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Abstract

(Mitchell et al., 2008) showed that it was pos-

sible to use a text corpus to learn the value of

hypothesized semantic features characterizing

the meaning of a concrete noun. The authors

also demonstrated that those features could

be used to decompose the spatial pattern of

fMRI-measured brain activation in response to

a stimulus containing that noun and a picture

of it. In this paper we introduce a method for

learning such semantic features automatically

from a text corpus, without needing to hypoth-

esize them or provide any proxies for their

presence on the text. We show that those fea-

tures are effective in a more demanding classi-

fication task than that in (Mitchell et al., 2008)

and describe their qualitative relationship to

the features proposed in that paper.

1 Introduction

In the last few years there has been a gradual in-

crease in the number of papers that resort to machine

learning classifiers to decode information from the

pattern of activation of activation of voxels across

the brain (see (Norman et al., 2006) and (Haynes and

Rees, 2006) for pointers to much of this work). Re-

cently, however, interest has shifted to discovering

how the information present is encoded, rather than

just whether it is present, and also testing theories

about that encoding. One especially compelling ex-

ample of the latter is (Kay et al., 2008), where the

authors postulate a mathematical model for how vi-

sual information gets transformed into the fMRI sig-

nal one can record from visual cortex and, after fit-

ting the model, validate it by using it to predict fMRI
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Figure 1: top: A complex pattern of activation is ex-

pressed as a combination of three basic patterns. bottom:

The pattern can be written as a row vector, and the com-

bination as a linear combination of three row vectors.

activation for novel stimuli. A second example is,

of course, (Mitchell et al., 2008), which aims at de-

composing the pattern of activation in response to a

picture+noun stimulus into a combination of basic

patterns corresponding to the key semantic features

of the stimulus. A schematic view of this is given

in Figure 1, where the complex pattern on the left is

split into three simpler ones. This is done by deter-

mining the value of several hypothesized semantic

features and using them as the combination weights

for basic patterns, which can then be extracted from

fMRI data.

Ideally, semantic features should reflect what is

in a subject’s mind when she thinks about a con-

crete concept, e.g. whether it is animate or inani-

mate, or an object versus something natural. It also

seems reasonable to expect that the main seman-

tic features would likely be shared by most people

thinking about the same concept; talking to some-

one about a chair or table requires a common un-

derstanding of the characteristics of that concept.

(Mitchell et al., 2008) proposed a method for captur-

ing such common understanding, by considering 25
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verbs 1 reflecting, in their words, “basic sensory and

motor activities, actions performed on objects, and

actions involving changes to spatial relationships”.

For each of the 60 nouns corresponding to the stim-

ului shown, they counted the co-occurrence of the

noun with each of the 25 verbs in a large text corpus,

converting those 25 counts into normalized feature

values (the 25-vector has length 1). The hypothe-

sis subjacent to this procedure is that the 25 verbs

are a good proxy for the main characteristics of a

concept, and that their frequent co-occurrence with

the corresponding noun in text means that many dif-

ferent sources (and people) have that association in

mind when using the noun; in a nutshell, the associa-

tion reflects common understanding of the meaning

of the noun. The results in (Mitchell et al., 2008)

are an extremely compelling demonstration that text

corpora contain information useful for parsing brain

activation into component patterns that reflect se-

mantic features.

We would like to go beyond the analysis in

(Mitchell et al., 2008) by considering that stipulat-

ing the semantic features to consider – via the verb

proxy – may limit the information that can be ex-

tracted. The verbs were selected to capture a range

of characteristics described above, but this does not

guarantee that those will be all the ones that are rele-

vant, even for concrete concepts. But how to identify

characteristics beyond those that one could hypoth-

esize in advance?

This paper describes an approach to identifying

semantic features from a text corpus in an unsuper-

vised manner, without the need to specify verbs or

any other proxy for those features. The first aspect

of the approach is the use of a text corpus that goes

beyond merely containing occurrences of the words.

We use a subset of Wikipedia 2, which we chose be-

cause articles are definitional in style and also edited

by many people, ensuring that they will contain the

essential shared knowledge pertaining to the subject

of the article. The articles in the subset were cho-

sen because they pertained to concrete or imageable

concepts, and the methodology for deciding on this

is described in Section 2.2.2. One property in par-

1see, hear, listen, taste, smell, eat, touch, rub, lift, manipu-

late, run, push, fill, move, ride, say, fear, open, approach, near,

enter, drive, wear, break and clean
2http://en.wikipedia.org

ticular of text defining a concept will be especially

helpful here: in order to make its meaning precise,

it has to touch on most related concepts. This means

that we will still be resorting to co-ocurrence with

our target nouns in order to identify semantic fea-

tures, but not of a fixed set of verbs; rather, we are

considering all possible related words.

The tool we will use to do so is latent Dirichlet

allocation (LDA, (Blei et al., 2003)). This tech-

nique produces a generative probabilistic model of

text corpora where each document (article) is viewed

as a bag-of-words (i.e. only which words appear,

and how often, matters) with each word being drawn

from a finite mixture of an underlying set of topics,

each of which is in turn a probability distribution

over vocabulary words. We will use topics as our

semantic features, with the proportions of each topic

in the article for a given noun being the values of the

features for that noun.

(Murphy et al., 2009) does something similar in

flavour to this, by decomposing the patterns of co-

occurrences in a text corpus between the 20000 most

frequent nouns and 5000 most frequent verbs using

SVD. This is used to identify 25 singular vectors

which yield feature values across nouns.

2 Methods and Data

2.1 Data

We use the dataset from (Mitchell et al., 2008),

which contains data from 9 subjects. For each sub-

ject there is a dataset of 360 examples - average

fMRI volume around the peak of an experiment trial

- comprising 6 replications (epochs) of each of 60

nouns as stimuli. The 60 nouns also belong to one

of 12 semantic categories, hence there are two la-

bels for classification tasks. We refer the reader to

the original paper for more details about the specific

categories and nouns chosen.

All of our classification experiments are done over

360 examples, rather than 60 average noun images,

as we want to leverage having multiple instances of

the same noun and use cross-validation. We also

replicated the main experiment in (Mitchell et al.,

2008), and for that we used the 60 average noun im-

ages, with their mean image subtracted from each of

them.
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2.2 Semantic Features

The experiments described on the paper rely on us-

ing two different kinds of semantic features (low-

dimensional representations of data) to decompose

each example in constituent basis images; these two

kinds are described blow.

2.2.1 Science Semantic Features (SSF)

These are the semantic features used in (Mitchell

et al., 2008) to represent a given stimulus. They

were obtained by considering co-occurrence counts

of the noun naming each stimulus with each of 25

verbs in a text corpus, yielding a vector of 25 counts

which was normalized to have unit length. The low-

dimensional representation of the brain image for a

given noun is thus a 25-dimensional vector. The left

of Figure 2 shows the value of these features for the

60 nouns considered.

2.2.2 Wikipedia Semantic Features (WSF)

To obtain the Wikipedia semantic features we

considered concepts rather than nouns, though we

will use the latter terminology in the rest of the pa-

per for consistency with (Mitchell et al., 2008). We

started with the classical lists of words in (Paivio et

al., 1968) and (Battig and Montague, 1969), as well

as modern revisions/extensions (Clark and Paivio,

2004) and (Van Overschelde, 2004), and looked for

words corresponding to concepts that were deemed

concrete or imageable (be it because of their score

in one of the norms or through editorial decision),

identified the corresponding Wikipedia article ti-

tles (e.g. “airplane” is “Fixed-wing aircraft”) and

also compiled related articles which were linked

to from these (e.g. “Aircraft cabin”). If there

were words in the original lists with multiple mean-

ings we included the articles for at least several

of those meanings. Given the time available, we

stopped the process with a list of 3500 concepts and

their corresponding articles (a corpus we call the

“Weekipedia”). We used Wikipedia Extractor 3 to

remove any HTML or wiki formatting and annota-

tions and processed the resulting text through the

morphological analysis tool Morpha (Minnen et al.,

3http://medialab.di.unipi.it/wiki/

Wikipedia_extractor

2001) 4 to lemmatize all the words to their basic

stems (e.g. “taste”,”tasted”,”taster” and “tastes” all

become the same word).

The resulting text corpus was processed with

topic modelling software to build several LDAmod-

els. The articles were converted to the required for-

mat, keeping only words that appeared in at least two

articles, and words were also excluded resorting to

a custom stopword list. We run the software vary-

ing the number of topics allowed from 10 to 60, in

increments of 5, and allowing the software to esti-

mate the α parameter. The α parameter influences

the number of topics used for each example. For a

given number of topics K, this yielded distributions

over the vocabulary for each topic and one vector of

topic probabilities per article/concept; this vector is

the low-dimensional representation of the concept.

Note also that, since the probabilities add up to 1,

the presence of one semantic feature trades off with

the presence of the others.

The middle and right of Figure 2 shows the value

of these features for the 60 nouns considered in 25

and 50 topic models, respectively.

2.2.3 Relating semantic features to brain

images

notation Each example corresponds to the average

fMRI volume around the peak of a trial, account-

ing for haemodynamic delay. This 3D volume can

be unfolded into a vector x with as many entries as

voxels. A dataset is a n × m matrix X where row

i is the example vector xi. Similarly to (Mitchell

et al., 2008), each example x will be expressed as

a linear combination of basis images b1, . . . ,bK

of the same dimensionality, with the weights given

by the semantic feature vector z = [z1, . . . , zK ]
(see Figure 1 for an illustration of this). The low-

dimensional representation of X is a n × K matrix

Z where row i is a semantic feature vector zi and the

corresponding basis images are a K × m matrix B,

where row k corresponds to basis image bk.

learning and prediction Learning the basis im-

ages given X and Z (top part of Figure 4) can be de-

composed into a set of independent regression prob-

4http://www.informatics.susx.ac.uk/

research/groups/nlp/carroll/morph.

html
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Figure 2: The value of semantic features for the 60 nouns considered, using SSF with 25 verbs (left) and WSF with

25 and 50 topics (middle and right). The 60 nouns belong to one of 12 categories, and those are arranged in sequence.

Although a few of the SSF features might correspond to WSF features, the majority of them do not.

lems, one per voxel j, i.e. the values of voxel j

across all examples, X(:, j), are predicted from Z

using regression coefficients B(:, j), which are the

values of voxel j across basis images.

Predicting the semantic feature vector z for an ex-

ample x (bottom part of Figure 4) is a regression

problem where x
′ is predicted from B′ using regres-

sion coefficients z
′. For WSF, the prediction of the

semantic feature vector is done under the additional

constraint that the values need to add up to 1. Any

situation where linear regression was unfeasible be-

cause the square matrix in the normal equations was

not invertible was addressed by replacing the design

matrix by its singular value decomposition, leaving

only non-zero singular values.

3 Experiments and Discussion

3.1 Classification/Reconstruction on semantic

feature space

3.1.1 Experiment details

Several classification experiments are described

in (Mitchell et al., 2008). The main one aims at

gauging the accuracy of matching unseen stimuli to

their unseen fMRI images and is schematized in Fig-

ure 3. To do this, the authors consider the 60 average

examples of each stimulus and, in turn, leave out

each of 1770 possible pairs of examples. For each

left out pair, they learn a set of basis images using

the remaining 58 examples and their respective SSF

representations. They then use the SSF representa-
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Figure 3: The classification task in (Mitchell et al., 2008)

is such that semantic feature representations of the 2

test nouns are used, in conjunction with the image ba-

sis learned on the training set, to predict their respective

test examples and use that prediction in a 2-way classifi-

cation.

tion of the two left-out examples and the basis to

generate a predicted example for each one of them.

These can then be used in a two-way matching task

with the actual examples that were left out, where

the outcome is correct or incorrect. Note that this is

not done over the entire brain but over a selection of

500 stable voxels, as determined by computing their

reproducibility over the 58 examples in each leave-

one-out fold. This criterion identifies voxels whose

activation levels across the 58 nouns bear the same

relationship to each other over epochs (mathemat-

ically, the vector of activation levels across the 60

sorted nouns is highly correlated between epochs).

We reproduced this experiment for the sake of com-

parison and describe the results in Section 3.4.

Whereas (Mitchell et al., 2008) aimed at predict-

ing the activation of a set of voxels, and judging how
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Figure 4: Our classification task requires learning an im-

age basis from a set of training examples and their re-

spective semantic feature representations. This is used to

predict semantic feature values for test set examples and

from those one can classify against the known semantic

feature values for all 60 nouns.

good that prediction is by its 2-way accuracy, this

paper focuses on a different sort of experiment: pre-

diction of semantic feature values for a test exam-

ple, as schematized in FIgure 4. In this experiment,

the semantic features get used to learn basis images

from training examples, with the goal of reconstruct-

ing those training examples as well as possible. This

learning does not contemplate the labels – category

or noun – of the training examples. The basis images

are used, in turn, to predict semantic feature values

for test examples and determining, in essence, which

semantic features are active during a test example.

The criterion for judging whether this is a good pre-

diction will be how well can we classify the category

(1-of-12) and noun (1-of-60) noun of a test example.

Good classification performance implies that the se-

mantic features capture activation that is relevant to

the task in the corresponding basis images and that,

in combination, the features contain enough infor-

mation to distinguish the various nouns.

We will use either a leave-one-epoch-out (6 fold)

or a leave-one-noun-out (60 fold) cross-validation

and we perform the following steps in each fold:

1. from each training set Xtrain and correspond-

ing semantic features Ztrain, select the top

1000 most reproducible voxels and learn an im-

age basis B using those

2. use the test set Xtest and basis B to predict a

semantic feature representation Zpred for those

examples

3. use nearest-neighbour classification to predict

the labels of examples in Xtest, by comparing

Zpred for each example with known semantic

features Z

4. use the semantic features Zpred together with

basis B to reconstruct test examples as

Xpred = ZbredB and compute squared error

between Xpred andXtest (over selected voxels)

This allows us to do both kinds of cross-

validation, as there is always one semantic feature

vector for each different noun in Z regardless. This

procedure is unbiased, and we tested this empirically

using a permutation test (examples permuted within

epoch) to verify the accuracy results for either task

were at chance level.

3.1.2 Experiment results

Figure 5 shows the results using leave-one-epoch-

out cross-validation. For each subject (row), there

is one plot of reconstruction error (column 1) and

one for error in category classification (column 2)

and noun classification (column 3). Each plot con-

trasts the error obtained using SSF with that ob-

tained using WSF with 10-60 topics, in increments

of 5; WSF is as good or better than SSF in both cat-

egory and noun classification. Given the the results

are over 360 test examples we are not displaying er-

ror bars; each number of topics for which WSF is

better as deemed by a paired t-test (0.01 significance

level, uncorrected) is highlighted by a square on the

plot. The same is true for the category task when

using leave-one-noun-out cross-validation, but nei-

ther WSF nor SSF appear to do well in the noun

task except for subject P1, where WSF again dom-

inates. Results overall are somewhat lower than for

the leave-one-epoch-out cross-validation. Given that

the comparison results are qualitatively similar and

space is limited we did not include the correspond-

ing figure. In both cross-validations the reconstruc-

tion error of WSF starts higher than that of SSF

and decreases monotonically until they are roughly

matched. Our conjecture is that WSF semantic fea-

tures are sparser and thus there are fewer basis im-

ages being added to predict any given test example.

As the number of topics increases, this ceases to be

the case.

One salient aspect of Figure 5 is that accuracy is

much higher than chance for subjects P1-P4 than for

P5-P9, and this corresponds to the subjects where
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Figure 5: For each of the 9 subjects (rows) a comparison between SSF and WSF (using 10-60 topics) in reconstruction

error (column 1) and classification error in the category (column 2) and noun (column 3) tasks. In each plot WSF is

red (full line), SSF is blue (constant dashed line) and chance level is black (constant dotted line). The reconstruction

error is measured on left out examples, over the 1000 voxels selected on the training set. These results were obtained

using leave-one-epoch-out cross-validation (one epoch containing one instance of all nouns is left out in each of 6

folds). Error bars are not shown, given their small size (there are 360 examples), but each number of topics for which

WSF error is significantly lower than SSF error is highlighted with a square.

P1 P2 P3 P4 P5 P6 P7 P8 P9

same 0.57 0.39 0.36 0.32 0.26 0.16 0.26 0.24 0.18

category 0.50 0.32 0.30 0.28 0.24 0.14 0.23 0.21 0.16

other 0.45 0.30 0.27 0.22 0.22 0.13 0.21 0.20 0.14

same minus other 0.12 0.09 0.09 0.10 0.04 0.03 0.05 0.04 0.04

same minus category 0.07 0.07 0.06 0.04 0.02 0.02 0.03 0.03 0.02

Table 1: For each subject (column), the average correlation between one test example of a noun and all training set

examples of the same noun (same), those which are not the same but belong to the same category (category) and those

which are not in the same category (other). The correlation is computed over the 1000 voxels selected in the training

set which are used to learn the image basis. Note the difference between same and other for subjects P1-P4, in contrast

with that for subjects P5-P9. This was computed using leave-one-epoch-out cross-validation, and thus should be used

in conjunction with Figure 5.
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WSF is significantly better than SSF. In an effort

to find out why this was the case, we computed a

measure of consistency of the data from each of the

subjects; intuitively, this is the degree to which the

brain activation pattern was similar between trials

with the same noun stimulus (and dissimilar for tri-

als where the stimulus was different). This was com-

puted in leave-one-epoch-out cross-validation, and

consisted of examining the correlation – computed

across selected voxels – of a test example with train-

ing examples of the same noun (same), the same

category but a different noun (same category) and

different category and noun (other); the measures

were averaged across examples. In leave-one-group-

out cross-validation subjects P1-P4 have higher dif-

ferences between correlation within examples of a

noun and examples in the same category or other

categories than subjects P5-P9, which suggests that

the former are more consistent in how they elicit pat-

terns in response to the same stimulus.

3.2 Classification on voxel space

In order to have an idea of how much of the infor-

mation present either SSF or WSF can extract and

convey via their respective low-dimensional repre-

sentations, we also trained a simple Gaussian Naive

Bayes (GNB) classifier on voxels selected using the

same reproducibility criterion described earlier. We

used leave-one-epoch-out cross-validation and both

category and noun tasks, respectively top and bot-

tom of Table 2. Contrasting this with Figure 5,

it’s clear that the accuracies in the category task

are comparable, whereas those in the noun task are

somewhat lower; this suggests that either informa-

tion about individual nouns is lost when converting

from voxels to semantic features, or that nearest-

neighbour is not the best classifier to use.

3.3 Similarity between SSF and WSF

representations

In order to gauge the quality of the semantic feature

representations we can consider both how much they

differ between different nouns (and different cate-

gories) and also how consistent they are for the 6 ex-

amples of the same noun. This is shown for subject

P1 in Figure 6, where the semantic feature vectors

learned for 360 examples are correlated, for WSF 50

(left) and SSF 25 (right). Examples are sorted so that

WSF 50

S
S

F
 2

5

correlation between 25 SSF and 50 WSF across 360 nouns

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 7: Correlation between each pair of SSF andWSF

vectors of predicted feature values across 360 examples.

the 6 examples of the same noun are together, and

adjacent to the other 24 belonging to the same cat-

egory (and the category changes are labelled. Note

that these are the values obtained when each exam-

ple was in the test set, rather than the values derived

from text for each noun; this is why the semantic

feature vectors for the 6 examples of the same noun

are different. WSF 50 is such that nouns belonging

to the same category share many feature values, and

hence show up as large blocks along the diagonal of

the correlation matrix. Less of the noun specific in-

formation is being captured, but it is sometimes vis-

ible as the smaller blocks along the diagonal, inside

the large blocks.

We can also consider the question of whether SSF

and WSF representations are similar, i.e. whether a

given SSF feature has values across examples sim-

ilar to a given WSF feature. This can be done

by considering the correlation between each pair of

predicted SSF/WSF vectors across 360 examples,

which is shown in Figure 7. This suggests very few

of the semantic features are similar when predicted

for examples in the test set, and as was already evi-

dence in Figure 2.

3.4 Leave-2-out 2-way classification

We have also attempted to replicate the results in

the main experiment in (Mitchell et al., 2008),

schematized in Figure 3 and described earlier in Sec-

tion 3.1.1. The results of this are shown in Ta-

ble 3, which compares the mean accuracy across
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category accuracy

#voxels 100 250 500 1000 1500 2000 5000 all voxels

P1 0.43 0.53 0.54 0.56 0.53 0.52 0.42 0.08

P2 0.30 0.34 0.32 0.30 0.28 0.26 0.22 0.08

P3 0.25 0.27 0.29 0.27 0.26 0.26 0.21 0.08

P4 0.42 0.40 0.41 0.38 0.38 0.39 0.31 0.08

P5 0.20 0.21 0.21 0.17 0.16 0.14 0.11 0.08

P6 0.27 0.23 0.19 0.16 0.14 0.13 0.10 0.08

P7 0.21 0.19 0.19 0.19 0.18 0.16 0.13 0.08

P8 0.14 0.13 0.12 0.14 0.13 0.13 0.12 0.08

P9 0.18 0.21 0.21 0.21 0.22 0.21 0.19 0.08

noun accuracy

#voxels 100 250 500 1000 1500 2000 5000 all voxels

P1 0.34 0.41 0.41 0.41 0.35 0.33 0.23 0.02

P2 0.26 0.32 0.29 0.22 0.18 0.17 0.08 0.02

P3 0.17 0.20 0.21 0.17 0.14 0.12 0.07 0.02

P4 0.21 0.23 0.22 0.20 0.18 0.16 0.14 0.02

P5 0.11 0.09 0.08 0.06 0.05 0.05 0.03 0.02

P6 0.13 0.08 0.06 0.04 0.04 0.04 0.02 0.02

P7 0.08 0.07 0.08 0.07 0.07 0.07 0.05 0.02

P8 0.07 0.08 0.06 0.05 0.05 0.04 0.03 0.02

P9 0.06 0.08 0.06 0.06 0.05 0.05 0.04 0.02

Table 2: top: Accuracy of a Gaussian Naive Bayes classifier trained on various numbers of voxels selected by the

reproducibility criterion, on the category prediction task, using leave-one-epoch-out cross-validation. bottom: Same,

for the noun prediction task.
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Figure 6: left: correlation between the WSF 50 predicted feature vectors for the 360 examples right: same for the

SSF 25 predicted feature vectors
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SSF Org 20 25 30 35 40 45 50

P1 0.84 0.83 0.88 0.91 0.87 0.89 0.85 0.85 0.86

P2 0.80 0.76 0.75 0.77 0.74 0.76 0.72 0.72 0.73

P3 0.78 0.78 0.76 0.78 0.73 0.76 0.72 0.70 0.78

P4 0.82 0.72 0.88 0.88 0.85 0.86 0.86 0.85 0.87

P5 0.85 0.78 0.79 0.84 0.78 0.71 0.78 0.73 0.78

P6 0.77 0.85 0.82 0.84 0.78 0.79 0.76 0.81 0.75

P7 0.78 0.73 0.83 0.84 0.80 0.81 0.79 0.75 0.74

P8 0.77 0.68 0.66 0.68 0.64 0.62 0.67 0.64 0.69

P9 0.75 0.82 0.77 0.81 0.77 0.79 0.81 0.78 0.78

Table 3: Results of a replication of the leave-2-noun-out

2-way classification experiment in (Mitchell et al., 2008).

For subjects P1-P9, SSF represents the mean accuracy

obtained using SSF (across 1770 leave-2-out pairs), Org

the mean accuracy reported in (Mitchell et al., 2008) and

the remaining columns the mean accuracy obtained using

WSF with 20-50 topics.

1770 leave-2-out pairs using SSF, the mean accuracy

reported in (Mitchell et al., 2008) and the mean ac-

curacy using WSF with 20-50 topics. We were not

able to exactly reproduce the numbers in (Mitchell

et al., 2008), despite the same data preprocessing

(making each example mean 0 and standard devia-

tion 1, prior to averaging all the repetitions of each

noun, and then subtracting the mean of all average

examples from each one), the same voxel selection

procedure (using 500 voxels) and the same ridge re-

gression function (although (Mitchell et al., 2008)

does not mention the value of the ridge parameter λ,

which we assumed to be 1). We will endeavour to

identify the source of the discrepancies, but it was

not possible to do so in time for this paper.

4 Conclusions

We have shown that it is feasible to learn seman-

tic features from a text corpus, without the need to

postulate what they might represent in the brain, ei-

ther directly or via proxy indicators like the verbs in

(Mitchell et al., 2008). Furthermore, we have shown

that those semantic features are superior to the fea-

tures proposed in (Mitchell et al., 2008) in two de-

manding classification tasks that require using the

features to decompose brain activation into basis im-

ages related to them. Further analysis of those and

other results obtained classifying directly from vox-

els suggest that the semantic features capture a large

amount of category-level information, and at least a

fraction of the noun-level information present in the

pattern of brain activation. (Mitchell et al., 2008).
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