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Abstract 

In Construction Grammar, structurally 
patterned units called constructions are 
assigned meaning in the same way that words 
are –  via convention rather than composition. 
That is, rather than piecing semantics together 
from individual lexical items, Construction 
Grammar proposes that semantics can be 
assigned at the construction level. In this 
paper, we investigate whether a classifier can 
be taught to identify these constructions and 
consider the hypothesis that identifying 
construction types can improve the semantic 
interpretation of previously unseen predicate 
uses. Our results show that not only can the 
constructions be automatically identified with 
high accuracy, but the classifier also performs 
just as well with out-of-vocabulary predicates.  

1 Introduction 

The root of many challenges in natural language 
processing applications is the fact that humans can 
convey a single piece of information in numerous 
and creative ways. Syntactic variations (e.g. I gave 
him my book. vs. I gave my book to him.), the use 
of synonyms (e.g. She bought a used car. vs. She 
purchased a pre-owned automobile.) and 
numerous other variations can complicate the 
semantic analysis and the automatic understanding 
of a text.  

Consider the following sentence. 
 
(1) They hissed him out of the university 
 

While (1) is clearly understandable for humans, to 
automatically discern the meaning of hissed in this 

instance would take more than learning that the 
verb hiss is defined as “make a sharp hissing 
sound” (WordNet 3.0). Knowing that hiss can also 
mean “a show of contempt” is helpful. However, it 
would also require the understanding that the 
sentence describes a causative event if we are to 
interpret this sentence as meaning something like 
“They caused him to leave the university by means 
of hissing or contempt”. 

The problem of novel words, expressions and 
usages are especially significant because 
discriminative learning methods used for automatic 
text classification do not perform as well when 
tested on text with a feature distribution that is 
different from what was seen in the training data. 
This is recognized to be a critical issue in domain 
adaptation (Ben-David et. al, 2006). Whether we 
seek to account for words or usages that are 
infrequent in the training data or to adapt a trained 
classifier to a new domain of text that includes new 
vocabulary or new forms of expressions, success in 
overcoming these challenges partly lies in the 
successful identification and the use of features 
that generalize over linguistic variation. 
 In this paper we borrow from the theories 
presented by Construction Grammar (CxG) to 
explore the development of general features that 
may help account for the linguistic variability and 
creativity we see in the data.  Specifically, we 
investigate whether a classifier can be taught to 
identify constructions as described by CxG and 
gauge their value in interpreting novel words. 

The development of approaches to effectively 
capture such novel semantics will enhance 
applications requiring richer representations of 
language understanding such as machine 
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translation, information retrieval, and text 
summarization. Consider, for instance, the 
following machine translation into Spanish by the 
Google translate (http://translate.google.com/):  
 

They hissed him out of the university. 
 Silbaban fuera de la universidad. 
Tr. They were whistling outside the university.1 
 

The translation has absolutely no implication that a 
group of people did something to cause another 
person to leave the university. However, when the 
verb is changed to a verb that is seen to frequently 
appear in a caused motion interpretation (e.g. 
throw), the results are correct: 
 

They threw him out of the university. 
 Lo sacaron de la universidad. 
Tr. They took him out of the university. 

 
Thus, if we could facilitate a caused motion 
interpretation by bootstrapping semantics from 
constructions (e.g. “X ___ Y out of Z” implies 
caused motion), we could enable accurate 
translations that otherwise would not be possible. 

2 Current Approaches 

In natural language processing (NLP), the issue of 
semantic analysis in the presence of lexical and 
syntactic variability is often perceived as the 
purview of either word sense disambiguation 
(WSD) or semantic role labeling (SRL) or both. In 
the case of WSD, the above issue is often tackled 
through the use of large corpora tagged with sense 
information to train a classifier to recognize the 
different shades of meaning of a semantically 
ambiguous word (Ng and Lee, 2006; Agirre and 
Edmonds, 2006).  In the case of SRL, the goal is to 
identify each of the arguments of the predicate and 
label them according to their semantic relationship 
to the predicate (Gildea and Jurafsky, 2002).   

There are several corpora available for training 
WSD classifiers such as WordNet’s SemCor 
(Miller 1995; Fellbaum 1998) and the GALE 
OntoNotes data (Hovy et. al., 2006). However, 
most, if not all, of these corpora include only a 
small fraction of all English predicates. Since 
WSD systems train separate classifiers for each 
                                                
1 We have hand translated the Google translation back to 
English for comparison. 

predicate, if a particular predicate does not exist in 
the sparse training data, a system cannot create an 
accurate semantic interpretation. Even if the 
predicate is present, the appropriate sense might 
not be. In such a case, the WSD will again be 
unable to contribute to a correct overall semantic 
interpretation. This is the case in example (1), 
where even the extremely fine-grained sense 
distinctions provided by WordNet do not include a 
sense of hiss that is consistent with the caused 
motion interpretation rendered in the example. 

Available for SRL tasks are efforts such as 
PropBank (Palmer et al., 2005) and FrameNet 
(Fillmore et al., 2003) that have developed 
semantic role labels (based on differing 
approaches) and have labeled large corpora for 
training and testing of SRL systems. PropBank 
(PB) identifies and labels the semantic arguments 
of the verb on a verb-by-verb basis, creating a 
separate frameset that includes verb specific 
semantic roles to account for each 
subcategorization frame of the verb. Much like PB, 
FrameNet (FN) identifies and labels semantic 
roles, known as Frame Elements, around a 
relational target, usually a verb.2 But unlike PB, 
Frame Elements less verb specific, but rather are 
defined in terms of semantic structures called 
frames evoked by the verb. That is, one or more 
verbs can be associated with a single semantic 
frame. Currently FN has over 2000 distinct Frame 
Elements.  

The lexical resource VerbNet (Kipper-Schuler, 
2005) details semantic classes of verbs, where a 
class is composed of verbs that have similar 
syntactic realizations, following work by Levin 
(1993). Verbs are grouped by their syntactic 
realization or frames, and each frame is associated 
with a meaning. For example, the verbs loan and 
rent are grouped together in class 13.1 with 
roughly a “give” meaning, and the verbs deposit 
and situate are grouped into 9.1 with roughly a 
“put” meaning.  

Although differing in the nature of their tasks, 
WSD and SRL systems both treat lexical items as 
the source of meaning in a clause. In WSD, for 
every sense we need a new entry in our dictionary 
to be able to interpret the sentence. With SRL, we 

                                                
2 PropBank labels Arg0 and Arg1, for the most part, 
correspond to Dowty’s Prototypical Agent and Prototypical 
Patient, respectively, providing important generalizations. 
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need the semantic role labels that describe the 
predicate argument relationships in order to extract 
the meaning.  

In either case, we are still left with the same 
issue – if the meaning lies in the lexical items, how 
do we interpret unseen words and novel lexical 
usages? As shown in the CoNLL-2005 shared task 
(Carreras and Marquez, 2005), system 
performance numbers drop significantly when a 
classifier, trained on the Wall Street Journal (WSJ) 
corpus, is tested on the Brown corpus. This is 
largely due to the “highly ambiguous and unseen 
predicates (i.e. predicates that do not have training 
examples)” (Giuglea and Moschitti, 2006). 

3 Construction Grammar 

This issue of scalability and generalizability across 
genres could possibly be improved by linking 
semantics more directly with syntax, as theorized 
by Construction Grammar (CxG) (Fillmore et. al., 
1988; Golderg, 1995; Kay, 2002; Michaelis, 2004; 
Goldberg, 2006). This theory suggests that the 
meaning of a sentence arises not only from the 
lexical items but also from the patterned structures 
or constructions they sit in. The meaning of a 
given phrase, a sentence, or an utterance, then, 
arises from the combination of lexical items and 
the syntactic structure in which they are found, 
including any patterned structural configurations 
(e.g. patterns of idiomatic expressions such as 
“The Xer, the Yer” – The bigger, the better) or 
recurring structural elements (e.g. function words 
such as determiners, particles, conjunctions, and 
prepositions). That is, instead of focusing solely on 
the semantic label of words, as is done in SRL and 
in many traditional theories in Linguistics, CxG 
brings more into focus the interplay of lexical 
items and syntactic forms or structural patterns as 
the source of meaning.  

3.1 Application of Construction Grammar 

Thus, rather than just assigning labels at the level 
of lexical items and predicate arguments as a way 
of piecing together the meaning of a sentence, we 
follow the central premise of CxG. Specifically, 
that semantics can be and should be interpreted at 
the level of the larger structural configuration.  

Consider the following three sentences, each 
having the same syntactic structure, each taken 

from different genres of writing available on the 
web. 
 

Blogger arrested - blog him out of jail! [Blog] 
Someone mind controlled me off the cliff. [Gaming] 
He clocked the first pitch into center field. [Baseball] 

 
Each of these sentences makes use of words, 
especially the verb, in ways particular to their 
genre. Even if we are unfamiliar with the specific 
jargon used, as a human we can infer the general 
meaning intended by each of the three sentences: a 
person X causes an entity Y to move in the path 
specified by the prepositional phrase (e.g. third 
sentence: “A player causes something to land in 
the center field.”).   

In a similar way, if we can assign a meaning of 
caused motion at the sentence level and an 
automatic learner can be trained to accurately 
identify the construction, then even when 
presented with an unseen word, a useful semantic 
analysis is still possible. 

3.2 Caused-Motion Construction 

For this effort, we focused on the caused-motion 
construction, which can be defined as having the 
coarse-grained syntactic structure of Subject Noun 
Phrase followed by a verb that takes both a Noun 
Phrase Object and a Prepositional Phrase: (NP-SBJ 
(V NP PP)); and the semantic meaning ‘the agent, 
NP-SBJ, directly causes the patient, NP, to move 
along the path specified by the PP’ (Goldberg 
1995). This construction is exemplified by the 
following sentences from (Goldberg 1995): 
 

(2) Frank sneezed the tissue off the table. 
(3) Mary urged Bill into the house. 
(4) Fred stuffed the papers in the envelope. 
(5) Sally threw a ball to him. 

 
However, not all syntactic structures of the form 
(NP-SBJ (V NP PP)) belong to the caused-motion 
construction. Consider the following sentences. 

 
(6) I considered Ben as one of my brothers. 
(7) Jen took the highway into Pennsylvania. 
(8) We saw the bird in the shopping mall. 
(9) Mary kicked the ball to my relief. 

 
In (6) and (9), the PPs do not specify a location, a 
direction or a path. In (8), the PP is a location; 
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however, the PP indicates the location in which the 
“seeing” event happened, not a path along which 
“we” caused “the bird” to move.  Though the PP in 
(7) expresses a path, it is not a path in which Jen 
causes “the highway” to move. 

3.3 Goals 

As an initial step in determining the usefulness of 
construction grammar for interpreting semantics in 
computational linguistics, we present the results of 
our study aimed at ascertaining if a classifier can 
be taught to identify caused-motion constructions. 
We also report on our investigations into which 
features were most useful in the classification of 
caused-motion constructions.  

4 Data & Experiments 

The data for this study was pulled from the WSJ 
part of Penn Treebank II (Marcus et al., 1994). 
From this corpus, all sentences with the syntactic 
form (NP-SBJ (V NP PP)) were selected. The 
selection allowed for intervening adverbial phrases 
(e.g. “Sally threw a ball quickly to him”) and 
additional prepositional phrases (e.g. “Sally threw 
a ball to him on Tuesday” or “Sally threw a ball in 
anger into the scorer’s table”). A total of 14.7k 
instances3 were identified in this manner. 

To reduce the size of the corpus to be labeled to 
a target of 1800 instances, we removed, firstly, 
instances containing traces as parsed by the 
TreeBank. These included passive usages (e.g. 
“Coffee was shipped from Colombia by Gracie”) 
and instances with traces in the object NP or PP 
including questions and relative clauses (e.g. 
“What did Gracie ship from Colombia?”). In 
construction grammar, however, traces do not 
exist, since grammar is a set of patterns of varying 
degrees of complexity. Thus CxG would 
characterize passives, questions structures, and 
relative clauses as having their own respective 
phrasal constructions, which combine with the 
caused-motion construction. In order to ensure 
sufficient training data with the standard form of 
the caused-motion construction as defined in 
Goldberg 1995 and 2006 (see Section 3.2), we 

                                                
3 We use the term instances over sentences since a sentence 
can have more than one instance. For example, the sentence “I 
gave the ball to Bill, and he kicked it to the wall.” is composed 
of 2 instances. 

chose to remove these usages. 
 Secondly, we removed the instances of 
sentences that can be deterministically categorized 
as non-caused motion constructions: instances 
containing ADV, EXT, PRD, VOC, or TMP type 
object NPs (e.g.“Cindy drove five hours from 
Dallas”, “You listen, boy, to what I say!”). 
Because we can automatically identify this 
category, keeping these examples in our data 
would have resulted in even higher performance. 

We also considered the possibility of reducing 
the size by removing certain classes of verbs such 
as verbs of communication (e.g. reply, bark), 
psychological state (e.g. amuse, admire), or 
existence (e.g. be, exist). While it is reasonable to 
say that these verb types are highly unlikely to 
appear in a caused-motion construction, if we were 
to remove sets of verbs based on their likely 
behavior, we would also be excluding interesting 
usages such as “The stand-up comedian amused 
me into a state of total enjoyment.” or “The leader 
barked a command into a radio.” 

After filtering these sentences, 8700 remained. 
From the remaining instances, we selected 1800 
instances at random for the experiments presented. 

4.1 Labels and Classifier 

The 1800 instances were hand-labeled with one of 
the following two labels:  
 

- Caused-Motion (CM)  
- Non Caused-Motion (NON-CM) 
 

The CM label included both literal usages (e.g. 
“Well-wishers stuck little ANC flags in their 
hair.”) and non-literal usages (e.g. “Producers 
shepherded ‘Flashdance’ through several 
scripts.”) of caused-motion. 

After the annotation, the corpus was randomly 
divided into two sets: 75% for training data and 
25% for testing data. The distribution of the labels 
in the test data is 33.3% CM and 66.7% NON-CM. 
The distribution in the training set is 31.8% CM 
and 68.2% NON-CM. For our experiments, we 
used a Support Vector Machine (SVM) classifier 
with a linear kernel. In particular we made use of 
the LIBSVM (Chang and Lin, 2001) as training 
and testing software. 
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4.2 Baseline Features 

The baseline consisted of a single conceptual 
feature - the lemmatized, case-normalized verb. 
We chose the verb as a baseline feature because it 
is generally accepted to be the core lexical item in 
a sentence, which governs the syntactic structure 
and semantic constituents around it. This is 
especially evidenced in the Penn Treebank where 
NP nodes are assigned with syntactic labels 
according to the position in the tree relative to the 
verb (e.g. Subject). In VerbNet and PropBank, the 
semantic labels are assigned to the constituents 
around the verb, each according to its semantic 
relationship with the verb. 
  This verb feature was encoded as 478 binary 
features (one for each unique verb in the dataset), 
where the feature value corresponding to the 
instance’s verb was 1 and all others were 0. 

4.3 Additional Features 

In the present experiments, we utilize gold-
standard values for two of the PP features for a 
proof of feasibility. Future work will evaluate the 
effect of automatically extracting these features. In 
addition to the baseline verb feature (feature 1), 
our full feature set consisted of 8 additional types 
for a total of 334 features. Examples used in the 
feature descriptions are pulled from our data. 
 
PP features:  

2. Preposition (76 features) The preposition 
heading the prepositional phrase (e.g. 
“Producers shepherded ‘Flashdance’ 
[[through]P several scripts]PP.”) was encoded 
as 76 binary features, one per preposition type 
in the training data. For instances with 
multiple PPs, preposition features were 
extracted from each of the PPs. 

3. Function Tag on PP (11 features) Penn 
Treebank encodes grammatical, adverbial, 
and other related information on the PP’s POS 
tag (e.g. “PP-LOC”). The function tag on the 
prepositional phrase was encoded as 10 binary 
features plus an extra feature for PPs without 
function tags. Again, for instances with 
multiple PPs, each corresponding function tag 
feature was set to 1. 

4. Complement Category to P (19 features) 
Normally a PP node consists of a P and a NP. 

However, there are some cases where the 
complement of the P can be of a different 
syntactic category (e.g. “So, view permanent 
insurance [[for]P [what it is]SBAR]PP.”). Thus, 
the phrasal category tags (e.g. NP, SBAR) of 
the preposition’s sister nodes were encoded as 
19 binary features. For instances with multiple 
PPs, all sister nodes of the prepositions were 
collected. 

 
VerbNet features: The following features were 
automatically extracted from VerbNet classes with 
frames matching the target syntactic structure, 
namely “NP V NP PP”.  

5. VerbNet Classes (123 features) The verbs in 
the data were associated with one or more of 
the above VerbNet classes according to their 
membership. The VerbNet classes were then 
encoded as 122 binary features with one 
additional feature for verbs that were not 
found to be members of any of these classes. 
If a verb belongs to multiple matching classes, 
each corresponding feature was set. 

6. VerbNet PP Type (27 features) VerbNet 
frames associate the PP with a description 
(e.g. “NP V NP PP.location”). The types were 
encoded as 26 binary features, plus an extra 
feature for PPs without a description. The 
features represented the union of all PP types 
(i.e. if a VerbNet class included multiple PPs, 
each of the corresponding features was 
assigned a value of 1). If a verb was 
associated with multiple VerbNet classes, the 
features were set according to the union over 
both the corresponding classes and their set of 
PP types. 

 
Named Entity features: These features were 
automatically annotated using BBN’s IdentiFinder 
(Bikel, 1999). The feature counts for the subject 
NP and object NP differ strictly due to what 
entities were represented in the data. For example, 
the entity type “DISEASE” was found in an object 
NP position but not in a subject NP. 

7. NEs for Subject NP (23 features) The union 
of all named entities under the NP-SBJ node 
was encoded as 23 binary features.  

8. NEs for Object NP (27 features) The union of 
all named entities under the object NP node 
was encoded as 27 binary features.  

9. NEs for PP’s Object (28 features) The union 
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of all named entities under the NP under the 
PP node was encoded as 28 binary features. 

5 Results 

For the baseline system, the model was built from 
the training data using a linear kernel and a cost 
parameter of C=1 (LIBSVM default value). When 
using the full feature set, the model was also built 
from the training data using a linear kernel, but the 
cost parameter was C=0.5, the best value from 10-
fold cross validation on the training data.  

In Table 1, we report the precision (P), recall 
(R), F1 score, and accuracy (A) for identifying 
caused-motion constructions4. 

 
Features P% R% F A% 
Baseline* Set 78.0 52.0 0.624 79.1 
Full Set 87.2 86.0 0.866 91.1 

Table 1: System Performance (*verb feature baseline) 

The results show that the addition of the features 
presented in section 4.3 resulted in a significant 
increase in both precision and recall, which in turn 
boosted the F score from 0.624 to 0.857, an 
increase of 0.233.  

6 Feature Performance 

In order to determine the usefulness of the 
individual features in the classification of caused-
motion, we evaluated the features in two ways. In 
one (Table 2), we compared the performance of 
each of the features to a majority class baseline 
(i.e. 66.7% accuracy). A useful feature was 
expected to show an increase over this baseline 
with statistical significance. Significance of each 
feature’s performance was evaluated via a chi-
squared test (p<0.05).  

Our results show that the features 3, 1, 2 and 5 
performed significantly better over the majority 
class baseline. The features 4, 7 and 8 were unable 
to distinguish between the caused-motion 
constructions and the non caused-motion usages. 

                                                
4 As we can see in Table 1, the accuracy is higher than 
precision or recall. This is because precision and recall are 
calculated with regard to identifying caused-motion 
constructions, whereas accuracy is based on identifying both 
caused-motion and non-caused motion constructions. Since 
it’s easier to get better performance on the majority class 
(NON-CM), the overall accuracy is higher. 
 

Their precision values could not be calculated due 
to the fact that these features resulted in zero 
positive (CM) classification.  

In a second study, we evaluated the performance 
of the system when each feature was removed 
individually from the full set of features (Table 3). 
The removal of a useful feature was expected to 
show a statistically significant drop in performance 
compared to that of the full feature set.  
Significance in this performance degradation when 
compared against the full set of features was 
evaluated via chi-squared test (p<0.05). Here, 
features 3, 8 and 1, when removed, showed a 
statistically significant performance drop. The rest 
of the features were not shown to have a 
statistically significant effect on the performance. 

Our results show that the preposition feature is 
the single most predictive feature and the feature 
that has the most significant effect in the full 
feature set. These results are encouraging: unlike 
the purely lexical features like the named entity 
features (6, 7, and 8) that are dependent on the 
particular expression used in the sentence, 

Table 2:  Effect of each feature on the performance in 
classification of the caused-motion construction, in the order of 
decreasing F-score. Features that performed statistically higher 
than the majority class baseline are marked with an * in the last 
column.  

# Removed Feature P% R% F A%  
3 Preposition 76.9 73.3 0.751 83.8 * 
8 NEs for Object NP 84.6 80.7 0.826 88.7 * 
1 Verb 85.9 81.3 0.836 89.3 * 
2 Function Tag on PP 85.2 84.7 0.849 90.0  
9 NEs for PP’s Object 87.5 84.0 0.857 90.7  
7 NEs for Subject NP 87.0 84.7 0.858 90.7  
5 VerbNet Classes 86.0 86.0 0.860 90.7  
4 Comp. Cat. of P 86.7 86.7 0.867 91.1  
6 VerbNet PP Type 87.8 86.0 0.869 91.3  

Table 3: System performance when the specified feature is 
removed from the full set of features, in the order of 
increasing F-score. Significant performance degradation, 
when compared against the full feature set performance 
(Table 1) was labeled with an * in the last column. 

# Included Feature P% R% F A%  
3 Preposition 82.4 65.3 0.729 83.8 * 
1 Verb  78.0 52.0 0.624 79.1 * 
2 Function Tag on PP 82.6 38.0 0.521 76.7 * 
5 VerbNet Classes 73.5 33.3 0.459 73.8 * 
6 VerbNet PP Type 59.6 33.3 0.427 70.2  
9 NEs for PP’s Object 71.4 6.7 0.122 68.0  
4 Comp. Cat. of P   0.0  66.7  
7 NEs for Subject NP  0.0  66.7  
8 NEs for Object NP  0.0  66.7  
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prepositions are function words. Like syntactic 
elements, these function words also contribute to 
the patterned structures of a construction as 
discussed in Section 3. Furthermore, unlike the 
semantics of features that are dependent on content 
words that are subject to lexical variability, 
prepositions are limited in their lexical variability, 
which make them good general features that scale 
well across different semantic domains. 

In addition to the preposition feature, the verb 
feature was found to affect performance at a 
statistically significant level in both cases. Based 
on the numerous studies in the past that have 
shown the usefulness of the verb as a feature, this 
is not an unexpected result. Interestingly, our 
results seem to indicate interactions between 
features. This can be seen in two different 
instances. First, while feature 8 (NEs for Object 
NP) alone was not found to be a predictive feature, 
when removed, it resulted in a statistically 
significant drop in performance compared to that 
of the full feature set. The opposite effect can be 
seen with the VerbNet Classes feature. While it 
showed a statistically significant boost in 
performance when introduced into the system by 
itself, when dropped from the full feature set, the 
drop in the system performance was not found to 
be significant. This seems to indicate that NEs for 
Object NP and the VerbNet Classes features have 
strong interactions with one or more of the other 
features. We will continue investigating these 
interactions in future work. 

7 Out-of-Vocabulary Verbs 

Additionally, we separately examined the 
performance on the test set verbs that were not 
seen in the training data (i.e. out-of-
vocabulary/OOV items).  Just over a fifth of the 
instances (92 out of 450 constructions) in the test 
data had unseen verbs, with a total of 83 unique 
verb types. The results show that there was no 
decrease in the accuracy or F-score. In fact, there 
was a chance increase, not statistically significant, 
in a two-sample t-test (t=1.13; p>0.2).  

We carried out the same feature studies for the 
OOV verbs, as detailed in section 6 (Tables 4 and 
5). The performance in both of the studies reflected 
the results seen in Tables 2 and 3, with one 
expected exception. The verb feature was, of 
course, found to be of no value to the predictor. 

What is interesting here is that the verb feature did 
perform at a significant level for the full test data. 
By this observation, it would be expected that the 
overall performance on the OOV verbs would be 
negatively affected since there is no available verb 
information. However, this was not the case. 

8 Discussion and Conclusion  

The results presented show that a classifier can 
be trained to automatically identify the semantics 
of constructions; at least for the caused-motion 
construction, and that it can do this with high 
accuracy. Furthermore, we have determined that 
the preposition feature is the most useful feature 
when identifying caused-motion constructions. 
Moreover, in considering our results in light of the 
performance of the SRL systems (Gildea and 
Jurafsky, 2002; Carreras and Marquez, 2005), 
where unseen predicates result in significant 
performance degradation, we found in contrast that 
using CxG to inform semantics resulted in equally 
high performance on the out-of-vocabulary 
predicates. This serves as evidence that semantic 

Table 4: Effect of each feature on the performance in 
classification of the caused-motion construction with OOV 
verbs, in the order of decreasing F-score. The precision 
values could not be calculated for the performance of the 
features 1,4,7, and 8 due to the fact that these features 
resulted in zero positive classifications. 

# Removed Feature P% R% F A% 
3 Preposition 63 76 0.69 90 
2 Function Tag on PP 83 80 0.82 82 
6 VerbNet PP Type 84 84 0.84 67 
5 VerbNet Classes 84 84 0.84 73 
9 NEs for PP’s Object 84 84 0.84 74 
1 Verb  0  73 
4 Comp. Cat. of P  0  73 
7 NEs for Subject NP  0  73 
8 NEs for Object NP  0  73 

# Removed Feature P% R% F A% 
3 Preposition 63 76 0.69 82 
8 NEs for Object NP 83 80 0.82 90 
2 Function Tag on PP 84 84 0.84 91 
5 VerbNet Classes 84 84 0.84 91 
7 NEs for Subject NP 84 84 0.84 91 
1 Verb 88 88 0.88 93 
4 Comp. Cat. of P 88 88 0.88 93 
6 VerbNet PP Type 92 88 0.90 95 
9 NEs for PP’s Object 92 88 0.90 95 

Table 5: System performance when the specified feature 
is removed from the full set of features in the 
classification of constructions with OOV items, in the 
order of increasing F-score. 
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analysis of novel lexical combinations and unseen 
verbs can be improved by enriching semantics with 
a construction-level analysis. 

9 Future Work 

There are several directions to go from here. First, 
in this paper we have kept our study within the 
scope of caused-motion constructions. We intend 
to introduce more types of constructions and 
include more syntactic variation in our data.  We 
will also add more annotated instances. Secondly, 
we examine the impact of the introduction of 
additional features, such as a bag-of-words feature. 
In particular, we will include semantic features 
based on FrameNet to the VerbNet semantic 
features we are already using.  This will be more 
feasible once the SemLink semantic role labeler 
for FrameNet becomes available (Palmer, 2009). 
Finally, we plan to include a more detailed analysis 
of the feature interactions, and examine the benefit 
that a construction grammar perspective might add 
to our semantic analysis. 
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