
Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 131–139,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Sentiment Classification using Automatically Extracted Subgraph Features

Shilpa Arora, Elijah Mayfield, Carolyn Penstein-Rosé and Eric Nyberg

Language Technologies Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213
{shilpaa, emayfiel, cprose, ehn}@cs.cmu.edu

Abstract

In this work, we propose a novel representa-

tion of text based on patterns derived from lin-

guistic annotation graphs. We use a subgraph

mining algorithm to automatically derive fea-

tures as frequent subgraphs from the annota-

tion graph. This process generates a very large

number of features, many of which are highly

correlated. We propose a genetic program-

ming based approach to feature construction

which creates a fixed number of strong classi-

fication predictors from these subgraphs. We

evaluate the benefit gained from evolved struc-

tured features, when used in addition to the

bag-of-words features, for a sentiment classi-

fication task.

1 Introduction

In recent years, the topic of sentiment analysis has

been one of the more popular directions in the field

of language technologies. Recent work in super-

vised sentiment analysis has focused on innovative

approaches to feature creation, with the greatest im-

provements in performance with features that in-

sightfully capture the essence of the linguistic con-

structions used to express sentiment, e.g. (Wilson et

al., 2004), (Joshi and Rosé, 2009)

In this spirit, we present a novel approach that

leverages subgraphs automatically extracted from

linguistic annotation graphs using efficient subgraph

mining algorithms (Yan and Han, 2002). The diffi-

culty with automatically deriving complex features

comes with the increased feature space size. Many

of these features are highly correlated and do not

provide any new information to the model. For ex-

ample, a feature of type unigram POS (e.g. “cam-

era NN”) doesn’t provide any additional informa-

tion beyond the unigram feature (e.g. “camera”),

for words that are often used with the same part of

speech. However, alongside several redundant fea-

tures, there are also features that provide new infor-

mation. It is these features that we aim to capture.

In this work, we propose an evolutionary ap-

proach that constructs complex features from sub-

graphs extracted from an annotation graph. A con-

stant number of these features are added to the un-

igram feature space, adding much of the represen-

tational benefits without the computational cost of a

drastic increase in feature space size.

In the remainder of the paper, we review prior

work on features commonly used for sentiment anal-

ysis. We then describe the annotation graph rep-

resentation proposed by Arora and Nyberg (2009).

Following this, we describe the frequent subgraph

mining algorithm proposed in Yan and Han (2002),

and used in this work to extract frequent subgraphs

from the annotation graphs. We then introduce our

novel feature evolution approach, and discuss our

experimental setup and results. Subgraph features

combined with the feature evolution approach gives

promising results, with an improvement in perfor-

mance over the baseline.

2 Related Work

Some of the recent work in sentiment analysis has

shown that structured features (features that capture

syntactic patterns in text), such as n-grams, depen-

dency relations, etc., improve performance beyond

131

the bag of words approach. Arora et al. (2009) show

that deep syntactic scope features constructed from

transitive closure of dependency relations give sig-

nificant improvement for identifying types of claims

in product reviews. Gamon (2004) found that using

deep linguistic features derived from phrase struc-

ture trees and part of speech annotations yields sig-

nificant improvements on the task of predicting sat-

isfaction ratings in customer feedback data. Wilson

et al. (2004) use syntactic clues derived from depen-

dency parse tree as features for predicting the inten-

sity of opinion phrases1.

Structured features that capture linguistic patterns

are often hand crafted by domain experts (Wilson

et al., 2005) after careful examination of the data.

Thus, they do not always generalize well across

datasets and domains. This also requires a signif-

icant amount of time and resources. By automati-

cally deriving structured features, we might be able

to learn new annotations faster.

Matsumoto et al. (2005) propose an approach that

uses frequent sub-sequence and sub-tree mining ap-

proaches (Asai et al., 2002; Pei et al., 2004) to derive

structured features such as word sub-sequences and

dependency sub-trees. They show that these features

outperform bag-of-words features for a sentiment

classification task and achieve the best performance

to date on a commonly-used movie review dataset.

Their approach presents an automatic procedure for

deriving features that capture long distance depen-

dencies without much expert intervention.

However, their approach is limited to sequences

or tree annotations. Often, features that combine

several annotations capture interesting characteris-

tics of text. For example, Wilson et al. (2004), Ga-

mon (2004) and Joshi and Rosé (2009) show that

a combination of dependency relations and part of

speech annotations boosts performance. The anno-

tation graph representation proposed by Arora and

Nyberg (2009) is a formalism for representing sev-

eral linguistic annotations together on text. With an

annotation graph representation, instances are rep-

resented as graphs from which frequent subgraph

patterns may be extracted and used as features for

learning new annotations.

1Although, in this work we are classifying sentences and not

phrases, similar clues may be used for sentiment classification

in sentences as well

In this work, we use an efficient frequent sub-

graph mining algorithm (gSpan) (Yan and Han,

2002) to extract frequent subgraphs from a linguis-

tic annotation graph (Arora and Nyberg, 2009). An

annotation graph is a general representation for ar-

bitrary linguistic annotations. The annotation graph

and subgraph mining algorithm provide us a quick

way to test several alternative linguistic representa-

tions of text. In the next section, we present a formal

definition of the annotation graph and a motivating

example for subgraph features.

3 Annotation Graph Representation and

Feature Subgraphs

Arora and Nyberg (2009) define the annotation

graph as a quadruple: G = (N, E, Σ, λ), where

N is the set of nodes, E is the set of edges, s.t.

E ⊂ N × N , and Σ = ΣN ∪ ΣE is the set of la-

bels for nodes and edges. λ : N ∪ E → Σ is the

labeling function for nodes and edges. Examples of

node labels (ΣN) are tokens (unigrams) and annota-

tions such as part of speech, polarity etc. Examples

of edge labels (ΣE) are leftOf, dependency type etc.

The leftOf relation is defined between two adjacent

nodes. The dependency type relation is defined be-

tween a head word and its modifier.

Annotations may be represented in an annotation

graph in several ways. For example, a dependency

triple annotation ‘good amod movie’, may be repre-

sented as a d amod relation between the head word

‘movie’ and its modifier ‘good’, or as a node d amod

with edges ParentOfGov and ParentOfDep to the

head and the modifier words. An example of an an-

notation graph is shown in Figure 1.

The instance in Figure 1 describes a movie review

comment, ‘interesting, but not compelling.’. The

words ‘interesting’ and ‘compelling’ both have pos-

itive prior polarity, however, the phrase expresses

negative sentiment towards the movie. Heuristics for

special handling of negation have been proposed in

the literature. For example, Pang et al. (2002) ap-

pend every word following a negation, until a punc-

tuation, with a ‘NOT’ . Applying a similar technique

to our example gives us two sentiment bearing fea-

tures, one positive (‘interesting’) and one negative

(‘NOT-compelling’), and the model may not be as

sure about the predicted label, since there is both

132

positive and negative sentiment present.

In Figure 2, we show three discriminating sub-

graph features derived from the annotation graph in

Figure 1. These subgraph features capture the nega-

tive sentiment in our example phrase. The first fea-

ture in 2(a) captures the pattern using dependency

relations between words. A different review com-

ment may use the same linguistic construction but

with a different pair of words, for example “a pretty

good, but not excellent story.” This is the same lin-

guistic pattern but with different words the model

may not have seen before, and hence may not clas-

sify this instance correctly. This suggests that the

feature in 2(a) may be too specific.

In order to mine general features that capture the

rhetorical structure of language, we may add prior

polarity annotations to the annotation graph, us-

ing a lexicon such as Wilson et al. (2005). Fig-

ure 2(b) shows the subgraph in 2(a) with polar-

ity annotations. If we want to generalize the pat-

tern in 2(a) to any positive words, we may use the

feature subgraph in Figure 2(c) with X wild cards

on words that are polar or negating. This feature

subgraph captures the negative sentiment in both

phrases ‘interesting, but not compelling.’ and “a

pretty good, but not excellent story.”. Similar gener-

alization using wild cards on words may be applied

with other annotations such as part of speech anno-

tations as well. By choosing where to put the wild

card, we can get features similar to, but more pow-

erful than, the dependency back-off features in Joshi

and Rosé (2009).

U_interesting U_, U_but U_not U_compelling U_.

D_conj-but

D_neg

L_POSITIVE L_POSITIVE

polQ polQ

posQ

P_VBN

posQ

P_,

posQ

P_CC

posQ

P_RB

posQ

P_JJ

posQ

P_.

Figure 1: Annotation graph for sentence ‘interesting, but not

compelling.’ . Prefixes: ‘U’ for unigrams (tokens), ‘L’ for po-

larity, ‘D’ for dependency relation and ‘P’ for part of speech.

Edges with no label encode the ‘leftOf’ relation between words.

4 Subgraph Mining Algorithms

In the previous section, we demonstrated that sub-

graphs from an annotation graph can be used to iden-

U_interesting U_not U_compelling

D_conj-but

D_neg

(a)

U_interesting U_not U_compelling

D_conj-but

D_neg

L_POSITIVE L_POSITIVE

polQ polQ

(b)

X X X

D_conj-but

D_neg

L_POSITIVE L_POSITIVE

polQ polQ

(c)

Figure 2: Subgraph features from the annotation graph in

Figure 1

tify the rhetorical structure used to express senti-

ment. The subgraph patterns that represent general

linguistic structure will be more frequent than sur-

face level patterns. Hence, we use a frequent sub-

graph mining algorithm to find frequent subgraph

patterns, from which we construct features to use in

the supervised learning algorithm.

The goal in frequent subgraph mining is to find

frequent subgraphs in a collection of graphs. A

graph G′ is a subgraph of another graph G if there

exists a subgraph isomorphism2 from G′ to G, de-

noted by G′ ⊑ G.

Earlier approaches in frequent subgraph mining

(Inokuchi et al., 2000; Kuramochi and Karypis,

2001) used a two-step approach of first generating

the candidate subgraphs and then testing their fre-

quency in the graph database. The second step in-

volves a subgraph isomorphism test, which is NP-

complete. Although efficient isomorphism testing

algorithms have been developed making it practical

to use, with lots of candidate subgraphs to test, it can

2http://en.wikipedia.org/wiki/Subgraph_

isomorphism_problem

133

still be very expensive for real applications.

gSpan (Yan and Han, 2002) uses an alternative

pattern growth based approach to frequent subgraph

mining, which extends graphs from a single sub-

graph directly, without candidate generation. For

each discovered subgraph G, new edges are added

recursively until all frequent supergraphs of G have

been discovered. gSpan uses a depth first search tree

(DFS) and restricts edge extension to only vertices

on the rightmost path. However, there can be multi-

ple DFS trees for a graph. gSpan introduces a set of

rules to select one of them as representative. Each

graph is represented by its unique canonical DFS

code, and the codes for two graphs are equivalent if

the graphs are isomorphic. This reduces the compu-

tational cost of the subgraph mining algorithm sub-

stantially, making gSpan orders of magnitude faster

than other subgraph mining algorithms. With sev-

eral implementations available 3, gSpan has been

commonly used for mining frequent subgraph pat-

terns (Kudo et al., 2004; Deshpande et al., 2005). In

this work, we use gSpan to mine frequent subgraphs

from the annotation graph.

5 Feature Construction using Genetic

Programming

A challenge to overcome when adding expressive-

ness to the feature space for any text classification

problem is the rapid increase in the feature space

size. Among this large set of new features, most

are not predictive or are very weak predictors, and

only a few carry novel information that improves

classification performance. Because of this, adding

more complex features often gives no improvement

or even worsens performance as the feature space’s

signal is drowned out by noise.

Riloff et al. (2006) propose a feature subsump-

tion approach to address this issue. They define a

hierarchy for features based on the information they

represent. A complex feature is only added if its

discriminative power is a delta above the discrimi-

native power of all its simpler forms. In this work,

we use a Genetic Programming (Koza, 1992) based

approach which evaluates interactions between fea-

3http://www.cs.ucsb.edu/˜xyan/software/

gSpan.htm, http://www.kyb.mpg.de/bs/people/

nowozin/gboost/

tures and evolves complex features from them. The

advantage of the genetic programing based approach

over feature subsumption is that it allows us to eval-

uate a feature using multiple criteria. We show that

this approach performs better than feature subsump-

tion.

A lot of work has considered this genetic pro-

gramming problem (Smith and Bull, 2005). The

most similar approaches to ours are taken by Kraw-

iec (2002) and Otero et al. (2002), both of which use

genetic programming to build tree feature represen-

tations. None of this work was applied to a language

processing task, though there has been some sim-

ilar work to ours in that community, most notably

(Hirsch et al., 2007), which built search queries for

topic classification of documents. Our prior work

(Mayfield and Rosé, 2010) introduced a new feature

construction method and was effective when using

unigram features; here we extend our approach to

feature spaces which are even larger and thus more

problematic.

The Genetic Programming (GP) paradigm is most

advantageous when applied to problems where there

is not a correct answer to a problem, but instead

there is a gradient of partial solutions which incre-

mentally improve in quality. Potential solutions are

represented as trees consisting of functions (non-leaf

nodes in the tree, which perform an action given

their child nodes as input) and terminals (leaf nodes

in the tree, often variables or constants in an equa-

tion). The tree (an individual) can then be inter-

preted as a program to be executed, and the output

of that program can be measured for fitness (a mea-

surement of the program’s quality). High-fitness in-

dividuals are selected for reproduction into a new

generation of candidate individuals through a breed-

ing process, where parts of each parent are combined

to form a new individual.

We apply this design to a language processing

task at the stage of feature construction - given many

weakly predictive features, we would like to com-

bine them in a way which produces a better feature.

For our functions we use boolean statements AND

and XOR, while our terminals are selected randomly

from the set of all unigrams and our new, extracted

subgraph features. Each leaf’s value, when applied

to a single sentence, is equal to 1 if that subgraph is

present in the sentence, and 0 if the subgraph is not

134

present.

The tree in Figure 3 is a simplified example of our

evolved features. It combines three features, a uni-

gram feature ‘too’ (centre node) and two subgraph

features: 1) the subgraph in the leftmost node oc-

curs in collocations containing “more than” (e.g.,

“nothing more than” or “little more than”), 2) the

subgraph in the rightmost node occurs in negative

phrases such as “opportunism at its most glaring”

(JJS is a superlative adjective and PRP$ is a pos-

sessive pronoun). A single feature combining these

weak indicators can be more predictive than any part

alone.

!"#$

!"#$

%&'(($

%&)(*+$

,&-*+-&'./0$

%&1'2$

3"4&3#35$

3"4&664$
,&-(22$

%&1'2%&1

3"4&3#35$&3#

3"4&664$3"4&66
,&-(22(22

Figure 3: A tree constructed using subgraph features and GP

(Simplified for illustrative purposes)

In the rest of this section, we first describe the

feature construction process using genetic program-

ming. We then discuss how fitness of an individual

is measured for our classification task.

5.1 Feature Construction Process

We divide our data into two sets, training and test.

We again divide our training data in half, and train

our GP features on only one half of this data4 This is

to avoid overfitting the final SVM model to the GP

features. In a single GP run, we produce one feature

to match each class value. For a sentiment classifica-

tion task, a feature is evolved to be predictive of the

positive instances, and another feature is evolved to

be predictive of the negative documents. We repeat

this procedure a total of 15 times (using different

seeds for random selection of features), producing

a total of 30 new features to be added to the feature

space.

4For genetic programming we used the ECJ toolkit

(http://cs.gmu.edu/˜eclab/projects/ecj/).

5.2 Defining Fitness

Our definition of fitness is based on the concepts

of precision and recall, borrowed from informa-

tion retrieval. We define our set of documents

as being comprised of a set of positive documents

P0, P1, P2, ...Pu and a set of negative documents

N0, N1, N2, ...Nv. For a given individual I and doc-

ument D, we define hit(I, D) to equal 1 if the state-

ment I is true of that document and 0 otherwise. Pre-

cision and recall of an individual feature for predict-

ing positive documents5 is then defined as follows:

Prec(I) =

u∑

i=0

hit(I, Pi)

u∑

i=0

hit(I, Pi) +
v∑

i=0

hit(I, Ni)

(1)

Rec(I) =

u∑

i=0

hit(I, Pi)

u
(2)

We then weight these values to give significantly

more importance to precision, using the Fβ measure,

which gives the harmonic mean between precision

and recall:

Fβ(I) =
(1 + β2)× (Prec(I)×Rec(I))

(β2 × Prec(I)) + Rec(I)
(3)

In addition to this fitness function, we add two

penalties to the equation. The first penalty applies to

prevent trees from becoming overly complex. One

option to ensure that features remain moderately

simple is to simply have a maximum depth beyond

which trees cannot grow. Following the work of

Otero et al. (2002), we penalize trees based on the

number of nodes they contain. This discourages

bloat, i.e. sections of trees which do not contribute to

overall accuracy. This penalty, known as parsimony

pressure, is labeled PP in our fitness function.

The second penalty is based on the correlation be-

tween the feature being constructed, and the sub-

graphs and unigrams which appear as nodes within

that individual. Without this penalty, a feature may

5Negative precision and recall are defined identically, with

obvious adjustments to test for negative documents instead of

positive.

135

often be redundant, taking much more complexity

to represent the same information that is captured

with a simple unigram. We measure correlation us-

ing Pearson’s product moment, defined for two vec-

tors X , Y as:

ρx,y =
E[(X − µX)(Y − µY)]

σXσY

(4)

This results in a value from 1 (for perfect align-

ment) to -1 (for inverse alignment). We assign a

penalty for any correlation past a cutoff. This func-

tion is labeled CC (correlation constraint) in our fit-

ness function.

Our fitness function therefore is:

Fitness = F 1

8

+ PP + CC (5)

6 Experiments and Results

We evaluate our approach on a sentiment classifi-

cation task, where the goal is to classify a movie

review sentence as expressing positive or negative

sentiment towards the movie.

6.1 Data and Experimental Setup

Data: The dataset consists of snippets from Rot-

ten Tomatoes (Pang and Lee, 2005) 6. It consists

of 10662 snippets/sentences total with equal num-

ber positive and negative sentences (5331 each).

This dataset was created and used by Pang and Lee

(2005) to train a classifier for identifying positive

sentences in a full length review. We use the first

8000 (4000 positive, 4000 negative) sentences as

training data and evaluate on remaining 2662 (1331

positive, 1331 negative) sentences. We added part

of speech and dependency triple annotations to this

data using the Stanford parser (Klein and Manning,

2003).

Annotation Graph: For the annotation graph rep-

resentation, we used Unigrams (U), Part of Speech

(P) and Dependency Relation Type (D) as labels for

the nodes, and ParentOfGov and ParentOfDep as la-

bels for the edges. For a dependency triple such as

“amod good movie”, five nodes are added to the an-

notation graph as shown in Figure 4(a). ParentOf-

Gov and ParentOfDep edges are added from the

6http://www.cs.cornell.edu/people/pabo/

movie-review-data/rt-polaritydata.tar.gz

D_amod

U_good

P_JJ
P_NN

U_movie

ParentofGov

ParentofGovParentofDep

ParentofDep

(a)

D_amod

U_good

P_NN

ParentofGov

ParentofDep

(b)

D_amod

X

P_JJ
P_NN

X

posQ
ParentofGov

ParentofDep

posQ

(c)

Figure 4: Annotation graph and a feature subgraph for

dependency triple annotation “amod good camera”. (c)

shows an alternative representation with wild cards

dependency relation node D amod to the unigram

nodes U good and U movie. These edges are also

added for the part of speech nodes that correspond

to the two unigrams in the dependency relation, as

shown in Figure 4(a). This allows the algorithm to

find general patterns, based on a dependency rela-

tion between two part of speech nodes, two unigram

nodes or a combination of the two. For example,

a subgraph in Figure 4(b) captures a general pat-

tern where good modifies a noun. This feature ex-

ists in “amod good movie”, “amod good camera”

and other similar dependency triples. This feature is

similar to the the dependency back-off features pro-

posed in Joshi and Rosé (2009).

The extra edges are an alternative to putting wild

cards on words, as proposed in section 3. On the

other hand, putting a wild card on every word in

the annotation graph for our example (Figure 4(c)),

will only give features based on dependency rela-

tions between part of speech annotations. Thus, the

wild card based approach is more restrictive than

136

adding more edges. However, with lots of edges, the

complexity of the subgraph mining algorithm and

the number of subgraph features increases tremen-

dously.

Classifier: For our experiments we use Support

Vector Machines (SVM) with a linear kernel. We

use the SVM-light7 implementation of SVM with

default settings.

Parameters: The gSpan algorithm requires setting

the minimum support threshold (minsup) for the

subgraph patterns to extract. Support for a subgraph

is the number of graphs in the dataset that contain

the subgraph. We experimented with several values

for minimum support and minsup = 2 gave us the

best performance.

For Genetic Programming, we used the same pa-

rameter settings as described in Mayfield and Rosé

(2010), which were tuned on a different dataset8

than one used in this work, but it is from the same

movie review domain. We also consider one alter-

ation to these settings. As we are introducing many

new and highly correlated features to our feature

space through subgraphs, we believe that a stricter

constraint must be placed on correlation between

features. To accomplish this, we can set our correla-

tion penalty cutoff to 0.3, lower than the 0.5 cutoff

used in prior work. Results for both settings are re-

ported.

Baselines: To the best of our knowledge, there is

no supervised machine learning result published on

this dataset. We compare our results with the fol-

lowing baselines:

• Unigram-only Baseline: In sentiment analysis,

unigram-only features have been a strong base-

line (Pang et al., 2002; Pang and Lee, 2004).

We only use unigrams that occur in at least

two sentences of the training data same as Mat-

sumoto et al. (2005). We also filter out stop

words using a small stop word list9.

• χ2 Baseline: For our training data, after filter-

ing infrequent unigrams and stop words, we get

7http://svmlight.joachims.org/
8Full movie review data by Pang et al. (2002)
9http://nlp.stanford.edu/

IR-book/html/htmledition/

dropping-common-terms-stop-words-1.html

(with one modification: removed ‘will’, added ‘this’)

8424 features. Adding subgraph features in-

creases the total number of features to 44, 161,

a factor of 5 increase in size. Feature selec-

tion can be used to reduce this size by select-

ing the most discriminative features. χ2 feature

selection (Manning et al., 2008) is commonly

used in the literature. We compare two methods

of feature selection with χ2, one which rejects

features if their χ2 score is not significant at the

0.05 level, and one that reduces the number of

features to match the size of our feature space

with GP.

• Feature Subsumption (FS): Following the idea

in Riloff et al. (2006), a complex feature

C is discarded if IG(S) ≥ IG(C) − δ,

where IG is Information Gain and S is

a simple feature that representationally sub-

sumes C, i.e. the text spans that match S

are a superset of the text spans that match

C. In our work, complex features are sub-

graph features and simple features are uni-

gram features contained in them. For example,

(D amod) Edge ParentOfDep (U bad) is

a complex feature for which U bad is a sim-

ple feature. We tried same values for δ ∈
{0.002, 0.001, 0.0005}, as suggested in Riloff

et al. (2006). Since all values gave us same

number of features, we only report a single re-

sult for feature subsumption.

• Correlation (Corr): As mentioned earlier,

some of the subgraph features are highly corre-

lated with unigram features and do not provide

new knowledge. A correlation based filter for

subgraph features can be used to discard a com-

plex feature C if its absolute correlation with its

simpler feature (unigram feature) is more than

a certain threshold. We use the same threshold

as used in the GP criterion, but as a hard filter

instead of a penalty.

6.2 Results and Discussion

In Table 1, we present our results. As can be

seen, subgraph features when added to the unigrams,

without any feature selection, decrease the perfor-

mance. χ2 feature selection with fixed feature space

size provides a very small gain over unigrams. All

other feature selection approaches perform worse

137

Settings #Features Acc. ∆

Uni 8424 75.66 -

Uni + Sub 44161 75.28 -0.38

Uni + Sub, χ2 sig. 3407 74.68 -0.98

Uni + Sub, χ2 size 8454 75.77 +0.11

Uni + Sub, (FS) 18234 75.47 -0.19

Uni + Sub, (Corr) 18980 75.24 -0.42

Uni + GP (U) † 8454 76.18 +0.52

Uni + GP (U+S) ‡ 8454 76.48 +0.82

Uni + GP (U+S) † 8454 76.93 +1.27

Table 1: Experimental results for feature spaces with un-

igrams, with and without subgraph features. Feature se-

lection with 1) fixed significance level (χ2 sig.), 2) fixed

feature space size (χ2 size), 3) Feature Subsumption (FS)

and 4) Correlation based feature filtering (Corr)). GP fea-

tures for unigrams only {GP(U)}, or both unigrams and

subgraph features {GP(U+S)}. Both the settings from

Mayfield and Rosé (2010) (‡) and more stringent correla-

tion constraint (†) are reported. #Features is the num-

ber of features in the training data. Acc is the accuracy

and ∆ is the difference from unigram only baseline. Best

performing feature configuration is highlighted in bold.

than the unigram-only approach. With GP, we ob-

serve a marginally significant gain (p < 0.1) in per-

formance over unigrams, calculated using one-way

ANOVA. Benefit from GP is more when subgraph

features are used in addition to the unigram features,

for constructing more complex pattern features. Ad-

ditionally, our performance is improved when we

constrain the correlation more severely than in previ-

ously published research, supporting our hypothesis

that this is a helpful way to respond to the problem

of redundancy in subgraph features.

A problem that we see with χ2 feature selection is

that several top ranked features may be highly cor-

related. For example, the top 5 features based on χ2

score are shown in Table 2; it is immediately obvi-

ous that the features are highly redundant.

With GP based feature construction, we can con-

sider this relationship between features, and con-

struct new features as a combination of selected un-

igram and subgraph features. With the correlation

criterion in the evolution process, we are able to

build combined features that provide new informa-

tion compared to unigrams.

The results we present are for the best perform-

(D advmod) Edge ParentOfDep (U too)

U too

U bad

U movie

(D amod) Edge ParentOfDep (U bad)

Table 2: Top features based on χ2 score

ing parameter configuration that we tested, after a

series of experiments. We realize that this places us

in danger of overfitting to the particulars of this data

set, however, the data set is large enough to partially

mitigate this concern.

7 Conclusion and Future Work

We have shown that there is additional information

to be gained from text beyond words, and demon-

strated two methods for increasing this information -

a subgraph mining approach that finds common syn-

tactic patterns that capture sentiment-bearing rhetor-

ical structure in text, and a feature construction

technique that uses genetic programming to com-

bine these more complex features without the redun-

dancy, increasing the size of the feature space only

by a fixed amount. The increase in performance that

we see is small but consistent.

In the future, we would like to extend this work to

other datasets and other problems within the field of

sentiment analysis. With the availability of several

off-the-shelf linguistic annotators, we may add more

linguistic annotations to the annotation graph and

richer subgraph features may be discovered. There

is also additional refinement that can be performed

on our genetic programming fitness function, which

is expected to improve the quality of our features.

Acknowledgments

This work was funded in part by the DARPA Ma-

chine Reading program under contract FA8750-09-

C-0172, and in part by NSF grant DRL-0835426.

We would like to thank Dr. Xifeng Yan and Marisa

Thoma for the gSpan code.

References

Shilpa Arora, Mahesh Joshi and Carolyn P. Rosé. 2009.

Identifying Types of Claims in Online Customer Re-

138

views. Proceedings of the HLT/NAACL.

Shilpa Arora and Eric Nyberg. 2009. Interactive Anno-

tation Learning with Indirect Feature Voting. Proceed-

ings of the HLT/NAACL (Student Research Work-

shop).

Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroshi

Sakamoto and Setsuo Arikawa. 2002. Efficient sub-

structure discovery from large semi-structured data.

Proceedings of SIAM Int. Conf. on Data Mining

(SDM).

Mukund Deshpande , Michihiro Kuramochi , Nikil Wale

and George Karypis. 2005. Frequent Substructure-

Based Approaches for Classifying Chemical Com-

pounds. IEEE Transactions on Knowledge and Data

Engineering.

Michael Gamon. 2004. Sentiment classification on cus-

tomer feedback data: noisy data, large feature vec-

tors, and the role of linguistic analysis, Proceedings

of COLING.

Laurence Hirsch, Robin Hirsch and Masoud Saeedi.

2007. Evolving Lucene Search Queries for Text Clas-

sification. Proceedings of the Genetic and Evolution-

ary Computation Conference.

Mahesh Joshi and Carolyn P. Rosé. 2009. Generalizing

Dependency Features for Opinion Mining. Proceed-

ings of the ACL-IJCNLP Conference (Short Papers).

Akihiro Inokuchi, Takashi Washio and Hiroshi Motoda.

2000. An Apriori-based Algorithm for Mining Fre-

quent Substructures from Graph Data. Proceedings

of PKDD.

Dan Klein and Christopher D. Manning. 2003. Accurate

unlexicalized parsing. Proceedings of the main con-

ference of the ACL.

John Koza. 1992. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-

tion. MIT Press.

Krzysztof Krawiec. 2002. Genetic programming-based

construction of features for machine learning and

knowledge discovery tasks. Genetic Programming and

Evolvable Machines.

Taku Kudo, Eisaku Maeda and Yuji Matsumoto. 2004.

An Application of Boosting to Graph Classification.

Proceedings of NIPS.

Michihiro Kuramochi and George Karypis. 2002. Fre-

quent Subgraph Discovery. Proceedings of ICDM.

Christopher D. Manning, Prabhakar Raghavan and Hin-

rich Schtze. 2008. Introduction to Information Re-

trieval. Proceedings of PAKDD.

Shotaro Matsumoto, Hiroya Takamura and Manabu Oku-

mura. 2005. Sentiment Classification Using Word

Sub-sequences and Dependency Sub-trees. Proceed-

ings of PAKDD.

Elijah Mayfield and Carolyn Penstein-Rosé. 2010.

Using Feature Construction to Avoid Large Feature

Spaces in Text Classification. Proceedings of the Ge-

netic and Evolutionary Computation Conference.

Fernando Otero, Monique Silva, Alex Freitas and Julio

Nievola. 2002. Genetic Programming for Attribute

Construction in Data Mining. Proceedings of the Ge-

netic and Evolutionary Computation Conference.

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan.

2002. Thumbs up? Sentiment Classication using Ma-

chine Learning Techniques. Proceedings of EMNLP.

Bo Pang and Lillian Lee. 2004. A Sentimental Educa-

tion: Sentiment Analysis Using Subjectivity Summa-

rization Based on Minimum Cuts. Proceedings of the

main conference of ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting

class relationships for sentiment categorization with

respect to rating scales. Proceedings of the main con-

ference of ACL.

Jian Pei, Jiawei Han, Behzad Mortazavi-asl, Jianyong

Wang, Helen Pinto, Qiming Chen, Umeshwar Dayal

and Mei-chun Hsu. 2004. Mining Sequential Pat-

terns by Pattern-Growth: The PrefixSpan Approach.

Proceedings of IEEE Transactions on Knowledge and

Data Engineering.

Ellen Riloff, Siddharth Patwardhan and Janyce Wiebe.

2006. Feature Subsumption for Opinion Analysis.

Proceedings of the EMNLP.

Matthew Smith and Larry Bull. 2005. Genetic Program-

ming with a Genetic Algorithm for Feature Construc-

tion and Selection. Genetic Programming and Evolv-

able Machines.

Theresa Wilson, Janyce Wiebe and Rebecca Hwa. 2004.

Just How Mad Are You? Finding Strong and Weak

Opinion Clauses. Proceedings of AAAI.

Theresa Wilson, Janyce Wiebe and Paul Hoff-

mann. 2005. Recognizing Contextual Polarity

in Phrase-Level Sentiment Analysis. Proceedings of

HLT/EMNLP.

Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-

Based Substructure Pattern Mining. UIUC Techni-

cal Report, UIUCDCS-R-2002-2296 (shorter version

in ICDM’02).

139

