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Abstract 

Web applications have the opportunity to 
check spelling, style, and grammar using a 
software service architecture.  A software ser-
vice authoring aid can offer contextual spell 
checking, detect real word errors, and avoid 
poor grammar checker suggestions through 
the use of large language models.  Here we 
present After the Deadline, an open source au-
thoring aid, used in production on Word-
Press.com, a blogging platform with over ten 
million writers.  We discuss the benefits of the 
software service environment and how it af-
fected our choice of algorithms.  We summa-
rize our design principles as speed over 
accuracy, simplicity over complexity, and do 
what works. 

1 Introduction 

On the web, tools to check writing lag behind those 
offered on the desktop.  No online word processing 
suite has a grammar checker yet.  Few major web 
applications offer contextual spell checking.  This 
is a shame because web applications have an op-
portunity to offer authoring aids that are a genera-
tion beyond the non-contextual spell-check most 
applications offer. 
   Here we present After the Deadline, a production 
software service that checks spelling, style, and 
grammar on WordPress.com1, one of the most 
popular blogging platforms.  Our system uses a 

                                                           
1 An After the Deadline add-on for the Firefox web browser is 
available. We also provide client libraries for embedding into 
other applications. See http://www.afterthedeadline.com. 

software service architecture.  In this paper we dis-
cuss how this system works, the trade-offs of the 
software service environment, and the benefits.  
We conclude with a discussion of our design prin-
ciples: speed over accuracy, simplicity over com-
plexity, and do what works. 

1.1 What is a Software Service? 

A software service (Turner et al., 2003) is an ap-
plication that runs on a server.  Client applications 
post the expected inputs to the server and receive 
the output as XML. 
   Our software service checks spelling, style, and 
grammar.  A client connects to our server, posts 
the text, and receives the errors and suggestions as 
XML.  Figure 1 shows this process.  It is the cli-
ent’s responsibility to display the errors and pre-
sent the suggestions to the user. 
 

Figure 1. After the Deadline Client/Server Interaction. 
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1.2 Applications 

One could argue that web browsers should provide 
spell and grammar check features for their users.  
Internet Explorer, the most used browser (Stat-
Counter, 2010), offers no checking.  Firefox offers 
spell checking only.  Apple’s Safari web browser 
has non-contextual spell and grammar checking.  
Application developers should not wait for the 
browsers to catch up.  Using a software service 
architecture, applications can provide the same 
quality checking to their users regardless of the 
client they connect with.  This is especially rele-
vant as more users begin to use web applications 
from mobile and tablet devices. 

1.3 Benefits 

A software service application has the advantage 
that it can use the complete CPU and memory re-
sources of the server.  Clients hoping to offer the 
same level of proofreading, without a software ser-
vice, will use more resources on the local system to 
store and process the language models.  

Our system uses large memory-resident lan-
guage models to offer contextually relevant spell-
ing suggestions, detect real word errors, and 
automatically find exceptions to our grammar 
rules.  

On disk our language model for English is 
165MB uncompressed, 32MB compressed.  We 
use hash tables to allow constant time access to the 
language model data.  In memory our English lan-
guage model expands to 1GB of RAM.  The mem-
ory footprint of our language model is too large for 
a web browser or a mobile client.  

A software service also has maintenance advan-
tages.  The grammar rules and spell checker dic-
tionary are maintained in one place.  Updates to 
these immediately benefit all clients that use the 
service.  

In this environment, users lose the ability to up-
date their spell checker dictionary directly.  To 
compensate, clients can offer users a way to al-
ways ignore errors.  Our WordPress plugin allows 
users to ignore any error.  Ignored errors are not 
highlighted in future checks.  

1.4 Operating Requirements 

A software service authoring aid must be able to 
respond to multiple clients using the service at the 

same time.  Our service regularly processes over 
100,000 requests a day on a single server. 

Our goal is to process one thousand words per 
second under this load.  

Since our system works in the web environment, 
it must process both text and HTML.  We use a 
regular expression to remove HTML from text sent 
to the service.  

It’s important that our service report errors in a 
way that the client can locate them.  The error 
phrase alone is not enough because suggestions 
may differ based on the context of the error.  

We take a shortcut and provide clients with the 
text used to match the error and the word that pre-
cedes the error phrase.  For example, for indefinite 
article errors, the text used to match the error is the 
misused article and the word following it.  The 
client searches for this marker word followed by 
the error text to find the error and present the cor-
rect suggestions.  This scheme is not perfect, but it 
simplifies our client and server implementations. 

2 Language Model 

Our system derives its smarts from observed lan-
guage use.  We construct our language model by 
counting the number of times we see each se-
quence of two words in a corpus of text.  These 
sequences are known as bigrams.  Our language 
model is case sensitive. 

We trained our bigram language model using 
text from the Simple English edition of Wikipedia 
(Wikimedia, 2010), Project Gutenberg (Hart, 
2008), and several blogs.  We bootstrapped this 
process by using Wikipedia and Project Gutenberg 
data.  We then evaluated the contents of several 
blogs looking for low occurrences of commonly 
misspelled words and real word errors.  Blogs that 
had a low occurrence of errors were then added to 
our corpus.  Our corpus has about 75 million 
words.  

We also store counts for sequences of three 
words that end or begin with a potentially confused 
word.  A potentially confused word is a word asso-
ciated with a confusion set (see section 4.1).  The 
real word error detector feature relies on these con-
fusion sets.  These counts are known as trigrams.  
We limit the number of trigrams stored to reduce 
the memory requirements. 
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2.1 Functions 

Throughout this paper we will use the following 
functions to refer to our language model.  
 
P(word): This function is the probability of a word.  
We divide the number of times the word occurs by 
the total number of words observed in our corpus 
to calculate the probability of a word. 
 
P(wordn , wordn+1): This function is the probability 
of the sequence wordn wordn+1.  We divide the 
number of times the sequence occurs by the total 
number of words observed in our corpus to calcu-
late the probability of the sequence. 
 
Pn(wordn|wordn-1): This function is the probability 
of a word given the previous word.  We calculate 
this with the count of the wordn-1 wordn sequence 
divided by the count of the occurrences of wordn. 
 
Pp(wordn|wordn+1): This function is the probability 
of a word given the next word.  We use Bayes’ 
Theorem to flip the conditional probability.  We 
calculate this result as: Pp(wordn|wordn+1) = 
Pn(wordn+1|wordn) * P(wordn) / P(wordn+1). 
 
Pn(wordn|wordn-1, wordn-2): This function is the 
probability of a word given the previous two 
words.  The function is calculated as the count of 
the wordn-2 wordn-1 wordn sequence divided by the 
count of the wordn-2 wordn-1 sequence.  
 
Pn(wordn+1, wordn+2|wordn): is the probability of a 
sequence of two words given the word that pre-
cedes them.  This is calculated as the count of 
wordn wordn+1 wordn+2 sequence divided by the 
count of the occurrences of wordn.  
 
Pp(wordn|wordn+1, wordn+2): This function is the 
probability of a word given the next two words.  
We calculate this result with Pn(wordn+1, 
wordn+2|wordn) * P(wordn) / P(wordn+1, wordn+2).  

3 Spell Checking 

Spell checkers scan a document word by word and 
follow a three-step process.  The first step is to 
check if the word is in the spell checker’s diction-
ary.  If it is, then the word is spelled correctly.  The 
second step is to generate a set of possible sugges-

tions for the word.  The final step is to sort these 
suggestions with the goal of placing the intended 
word in the first position. 

3.1 The Spell Checker Dictionary 

The dictionary size is a matter of balance.  Too 
many words and misspelled words will go unno-
ticed.  Too few words and the user will see more 
false positive suggestions.  

We used public domain word-lists (Atkinson, 
2008) to create a master word list to generate our 
spell checker dictionary.  We added to this list by 
analyzing popular blogs for frequently occurring 
words that were missing from our dictionary.  This 
analysis lets us include new words in our master 
word list of 760,211 words. 
   Our spell checker dictionary is the intersection of 
this master word list and words found in our cor-
pus.  We do this to prevent some misspelled words 
from making it into our spell checker dictionary. 
   We only allow words that pass a minimal count 
threshold into our dictionary.  We adjust this 
threshold to keep our dictionary size around 
125,000 words.  

 
Threshold Words Present Words Accuracy 
1 161,879 233 87.9% 
2 116,876 149 87.8% 
3 95,910 104 88.0% 
4 82,782 72 88.3% 
5 73,628 59 88.6% 

 
Table 1. Dictionary Inclusion Threshold. 

 
Table 1 shows the effect of this threshold on the 

dictionary size, the number of present words from 
Wikipedia’s List of Common Misspellings 
(Wikipedia, 2009), and the accuracy of a non-
contextual version of our spell checker.  We will 
refer to the Wikipedia Common Misspellings list 
as WPCM through the rest of this paper. 

3.2 Generating Suggestions 

To generate suggestions our system first considers 
all words within an edit distance of two.  An edit is 
defined as inserting a letter, deleting a letter, sub-
stituting a letter, or transposing two letters (Dam-
erau, 1964).  
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Consider the word post.  Here are several words 
that are within one edit: 
 
cost substitute p, c pose substitute t, e  
host substitute p, h posit insert i 
most substitute p, m posts insert s 
past substitute o, a pot delete e 
pest substitute o, e pots transpose s, t 
poet substitute s, e pout substitute s, u 
 

The naïve approach to finding words within one 
edit involves making all possible edits to the mis-
spelled word using our edit operations.  You may 
remove any words that are not in the dictionary to 
arrive at the final result.  Apply the same algorithm 
to all word and non-word results within one edit of 
the misspelled word to find all words within two 
edits.  

We store our dictionary as a Trie and generate 
edits by walking the Trie looking for words that 
are reachable in a specified number of edits.  While 
this is faster than the naïve approach, generating 
suggestions is the slowest part of our spell checker.  
We cache these results in a global least-recently-
used cache to mitigate this performance hit. 

We find that an edit distance of two is sufficient 
as 97.3% of the typos in the WPCM list are two 
edits from the intended word.  When no sugges-
tions are available within two edits, we consider 
suggestions three edits from the typo.  99% of the 
typos from the WPCM list are within three edits.  
By doing this we avoid affecting the accuracy of 
the sorting step in a negative way and make it pos-
sible for the system to suggest the correct word for 
severe typos. 

3.3 Sorting Suggestions 

The sorting step relies on a score function that ac-
cepts a typo and suggestion as parameters.  The 
perfect score function calculates the probability of 
a suggestion given the misspelled word (Brill and 
Moore, 2000).  

We approximate our scoring function using a 
neural network.  Our neural network is a multi-
layer perceptron network, implemented as de-
scribed in Chapter 4 of Programming Collective 
Intelligence (Segaran, 2007).  We created a train-
ing data set for our spelling corrector by combining 
misspelled words from the WPCM list with ran-
dom sentences from Wikipedia. 

Our neural network sees each typo (wordn) and 
suggestion pair as several features with values 
ranging from 0.0 to 1.0.  During training, the neu-
ral network is presented with examples of sugges-
tions and typos with the expected score.  From 
these examples the neural network converges on an 
approximation of our score function. 
   We use the following features to train a neural 
network to calculate our suggestion scoring func-
tion: 
 

editDistance(suggestion, wordn) 
firstLetterMatch(suggestion, wordn) 
Pn(suggestion|wordn-1) 
Pp(suggestion|wordn+1) 
P(suggestion) 

 
We calculate the edit distance using the Dam-

erau–Levenshtein algorithm (Wagner and Fischer, 
1974).  This algorithm recognizes insertions, sub-
stitutions, deletions, and transpositions as a single 
edit.  We normalize this value for the neural net-
work by assigning 1.0 to an edit distance of 1 and 
0.0 to any other edit distance.  We do this to pre-
vent the occasional introduction of a correct word 
with an edit distance of three from skewing the 
neural network. 
   The firstLetterMatch function returns 1.0 when 
the first letters of the suggestion and the typo 
match.  This is based on the observation that most 
writers get the first letter correct when attempting 
to a spell a word.  In the WPCM list, this is true for 
96.0% of the mistakes.  We later realized this cor-
rector performed poorly for errors that swapped the 
first and second letter (e.g., oyu  you).  We then 
updated this feature to return 1.0 if the first and 
second letters were swapped.  

We also use the contextual fit of the suggestion 
from the language model.  Both the previous and 
next word are used.  Consider the following exam-
ple: 
 

The written wrd. 
 

Here wrd is a typo for word.  Now consider two 
suggestions word and ward.  Both are an edit dis-
tance of one from wrd.  Both words also have a 
first letter match.  Pp(ward|written) is 0.00% while 
Pp(word|written) is 0.17%.  Context makes the 
difference in this example.  
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3.4 Evaluation 

To evaluate our spelling corrector we created two 
testing data sets.  We used the typo and word pairs 
from the WPCM list merged with random sen-
tences from our Project Gutenberg corpus.  We 
also used the typo and word pairs from the ASpell 
data set (Atkinson, 2002) merged with sentences 
from the Project Gutenberg corpus.  

We measure our accuracy with the method de-
scribed in Deorowicz and Ciura (2005).  For com-
parison we present their numbers for ASpell and 
several versions of Microsoft Word along with 
ours in Tables 2 and 3.  We also show the number 
of misspelled words present in each system’s spell 
checker dictionary.  
 

 Present Words Accuracy 
ASpell (normal) 14 56.9% 
MS Word 97 18 59.0% 
MS Word 2000 20 62.6% 
MS Word 2003 20 62.8% 
After the Deadline 53 66.1% 

 
Table 2. Corrector Accuracy: ASpell Data. 

 
 Present Words Accuracy 
ASpell (normal) 44 84.7% 
MS Word 97 31 89.0% 
MS Word 2000 42 92.5% 
MS Word 2003 41 92.6% 
After the Deadline 143 92.7% 

 
Table 3. Corrector Accuracy: WPCM Data. 

 
The accuracy number measures both the sugges-

tion generation and sorting steps.  As with the ref-
erenced experiment, we excluded misspelled 
entries that existed in the spell checker dictionary.  
Note that the present words number from Table 1 
differs from Table 3 as these experiments were 
carried out at different times in the development of 
our technology. 

4 Real Word Errors  

Spell checkers are unable to detect an error when a 
typo results in a word contained in the dictionary.  
These are called real word errors.  A good over-
view of real word error detection and correction is 
Pedler (2007). 

4.1 Confusion Sets 

   Our real word error detector checks 1,603 words, 
grouped into 741 confusion sets.  A confusion set 
is two or more words that are often confused for 
each other (e.g., right and write).  Our confusion 
sets were built by hand using a list of English 
homophones as a starting point. 

4.2 Real Word Error Correction 

The real word error detector scans the document 
finding words associated with a confusion set.  For 
each of these words the real word error detector 
uses a score function to sort the confusion set.  The 
score function approximates the likelihood of a 
word given the context.  Any words that score 
higher than the current word are presented to the 
user as suggestions. 

When determining an error, we bias heavily for 
precision at the expense of recall.  We want users 
to trust the errors when they’re presented. 

We implement the score function as a neural 
network.  We inserted errors into sentences from 
our Wikipedia corpus to create a training corpus.  
The neural network calculates the score function 
using:  
  

Pn(suggestion|wordn-1) 
Pp(suggestion|wordn+1) 
Pn(suggestion|wordn-1, wordn-2) 
Pp(suggestion|wordn+1, wordn+2) 
P(suggestion) 

 
With the neural network our software is able to 

consolidate the information from these statistical 
features.  The neural network also gives us a back-
off method, as the neural network will deal with 
situations that have trigrams and those that don’t. 

While using our system, we’ve found some 
words experience a higher false positive rate than 
others (e.g., to/too).  Our approach is to remove 
these difficult-to-correct words from our confusion 
sets and use hand-made grammar rules to detect 
when they are misused. 

4.3 Evaluation 

We use the dyslexic spelling error corpus from 
Pedler’s PhD thesis (2007) to evaluate the real 
word error correction ability of our system.  97.8% 
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of the 835 errors in this corpus are real-word er-
rors.  

Our method is to provide all sentences to each 
evaluated system, accept the first suggestion, and 
compare the corrected text to the expected an-
swers.  For comparison we present numbers for 
Microsoft Word 2007 Windows, Microsoft Word 
2008 on MacOS X, and the MacOS X 10.6 built-in 
grammar and spell checker.  Table 4 shows the 
results. 

Microsoft Word 2008 and the MacOS X built-in 
proofreading tools do not have the benefit of a sta-
tistical technique for real-word error detection.  
Microsoft Word 2007 has a contextual spell-
checking feature. 
 

 Precision Recall 
MS Word 07 - Win 90.0% 40.8% 
After the Deadline 89.4% 27.1% 
MS Word 08 - Mac 79.7% 17.7% 
MacOS X built-in  88.5% 9.3% 

 
Table 4. Real Word Error Correction Performance. 

 
Most grammar checkers (including After the 

Deadline) use grammar rules to detect common 
real-word errors (e.g., a/an).  Table 4 shows the 
systems with statistical real-word error correctors 
are advantageous to users.  These systems correct 
far more errors than those that only rely on a rule-
based grammar checker.  

5 Grammar and Style Checking 

The grammar and style checker works with 
phrases.  Our rule-based grammar checker finds 
verb and determiner agreement errors, locates 
some missing prepositions, and flags plural phrases 
that should indicate possession.  The grammar 
checker also adds to the real-word error detection, 
using a rule-based approach to detect misused 
words.  The style checker points out complex ex-
pressions, redundant phrases, clichés, double nega-
tives, and it flags passive voice and hidden verbs.  

Our system prepares text for grammar checking 
by segmenting the raw text into sentences and 
words.  Each word is tagged with its relevant part-
of-speech (adjective, noun, verb, etc.).  The system 
then applies several grammar and style rules to this 
marked up text looking for matches.  Grammar 
rules consist of regular expressions that match on 

parts-of-speech, word patterns, and sentence begin 
and end markers. 

Our grammar checker does not do a deep parse 
of the sentence.  This prevents us from writing 
rules that reference the sentence subject, verb, and 
object directly.  In practice this means we’re un-
able to rewrite passive voice for users and create 
general rules to catch many subject-verb agreement 
errors.  

Functionally, our grammar and style checker is 
similar to Language Tool (Naber, 2003) with the 
exception that it uses the language model to filter 
suggestions that don’t fit the context of the text 
they replace, similar to work from Microsoft Re-
search (Gamon, et al 2008).  

5.1 Text Segmentation 

Our text segmentation function uses a rule-based 
approach similar to Yona (2002) to split raw text 
into paragraphs, sentences, and words.  The seg-
mentation is good enough for most purposes.  

Because our sentence segmentation is wrong at 
times, we do not notify a user when they fail to 
capitalize the first word in a sentence.  

5.2 Part-of-Speech Tagger 

A tagger labels each word with its relevant part-of-
speech.  These labels are called tags.  A tag is a 
hint about the grammatical category of the word.  
Such tagging allows grammar and style rules to 
reference all nouns or all verbs rather than having 
to account for individual words.  Our system uses 
the Penn Tagset (Marcus et al, 1993).  

 
The/DT little/JJ dog/NN 
laughed/VBD 

 
Here we have tagged the sentence The little dog 

laughed.  The is labeled as a determiner, little is an 
adjective, dog is a noun, and laughed is a past 
tense verb.  

We can reference little, large, and mean laugh-
ing dogs with the pattern The .*/JJ dog laughed.  
Our grammar checker separates phrases and tags 
with a forward slash character.  This is a common 
convention.  

The part-of-speech tagger uses a mixed statisti-
cal and rule-based approach.  If a word is known 
and has tags associated with it, the tagger tries to 
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find the tag that maximizes the following probabil-
ity: 
 

P(tagn|wordn) * P(tagn|tagn-1, tagn-2) 
 

For words that are not known, an alternate 
model containing tag probabilities based on word 
endings is consulted.  This alternate model uses the 
last three letters of the word.  Again the goal is to 
maximize this probability.  

We apply rules from Brill’s tagger (Brill, 1995) 
to fix some cases of known incorrect tagging.  Ta-
ble 5 compares our tagger accuracy for known and 
unknown words to a probabilistic tagger that 
maximizes P(tagn|wordn) only. 

 
Tagger Known  Unknown  
Probability Tagger 91.9% 72.9% 
Trigram Tagger 94.0% 76.7% 

 
Table 5. POS Tagger Accuracy. 

 
To train the tagger we created training and test-

ing data sets by running the Stanford POS tagger 
(Toutanova and Manning, 2000) against the 
Wikipedia and Project Gutenberg corpus data. 

5.3 Rule Engine 

It helps to think of a grammar checker as a lan-
guage for describing phrases.  Phrases that match a 
grammar rule return suggestions that are trans-
forms of the matched phrase. 
   Some rules are simple string substitutions (e.g., 
utilized  used).  Others are more complex.  Con-
sider the following phrase: 
 

I wonder if this is your com-
panies way of providing sup-
port? 

 
   This phrase contains an error.  The word compa-
nies should be possessive not plural.  To create a 
rule to find this error, we first look at how our sys-
tem sees it: 

 
I/PRP wonder/VBP if/IN 
this/DT is/VBZ your/PRP$ com-
panies/NNS way/NN of/IN pro-
viding/VBG support/NN 

A rule to capture this error is: 
 
your .*/NNS .*/NN 

 
This rule looks for a phrase that begins with the 

word your, followed by a plural noun, followed by 
another noun.  When this rule matches a phrase, 
suggestions are generated using a template speci-
fied with the rule.  The suggestion for this rule is: 

 
your \1:possessive \2 
 

Suggestions may reference matched words with 
\n, where n is the nth word starting from zero.  
This suggestion references the second and third 
words.  It also specifies that the second word 
should be transformed to possessive form.  Our 
system converts the plural word to a possessive 
form using the \1:possessive transform.  

 
Phrase Score 
your companies way 0.000004% 
your company’s way 0.000030% 

 
Table 6. Grammar Checker Statistical Filtering. 

 
   Before presenting suggestions to the user, our 
system queries the language model to decide which 
suggestions fit in the context of the original text.  

Rules may specify which context fit function 
they want to use.  The default context fit function 
is: Pn(wordn|wordn-1) + Pp(wordn|wordn+1) >  
(0.5 x [Pn(wordn|wordn-1) + Pp(wordn|wordn+1)]) + 
0.00001.  

This simple context fit function gets rid of many 
suggestions.  Table 6 shows the scores from our 
example.  Here we see that the suggestion scores 
nearly ten times higher than the original text.  

This statistical filtering is helpful as it relieves 
the rule developer from the burden of finding ex-
ceptions to the rule.  Consider the rules to identify 
the wrong indefinite article:  
 

a [aeiouyhAEIOUYH18]\w+ 
an [^aeiAEIMNRSX8]\w+ 

 
One uses a when the next word has a consonant 

sound and an when it has a vowel sound.  Writing 
rules to capture this is wrought with exceptions.  A 
rule can’t capture a sound without hard coding 
each exception.  For this situation we use a context 
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fit function that calculates the statistical fit of the 
indefinite article with the following word.  This 
saves us from having to manually find exceptions.  

 
Figure 2. Rule Tree Example. 

 
Each rule describes a phrase one word and tag 

pattern at a time.  For performance reasons, the 
first token must be a word or part-of-speech tag.  
No pattern matching is allowed in the first token.  
We group rules with a common first word or tag 
into an n-ary rule tree.  Rules with common pattern 
elements are grouped together until the word/tag 
patterns described by the rule diverges from exist-
ing patterns.  Figure 2 illustrates this.  

When evaluating text, our system checks if there 
is a rule tree associated with the current word or 
tag.  If there is, our system walks the tree looking 
for the deepest match.  Each shaded node in Figure 
2 represents a potential match.  Associated with 
each node are suggestions and hints for the statisti-
cal checker. 

 We measure the number of rules in our system 
by counting the number of nodes that result in a 
grammar rule match.  Figure 2 represents six dif-
ferent grammar rules.  Our system has 33,732 rules 
to check for grammar and style errors. 

The capabilities of the grammar checker are lim-
ited by our imagination and ability to create new 
rules.  We do not present the precision and recall 
of the grammar checker, as the coverage of our 
hand-made rules is not the subject of this paper.  

6 Conclusions 

Our approach to developing a software service 
proofreader is summarized with the following 
principles: 

• Speed over accuracy 

• Simplicity over complexity 

• Do what works 

   In natural language processing there are many 
opportunities to choose speed over accuracy.  For 
example, when tagging a sentence one can use a 
Hidden Markov Model tagger or a simple trigram 
tagger.  In these instances we made the choice to 
trade accuracy for speed.  

When implementing the smarts of our system, 
we’ve opted to use simpler algorithms and focus 
on acquiring more data and increasing the quality 
of data our system learns from.  As others have 
pointed out (Banko and Brill, 2001), with enough 
data the complex algorithms with their tricks cease 
to have an advantage over the simpler methods.  

Our real-word error detector is an example of 
simplicity over complexity.  With our simple tri-
gram language model, we were able to correct 
nearly a quarter of the errors in the dyslexic writer 
corpus.  We could improve the performance of our 
real-word error corrector simply by adding more 
confusion sets. 

We define “do what works” as favoring mixed 
strategies for finding and correcting errors.  We 
use both statistical and rule-based methods to de-
tect real word errors and correct grammar mis-
takes.   

Here we’ve shown a production software service 
system used for proofreading documents.  While 
designing this system for production we’ve noted 
several areas of improvement.  We’ve explained 
how we implemented a comprehensive proofread-
ing solution using a simple language model and a 
few neural networks.  We’ve also shown that there 
are advantages to a software service from the use 
of large language models.  

After the Deadline is available under the GNU 
General Public License.  The code and models are 
available at http://open.afterthedeadline.com.  
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