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Abstract
Active learning is a promising method to re-
duce human’s effort for data annotation in dif-
ferent NLP applications. Since it is an itera-
tive task, it should be stopped at some point
which is optimum or near-optimum. In this
paper we propose a novel stopping criterion
for active learning of frame assignment based
on the variability of the classifier’s confidence
score on the unlabeled data. The important ad-
vantage of this criterion is that we rely only on
the unlabeled data to stop the data annotation
process; as a result there are no requirements
for the gold standard data and testing the clas-
sifier’s performance in each iteration. Our
experiments show that the proposed method
achieves 93.67% of the classifier maximum
performance.

1 Introduction
Using supervised machine learning methods is very
popular in Natural Language Processing (NLP).
However, these methods are not applicable for most
of the NLP tasks due to the lack of labeled data. Al-
though a huge amount of unlabeled data is freely
available, labeling them for supervised learning
techniques is very tedious, expensive, time consum-
ing, and error prone.

Active learning is a supervised machine learning
method in which informative instances are chosen
by the classifier for labeling. Unlike the normal su-
pervised set-up where data annotation and learning
are completely independent, active learning is a se-
quential process (Settles, 2009; Busser and Morante,
2005). This learning method is used in a variety of

NLP tasks such as information extraction (Thomp-
son et al., 1999), semantic role labeling (Busser and
Morante, 2005), machine translation (Haffari and
Sarkar, 2009), and name entity recognition (Laws
and Schütze, 2008). In our study, we apply this
method for the frame assignment task as a kind of
semantic analysis.

The process of active learning is as follows: the
learner takes a set of labeled instances, called seed
data, as an input for initial training of the classifier;
and then a larger set of unlabeled instances will be
selected by the classifier to be labeled with the hu-
man interaction. Even a small set of well selected
samples for labeling can achieve the same level of
performance of a large labeled data set; and the ora-
cle’s effort will be reduced as a result.

The motivation behind active learning is select-
ing the most useful examples for the classifier and
thereby minimizing the annotation effort while still
keeping up the performance level (Thompson et al.,
1999). There are two major learning scenarios in
active learning which are very popular among re-
searchers and frequently used in various NLP tasks:
stream-based sampling (Cohn et al., 1994) and pool-
based sampling (Lewis and Gale, 1994).

The samples that are selected should be hard and
very informative. There are different query meth-
ods for sample selection which are independent of
the active learning scenarios (Settles, 2009). Among
them, uncertainty sampling (Lewis and Gale, 1994)
is the most well-known and the simplest sam-
ple selection method which only needs one classi-
fier (Baldridge and Osborne, 2004). In this query
method, the samples that the classifier is least con-
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Algorithm 1 Uncertainty Sampling in Active Learning
Input: Seed data S, Pool of unlabeled samples U
Use S to train the classifier C
while the stopping criterion is met do

Use C to annotate U
Select the top K samples from U predicted by
C which have the lowest confidence
Label K, augment S with theK samples, and re-
move K from U
Use S to retrain C

end while

fident on their labels are selected and handed out to
the oracle. To this aim, a confidence score is re-
quired which is in fact the prediction of the classi-
fier with the highest probability for the label of the
sample (Busser and Morante, 2005).

The approach taken in active learning for our task
is based on the uncertainty of the classifier with ac-
cess to the pool of data. The learning process is
presented in Algorithm 1. Since active learning is
an iterative process (Busser and Morante, 2005), it
should be stopped at some point which is optimum
or at least near-optimum. A learning curve is used
as a means to illustrate the learning progress of the
learner, so that we can monitor the performance of
the classifier. In fact, the curve signals when the
learning process should stop as almost no increase
or even a drop in the performance of the classifier
is observed. At this point, additional training data
will not increase the performance any more. In this
paper, we propose a new stopping criterion based on
the variability of the classifier’s confidence score on
the selected unlabeled data so that we avoid using
the labeled gold standard.

The structure of the paper is as follows. In Sec-
tion 2, we briefly describe frame semantics as it is
the domain of application for our model. Section 3
introduces our stopping criterion and describes the
idea behind it. In Section 4, we describe our data
set and present the experimental results. In Section
5, related work on stopping criteria is outlined; and
finally Section 6 summarizes the paper.

2 Frame Semantics
Syntactic analysis such as part-of-speech (POS) tag-
ging and parsing has been widely studied and has
achieved a great progress. However, semantic anal-

ysis did not have such a rapid progress. This prob-
lem has recently motivated researches to pay special
attention to natural language understanding since it
is one of the essential parts in information extraction
and question-answering.

Frame semantic structure analysis which is based
on the case grammar of Fillmore (1968) is one of
the understanding techniques to provide the knowl-
edge about the actions, the participants of the ac-
tion, and the relations between them. In Fillmore’s
view, a frame is considered as an abstract scene hav-
ing some participants as the arguments of the pred-
icate, and some sentences to describe the scene. In
fact the frames are the conceptual structures for the
background knowledge of the abstract scenes repre-
sented by the lexical units and provide context to the
elements of the action. FrameNet (Baker and Lowe,
1998) is a data set developed at ICSI Berkley Uni-
versity based on the frame semantics.

In frame semantic structure analysis, the semantic
roles of the elements participating in the action are
identified. Determining and assigning the semantic
roles automatically require two steps: frame assign-
ment, and role assignment (Erk and Pado, 2006).
The first step consists in identifying the frame which
is evoked by the predicate to determine the unique
frame that is appropriate for the sample. The next
step is identifying the arguments of the predicate and
assigning the semantic roles to the syntactic argu-
ments of the given frame. In our research, we study
the first step, and leave the second step for future
work.

3 The Proposed Stopping Criterion
The main idea behind the stopping criteria is to stop
the classifier when it has reached its maximum per-
formance and labeling of further examples from the
unlabeled data set will not increase the classifier’s
performance any more. Determining this point is
very difficult experimentally without access to the
gold standard labels to evaluate the performance;
however, we should find a criterion to stop active
learning in a near-optimum point. To this aim, we
propose a novel stopping criterion which uses the
variance of the classifier’s confidence score for the
predicted labels to represent the degree of spread-
ing out the confidence scores around their mean. We
hypothesize that there is a correlation between the
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performance saturation of the classifier and the vari-
ability on the confidence of the selected instances.

Generally, as we will see in Section 5, a stopping
criterion could be based either on the performance
of the classifier on the test data, or on the confidence
score of the classifier on the unlabeled data. In our
method, we used the second approach. The biggest
advantage of this model is that no gold standard data
is required to evaluate the performance of the system
in each iteration.

3.1 Mean and Variance
Mean and variance are two of the well-known sta-
tistical metrics. Mean is a statistical measurement
for determining the central tendency among a set of
scores. In our study, we have computed the mean
(M) of the classifier’s confidence score for the pre-
dicted labels of 5 samples selected in each iteration.
Variance is the amount of variability of the scores
around their mean. To compute the variability of the
classifier’s confidence score for the selected samples
in each iteration, the following equation is used in
our task:

V ariance =
∑K

i=1(Ci −M)2

K
(1)

where Ci is the confidence score of each selected
sample in each iteration, M is the mean of the confi-
dence scores for the predicted labels, and K is the
number of samples selected in the same iteration
(K=5 in our study).

3.2 The General Idea
According to the pool-based scenario, in each iter-
ation K samples of the extra unlabeled data which
have the lowest confidence score are selected, and
after labeling by the oracle they are added to the
training data. In the early iterations, the mean of the
classifier’s confidence score for the selected samples
is low. Since the classifier is not trained enough in
these iterations, most of the scores are low and they
do not have a high degree of variability. As a result
the variance of the confidence score for these sam-
ples is low. We call this step the untrained stage of
the classifier.

As the classifier is training with more data, the
confidence score of the samples will gradually in-
crease; as a result, there will be a high degree of
variability in the confidence scores which spread out

around their mean. In these iterations, the classifier
is relatively in the borderline of the training stage,
passing from untrained to trained; so that there will
be a high variability of confidence scores which
leads to have a high variance. This is the training
stage of the classifier.

When the classifier is trained, the confidence
score of the classifier on the selected samples will
increase. However, from a certain point that the clas-
sifier is trained enough, all of the confidence scores
are located tightly around their mean with a low de-
gree of variability; as a result, the variance of the
samples decreases. This is the stage that the classi-
fier is trained.

The curve in Figure 1 represents the behavior of
the variance in different iterations such that the x
axis is the number of iterations, and the y axis is the
variance of the confidence scores in each iteration.

Figure 1: Normal distribution of variance for the classi-
fier’s confidence score

Based on our assumption, the best stopping point is
when variance reaches its global peak and starts to
decrease. In this case, the classifier passes the train-
ing stage and enters into the trained stage.

3.3 The Variance Model

It is difficult to determine the peak of the variance
on the fly, i.e. without going through all iterations.
One easy solution is to stop the learning process as
soon as there is a decrease in the variance. However,
as it is very likely to stick in the local maxima of the
variance curve, this criterion does not work well. In
other words, it is possible to have small peaks before
reaching the global peak, the highest variability of
the classifier’s confidence score; so that we might
stop at some point we are not interested in and it
should be ignored.
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To avoid this problem, we propose a model, called
variance model (VM), to stop active learning when
variance (V) decreases in n sequential iterations; i.e.

Vi < Vi−1 < ... < Vi−n .

There is a possibility that this condition is not satis-
fied at all in different iterations. In such cases, ac-
tive learning will not stop and all data will be la-
beled. This condition is usually met when there are
instances in the data which are inherently ambigu-
ous. Having such data is generally unavoidable and
it is often problematic for the learner.

Although the above model can deal with the lo-
cal maxima problem, there is a possibility that the
decreased variance in n sequential iterations is very
small and it is still possible to stick in the local max-
ima. To avoid this problem and have a better stop-
ping point, we extend the proposed model by setting
a threshold m, called the Extended Variance Model
(EVM), in which the minimum variance decrement
in n sequential iterations must be m; i.e.

Vi < Vi−1 − m < ... < Vi−n − m.

4 Experimental Results
4.1 Setup of Experiment

What we aim to do in our study is assigning frames
with active learning. We have chosen the pool-based
scenario by using the uncertainty sampling method.
In our task, since we have a small data set, 5 in-
stances (K=5) with the lowest confidence score of
the predited labels will be selected in each iteration
from the pool of data and handed out to the oracle to
be labeled.

We have used a toolkit for the supervised word
sense disambiguation task called Majo (Rehbein et
al., 2009) which has a graphical user interface (GUI)
for semantic annotation based on active learning.
The toolkit supports German and English; and it
uses the openNLP MAXENT package1 to build the
model. In this toolkit, the confidence score of the
classifier is the posterior probability of the most
probable label assigned to each sample.

In addition, there are some built-in plugins in the
tool for syntactic and semantic pre-processing to
provide the relevant features for the classifier. We
utilized the following plugins that support English:

1http://maxent.sourceforge.net/

• Stanford Word Range Plugin provides features
based on the local context of the surface string
for the target. The window size of the local
context can be set manually in the GUI. Based
on initial experiments for the target verbs, we
found out that a window ±3 performs the best.

• Stanford POS Tag Word Range Plugin provides
the POS tags of the words within a sentence
by using Stanford POS Tagger. In this plugin,
the window size could also be set manually to
extract the POS local context of the target word.
Based on initial experiments, a window of ±3
achieved the best performance.

• Berkley Sentence Phrase Plugin utilizes the
Berkley Parser and provides the syntactic anal-
ysis of the sentence. This plugin is used to ex-
tract all word forms of the children nodes from
a particular syntactic mother node (VP in our
study) and add them to the feature set.

• Berkley Sentence Phrase POS Tag Plugin uses
the Berkley POS tagger such that we define the
mother node of the target word in the parse tree
(VP in our study) and it identifies and extracts
all children of this mother node and uses their
POS as features.

4.2 Corpus
The annotated data that we used for our ex-
periments is the current version of the Berke-
ley FrameNet (Baker and Lowe, 1998) for En-
glish which consists of 139,437 annotated exam-
ples from the British National Corpus for 10,196
predicates. Among the predicates that FrameNet in-
volvs, namely verbs, nouns, adjectives, and prepo-
sitions, we only considered verbs; as a result the
data reduced to 61,792 annotated examples for 2,770
unique verb-frames.

In the next step, we removed all verbs that have
only one frame as they are not ambiguous. Hav-
ing only ambiguous verbs, the number of predicates
reduced to 451 unique verbs. Out of these targets,
there are only 37 verbs which have more than 100
annotated samples. Among these verbs, we concen-
trated on 14 verbs selected randomly; however, in
the selection we tried to have a balance distribution
of frames that the targets have. Therefore, we se-
lected 4 targets (phone, rush, scream, throw) with
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Table 1: Data distribution of the targets

Verb Frames Freq. S E T
Bend 4 115 11 82 22
Feel 5 134 13 95 26
Follow 3 113 10 81 22
Forget 3 101 9 72 20
Hit 4 142 12 102 28
Look 3 183 15 134 34
Phone 2 166 14 121 31
Rise 4 110 11 77 22
Rush 2 168 14 123 31
Scream 2 148 12 108 28
Shake 4 104 10 73 21
Smell 3 146 13 106 27
Strike 3 105 10 75 20
Throw 2 155 13 113 29

two frames, 5 targets (follow, forget, look, smell,
strike) with three frames, 4 targets (bend, hit, rise,
shake) with four frames, and 1 target (feel) with five
frames.

4.3 Data Distribution

The total amount of data prepared for the 14 verbs
are divided into three non-overlapping sets in a bal-
anced form in terms of both the number of the target
predicate frames, and the relevant instances of each
frame. In other words, the distribution should be
such that different frames of the target verb is found
in each of the three data sets. 10% is considered as
initial seed data (S); 20% as test data (T), and the rest
of 70% as extra unlabeled data (E). Table 1 presents
the data distribution in which 5-fold cross-validation
is performed to minimize the overfitting problem.

As mentioned, our proposed stopping criterion
has two parameters, n and m, that should be tuned.
For this purpose, we divided the 14 targets into the
held-out set and the test set. To this aim, 7 tar-
gets, namely feel, look, phone, rise, shake, smell,
and throw are selected as the held-out set; and 7 tar-
gets, namely bend, follow, forget, hit, rush, scream,
and strike are used as the test set.

4.4 Results

Figures 2 and 3 illustrate the learning curves of the
active learning process and random sampling as the
baseline for the targets look and rise. The curves
are the average of the 5 folds. As can be seen, in
these targets our classifier has beaten the majority

Figure 2: Learning curve of the verb look for 5 folds

Figure 3: Learning curve of the verb rise for 5 folds

class baseline; and also active learning with uncer-
tainty sampling has a relatively better performance
than random sampling.

Figures 4 and 5 present the average variance
curves of 5 folds for the two targets. These curves
verify our assumption about the behavior of the vari-
ance curve as described in Section 3.2. As the
graphs show, following our assumption the variabil-
ity around the mean is tight in the early stages of
training; then as the classifier is trained with more
data, the variability around the mean spreads out;
and finally, the variability will be tight again around
the mean.

Applying our proposed stopping criterion, in each
iteration we compute the variance of the classifier’s
confidence score for the selected samples in each
fold. To evaluate how well our stopping criterion
is, we have compared our results with the maximum
average performance of the classifier for the 5 folds
in which the whole data is labeled.

Applying our model on the held-out set, we found
that n=2 is the best value based on our data set, so
that we stop active learning when variance decreases
in two sequential iterations; i.e.

Vi < Vi−1 and Vi−1 < Vi−2 .

Our idea is shown in Figure 6 for fold 5 of the tar-
get rise, such that the proposed stopping criterion is
satisfied in iteration 11. As shown, the decrement of
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Figure 4: Variance curve of the verb look for 5 folds

Figure 5: Variance curve of the verb rise for 5 folds

variance in iterations 3, 5, and 7 is the local maxima
so that active learning does not stop in these itera-
tions and they are ignored.

The summary of the result for the uncertainty
sampling method of the test set is shown in Table 2
in which the F-score serves as the evaluation met-
ric. Comparing the applied variance model as the
stopping criterion on the test set with the maximum
performance (M) of the uncertainty sampling as an
upper bound in our experiment, we see that for two
targets (bend, rush) the maximum performance of
the classifier is achieved at the stopping point; for
two targets (follow, hit) there is a minor reduction in
the performance; while for the other targets (forget,
scream, strike) there is a big loss in the performance.
Averagely, the variance model achieved 92.66% of
the maximum performance.

To determine the advantage of our stopping cri-
terion, we present the total numbers of annotated
instances (A) for each target, their relevant num-
bers of annotated instances for the maximum per-
formance, and the variance model in Table 3. Av-

Figure 6: Variance curve of the verb rise

Table 2: The comparison of the average performance of
the classifier (F-score) on the stopping point with the
maximum performance in uncertainty sampling

Verb M VM
Bend 53.00 53.00
Follow 71.81 70.00
Forget 51.00 41.00
Hit 65.71 63.56
Rush 89.03 89.03
Scream 72.14 62.85
Strike 64.00 53.00
Average 66.67 61.78

Table 3: The comparison of the number of the annotated
data for all data, at the maximum performance, and at the
stopping point

Verb A M VM
Bend 93 46 55
Follow 91 75 54
Forget 81 79 51
Hit 114 67 71
Rush 137 24 51
Scream 120 62 64
Strike 85 85 41
Average 103 62.57 55.29

eragely, if we have 103 samples for annotation, we
need to annotate almost 63 instances to reach the
maximum performance of 66.67%; while by apply-
ing our stopping criterion, the learning process stops
by annotating at least 55 instances with 61.78% per-
formance. I.e., annotating a smaller number of in-
stances, our active learner achieves a near-optimum
performance. It is worth to mention that since it is
very difficult to achieve the upper bound of the clas-
sifier’s performance automatically, all data is labeled
to find the maximum performance of the classifier.

Looking carefully on the variance curves of the 5
folds of the held-out set, we have seen that in some
iterations the decreased variance in two sequential
iterations is very small and it may still stick in the
local maxima as can be seen in iteration 8 of fold 3
of the target look in Figure 7.

To avoid sticking in such local maxima, we used
the extended version of our original model and set
a threshold (m) in the held-out set. Experimentally
we found out that the decreasing variance in two se-
quential iterations must be bigger than 0.5; i.e.

Vi < Vi−1 - 0.5 and Vi−1 < Vi−2 - 0.5;
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Figure 7: Variance curve of the verb look

so that in Figure 7 we stop in iteration 18. We ap-
plied the extended variance model on the test set and
compared the results to our original variance model.
We found out for two targets (forget, scream) the
extended model has achieved a very good perfor-
mance; for four targets (follow, hit, rush, strike) it
was ineffective; and for one target (bend) it caused
to have a small reduction in the performance.

The summary of the classifier performance after
applying the extended model for uncertainty sam-
pling is shown in Table 4. To ease the comparison,
the performance of our original model is repeated
in this table. As presented in the table, the average
performance in the extended model has a 13.70%
relative improvement compared to the average per-
formance in the original variance model.

Table 4: The comparison of the average performance of
the classifier (F-score) on the variance model and the ex-
tended variance model

Verb VM EM
Bend 53.00 52.00
Follow 70.00 70.00
Forget 41.00 46.00
Hit 63.56 63.56
Rush 89.03 89.03
Scream 62.85 63.56
Strike 53.00 53.00
Average 61.78 62.45

5 Related Work on Stopping Criteria
The simplest stopping criterion for active learning
is when the training set has reached a desirable size
or a predefined threshold. In this criterion, the ac-
tive learning process repeatedly provides informa-
tive examples to the oracle for labeling, and updates
the training set, until the desired size is obtained
or the predefined stopping criterion is met. Practi-
cally, it is not clear how much annotation is suffi-

cient for inducing a classifier with maximum effec-
tiveness (Lewis and Gale, 1994).

Schohn and Cohn (2000) have used support vector
machines (SVM) for document classification using
the selective sampling method and they have pro-
posed a criterion to stop the learning process in their
task. Based on their idea, when there is no informa-
tive instance in the pool which is closer to the sep-
arating hyperplane than any of the support vectors,
the margin exhausts and the learning process stops.

Zhu and Hovey (2007) have used a confidence-
based approach for the stopping criteria by utlizing
the maximum confidence and the minimum error of
the classifier. The maximum confidence is based on
the uncertainty measurement when the entropy of
the selected unlabeled sample is less than a prede-
fined threshold close to zero. The minimum error is
the feedback from the oracle when active learning
asks for the true label of the selected unlabeled sam-
ple and the accuracy prediction of the classifier for
the selected unlabeled sample is larger than a prede-
fined accuracy threshold. These criteria are consid-
ered as upper-bound and lower-bound of the stop-
ping condition.

Zhu et al. (2008) proposed another stopping
criterion based on a statistical learning approach
called minimum expected error strategy. In this ap-
proach, the maximum effectiveness of the classifier
is reached when the classifier’s expected errors on
future unlabeled data is minimum.

Vlachos (2008) has used the classifier confidence
score as a stopping criterion for the uncertainty sam-
pling. He has applied his model to two NLP tasks:
text classification and named entity recognition. He
has built his models with the SVM and the maxi-
mum entropy. The idea is when the confidence of
the classifier remains at the same level or drops for
a number of consecutive iterations, the learning pro-
cess should terminate.

Laws and Schütze (2008) suggested three crite-
ria -minimal absolute performance, maximum pos-
sible performance, and convergence- to stop active
learning for name entity recognition using the SVM
model with the uncertainty sampling method. In
minimal absolute performance, a threshold is pre-
defined by the user; and then the classifier esti-
mates its own performance by using only the unla-
beled reference test set. Since there is no available
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labeled test set, the evaluation performance is not
possible. The maximum possible performance is a
confidence-based stopping criterion in which active
learning is stopped where the optimal performance
of the classifier is achieved. Again, in this approach
there is no labeled test data to evaluate the perfor-
mance. The convergence criterion is met when more
examples from the pool of unlabeled data do not
contribute more information to the classifier’s per-
formance, so that the classifier has reached its maxi-
mum performance. Laws and Schütze computed the
convergence as the gradient of the classifier’s esti-
mated performance or uncertainty.

Tomanek and Hahn (2008) proposed a stopping
criterion based on the performance of the classi-
fier without requiring a labeled gold standard for a
committee-based active learning on the name en-
tity recognition application. In their criterion, they
approximated the progression of the learning curve
based on the disagreement among the committee
members. They have used the validation set agree-
ment curve as an adequate approximation for the
progression of the learning curve. This curve was
based on the data in each active learning iteration
that makes the agreement values comparable be-
tween different active learning iterations.

Bloodgood and Vijay-Shanker (2009) explained
three areas of stopping active learning that should
be improved: applicability (restricting the usage in
certain situation), lack of aggressive stopping (find-
ing the stopping points which are too far, so more
examples than necessary are annotated), instability
(well working of a method on some data set but not
the other data set). Further, they presented a stop-
ping criterion based on stabilizing predictions that
addresses each of the above three areas and provides
a user-adjustable stopping behavior. In this method,
the prediction of active learning was tested on exam-
ples which do not have to be labeled and it is stopped
when the predictions are stabilized. This criterion
was applied to text classification and named entity
recognition tasks using the SVM and the maximum
entropy models.

6 Summary and Future Work
In this paper, after a brief overview of frame seman-
tics and active learning scenarios and query meth-
ods, we performed the frame assignment in the pool-

based active learning with the uncertainty sampling
method. To this end, we chose 14 frequent targets
from FrameNet data set for our task.

One of the properties of active learning is its itera-
tivness which should be stopped when the classifier
has reached its maximum performance. Reaching
this point is very difficult; therefore, we proposed
a stopping criterion which stops active learning in a
near-optimum point. This stopping criterion is based
on the confidence score of the classifier on the extra
unlabeled data such that it uses the variance of the
classifier’s confidence score for the predicted labels
of a certain number of samples selected in each it-
eration. The advantage of this criterion is that there
is no need to the labeled gold standard data and test-
ing the performance of the classifier in each itera-
tion. Based on this idea, we proposed a model which
is satisfied by n sequential decrease on a variance
curve. The original model is expanded by setting a
threshold m on the amount of the decrement of vari-
ance in n sequential iterations. We believe that our
proposed criterion can be applied to any active learn-
ing setting based on uncertainty sampling and it is
not limited to the frame assignment.

To find out how effective our model is, we com-
pared the achieved results of our variance model
with the maximum performance of the classifier and
we found that 92.66% of the performance is kept in
the test data. In the extended variance model, we
achieved a higher performance of the classifier in
which 93.67% of the performance is kept.

For the future word, while in our current re-
search the learner selects 5 instances in each itera-
tion, this number could be different and investiga-
tion is needed to find out how much our proposed
criterion depends on the K. The other possibility to
expand our proposed model is using the variance of
the classifier’s confidence score for the predicted la-
bels of the whole unlabeled data in each iteration and
not the selected samples.
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