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Abstract which is on the web accessible to automatic process-
ing. There are at least three different ways in which
In this paper, we consider the problem of in- this can be done. First, factual knowledge on the
ductively learning rules from specific facts ex- web can be extracted as formal relations or tuples
tracted from texts. This problem is challeng- of a data base. A number of information extraction
ing due to two reasons. First, natural texts  gystems, starting from the WebKb project (Craven et
areradically incompletssince there are always al., 2000), to Whirl (Cohen, 2000) to the TextRunner

too many facts to mention. Second, natural e . .
texts aresystematically biasetbwards nov- (Etzioni et al., 2008) project are of this kind. They

elty and surprise, which presents an unrep- typically learn patterns or rules that can be applied
resentative sample to the learner. Our solu-  tO text to extract instances of relations. A second

tions to these two problems are based on build- ~ possibility is to learn general knowledge, rules, or
ing a generative observation model of whatis ~ general processes and procedures by reading natural
mentioned and what is extracted given what  |anguage descriptions of them, for example, extract-
is true. We first present Blultiple-predicate ing formal descriptions of the rules of the United
Bootstrappingapproach that consists of it- States Senate or a recipe to make a dessert. A third

eratively learning if-then rules based on an inst f hi dingiis t lize the fact
implicit observation model and then imput- instance of machine reading is to generalize the facts

ing new facts implied by the learned rules. extracted from the text to learn more general knowl-
Second, we present an iteratigrsemble co- edge. For example, one might learn by generalizing
learning approach, where multiple decision- from reading the obituaries that most people live less

trees are learned from bootstrap samples of  than 90 years, or people tend to live and die in the

the incomplete training data, and facts are im-  countries they were born in. In this paper, we con-

puted based on weighted majority. sider the problem of learning such general rules by
reading about specific facts.

1 Introduction At first blush, learning rules by reading specific
facts appears to be a composition of information ex-
One of the principal goals of learning by readingraction followed by rule induction. In the above ex-
is to make the vast amount of natural language teximple of learning from obituaries, there is reason to
T This material is based upon work supported by the pebelieve that this reductionist apprqach would work
fense Advanced Research Projects Agency (DARPA) undé¥ell. However, there are two principal reasons why
Contract No. FA8750-09-C-0179. Any opinions, findings andhis approach of learning directly from natural texts
conclusions or recommendations expressed in this matesal g problematic. One is that, unlike databases, the nat
those of the author(s) and do not necessarily reflect thesvidw . . .
the DARPA, or the Air Force Research Laboratory (AFRL). Weural texts areadically incomplete By this we megn_
thank the reviewers for their insightful comments and helpf that many of the facts that are relevant to predicting
suggestions. the target relation might be missing in the text. This
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is so because in most cases the set of relevant facdsmportant in making correct statistical inferences.
is open ended. In the above example, wrong probabilities would be
The second problem, in some ways more worriderived if one assumes that the birth place informa-
some, is that the natural language textssygtemat- tion is missing at random.
ically biasedtowards newsworthiness, which corre- In this paper we introduce the notion of a “men-
lates with infrequency or novelty. This is sometimegion model,” which models the generative process
called “the man bites a dog phenomendn.Un- of what is mentioned in a document. We also ex-
fortunately the novelty bias violates the most comtend this using an “extraction model,” which rep-
mon assumption of machine learning that the trairresents the errors in the process of extracting facts
ing data is representative of the underlying truth, ofrom the text documents. The mention model and
equivalently, that any missing information is missthe extraction model together represent the probabil-
ing at random. In particular, since natural langaugiy that some facts are extracted given the true facts.
texts are written for people who already possess a For learning, we could use an explicit mention
vast amount of prior knowledge, communication efmodel to score hypothesized rules by calculating the
ficiency demands that facts that can be easily irprobability that a rule is satisfied by the observed
ferred by most people are left out of the text. evidence and then pick the rules that are most likely
To empirically validate our two hypotheses of radgiven the evidence. In this paper, we take the sim-
ical incompleteness and systematic bias of naturpler approach of directly adapting the learning al-
texts, we have examined a collection of 248 docgorithms to arimplicit mention model, by changing
uments related to the topics of people, organizahe way a rule is scored by the available evidence.
tions, and relationships collected by the Linguistic Since each text document involves multiple pred-
Data Consortium (LDC). We chose the target relaicates with relationships between them, we learn
tionship of the birth place of a person. It turnedrules to predict each predicate from the other pred-
out that the birth place of some person is only mericates. Thus, the goal of the system is to learn a
tioned 23 times in the 248 documents, illustratingsufficiently large set of rules to infer all the miss-
the radical incompleteness of texts mentioned eaing information as accurately as possible. To ef-
lier. Moreover, in 14 out of the 23 mentions of thefectively bootstrap the learning process, the learned
birth place, the information violates some default infules are used on the incomplete training data to im-
ferences. For example, one of the sentences readgute new facts, which are then used to induce more
“Ahmed Said Khadr, an Egyptian-born Cana-rules in subsequent iterations. This approach is most
dian, was killed last October in Pakistan. similar to the coupled semi-supervised learning of
Presumably the phrase “Egyptian-born” was con(Carlson et al., 2010) and general bootstrapping ap-
sidered important by the reporter because it vigeroaches in natural language processing (Yarowsky,
lates our expectation that most Canadians are bot995). Since this is in the context of multiple-
in Canada. If Khadr was instead born in Canaddyredicate learning in inductive logic programming
the reporter would mostly likely have left out (ILP) (DeRaedt and Lavragc, 1996), we call this ap-
“Canadian-born” because it is too obvious to menproach “Multiple-predicate Bootstrapping.”
tion given he is a Canadian. In all the 9 cases where One problem with Multiple-predicate Bootstrap-
the birth place does not violate the default assumgping is potentially large variance. To mitigae this,
tions, the story is biographical, e.g., an obituary. we consider the bagging approach, where multi-
In general, only a small part of the whole truth isple rule sets are learned from bootstrap samples of
ever mentioned in a given document. Thus, the réhe training data with an implicit mention model to
porter has to make some choices as to what to megeore the rules. We then use these sets of rules as an
tion and what to leave out. The key insight of thissnsemble to impute new facts, and repeat the pro-
paper is that considering how these choices are magess.
1“When a dog bites a man, that is not news, because it hap- We evaluate both of these approa}ches on r_eal
pens so often. But if a man bites a dog, that is news,” ateut WOrld data processed through synthetic observation
to John Bogart of New York Sun among others. models. Our results indicate that when the assump-
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tions of the learner suit the observation model, th&ained by marginalizing over possible true and men-
learner’'s performance is quite good. Further, wdoned databases. Thus, in principle, the maximum
show that the ensemble approach significantly inlikelihood approach to rule learning could work by

proves the performance of Multiple-predicate Booteonsidering each set of rules and evaluating its pos-

strapping. terior given the extracted database, and picking the
best set. While conceptually straightforward, this
2 Probabilistic Observation Model approach is highly intractable due to the need to

_ _ o _ marginalize over all possible mentioned and true
In this section, we will introduce a notional prob-gatabases. Moreover, it seems unnecessary to force
are extracted by the programs from the text giveBets do not always conflict. In the next section, we

rules of the domain of discourse. algorithms directly to score and learn rules using an
The observation model is composed of then-  implicit mention model.

tion modeland theextraction model The men-
tion model P(MentDB|TrueDB, Rules) mod-
els the probability distribution of mentioned facts,
MentD B, given the set of true factBrueD B and

the rules of the domainRules. For example, if Qur first approach, called “Multiple-predicate Boot-
a fact is always true, then the novelty bias dictatestrapping,” is inspired by several pieces of work
that it isnot mentioned with a high probability. The including co-training (Blum and Mitchell, 1998),
same is true of any fact entailed by a generally valighultitask learning (Caruana, 1997), coupled semi-
rule that is common knowledge. For example, thigupervised learning (Carlson et al., 2010) and self-
model predicts that since it is common knowledgeraining (Yarowsky, 1995). It is based on learning a
that Canadians are born in Canada, the birth plaggt of rules for all the predicates in the domain given
is not mentioned if a person is a Canadian and wage others and using them to infer (impute) the miss-
born in Canada. ing facts in the training data. This is repeated for

The extraction modelP(ExtrDB|MentDB) several iterations until no more facts can be inferred.
models the probability distribution of extractedThe support of a rule is measured by the number of
facts, given the set of mentioned fadi$entDB. records which satisfy the body of the rule, where
For example, it might model that explicit facts areeach record roughly corresponds to a collection of
extracted with high probability and that the extractedelated facts that can be independently generated,
facts are corrupted by coreference errors. Note thetg., information about a single football game or a
the extraction process operates only on the mesingle news item. The higher the support, the more
tioned part of the databasé entDB; it has no in-  statistical evidence we have for judging its predictive
dependent access to tiieueD B or the Rules. In accuracy. To use a rule to impute facts, it needs to
other words, the mentioned databakentDB d-  be “promoted,” which means it should pass a certain
separates the extracted databasgér DB from the threshold supporievel. We measure the precision of
true databas&rueD B and theRules, and the con- a rule as the ratio of the number of records that non-
ditional probability decomposes. trivially satisfy the rule to the number that satisfy its

We could also model multiple documents generbody, which is a proxy for the conditional probabil-
ated about the same set of fa€sue D B, and multi- ity of the head given the body. A rule is non-trivially
ple databases independently extracted from the sarmsatisfied by a record if the rule evaluates to true on
document by different extraction systems. Given athat record for all possible instantiations of its vari-
explicit observation model, the learner can use it tables, and there is at least one instantiation that sat-
consider different rule sets and evaluate their likeisfies its body. Given multiple promoted rules which
lihood given some data. The posterior probabilityapply to a given instance, we pick the rule with the
of a rule set given an extracted database can be diighest precision to impute its value.
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3.1 Implicit Mention M odels this mention model suggests counting the evidence

We adapt the multiple-predicate bootstrapping alJ_ractionalIy in proportion to its predicted prevalence.

proach to the case of incomplete data by adjustin_'gzlo"owmg the previous work on learning from miss-

the scoring function of the learning algorithm to re"9 data, we call this scoring method “distributional”

spect the assumed mention model. Unlike in thg>aar-Tsechansky and Provost, 2007). In distribu-
maximum likelihood approach discussed in the preional scoring, we typically learn a distribution over
vious section, there is no explicit mention modefhe values of a literal given its argument and use it to

used by the learner. Instead the scoring function &SSIgn @ fractional count to the evidence. This is the
optimized for a presumeiinplicit mention model. approach taken to account for missing data in Quin-

We now discuss three specific mention models arfd's decision tree algorithm (Quinlan, 1986). We
the corresponding scoring functions. will use this as part of our Ensemble Co-Learning

approach of the next section.
Positive Mention Modd: In the “positive men-

tion model,” it is assumed that any missing fac8.2 Experimental Results

is false. .This jugtifies countin_g evidence usindye  evaluated Multiple-predicate  Bootstrap-
the negation by failure assumption of Prolog. Weing with implicit mention models on the

call this scoring method “conservative.” For exaMscnema-based NFL database retrieved  from
ple, the text “Khadr, a Canadian citizen, was killedyyy, dat abasef oot bal | . com We developed

in Pakistan” is counted as not supporting the rulgyo different synthetic observation models. The

citizen(X,Y) = bornin(X, YY), as we are gpgervation models are based on the Novelty
not told thatoor nl n(Khadr, Canada) . Positive  mention model and the Random mention model

mention model is inapplicable for most instances ofnq assume perfect extraction in each case. The

learning from natural texts, except for special casgg)iowing predicates are manually provided:
such as directory web pages.

Novelty Mention Model:  In the “novelty mention * gameWnner (Game, Tean),

model,” it is assumed that facts are missing only ganelLoser (Gane, Tean),
when they are entailed by other mentioned facts and

rules that are common knowledge. This suggests ¢ honeTean( Gane, Tean),

an “aggressive” or optimistic scoring of candidate

rules, which interprets a missing fact so that it sup- e away Tean( Gane, Tean),and
ports the candidate rule. More precisely, a rule is

counted as non-trivially satisfied by a record if there ® team nGame(Team Gane),
is some way of imputing the missing facts in the

record without causing contradiction.  For exam?’ ith the natural interpretations. To simplify arith-

ple, the text “Khadr, a Canadian citizen was killedne'[IC reasoning we replaceql the numeric tea”?
scores in the real database with two defined predi-

in Pakistan” is counted as non-trivially supportin
L. y supp gcatest eantSmal | er Scor e( Team Gane) and
theruleciti zen(X,Y) = bornln(X Y) be- -
. t eanty eat er Score( Team Gane) to indi-
cause, addingor nl n(Khadr, Canada) sup- :
. . . cate the teams with the smaller and the greater
ports the rule without contradicting the available ev-S cores
idence. On the other hand, the above text do€s ' _
We generate two sets of synthetic data as follows.

not support the rul&ki I  edl n(X,Y) = cit- . .
i zen(X, Y) because the rule contradicts the evi" the Random mention model, each predicate ex-

dence, assuming that t i zen is a functional rela- cept thet ea_m nGane p_redlcate is omitted inde-
tionship. pendently with probabilityp. The Novelty men-

tion model, on the other hand, relies on the fact
Random Mention Model: In the “random men- that gameW nner, ganelLoser, andt eanti -
tion model,” it is assumed that facts are missing atal Scor e are mutually correlated, as an@ne-
random. Since the random facts can be true or falsEeamandaway Team Thus, it picks one predicate
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Multiple—predicate Bootstrapping Results for FARMER Multiple—predicate Bootstrapping Results for FOIL
(Aggressive—Novelty Model) (Aggressive—Novelty Model)
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Figure 1: Multiple-predicate bootstrapping Results forFARMER using aggressive-novelty model (b) FOIL using
aggressive-novelty model (¢) FARMER with support thredHi®0 (d) FOIL with support threshold 120

from the first group to mention its values, and omit{Nijssen and Kok, 2003). Both systems were applied
seach of the other predicates independently witto learn rules for all target predicates. One important
some probabilityy. Similarly it gives a value to one difference to note here is that while FARMER seeks
of the two predicates in the second group and omitl rules that exceed the necessary support threshold,
the other predicate with probability. One conse- FOIL only learns rules that are sufficient to classify
guence of this model is that it always has one of thall training instances into those that satisfy the tar-
predicates in the first group and one of the predicataget predicate and those that do not. Secondly, FOIL
in the second group, which is sufficient to infer eviries to learn maximally deterministic rules, while
erything if one knew the correct domain rules. WEEARMER is parameterized by the minimum preci-
evaluate two scoring methods: the aggressive scaion of a rule. We have not modified the way they
ing and the conservative scoring. interpret missing features during learning. However,
after the learning is complete, the rules learned by

FOIL, which learns relational rules using a greed oth apprqaches are scpred by interpretirjg the miss-
covering algorithm (Quinlan, 1990: Cameron N9 data either aggressively or conservatively as de-

Jones and Quinlan, 1994), and Nijssen and Kok%Crlbed in the previous section.

FARMER, which is a relational data mining algo- We ran both systems on synthetic data generated

rithm that searches for conjunctions of literals ofusing different parameters that control the fraction

large support using a bottom-up depth first searabf missing data and the minimum support threshold
74
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needed for promotion. In Figures 1(a) and 1(b), the One way to guard against the variance problem
X and Y-axes show the fraction of missing predi-is to use an ensemble approach. In this section we
cates and the support threshold for the novelty menest the hypothesis that an ensemble approach would
tion model and aggressive scoring of rules for FOIlbe more robust and exhibit less variance in the con-
and FARMER. On the Z-axis is the accuracy of pretext of learning from incomplete examples with an
dictions on the missing data, which is the fractionmplicit mention model. For the experiments in this
of the total number of initially missing entries thatsection, we employ a decision tree learner that uses a
are correctly imputed. We can see that aggressiwbstributional scoring scheme to handle missing data
scoring of rules with the novelty mention model peras described in (Quinlan, 1986).
forms very well even for large numbers of missing While classifying an instance, when a missing
values for both FARMER and FOIL. FARMER's value is encountered, the instance is split into multi-
performance is more robust than FOIL's becausgle pseudo-instances each with a different value for
FARMER learns all correct rules and uses whichevahe missing feature and a weight Corresponding to
rule fires. For example, in the NFL domain, itthe estimated probability for the particular missing
could infer ganeW nner from ganeLoser or value (based on the frequency of values at this split
t eanSmal | er Scor e ort eantr eat er Scor €. in the training data). Each pseudo-instance is passed
In contrast, FOIL's covering strategy prevents idown the tree according to its assigned value. Af-
from learning more than one rule if it finds one per+ter reaching a leaf node, the frequency of the class
fect rule. The results show that FOIL's performancen the training instances associated with this leaf is
degrades at larger fractions of missing data and largeturned as the class-membership probability of the
support thresholds. pseudo-instance. The overall estimated probability
Figures 1(c) and 1(d) show the accuracy of presf class membership is calculated as the weighted
diction vs. percentage of missing predicates foaverage of class membership probabilities over all
each of the mention models and the scoring metipseudo-instances. If there is more than one missing
ods for FARMER and FOIL for a support thresholdvalue, the process recurses with the weights com-
of 120. They show that agressive scoring clearly oubining multiplicatively. The process is similar at
performs conservative scoring for data generated uthe training time, except that the information gain
ing the novelty mention model. In FOIL, aggressiveat the internal nodes and the class probabilities at
scoring also seems to outperform conservative scahe leaves are calculated based on the weights of the
ing on the dataset generated by the random mentieelevant pseudo-instances.
model at high levels of missing data. In FARMER, e use theonfidence levebr pruning a decision
the two methods perform similarly. However, thesgree as a proxy for support of a rule in this case. By

results should be interpreted cautiously as they aggtting this parameter to different values, we can ob-
derived from a single dataset which enjoys determingin different degrees of pruning.

istic rules. We are working towards a more robust Experimental Results We use the Congres-

evaluation in multiple domains as well as data eXgjona] \oting Records database for our experi-
tracted from natural texts. ments. The (non-text) database includes the party
) ) o affiliation and votes on 16 measures for each mem-
4 Ensemble Co-learning with an Implicit ber of the U.S House Representatives. Although this
Mention Model database (just like the NFL database) is complete,

amtljunt_s of ]Era'ng_ da:f_" are mlssml%. Agglj_ressr:v&ose with unknown values for training, but do not
eva uatlpn ot rules |n.t IS casg would amplify t Ccount the errors on these unknown values. We ex-
contradictory conclusions of different rules. Thus,

picking only one rule among the many possible rules 2y //archive.ics.uci.edu/mi/datasets/
could lead to dangerously large variance. Congressional+Voting+Records
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Ensemble Co-learning with Random model Ensemble Co-learning with Novelty model
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Figure 2: Results for (a) Ensemble co-learning with Randoemtion model (b) Ensemble co-learning with Nov-
elty mention model (c) Ensemble co-learning vs Multiplegicate Bootstrapping with Random mention model (d)
Ensemble co-learning vs Multiple-predicate Bootstragpiuith Novelty mention model

periment with two different implicit mention mod- pute the values using a majority vote. Note that, the
els: Random and Novelty. These are similar to thosdecision tree cannot always classify an instance suc-
we defined in the previous section. In the Randomessfully. Therefore, we will impute the values only
mention model, each feature in the dataset is omittefithe count of majority vote is greater than some
independently with a probability. Since we don’t minimum threshold (margin). In our experiments,
know the truely predictive rules here unlike in thewe use a margin value equal to half of the ensem-
football domain, we learn the novelty model fromble size and a fixed support of 0.3 (i.e., the confi-
the complete dataset. Using the complete datasé¢nce level for pruning) while learning the decision
which hasn features, we learn a decision tree to pretrees. We employ J48, the WEKA version of Quin-
dict each feature from all the remaining features. Wkan's C4.5 algorithm to learn our decision trees. We
use these decision trees to define our novelty mencompute the accuracy of predictions on the missing
tion model in the following way. For each instancedata, which is the fraction of the total number of ini-
in the complete dataset, we randomly pick a featurally missing entries that are imputed correctly. We
and see if it can be predicted from all the remainreport the average results of 20 independent runs.
ing features using the predictive model. If it can We test the hypothesis that the Ensemble Co-
be predicted, then we will omit it with probability learning is more robust and exhibit less variance
p and mention it otherwise. We use different bootin the context of learning from incomplete exam-
strap samples to learn the ensemble of trees and iples when compared to Multiple-predicate Boot-
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