanswered.   

Figure 2. Example patterns in student discussion 

threads 

We are interested in the following assessment 
questions.

(Q1) Were all questions answered? (Y/N) 

(Q2) Were there any issues or confusion? (Y/N) 

(Q3) Were those issues or confusions resolved? (Y/N) 

There can be multiple questions, and Q1 is false 
if there is any question that does not have a corre-
sponding answer. That is, even when some ques-
tions were resolved, it could   
still be False (not resolved) if some were not re-
solved.  If Q2 is False (i.e. there is no issue or 
question), then Q3 is also False.  

These questions are useful for distinguishing 
different interaction patterns, including threads 
with unanswered questions. In the second phase of 
learning, we use SA-based features.  Our initial 
analysis of student interactions as above indicates 
that the following simple features can be useful in 
answering such questions:  

(T-F1) Whether there was an [SA] in the thread  

(T-F2) Whether the last message in the thread in-

cluded [SA]  

We used TBL rules for Pos-Ack and SVM clas-
sifiers for other SA categories because of relatively 
higher score of Pos-Ack from TBL and other cate-
gories from SVM. We use 8 (2 x 4) features cre-
ated from T-F1 and T-F2. SVM settings are similar 
to the ones used in the SA classification.  

Table 6 shows the thread classification results. 
We checked SVM classification results with hu-
man annotated SAs since they can show how use-
ful SA-based features are (T-F1 and T-F2 in 

particular) in answering Q1—Q3. The results 
shown in Table 6-(a) indicate that the features (T-
F1 and T-F2) are in fact useful for the questions.  

When we used the SA classifiers and SVM in a 
pipeline, the system shows precisions (recalls) of 
83%(84%), 77%(74%) and 68%(69%) for Q1, Q2, 
and Q3 respectively.  

         Table 6. Thread Classification Results 

Precision Recall F score 

Q1 0.93    0.93 0.93 

Q2 0.93 0.93 0.93 

Q3 0.89 0.89 0.89 

(a) Classification results with human annotated SAs 

Precision Recall F score 

Q1 0.83 0.84 0.83 

Q2 0.77 0.74 0.76 

Q3 0.68 0.69 0.68 

(b) SVM classification results with system generated 
SAs

The results with system generated SAs provide 
an average F score of 0.76. Although the ISSUE 
classifier has F score of 0.62, the score for Q2 is 
0.76. Q2 checks one or more occurrences of 
ISSUE rather than identifying existence of ISSUE 
in a message, and it may become an easier problem 
when there are multiple occurrences of ISSUEs.  

5 Direct Thread Classification without 

SAs

As an alternative to the SA-based two-phase learn-
ing, we crated thread classifiers directly from the 
features in discussion messages. We used SVM 
with the following features that we can capture 
directly from a discussion thread.  

F1’: cue phases and their positions in the 

thread:  we use the same cue features in F1 but we 
use an optional thread level cue position: 
Last_message and Dont_Care. For example, for a 
given cue “ok”, if it appears in the the last message 
of the thread, we generate two features, 
"ok"_Last_message and "ok"_Dont_Care.  

Given a set of candidate features, we use In-
formation Gain to select the top N (=200) features. 
The resulting features are used in creating vectors 
as described inS 3.3. Similar cross-validation and 
SVM settings are applied.
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   Table 7. Results from Direct Thread Classification  

Precision Recall F score 

Q1 0.86 0.86 0.86 

Q2 0.81 0.62 0.70 

Q3 0.75 0.33 0.46 

Table 7 shows the classification results. Al-
though the direct learning approach can identify 
threads with unanswered questions well, SA based 
learning provides a little better results in identify-
ing threads with issues (Q2) and unresolved issues 
(Q3). It seems that SA-based features may help 
performing more difficult tasks (e.g. assessment 
for ISSUEs in discussions) We need further inves-
tigation on different types of assessment tasks.  

6 Related Work 

Rhetorical Structure Theory (Mann and Thom-
son, 1988) based discourse processing has attracted 
much attention with successful applications in sen-
tence compression and summarization. Most of the 
current work on discourse processing focuses on 
sentence-level text organization (Soricut and 
Marcu, 2003) or the intermediate step (Sporleder 
and Lapata, 2005). Analyzing and utilizing dis-
course information at a higher level, e.g., at the 
paragraph level, still remains a challenge to the 
natural language community. In our work, we util-
ize the discourse information at a message level.  

There has been prior work on dialogue act 
analysis and associated surface cue words (Samuel 
2000; Hirschberg and Litman 1993). There have 
also been Dialogue Acts modeling approaches for 
automatic tagging and recognition of conversa-
tional speech (Stolcke et al., 2000) and related 
work in corpus linguistics where machine learning 
techniques have been used to find conversational 
patterns in spoken transcripts of dialogue corpus 
(Shawar and Atwell, 2005). Although spoken dia-
logue is different from message-based conversa-
tion in online discussion boards, they are closely 
related to our thread analysis work, and we plan to 
investigate potential use of conversation patterns in 
spoken dialogue in threaded discussions.  

Carvalho and Cohen (2005) present a depend-
ency-network based collective classification 
method to classify email speech acts. However, 
estimated speech act labeling between messages is 
not sufficient for assessing contributor roles or 

identifying help needed by the participants. We 
included other features like participant profiles. 
Also our corpus consists of less informal student 
discussions rather than messages among project 
participants, which tend to be more technically 
coherent.

Requests and commitments of email exchange 
are analyzed in (Lampert et al., 2008). As in their 
analysis, we have a higher kappa value for ques-
tions than answers, and some sources of ambiguity 
in human annotations such as different forms of 
answers also appear in our data. However, student 
discussions tend to focus on problem solving rather 
than task request and commitment as in project 
management applications, and their data show dif-
ferent types of ambiguity due to different nature of 
participant interests.  

There also has been work on non-traditional, 
qualitative assessment of instructional discourse 
(Graesser et al., 2005; McLaren et al., 2007; Boyer 
et al., 2008). The assessment results can be used in 
finding features for student thinking skills or level 
of understanding. Although the existing work has 
not been fully used for discussion thread analysis, 
we are investigating opportunities for using such 
features to cover additional discourse analysis ca-
pabilities.  Similar approaches for classifying 
speech acts were investigated (Kim and Ravi 
2007). Our work captures more features that are 
relevant to analyzing noisy student discussion 
threads and support a full automatic analysis of 
student discussions instead of manual generation of 
thread analysis rules.  

7 Summary and Future Work 

We have presented an approach for automatically 
classifying student discussions to identify discus-
sions that have unanswered questions and need 
instructor attention. We applied a multi-phase 
learning approach, where the first phase classifies 
individual messages with SAs and the second 
phase classifies discussion threads with SA-based 
features.  We also created thread classifiers directly 
from features in discussion messages. The prelimi-
nary results indicate that SA-based features may 
help difficult classification tasks. We plan to per-
form more analysis on different types of thread 
classification tasks.  

We found that automatic classification of un-
dergraduate student discussions is very challenging 
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due to incoherence and noise in the data. Espe-
cially messages that contain long sentences, infor-
mal statements with uncommon words, answers in 
form of question, are difficult to classify.  In order 
to use other SA categories such as Neg-Ack and 
analyze various types of student interactions, we 
plan to use more annotated discussion data.  

A deeper assessment of online discussions re-
quires a combination with other information such 
as discussion topics (Feng et al., 2006). For exam-
ple, classification of discussion topics can be used 
in identifying topics that participants have more 
confusion about.  Furthermore, such information 
can also be used in profiling participants such as 
identifying mentors or help seekers on a particular 
topic as in (Kim and Shaw 2009).  We are investi-
gating several extensions in order to generate more 
useful instructional tools.
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Abstract

Our work addresses the problem of predict-
ing whether an essay is off-topic to a given
prompt or questionwithout any previously-
seen essays as training data. Prior work has
used similarity between essay vocabulary and
prompt words to estimate the degree of on-
topic content. In our corpus of opinion es-
says, prompts are very short, and using sim-
ilarity with such prompts to detect off-topic
essays yields error rates of about 10%. We
propose two methods to enable better compar-
ison of prompt and essay text. We automat-
ically expand short prompts before compari-
son, with words likely to appear in an essay
to that prompt. We also apply spelling correc-
tion to the essay texts. Both methods reduce
the error rates during off-topic essay detection
and turn out to be complementary, leading to
even better performance when used in unison.

1 Introduction

It is important to limit the opportunity to sub-
mit uncooperative responses to educational software
(Baker et al., 2009). We address the task of detect-
ing essays that are irrelevant to a given prompt (es-
say question) when training data isnot available and
the prompt text isvery short.

When example essays for a prompt are available,
they can be used to learn word patterns to distin-
guish on-topic from off-topic essays. Alternatively,
prior work (Higgins et al., 2006) has motivated us-
ing similarity between essay and prompt vocabular-
ies to detect off-topic essays. In Section 2, we exam-
ine the performance of prompt-essay comparison for
four different essay types. We show that in the case

of prompts with 9 or 13 content words on average,
the error rates are higher compared to those with 60
or more content words. In addition, more errors are
observed when the method is used on essays written
by English language learners compared to more ad-
vanced test takers. An example short prompt from
our opinion essays’ corpus is shown below. Test-
takers provided arguments for/or against the opinion
expressed by the prompt.

[1] “In the past, people were more friendly than
they are today.”

To address this problem, we propose two en-
hancements. We use unsupervised methods to ex-
pand the prompt text with words likely to appear
in essays to that prompt. Our approach is based
on the intuition that regularities exist in the words
which appear in essays, beyond the prevalence of
actual prompt words. In a similar vein, misspellings
in the essays, particulary of the prompt words, are
also problematic for prompt-based methods. There-
fore we apply spelling correction to the essay text
before comparison. Our results show that both meth-
ods lower the error rates. The relative performance
of the two methods varies depending on the essay
type; however, their combination gives the overall
best results regardless of essay type.

2 Effect of prompt and essay properties

In this section, we analyze the off-topic essay pre-
diction accuracies resulting from direct comparison
of original prompt and essay texts. We use four dif-
ferent corpora of essays collected and scored during
high stakes tests with an English writing component.
They differ in task type and average prompt length,
as well as the skill level expected from the test taker.
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In one of the tasks, the test taker reads a passage
and listens to a lecture and then writes a summary
of the main points. For such essays, the prompt
text (reading passage plus lecture transcript) avail-
able for comparison is quite long (about 276 con-
tent words). In the other 3 tasks, the test taker has
to provide an argument for or against some opin-
ion expressed in the prompt. One of these has long
prompts (60 content words). The other two involve
only single sentence prompts as in example [1] and
have 13 and 9 content words on average. Two of
these tasks focused on English language learners and
the other two involved advanced users (applicants to
graduate study programs in the U.S.). See Table 1
for a summary of the essay types.1

2.1 Data

For each of the task types described above, our cor-
pus contains essays written to 10 different prompts.
We used essays to 3 prompts as development data.
To build an evaluation test set, we randomly sam-
pled 350 essays for each of the 7 remaining prompts
to use as positive examples. It is difficult to as-
semble a sufficient number of naturally-occurring
off-topic essays for testing. However, an essay on-
topic to a particular prompt can be considered as
pseudo off-topicto a different prompt. Hence, to
complement the positive examples for each prompt,
an equal number of negative examples were chosen
at random from essays to the remaining 6 prompts.

2.2 Experimental setup

We use the approach for off-topic essay detection
suggested in prior work by Higgins et al. (2006).
The method uses cosine overlap between tf*idf vec-
tors of prompt and essay content words to measure
the similarity between a prompt-essay pair.

sim(prompt, essay) =
vessay .vprompt

‖vessay‖‖vprompt‖
(1)

An essay is compared with thetarget prompt
(prompt with which topicality must be checked) to-
gether with a set ofreferenceprompts, different from
the target. The reference prompts are also chosen
to be different from the actual prompts of the neg-
ative examples in our dataset. If the target prompt

1Essay sources: Type 1-TOEFL integrated writing task,
Type 4-TOEFL independent writing task, Types 2 & 3-
argument and issue tasks in Analytical Writing section of GRE

Type Skill Prompt len. Avg FP Avg FN
1 Learners 276 0.73 11.79
2 Advanced 60 0.20 6.20
3 Advanced 13 2.94 8.90
4 Learners 9 9.73 11.07

Table 1: Effect of essay types: average prompt length,
false positive and false negative rates

is ranked asmost similar2 in the list of compared
prompts, the essay is classified as on-topic. 9 refer-
ence prompts were used in our experiments.

We compute two error rates.
FALSE POSITIVE - percentage of on-topic essays in-

correctly flagged as off-topic.

FALSE NEGATIVE - percentage of off-topic essays
which the system failed to flag.

In this task, it is of utmost importance to maintain
very low false positive rates, as incorrect labeling of
an on-topic essay as off-topic is undesirable.

2.3 Observations

In Table 1, we report the average false positive and
false negative rates for the 7 prompts in the test set
for each essay type. For long prompts, bothTypes 1
and2, the false positive rates are very low. The clas-
sification ofType 2essays which were also written
by advanced test takers is the most accurate.

However, for essays with shorter prompts (Types
3 and 4), the false positive rates are higher. In fact,
in the case ofType 4essays written by English lan-
guage learners, the false positive rates are as high as
10%. Therefore we focus on improving the results
in these two cases which involve short prompts.

Both prompt length and the English proficiency
of the test taker seem to influence the prediction ac-
curacies for off-topic essay detection. In our work,
we address these two challenges by: a) automatic
expansion of short prompts (Section 3) and b) cor-
rection of spelling errors in essay texts (Section 4).

3 Prompt expansion

We designed four automatic methods to add relevant
words to the prompt text.

2Less strict cutoffs may be used, for example, on-topic if
target prompt is within rank 3 or 5, etc. However even a cutoff
of 2 incorrectly classifies 25% of off-topic essays as on-topic.
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3.1 Unsupervised methods

Inflected forms: Given a prompt word,“friendly” ,
its morphological variants—“friend” , “friendlier” ,
“friendliness”—are also likely to be used in essays
to that prompt. Inflected forms are the simplest and
most restrictive class in our set of expansions. They
were obtained by a rule-based approach (Leacock
and Chodorow, 2003) which adds/modifies prefixes
and suffixes of words to obtain inflected forms.
These rules were adapted from WordNet rules de-
signed to get the base forms of inflected words.

Synonyms: Words with the same meaning as
prompt words might also be mentioned over the
course of an essay. For example,“favorable”
and “well-disposed” are synonyms for the word
“friendly” and likely to be good expansions. We
used an in-house tool to obtain synonyms from
WordNet for each of the prompt words. The lookup
involves a word sense disambiguation step to choose
the most relevant sense for polysemous words. All
the synonyms for the chosen sense of the prompt
word are added as expansions.

Distributionally similar words: We also consider
as expansions words that appear in similar contexts
as the prompt words. For example,“cordial” , “po-
lite” , “cheerful” , “hostile” , “calm” , “lively” and
“affable” often appear in the same contexts as the
word “friendly” . Such related words form part of
a concept like‘behavioral characteristics of people’
and are likely to appear in a discussion of any one
aspect. These expansions could comprise antonyms
and other related words too. This idea of word simi-
larity was implemented in work by Lin (1998). Sim-
ilarity between two words is estimated by examin-
ing the degree of overlap of their contexts in a large
corpus. We access Lin’s similarity estimates using
a tool from Leacock and Chodorow (2003) that re-
turns words with similarity values above a cutoff.

Word association norms: Word associations have
been of great interest in psycholinguistic research.
Participants are given atarget word and asked to
mention words that readily come to mind. The most
frequent among these are recorded asfree associa-
tions for that target. They form another interesting
category of expansions for our purpose because they
are known to be frequently recalled by human sub-

jects for a particular stimulus word. We added the
associations for prompt words from a collection of
5000 target words with their associations produced
by about 6000 participants (Nelson et al., 1998).
Sample associations for the word“friendly” include
“smile” , “amiable” , “greet” and“mean” .

3.2 Weighting of prompt words and expansions

After expansion, the prompt lengths vary between
87 (word associations) and 229 (distributionally
similar words) content words, considerably higher
than the original average length of 9 and 13 content
words. We use a simple weighting scheme3 to mit-
igate the influence of noisy expansions. We assign
a weight of 20 to original prompt words and 1 to all
the expansions. While computing similarity, we use
these weight values as the assumed frequency of the
word in the prompt. In this case, the term frequency
of original words is set as 20 and all expansion terms
are considered to appear once in the new prompt.

4 Spelling correction of essay text

Essays written by learners of a language are prone to
spelling errors. When such errors occur in the use of
the prompt words, prompt-based techniques will fail
to identify the essay as on-topic even if it actually is.
The usefulness of expansion could also be limited
if there are several spelling errors in the essay text.
Hence we explored the correction of spelling errors
in the essay before off-topic detection.

We use a tool from Leacock and Chodorow
(2003) to performdirectedspelling correction, ie.,
focusing on correcting the spellings of words most
likely to match a giventargetlist. We use the prompt
words as the targets. We also explore the simultane-
ous use of spelling correction and expansion. We
first obtain expansion words from one of our unsu-
pervised methods. We then use these along with
the prompt words for spelling correction followed
by matching of the expanded prompt and essay text.

5 Results and discussion

We used our proposed methods on the two essay col-
lections with very short prompts,Type 3written by

3Without any weighting there was an increase in error rates
during development tests. We also experimented with a graph-
based approach to term weighting which gave similar results.
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advanced test takers andType 4written by learn-
ers of English. Table 2 compares the suggested en-
hancements with the previously proposed method by
Higgins et al. (2006). As discussed in Section 2.3,
using only the original prompt words, error rates are
around 10% for both essay types. For advanced test
takers, the false positive rates are lower, around 3%.

Usefulness of expanded promptsAll the expansion
methods lower the false positive error rates on es-
says written by learners with almost no increase in
the rate of false negatives. On average, the false
positive errors are reduced by about 3%. Inflected
forms constitute the best individual expansion cat-
egory. The overall best performance on this type
of essays is obtained by combining inflected forms
with word associations.

In contrast, for essays written by advanced test
takers, inflected forms is the worst expansion cate-
gory. Here word associations give the best results
reducing both false positive and false negative er-
rors; the reduction in false positives is almost 50%.
These results suggest that advanced users of English
use more diverse vocabulary in their essays which
are best matched by word associations.

Effect of spelling correction For essays written by
learners, spell-correcting the essay text before com-
parison (Spell) leads to huge reductions in error
rates. Using only the original prompt, the false pos-
itive rate is 4% lower with spelling correction than
without. Note that this result is even better than the
best expansion technique–inflected forms. However,
for essays written by advanced users, spelling cor-
rection does not provide any benefits. This result
is expected since these test-takers are less likely to
produce many spelling errors.

Combination of methodsThe benefits of the two
methods appear to be population dependent. For
learners of English, a spelling correction module
is necessary while for advanced users, the benefits
are minimal. On the other hand, prompt expansion
works extremely well for essays written by advanced
users. The expansions are also useful for essays
written by learners but the benefits are lower com-
pared to spelling correction. However, for both es-
say types, the combination of spelling correction and
best prompt expansion method (Spell + best expn.)
is better compared to either of them individually.

Learners Advanced
Method FP FN FP FN
Prompt only 9.73 11.07 2.94 9.06
Synonyms 7.03 12.01 1.39 9.76
Dist. 6.45 11.77 1.63 8.98
WAN 6.33 11.97 1.59 8.74
Infl. forms 6.25 11.65 2.53 9.06
Infl. forms + WAN 6.04 11.48 - -
Spell 5.43 12.71 2.53 9.27
Spell + best expn. 4.66 11.97 1.47 9.02

Table 2: Average error rates after prompt expansion and
spelling correction

Therefore the best policy would be to use both en-
hancements together for prompt-based methods.

6 Conclusion

We have described methods for improving the accu-
racy of off-topic essay detection for short prompts.
We showed that it is possible to predict words that
are likely to be used in an essay based on words that
appear in its prompt. By adding such words to the
prompt automatically, we built a better representa-
tion of prompt content to compare with the essay
text. The best combination included inflected forms
and word associations, reducing the false positives
by almost 4%. We also showed that spelling correc-
tion is a very useful preprocessing step before off-
topic essay detection.
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