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Abstract

In this paper, we consider the problem of in-
ductively learning rules from specific facts ex-
tracted from texts. This problem is challeng-
ing due to two reasons. First, natural texts
areradically incompletesince there are always
too many facts to mention. Second, natural
texts aresystematically biasedtowards nov-
elty and surprise, which presents an unrep-
resentative sample to the learner. Our solu-
tions to these two problems are based on build-
ing a generative observation model of what is
mentioned and what is extracted given what
is true. We first present aMultiple-predicate
Bootstrappingapproach that consists of it-
eratively learning if-then rules based on an
implicit observation model and then imput-
ing new facts implied by the learned rules.
Second, we present an iterativeensemble co-
learning approach, where multiple decision-
trees are learned from bootstrap samples of
the incomplete training data, and facts are im-
puted based on weighted majority.

1 Introduction

One of the principal goals of learning by reading
is to make the vast amount of natural language text� This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Contract No. FA8750-09-C-0179. Any opinions, findings and
conclusions or recommendations expressed in this materialare
those of the author(s) and do not necessarily reflect the views of
the DARPA, or the Air Force Research Laboratory (AFRL). We
thank the reviewers for their insightful comments and helpful
suggestions.

which is on the web accessible to automatic process-
ing. There are at least three different ways in which
this can be done. First, factual knowledge on the
web can be extracted as formal relations or tuples
of a data base. A number of information extraction
systems, starting from the WebKb project (Craven et
al., 2000), to Whirl (Cohen, 2000) to the TextRunner
(Etzioni et al., 2008) project are of this kind. They
typically learn patterns or rules that can be applied
to text to extract instances of relations. A second
possibility is to learn general knowledge, rules, or
general processes and procedures by reading natural
language descriptions of them, for example, extract-
ing formal descriptions of the rules of the United
States Senate or a recipe to make a dessert. A third
instance of machine reading is to generalize the facts
extracted from the text to learn more general knowl-
edge. For example, one might learn by generalizing
from reading the obituaries that most people live less
than 90 years, or people tend to live and die in the
countries they were born in. In this paper, we con-
sider the problem of learning such general rules by
reading about specific facts.

At first blush, learning rules by reading specific
facts appears to be a composition of information ex-
traction followed by rule induction. In the above ex-
ample of learning from obituaries, there is reason to
believe that this reductionist approach would work
well. However, there are two principal reasons why
this approach of learning directly from natural texts
is problematic. One is that, unlike databases, the nat-
ural texts areradically incomplete. By this we mean
that many of the facts that are relevant to predicting
the target relation might be missing in the text. This
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is so because in most cases the set of relevant facts
is open ended.

The second problem, in some ways more worri-
some, is that the natural language texts aresystemat-
ically biasedtowards newsworthiness, which corre-
lates with infrequency or novelty. This is sometimes
called “the man bites a dog phenomenon.”1 Un-
fortunately the novelty bias violates the most com-
mon assumption of machine learning that the train-
ing data is representative of the underlying truth, or
equivalently, that any missing information is miss-
ing at random. In particular, since natural langauge
texts are written for people who already possess a
vast amount of prior knowledge, communication ef-
ficiency demands that facts that can be easily in-
ferred by most people are left out of the text.

To empirically validate our two hypotheses of rad-
ical incompleteness and systematic bias of natural
texts, we have examined a collection of 248 doc-
uments related to the topics of people, organiza-
tions, and relationships collected by the Linguistic
Data Consortium (LDC). We chose the target rela-
tionship of the birth place of a person. It turned
out that the birth place of some person is only men-
tioned 23 times in the 248 documents, illustrating
the radical incompleteness of texts mentioned ear-
lier. Moreover, in 14 out of the 23 mentions of the
birth place, the information violates some default in-
ferences. For example, one of the sentences reads:

“Ahmed Said Khadr, an Egyptian-born Cana-
dian, was killed last October in Pakistan.”

Presumably the phrase “Egyptian-born” was con-
sidered important by the reporter because it vio-
lates our expectation that most Canadians are born
in Canada. If Khadr was instead born in Canada,
the reporter would mostly likely have left out
“Canadian-born” because it is too obvious to men-
tion given he is a Canadian. In all the 9 cases where
the birth place does not violate the default assump-
tions, the story is biographical, e.g., an obituary.

In general, only a small part of the whole truth is
ever mentioned in a given document. Thus, the re-
porter has to make some choices as to what to men-
tion and what to leave out. The key insight of this
paper is that considering how these choices are made

1“When a dog bites a man, that is not news, because it hap-
pens so often. But if a man bites a dog, that is news,” attributed
to John Bogart of New York Sun among others.

is important in making correct statistical inferences.
In the above example, wrong probabilities would be
derived if one assumes that the birth place informa-
tion is missing at random.

In this paper we introduce the notion of a “men-
tion model,” which models the generative process
of what is mentioned in a document. We also ex-
tend this using an “extraction model,” which rep-
resents the errors in the process of extracting facts
from the text documents. The mention model and
the extraction model together represent the probabil-
ity that some facts are extracted given the true facts.

For learning, we could use an explicit mention
model to score hypothesized rules by calculating the
probability that a rule is satisfied by the observed
evidence and then pick the rules that are most likely
given the evidence. In this paper, we take the sim-
pler approach of directly adapting the learning al-
gorithms to animplicit mention model, by changing
the way a rule is scored by the available evidence.

Since each text document involves multiple pred-
icates with relationships between them, we learn
rules to predict each predicate from the other pred-
icates. Thus, the goal of the system is to learn a
sufficiently large set of rules to infer all the miss-
ing information as accurately as possible. To ef-
fectively bootstrap the learning process, the learned
rules are used on the incomplete training data to im-
pute new facts, which are then used to induce more
rules in subsequent iterations. This approach is most
similar to the coupled semi-supervised learning of
(Carlson et al., 2010) and general bootstrapping ap-
proaches in natural language processing (Yarowsky,
1995). Since this is in the context of multiple-
predicate learning in inductive logic programming
(ILP) (DeRaedt and Lavraøc, 1996), we call this ap-
proach “Multiple-predicate Bootstrapping.”

One problem with Multiple-predicate Bootstrap-
ping is potentially large variance. To mitigae this,
we consider the bagging approach, where multi-
ple rule sets are learned from bootstrap samples of
the training data with an implicit mention model to
score the rules. We then use these sets of rules as an
ensemble to impute new facts, and repeat the pro-
cess.

We evaluate both of these approaches on real
world data processed through synthetic observation
models. Our results indicate that when the assump-
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tions of the learner suit the observation model, the
learner’s performance is quite good. Further, we
show that the ensemble approach significantly im-
proves the performance of Multiple-predicate Boot-
strapping.

2 Probabilistic Observation Model

In this section, we will introduce a notional prob-
abilistic observation model that captures what facts
are extracted by the programs from the text given
the true facts about the world and the common sense
rules of the domain of discourse.

The observation model is composed of themen-
tion model and theextraction model. The men-
tion model P (MentDBjTrueDB;Rules) mod-
els the probability distribution of mentioned facts,MentDB, given the set of true factsTrueDB and
the rules of the domain,Rules. For example, if
a fact is always true, then the novelty bias dictates
that it isnot mentioned with a high probability. The
same is true of any fact entailed by a generally valid
rule that is common knowledge. For example, this
model predicts that since it is common knowledge
that Canadians are born in Canada, the birth place
is not mentioned if a person is a Canadian and was
born in Canada.

The extraction modelP (ExtrDBjMentDB)
models the probability distribution of extracted
facts, given the set of mentioned factsMentDB.
For example, it might model that explicit facts are
extracted with high probability and that the extracted
facts are corrupted by coreference errors. Note that
the extraction process operates only on the men-
tioned part of the databaseMentDB; it has no in-
dependent access to theTrueDB or theRules. In
other words, the mentioned databaseMentDB d-
separates the extracted databaseExtrDB from the
true databaseTrueDB and theRules, and the con-
ditional probability decomposes.

We could also model multiple documents gener-
ated about the same set of factsTrueDB, and multi-
ple databases independently extracted from the same
document by different extraction systems. Given an
explicit observation model, the learner can use it to
consider different rule sets and evaluate their like-
lihood given some data. The posterior probability
of a rule set given an extracted database can be ob-

tained by marginalizing over possible true and men-
tioned databases. Thus, in principle, the maximum
likelihood approach to rule learning could work by
considering each set of rules and evaluating its pos-
terior given the extracted database, and picking the
best set. While conceptually straightforward, this
approach is highly intractable due to the need to
marginalize over all possible mentioned and true
databases. Moreover, it seems unnecessary to force
a choice between sets of rules, since different rule
sets do not always conflict. In the next section, we
describe a simpler approach of adapting the learning
algorithms directly to score and learn rules using an
implicit mention model.

3 Multiple-predicate Bootstrapping with
an Implicit Mention Model

Our first approach, called “Multiple-predicate Boot-
strapping,” is inspired by several pieces of work
including co-training (Blum and Mitchell, 1998),
multitask learning (Caruana, 1997), coupled semi-
supervised learning (Carlson et al., 2010) and self-
training (Yarowsky, 1995). It is based on learning a
set of rules for all the predicates in the domain given
the others and using them to infer (impute) the miss-
ing facts in the training data. This is repeated for
several iterations until no more facts can be inferred.
The support of a rule is measured by the number of
records which satisfy the body of the rule, where
each record roughly corresponds to a collection of
related facts that can be independently generated,
e.g., information about a single football game or a
single news item. The higher the support, the more
statistical evidence we have for judging its predictive
accuracy. To use a rule to impute facts, it needs to
be “promoted,” which means it should pass a certain
threshold supportlevel. We measure the precision of
a rule as the ratio of the number of records that non-
trivially satisfy the rule to the number that satisfy its
body, which is a proxy for the conditional probabil-
ity of the head given the body. A rule is non-trivially
satisfied by a record if the rule evaluates to true on
that record for all possible instantiations of its vari-
ables, and there is at least one instantiation that sat-
isfies its body. Given multiple promoted rules which
apply to a given instance, we pick the rule with the
highest precision to impute its value.
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3.1 Implicit Mention Models

We adapt the multiple-predicate bootstrapping ap-
proach to the case of incomplete data by adjusting
the scoring function of the learning algorithm to re-
spect the assumed mention model. Unlike in the
maximum likelihood approach discussed in the pre-
vious section, there is no explicit mention model
used by the learner. Instead the scoring function is
optimized for a presumedimplicit mention model.
We now discuss three specific mention models and
the corresponding scoring functions.

Positive Mention Model: In the “positive men-
tion model,” it is assumed that any missing fact
is false. This justifies counting evidence using
the negation by failure assumption of Prolog. We
call this scoring method “conservative.” For exam-
ple, the text “Khadr, a Canadian citizen, was killed
in Pakistan” is counted as not supporting the rule
citizen(X,Y) ) bornIn(X,Y), as we are
not told thatbornIn(Khadr,Canada). Positive
mention model is inapplicable for most instances of
learning from natural texts, except for special cases
such as directory web pages.

Novelty Mention Model: In the “novelty mention
model,” it is assumed that facts are missing only
when they are entailed by other mentioned facts and
rules that are common knowledge. This suggests
an “aggressive” or optimistic scoring of candidate
rules, which interprets a missing fact so that it sup-
ports the candidate rule. More precisely, a rule is
counted as non-trivially satisfied by a record if there
is some way of imputing the missing facts in the
record without causing contradiction. For exam-
ple, the text “Khadr, a Canadian citizen was killed
in Pakistan” is counted as non-trivially supporting
the rulecitizen(X,Y) ) bornIn(X,Y) be-
cause, addingbornIn(Khadr, Canada) sup-
ports the rule without contradicting the available ev-
idence. On the other hand, the above text does
not support the rulekilledIn(X,Y) ) cit-
izen(X,Y) because the rule contradicts the evi-
dence, assuming thatcitizen is a functional rela-
tionship.

Random Mention Model: In the “random men-
tion model,” it is assumed that facts are missing at
random. Since the random facts can be true or false,

this mention model suggests counting the evidence
fractionally in proportion to its predicted prevalence.
Following the previous work on learning from miss-
ing data, we call this scoring method “distributional”
(Saar-Tsechansky and Provost, 2007). In distribu-
tional scoring, we typically learn a distribution over
the values of a literal given its argument and use it to
assign a fractional count to the evidence. This is the
approach taken to account for missing data in Quin-
lan’s decision tree algorithm (Quinlan, 1986). We
will use this as part of our Ensemble Co-Learning
approach of the next section.

3.2 Experimental Results

We evaluated Multiple-predicate Bootstrap-
ping with implicit mention models on the
schema-based NFL database retrieved from
www.databasefootball.com. We developed
two different synthetic observation models. The
observation models are based on the Novelty
mention model and the Random mention model
and assume perfect extraction in each case. The
following predicates are manually provided:� gameWinner (Game, Team),� gameLoser(Game, Team),� homeTeam(Game, Team),� awayTeam(Game, Team), and� teamInGame(Team, Game),

with the natural interpretations. To simplify arith-
metic reasoning we replaced the numeric team
scores in the real database with two defined predi-
catesteamSmallerScore(Team, Game) and
teamGreaterScore(Team, Game) to indi-
cate the teams with the smaller and the greater
scores.

We generate two sets of synthetic data as follows.
In the Random mention model, each predicate ex-
cept theteamInGame predicate is omitted inde-
pendently with probabilityp. The Novelty men-
tion model, on the other hand, relies on the fact
that gameWinner, gameLoser, andteamFi-
nalScore are mutually correlated, as arehome-
Team andawayTeam. Thus, it picks one predicate
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Figure 1: Multiple-predicate bootstrapping Results for (a) FARMER using aggressive-novelty model (b) FOIL using
aggressive-novelty model (c) FARMER with support threshold 120 (d) FOIL with support threshold 120

from the first group to mention its values, and omit-
seach of the other predicates independently with
some probabilityq. Similarly it gives a value to one
of the two predicates in the second group and omits
the other predicate with probabilityq. One conse-
quence of this model is that it always has one of the
predicates in the first group and one of the predicates
in the second group, which is sufficient to infer ev-
erything if one knew the correct domain rules. We
evaluate two scoring methods: the aggressive scor-
ing and the conservative scoring.

We employed two learning systems: Quinlan’s
FOIL, which learns relational rules using a greedy
covering algorithm (Quinlan, 1990; Cameron-
Jones and Quinlan, 1994), and Nijssen and Kok’s
FARMER, which is a relational data mining algo-
rithm that searches for conjunctions of literals of
large support using a bottom-up depth first search

(Nijssen and Kok, 2003). Both systems were applied
to learn rules for all target predicates. One important
difference to note here is that while FARMER seeks
all rules that exceed the necessary support threshold,
FOIL only learns rules that are sufficient to classify
all training instances into those that satisfy the tar-
get predicate and those that do not. Secondly, FOIL
tries to learn maximally deterministic rules, while
FARMER is parameterized by the minimum preci-
sion of a rule. We have not modified the way they
interpret missing features during learning. However,
after the learning is complete, the rules learned by
both approaches are scored by interpreting the miss-
ing data either aggressively or conservatively as de-
scribed in the previous section.

We ran both systems on synthetic data generated
using different parameters that control the fraction
of missing data and the minimum support threshold
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needed for promotion. In Figures 1(a) and 1(b), the
X and Y-axes show the fraction of missing predi-
cates and the support threshold for the novelty men-
tion model and aggressive scoring of rules for FOIL
and FARMER. On the Z-axis is the accuracy of pre-
dictions on the missing data, which is the fraction
of the total number of initially missing entries that
are correctly imputed. We can see that aggressive
scoring of rules with the novelty mention model per-
forms very well even for large numbers of missing
values for both FARMER and FOIL. FARMER’s
performance is more robust than FOIL’s because
FARMER learns all correct rules and uses whichever
rule fires. For example, in the NFL domain, it
could infer gameWinner from gameLoser or
teamSmallerScore or teamGreaterScore.
In contrast, FOIL’s covering strategy prevents it
from learning more than one rule if it finds one per-
fect rule. The results show that FOIL’s performance
degrades at larger fractions of missing data and large
support thresholds.

Figures 1(c) and 1(d) show the accuracy of pre-
diction vs. percentage of missing predicates for
each of the mention models and the scoring meth-
ods for FARMER and FOIL for a support threshold
of 120. They show that agressive scoring clearly out-
performs conservative scoring for data generated us-
ing the novelty mention model. In FOIL, aggressive
scoring also seems to outperform conservative scor-
ing on the dataset generated by the random mention
model at high levels of missing data. In FARMER,
the two methods perform similarly. However, these
results should be interpreted cautiously as they are
derived from a single dataset which enjoys determin-
istic rules. We are working towards a more robust
evaluation in multiple domains as well as data ex-
tracted from natural texts.

4 Ensemble Co-learning with an Implicit
Mention Model

One weakness of Multiple-predicate Bootstrapping
is its high variance especially when significant
amounts of training data are missing. Aggressive
evaluation of rules in this case would amplify the
contradictory conclusions of different rules. Thus,
picking only one rule among the many possible rules
could lead to dangerously large variance.

One way to guard against the variance problem
is to use an ensemble approach. In this section we
test the hypothesis that an ensemble approach would
be more robust and exhibit less variance in the con-
text of learning from incomplete examples with an
implicit mention model. For the experiments in this
section, we employ a decision tree learner that uses a
distributional scoring scheme to handle missing data
as described in (Quinlan, 1986).

While classifying an instance, when a missing
value is encountered, the instance is split into multi-
ple pseudo-instances each with a different value for
the missing feature and a weight corresponding to
the estimated probability for the particular missing
value (based on the frequency of values at this split
in the training data). Each pseudo-instance is passed
down the tree according to its assigned value. Af-
ter reaching a leaf node, the frequency of the class
in the training instances associated with this leaf is
returned as the class-membership probability of the
pseudo-instance. The overall estimated probability
of class membership is calculated as the weighted
average of class membership probabilities over all
pseudo-instances. If there is more than one missing
value, the process recurses with the weights com-
bining multiplicatively. The process is similar at
the training time, except that the information gain
at the internal nodes and the class probabilities at
the leaves are calculated based on the weights of the
relevant pseudo-instances.

We use theconfidence levelfor pruning a decision
tree as a proxy for support of a rule in this case. By
setting this parameter to different values, we can ob-
tain different degrees of pruning.

Experimental Results: We use the Congres-
sional Voting Records2 database for our experi-
ments. The (non-text) database includes the party
affiliation and votes on 16 measures for each mem-
ber of the U.S House Representatives. Although this
database (just like the NFL database) is complete,
we generate two different synthetic versions of it to
simulate the extracted facts from typical news sto-
ries on this topic. We use all the instances including
those with unknown values for training, but do not
count the errors on these unknown values. We ex-

2http://archive.ics.uci.edu/ml/datasets/
Congressional+Voting+Records
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Figure 2: Results for (a) Ensemble co-learning with Random mention model (b) Ensemble co-learning with Nov-
elty mention model (c) Ensemble co-learning vs Multiple-predicate Bootstrapping with Random mention model (d)
Ensemble co-learning vs Multiple-predicate Bootstrapping with Novelty mention model

periment with two different implicit mention mod-
els: Random and Novelty. These are similar to those
we defined in the previous section. In the Random
mention model, each feature in the dataset is omitted
independently with a probabilityp. Since we don’t
know the truely predictive rules here unlike in the
football domain, we learn the novelty model from
the complete dataset. Using the complete dataset
which hasn features, we learn a decision tree to pre-
dict each feature from all the remaining features. We
use thesen decision trees to define our novelty men-
tion model in the following way. For each instance
in the complete dataset, we randomly pick a feature
and see if it can be predicted from all the remain-
ing features using the predictive model. If it can
be predicted, then we will omit it with probabilityp and mention it otherwise. We use different boot-
strap samples to learn the ensemble of trees and im-

pute the values using a majority vote. Note that, the
decision tree cannot always classify an instance suc-
cessfully. Therefore, we will impute the values only
if the count of majority vote is greater than some
minimum threshold (margin). In our experiments,
we use a margin value equal to half of the ensem-
ble size and a fixed support of 0.3 (i.e., the confi-
dence level for pruning) while learning the decision
trees. We employ J48, the WEKA version of Quin-
lan’s C4.5 algorithm to learn our decision trees. We
compute the accuracy of predictions on the missing
data, which is the fraction of the total number of ini-
tially missing entries that are imputed correctly. We
report the average results of 20 independent runs.

We test the hypothesis that the Ensemble Co-
learning is more robust and exhibit less variance
in the context of learning from incomplete exam-
ples when compared to Multiple-predicate Boot-
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strapping. In Figures 2(a)-(d), the X and Y-axes
show the percentage of missing values and the pre-
diction accuracy. Figures 2(a) and (b) shows the be-
havior with different ensemble sizes (1, 5, 10, 15 and
20) for both Random and Novelty mention model.
We can see that the performance improves as the
ensemble size grows for both random and novelty
models. Figures 2(c) and (d) compares Multiple-
predicate Bootstrapping with the best results over
the different ensemble sizes. We can see that En-
semble Co-learning outperforms Multiple-predicate
Bootstrapping.

5 Discussion

Learning general rules by reading natural language
texts faces the challenges of radical incompleteness
and systematic bias. Statistically, our notion of in-
completeness corresponds to the Missing Not At
Random (MNAR) case, where the probability of an
entry being missed may depend on its value or the
values of other observed variables (Rubin, 1976).

One of the key insights of statisticians is to
build an explicit probabilistic model of missingness,
which is captured by our mention model and ex-
traction model. This missingness model might then
be used in an Expectation Maximization (EM) ap-
proach (Schafer and Graham, 2002), where alter-
nately, the missing values are imputed by their ex-
pected values according to the missingness model
and the model parameters are estimated using the
maximum likelihood approach. Our “Multiple-
predicate Bootstrapping” is loosely analogous to this
approach, except that the imputation of missing val-
ues is done implicitly while scoring the rules, and
the maximum likelihood parameter learning is re-
placed with the learning of relational if-then rules.

In the Multiple Imputation (MI) framework of
(Rubin, 1987; Schafer and Graham, 2002), the goal
is to reduce the variance due to single imputation
by combining the results of multiple imputations.
This is analogous to Ensemble Co-learning, where
we learn multiple hypotheses from different boot-
strap samples of the training data and impute values
using the weighted majority algorithm over the en-
semble. We have shown that the ensemble approach
improves performance.
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